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Computational chemistry has led to the greater understanding of the molecular 

world, from the interaction of molecules, to the composition of molecular species and 

materials.  Of the families of computational chemistry approaches available, the main 

families of electronic structure methods that are capable of accurate and/or reliable 

predictions of energetic, structural, and spectroscopic properties are ab initio methods 

and density functional theory (DFT). The focus of this dissertation is to improve the 

accuracy of predictions and computational efficiency (with respect to memory, disk 

space, and computer processing time) of some computational chemistry methods, 

which, in turn, can extend the size of molecule that can be addressed, and, for other 

methods, DFT, in particular, gain greater insight into which DFT methods are more 

reliable than others.  Much, though not all, of the focus of this dissertation is upon 

transition metal species – species for which much less method development has been 

targeted or insight about method performance has been well established. 

The ab initio approach that has been targeted in this work is the correlation 

consistent composite approach (ccCA), which has proven to be a robust, ab initio 

computational method for main group and first row transition metal-containing 

molecules yielding, on average, accurate thermodynamic properties, i.e., within 1 

kcal/mol of experiment for main group species and within 3 kcal/mol of experiment for 

first row transition metal molecules.  In order to make ccCA applicable to systems 

containing any element from the periodic table, development of the method for second 

 
 



row transition metals and heavier elements, including lower p-block (5p and 6p) 

elements was pursued.  The resulting method, the relativistic pseudopotential variant of 

ccCA (rp-ccCA), and its application are detailed for second row transition metals and 

lower p-block elements. 

Because of the computational cost of ab initio methods, DFT is a popular choice 

for the study of transition metals. Despite this, the most reliable density functionals for 

the prediction of energetic properties (e.g. enthalpy of formation, ionization potential, 

electron affinity, dissociation energy) of transition metal species, have not been clearly 

identified.  The examination of DFT performance for first and second row transition 

metal thermochemistry (i.e., enthalpies of formation) was conducted and density 

functionals for the study of these species were identified. 

And, finally, to address the accuracy of spectroscopic and energetic properties, 

improvements for a series of density functionals have been established. In both DFT 

and ab initio methods, the harmonic approximation is typically employed.  This neglect 

of anharmonic effects, such as those related to vibrational properties (e.g. zero-point 

vibrational energies, thermal contributions to enthalpy and entropy) of molecules, 

generally results in computational predictions that are not in agreement with experiment. 

To correct for the neglect of anharmonicity, scale factors can be applied to these 

vibrational properties, resulting in better alignment with experimental observations.  

Scale factors for DFT in conjunction with both the correlation and polarization consistent 

basis sets have been developed in this work.   
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CHAPTER 1 

INTRODUCTION 

The research presented in this dissertation aims to address a central issue of 

electronic structure methods: How can the accuracy and reliability of current 

computational methods be improved?  The presented research entails the development 

of computational methodologies to provide accurate prediction of energetic and 

spectroscopic properties of molecules and the calibration of current methods to assess 

reliability.  

Computational chemistry has wide application to the study of atoms and 

molecules and chemical environments, and provides information to guide, aid, and 

provoke experiments.  While computational chemistry can be used in the elucidation of 

many different properties, structural, energetic, and spectroscopic properties are among 

those most frequently computed.  Atomic and molecular energies are used to determine 

a range of properties, including dissociation energies, electron affinities, and enthalpies 

of formation, which can afford an understanding of reaction mechanisms and molecular 

stability. The determination of accurate energetic (i.e., enthalpies of formation) and 

spectroscopic (vibrational frequencies) properties for any element on the periodic table 

is key for applications including the prediction and design of experimental work; 

furthermore, the theoretically determined properties may be used in the 

parameterization or design of novel computational methods.  

To utilize computational chemistry for the determination of atomic or molecular 

properties of a system, the accuracy and reliability of the methods should be well 

established.  Accuracy is generally defined in terms of deviation from high quality 
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experimental data, e.g. a generally accepted definition of chemical accuracy for main 

group systems is the determination of properties within one kcal mol-1 from experimental 

values.  This level of accuracy is necessary as demonstrated by examples such as in 

the examination of barrier heights for a synthesis reaction, where a few tenths of a kcal 

mol-1 may change the desired product ratio, and in kinetics, where one kcal mol-1 

deviation from experiment is derived from theoretical rate constants being within an 

order of magnitude of experimental rate constants.  Reliability is gauged over a large 

number of test systems, such as the enthalpies of formation of transition metal 

molecules, and whether or not a method can achieve a similar level of performance, 

e.g. accuracy level, over all the molecules studied.  For example, how can there be 

confidence in the selection of a method if for one metal-ligand combination the enthalpy 

of formation is in agreement with experiment but for the same metal with a different 

ligand, the enthalpy of formation deviates by 100 kcal mol-1 from experiment?   

Advancements in the methods employed for computational chemistry have 

increased exponentially over the past two decades, permitting the development of more 

accurate and reliable methodologies.  With advances in computational methodologies, 

the utilization of computational chemistry has become widespread throughout many 

fields, inclusive of chemistry, physics, biology, and materials science.  The increased 

utility and progress of computational methods has been spurred forward by 

technological improvements as well, allowing for calculations to be executed more 

rapidly, with greater precision, and in greater bulk.  Ideally a computational method 

would achieve a uniform high accuracy for molecules composed of elements from any 

area of the periodic table.  Unfortunately, different parts of the periodic table present 
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different methodology requirements and a single computational procedure for every 

system is not possible without including unnecessary calculations for some molecules.  

Examples include: transition metals differing from most main group elements in the 

need for a description of relativistic effects and the fact that the electronic separation 

between the ground state and the first excited state is not uniform or of the same 

magnitude for all elements and molecules.  A reliable theoretical method would aid in 

the study of novel complexes, for example, by studying the energetics of various metal-

ligand combinations and determining which would be more favorable as a catalyst.  The 

design of an accurate computational methodology for second row transition metals, the 

calibration of current methods for first and second row transition metals, and a 

systematic way to correct for approximations in the methodologies are detailed in this 

dissertation.  

Computational chemistry methodologies can be classified into a number of 

categories, including electronic structure methods (defined via quantum mechanics), 

molecular mechanics (defined by classical mechanics), and molecular dynamics 

(introduction of a time dependence).  Selection of a method is based on the size of the 

system of interest, property of interest, and the desired accuracy level.  While the 

importance and utility of molecular mechanics and dynamics is noted, electronic 

structure methods, and their accuracy and reliability, are further detailed. 

 Electronic structure methods include ab initio methods and density functional 

theory (DFT) and are based on quantum mechanics. One of the main differences 

between the two methods is the choice to describe the system of interest with respect to 

electron coordinates (ab initio methods) or with respect to the electron density (DFT).  
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Ab initio methods can determine properties in closest agreement with experiment, 

where the molecule size that can be addressed is dictated by the desired accuracy level 

and computational requirements.  In systems having a larger number of electrons, e.g. 

those with second row transition metals, the selection of a method can be limited due to 

computational requirements, and, thus, reduced computational cost alternatives are 

needed.  Recent developments in DFT have yielded density functionals which have 

improved accuracy for some properties of interest, but DFT is based on fitting to 

experimental data and the errors are generally larger than those observed for ab initio 

methods.  If a molecule is studied that is dissimilar to the parameterization set, the 

quality of DFT results may be questionable.  Generally, density functionals are 

parameterized against test sets containing main group elements and molecules, 

prompting the question of the reliability of the functionals for transition metal systems.       

 In the design of any new computational methodology, whether ab initio or DFT, 

the calibration of the method is crucial and is the key to confidence in the performance 

of the method in future research.  While theory, principles, and laws may be the 

foundation of a new method and guide the proof of the method, robust experimental 

data is essential for testing any new method.    Comparison to experimental data allows 

for the validation of the method’s accuracy and reliability.  The accuracy desired varies 

with respect to method, property, and system of interest.  The demonstrated accuracy 

(i.e., within a defined error margin from experimental values) and reliability of a method 

is crucial for the extension of the method to experimentally untested compounds.   The 

accurate prediction of thermodynamic properties, specifically the enthalpy of formation, 
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is of exceptional importance, since this property is considered the most stringent test of 

a computational method.  

Chapter 3 defines a composite method, a quantum mechanical approach, for the 

determination of thermodynamic properties, within experimental uncertainties, of second 

row transition metal-containing molecules. Generally, composite methods are 

considered cost-effective (in terms of memory, disk space, and computer processing 

time) in comparison to the method needed to meet the composite method’s intended 

level of accuracy.  As compared to development for main group species or lighter 

metals, the development of ab initio methods for calculation of accurate thermochemical 

properties of 4d transition metal-containing molecules has lagged behind.  In this 

chapter a variant of ccCA for second row transition metals has been proposed, the 

relativistic pseudopotential ccCA (rp-ccCA). The method has been calibrated against 4p 

molecules before application to second row transition metals.  Further utilization of rp-

ccCA for the determination of thermodynamic properties of the lower p-block elements 

(In-I and Tl-At) is detailed in Chapter 4. 

 In Chapters 5 and 6, scale factors for vibrational frequencies and zero-point 

vibrational energies calculated with density functional theory (DFT) in conjunction with 

correlation consistent (Chapter 5) and polarization consistent (Chapter 6) basis sets is 

presented.  For the description of thermochemical properties such as entropies and 

enthalpies, spectroscopic properties are required. These properties can be computed, 

but, due to the implementation of the harmonic approximation, i.e., the neglect of 

anharmonic effects, the calculated results deviate from the experimentally-known 

values. It has been shown there is a systematic deviation between computed and 
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experimental vibrational frequencies,1-3 which are integral in the determination of 

spectroscopic properties. The systematic deviation allows for the development of 

multiplicative scale factors for application to the calculated frequencies to provide 

comparison with the experimentally observed frequencies. Because theoretical results 

are dependent upon the method selection, scale factors that are unique to each 

methodology are needed and have been defined.  

Chapter 7 outlines the performance of DFT for first and second row transition 

metal thermochemistry.  The study employs a wide range of density functionals, varying 

in their approximations and parameterizations, to determine the enthalpy of formation of 

over 200 first row transition metal-containing molecules and 30 second row transition 

metal-containing molecules.  The reliability of various density functionals for 

theoretically-determined enthalpies of formation is studied.  The transition metal 

molecules studied vary in their metal center, coordination, and experimental 

uncertainties, among other properties. 

 

 
 

6 
 



CHAPTER 2 

COMPUTATIONAL QUANTUM CHEMISTRY 

2.1 Schrödinger Equation 

The field of quantum mechanics (QM) lies where the areas of chemistry, physics, 

and mathematics overlap.  The central equation of quantum mechanics in the non-

relativistic limit, within the context of electronic structure and stationary state wave 

functions, is the time-independent Schrödinger equation:4 

𝐻�Ψ = 𝐸Ψ           (2.1) 

Where 

 

ˆ H  is the Hamiltonian operator for the nuclei and electrons in a molecule: 

𝐻� = −∑ 1
2
∇𝑖2𝑁

𝑖=1 − ∑ 1
2𝑀𝐴

∇𝐴2𝑀
𝐴=1 − ∑ ∑ 𝑍𝐴

𝑟𝑖𝐴
𝑀
𝐴=1

𝑁
𝑖=1 + ∑ ∑ 1

𝑟𝑖𝑗
𝑁
𝑗>𝑖

𝑁
𝑖=1 + ∑ ∑ 𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
𝑀
𝐵>𝐴

𝑀
𝐴=1  (2.2) 

In Equation 2, i and j are the electrons, A and B are the nuclei, N is the total number of 

electrons, M is the total number of nuclei, MA is the mass ratio of the nucleus A to an 

electron, ZA is the atomic number of nucleus A, riA is the distance between an electron 

and a nucleus, rij is the distance between two electrons, RAB is the distance between 

two nuclei, and 

 

∇ is the Laplacian of the electrons and nuclei.  The terms describe the 

kinetic energy of the electrons, the kinetic energy of the nuclei, the attraction between 

the nuclei and electrons, the repulsion between the electrons, and the repulsion 

between the nuclei, respectively.  The energy, E, determined by Equation 2.1 allows for 

the determination of chemical properties including molecular geometries, electronic 

ground states, spectroscopic properties, vibrational frequencies, zero-point energies, 

ionization potentials, electrons affinities, atomization energies, and enthalpies of 

formation.   
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Though the Schrödinger equation appears to be a facile eigenvalue equation, 

difficulties arise when working towards a solution for a system with more than one 

electron.  Approximations must be introduced to arrive at a solution for the electronic 

energy.  By implementing the Born-Oppenheimer approximation,5 the nucleus is 

assumed to be stationary due to the large mass ratio between the nucleus and the 

electrons; therefore, the electrons are assumed to be moving in a field of fixed nuclei.  

Under the Born-Oppenheimer approximation the electronic and nuclear terms become 

separable and the Hamiltonian, 

 

ˆ H , of the Schrödinger equation is simplified into an 

electronic form:  

𝐻�𝑒𝑙𝑒𝑐 = −∑ 1
2
∇𝑖2𝑁

𝑖=1 − ∑ ∑ 𝑍𝐴
𝑟𝑖𝐴

𝑀
𝐴=1

𝑁
𝑖=1 + ∑ ∑ 1

𝑟𝑖𝑗
𝑁
𝑗>𝑖

𝑁
𝑖=1       (2.3) 

And the electronic Schrödinger equation is 

H�elecΨelec = 𝐸𝑒𝑙𝑒𝑐Ψelec         (2.4) 

The electronic Hamiltonian is composed of the kinetic energy of the electrons, the 

attractions between the electrons and the nucleus, and the repulsion between the 

electrons.  The additional terms of Equation 2.2, specifically for the nuclear kinetic 

energy and the repulsion between the nuclei, become zero and a constant, respectively, 

under the Born-Oppenheimer approximation.   While it may be obvious that the 

electronic wavefunction of Equation 2.4 is dependent on the electronic coordinates, the 

electronic wavefunction is also dependent on the nuclear coordinates; a change in the 

nuclear coordinates will change the electron coordinates and, in turn, the electronic 

wavefunction. The electronic energy in combination with the nuclear-nuclear repulsion 

yields the total energy solution (Equation 2.5) to the non-relativistic time-independent 

Schrödinger equation (Equation 2.1).  
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𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑙𝑒𝑐 + ∑ ∑ 𝑍𝐴𝑍𝐵
𝑅𝐴𝐵

𝑀
𝐵>𝐴

𝑀
𝐴=1         (2.5) 

The Schrödinger equation presented in Equations 2.1 and 2.3 do not include relativistic 

effects; relativistic effects will be discussed in Section 2.7.  In order to solve the 

Schrödinger equation, method (Hamiltonian) and basis set (wavefunction) combinations 

must be employed.  Methods relevant to this dissertation will be presented in Sections 

2.2 and 2.3, while basis sets will be detailed in Section 2.4. 

 

2.2 Ab initio Computational Methods 

 Ab initio (in Latin “from the beginning”) methods may be employed to obtain 

solutions to the Schrödinger equation without reference to experimental data.  These 

methods utilize the electron spatial coordinates (r,θ,φ) and spin (α for spin up, β for spin 

down) as variables of the wavefunction, defining x={r,θ,φ,w}.  The wavefunction, Ψ, for 

an N electron system is a function of electrons described by spin and space coordinate, 

𝑥1,𝑥2, … , 𝑥𝑁, for each electron: 

Ψ(𝑥1,𝑥2, … , 𝑥𝑁)          (2.6) 

 The Pauli Exclusion Principle states no two electrons are able to occupy the 

same quantum state simultaneously.6  To meet the requirement of the Pauli Exclusion 

Principle, the wavefunction (Ψ) must be antisymmetric with respect to the interchange of 

space and spin of any two electrons since they are fermions: 

Ψ�𝑥1,𝑥2, … , 𝑥𝑁� = −Ψ(𝑥2,𝑥1, … , 𝑥𝑁)        (2.7) 

 To approximate the solution to the Schrödinger equation for a many electron 

system (Ψ), the product of one-electron wavefunctions or orbitals (Φi, i=1,2…N), 

referred to as the Hartree product, is employed. 
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Ψ = ∏ Φi
𝑁
𝑖=1            (2.8) 

The Hartree product does not fulfill the antisymmetry principle; therefore, the total 

wavefunction must be written as a Slater determinant, which antisymmetrizes the 

wavefunction.7  For a two electron system the Slater determinant is: 

Ψ(𝑥1, 𝑥2) = 1
√2
�Φi(x1)Φj(x2) −Φi(x2)Φj(x1)�      (2.9) 

Alternatively, the Slater determinant for the two electron system written in matrix form is: 

Ψ(𝑥1, 𝑥2) = 1
√2
�
Φi(x1) Φj(x1)
Φi(x2) Φj(x2)�        (2.10) 

For the case of an N electron system, the Slater determinant is 

Ψ(𝑥1, 𝑥2) = 1
√𝑁!

�
Φi(x1) ⋯ Φn(x1)

⋮ ⋱ ⋮
Φi(xN) ⋯ Φn(xN)

�       (2.11) 

The factor in front of the matrix is the normalization factor of the determinant. 

 The simplest ab initio method is the Hartree-Fock approximation8 which utilizes 

the variational principle in order to obtain optimized one-electron wavefunctions (or 

orbitals in the context of a minimal basis).  The variational principle states that if a 

normalized wavefunction (Ψ) satisfies boundary conditions, such as the wavefunction 

goes to zero at infinity, then the Hamiltonian expectation value is an upper bound to the 

exact ground state energy: 

�Ψ�𝐻��Ψ� ≥ 𝐸0          (2.12) 

Therefore, the energy of an approximate wavefunction, e.g. as determined by Hartree-

Fock, will always be higher than the exact ground state energy.  By varying the one-

electron wavefunctions, the minimal Eo may be determined and the result is the Hartree-

Fock equation: 
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𝑓(𝑖)Φ(𝑥𝑖) = 𝑒Φ(𝑥𝑖)          (2.13) 

where 𝑓(𝑖) is the one-electron Fock operator.  The solutions of the Hartree-Fock 

equation are a set of orthonormal one-electron wavefunctions, or orbitals, with 

corresponding energies.  A Slater determinant composed of the solutions to the 

Hartree-Fock equation is the lowest energy obtainable for the ground state via the 

variational principle and an uncorrelated single determinant method.  

 The Hartree-Fock approximation accounts for approximately 99% of the total 

electronic energy.9  The remaining 1% of energy is chemically important; for example, in 

the dissociation of carbon monoxide, where Hartree-Fock incorrectly predicts the 

dissociation of the molecule into ions.10  The Hartree-Fock approximation accounts for 

the exchange correlation between electrons of parallel spin.   The difference between 

the Hartree-Fock energy and the total electronic energy is defined as the correlation 

energy, 

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑡𝑜𝑡 − 𝐸𝐻𝐹          (2.14) 

Since the Hartree-Fock energy is variationally determined to be above the ground state 

energy, the correlation energy, 𝐸𝑐𝑜𝑟𝑟, is negative (𝐸𝑐𝑜𝑟𝑟 < 0). 

 To account for the correlation energy beyond the Hartree-Fock approximation, 

often referred to as addressing the N-electron problem, correlated methods may be 

employed.  In this dissertation, two correlated methods, coupled cluster theory and 

Møller-Plesset second order perturbation theory, are utilized. 

 Coupled cluster theory is best understood by first introducing configuration 

interaction (CI).  CI uses the ground state wavefunction (Ψ0) determined by Hartree-

Fock (HF) to solve the non-relativistic time-independent electronic Schrödinger equation 
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exactly (assuming the solution is obtained with a complete basis set).11  The 

wavefunction for the CI method is 

Ψ = 𝑐0Ψ0 + 𝑐1Ψ1 + ⋯+ 𝑐𝑘Ψ𝑘 = ∑ 𝑐𝑘Ψ𝑘𝑘        (2.15) 

The first term of the CI wavefunction is the Hartree-Fock ground state wavefunction 

multiplied by a constant.  The second term describes all of the determinants (or 

configuration state functions) of singly excited electrons, the third term describes the 

doubly excited electrons, and so on.  A singly excited determinant represents the 

excitation of one electron from the Hartree-Fock ground state into a virtual orbital.  

Similarly, a doubly excited determinant is the excitation of two electrons.  A single, a 

double, and a triple excitation are depicted in Figure 2.1.  

 

Figure 2.1.  The Hartree-Fock wavefunction and examples of a single (S), double (D), 
and triple (T) excitations. 
 

Each of these excitations represents a different configuration and the resulting 

sum is the CI method.  If all possible excitations and configurations are included within 

the CI wavefunction, then the method is referred to as Full CI.  Generally, only single 
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and double excitations are considered for the CI method.  This method is referred to as 

the CISD (configuration interaction with single and double excitations) method.  For a 

two electron system, the determinants within the CISD are depicted in Figure 2.2, where 

the “g” and “u” denote the symmetry of the orbital as gerade and ungerade, 

respectively, and i, j, k, … represent occupied orbitals and a, b, c, … represent virtual 

orbitals.   

 

Figure 2.2.  Configuration interaction with single and double excitations (CISD) with 
respect to determinants. 
 

When the CI method is truncated, the method maintains size consistency (the 

energy of A-B infinitely separated is equal to the energy of A plus the energy of B), but 

is no longer size extensive (correct linear scaling with respect to the number of 

electrons).  In order to overcome the size extensivity problem of truncated CI, the 

wavefunction may be written as an exponential, such as in coupled cluster theory.12 
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 The coupled cluster wavefunction is written as: 

ΨCC = eT�Φ0           (2.16) 

𝑒𝑇� = 1 + 𝑇� + 1
2!
𝑇�2 + ⋯ = ∑ 1

𝑘!
�𝑇�𝑘�∞

𝑘=0        (2.17) 

where 𝑇�  is the cluster operator 

𝑇� = 𝑇�1 + 𝑇�2 + ⋯+ 𝑇�𝑁         (2.18) 

The cluster operator acts on the Hartree-Fock reference wavefunction (Ψ0) and 

generates excited Slater determinants.  The subscript of 𝑇�  (𝑇� i) represents the ith excited 

Slated determinant.  For example, 

𝑇�1Ψ0 = ∑ ∑ tiavirt
a

occ
i Ψia         (2.19) 

𝑇�2Ψ0 = ∑ ∑ tijabvirt
a<𝑏

occ
i<𝑗 Ψijab         (2.20) 

where t are the expansion coefficients or amplitudes and Ψ𝑖𝑎 represents a single 

excitation of an electron in an occupied orbital, i, into a virtual orbital a.  Therefore, the 

exponential of the coupled cluster wavefunction can be expanded as 

𝑒𝑇� = 1 + 𝑇�1 + �𝑇�2 + 1
2
𝑇�1

2� + ⋯        (2.21) 

The first term describes the Hartree-Fock reference, the second term describes the 

singly excited states, the third term describes the doubly excited states; the exponential 

operator is expanded through all possible excitations.  The Schrödinger equation under 

coupled cluster is   

𝐻�𝑒𝑇�Ψ0 = E𝑒𝑇�Ψ0          (2.22) 

If all cluster operators, 𝑇�1 through 𝑇�N, are included, then the coupled cluster 

method is equal to CI.  Similar to CI, limiting the number of excitations with coupled 

cluster yields a truncated version of the method.  If the cluster operator is limited to 
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𝑇�=𝑇�2, the method is coupled cluster doubles (CCD).  The inclusion of only single 

excitations does not improve over Hartree-Fock; therefore, couple cluster singles (CCS) 

does not exist.  The inclusion of single and double excitations, 𝑇�=𝑇�1+𝑇�2, is coupled 

cluster singles and doubles (CCSD).13  As opposed to CI, the truncated forms of 

coupled cluster are size extensive due to the inclusion of cross-terms in the cluster 

operator expansion.  A commonly employed coupled cluster method is coupled cluster 

with single, double, and perturbative triple excitations [CCSD(T)]. 14 

While CI and coupled cluster theories rely on excitations to recover the correlation 

energy beyond the Hartree-Fock approximation, correlation energy is also recoverable 

by introducing a perturbation to the ground state system.  In many-body perturbation 

theory (MBPT),15 the Hamiltonian is composed of the ground state Hamiltonian (𝐻�0) and 

the Hamiltonian as a result of perturbation (𝐻′�).  The MBPT Hamiltonian is 

𝐻� = 𝐻�0 + 𝜆𝐻′�           (2.23) 

where λ represents the perturbation parameter.  When λ=0, the Hamiltonian simplifies to 

𝐻� = 𝐻�0.  If the unperturbed Hamiltonian is defined as a sum over Fock operators, as 

introduced in Hartree-Fock theory, then the method is Møller-Plesset (MP) perturbation 

theory.16  Based on the definition of the perturbation operator in MP perturbation theory, 

the first order energy is zero and thus first order MP theory (MP1) yields the Hartree-

Fock energy; therefore, second order MP perturbation theory (MP2) is employed in 

order to recover correlation energy beyond the Hartree-Fock approximation.  The 

second-order correction to the reference energy includes all perturbations between the 

reference and excited states; therefore, the correction consists of the sum over all 

doubly excited determinants, |Ψ𝑖𝑗𝑎𝑏〉, as depicted in Figures 2.1 and 2.2.   
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 Similar to coupled cluster theory, MP2 is size extensive.  Perturbation theory 

does not determine the energy via a variational procedure, such as coupled cluster and 

configuration interaction; therefore, the energy obtained by MP2 may be lower in energy 

than the exact energy and the series of MPn (n=order) does not converge monotonically 

toward the exact energy as you increase the order of the perturbation.   

 

2.3 DFT  

As detailed, ab initio methods approximate the solution to the Schrödinger 

equation by utilizing the coordinates of electrons to derive the wavefunction.  

Alternatively, density functional theory employs the electron density.  The electron 

density is defined as the square of the wavefunction integrated over N-1 electron 

coordinates: 

𝜌(𝑟) = 𝑁∑ ∫|Ψ(𝑟1, 𝑟2, … , 𝑟𝑁)|2𝑁𝑒𝑙𝑒𝑐
𝑖=1 𝑑𝑟2𝑑𝑟3 …𝑑𝑟𝑁      (2.24) 

The electron density is, in itself, a function.  In order to determine the electronic energy 

a function of the electron density is necessary, i.e., a function of a function, commonly 

known as a functional. 

The initial implementation of the electron density to determine the electronic 

structure was defined in Thomas-Fermi theory.17  The original theory lacked the ability 

to determine molecular binding.  The next step in the development of using the one-

electron density was Slater’s Xα method,18 combining Thomas-Fermi theory and the 

Hartree orbital method.  The next advancement in the utilization of the electron density 

was founded by two theorems from Hohenberg and Kohn.19  The first theorem states: 

The electron density determines the external potential (to within an additive constant). 
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This theorem is commonly understood as: the electron density uniquely determines the 

Hamiltonian operator.  Since the Hamiltonian is dictated by the external potential and 

the total number of electrons, N, the density is determined by integration; therefore, with 

the density, the Hamiltonian can be determined uniquely and the wavefunctions 

computed.  In general, the first theorem states the energy is a functional of the density. 

 The second theorem of Hohenberg and Kohn states: 

For any positive definite trial density, ρt, such that the integral of ρt(r)dr=N, then E[ρt]≥Eo 

This theorem is proven with the variational principle.  Based on the two theorems of 

Hohenberg and Kohn, the fundamental equation of density functional theory is 

|𝐸[𝜌] − ∫𝜌(𝑟)𝑑𝑟 − 𝑁| = 0         (2.25) 

and it can be concluded that there exists a universal functional E[ρ] such that when the 

functional is inserted into the above equation and the functional is minimized, the exact 

ground state density and energy are obtained. 

 From the Schrödinger equation, the energy functional can be defined by the sum 

of three energetic terms 

𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝑒𝑒[𝜌]        (2.26) 

where T is the kinetic energy, Vext is the interaction with the external potential and Vee is 

the electron-electron interaction.  The external potential interaction is defined as 

𝑉𝑒𝑥𝑡[𝜌] = ∫𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟         (2.27) 

In order to solve for the kinetic energy and electron-electron repulsion functionals, Kohn 

and Sham selected a single determinant wavefunction constructed of N “orbitals” to 

describe a system of N non-interacting electrons.20  The non-interacting system allows 

for the exact definition of the kinetic energy functional 
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𝑇𝑆[𝜌] = −1
2
∑ ⟨𝜌𝑖|∇2|𝜌𝑖⟩𝑁
𝑖          (2.28) 

and the ground state density is 

𝜌(𝑟) = ∑ |𝜌𝑖|2𝑁
𝑖           (2.29) 

Through the definition of the density via a set of orbitals, an antisymmetric wavefunction 

can be constructed.  The electron-electron interaction is then composed of the Coulomb 

interaction 

𝑉𝑒𝑒𝑐 = 1
2 ∫

𝜌(𝑟1)𝜌(𝑟2)
(|𝑟1−𝑟2|) 𝑑𝑟1𝑑𝑟2         (2.30) 

and the remaining exchange-correlation energy, defined as EXC.  The resulting total 

energy of Equation 2.26 can be rewritten as  

𝐸[𝜌] = 𝑇𝑆[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝑒𝑒𝑐[𝜌] + 𝐸𝑋𝐶[𝜌]       (2.31) 

The exchange-correlation functional recovers the energy omitted by assuming a non-

interacting system and the additional energy beyond the Coulomb interaction 

𝐸𝑋𝐶[𝜌] = (𝑇[𝜌] − 𝑇𝑆[𝜌]) + (𝑉𝑒𝑒[𝜌] − 𝑉𝑒𝑒𝑐[𝜌])      (2.32) 

The implementation of the non-interacting system yields the Kohn-Sham set of non-

linear equations to describe the non-interacting electrons in an effective local potential.  

Hohenberg and Kohn proved there is a unique functional relating the ground state 

energy to the electron density.  Kohn-Sham density functional theory, therefore, is not 

exact since the unique functional is not known.  The 𝐸𝑋𝐶  functional in Kohn-Sham DFT 

can be refined by determining properties in a variety of systems and developing the 

approximations employed within the functional. 

 Since the introduction of Kohn-Sham density functional theory (DFT), the theory 

has been developed to better address chemical properties, such as binding energies 

and long-range interactions, and to approach accuracy levels obtained by ab initio 
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methods.  To describe the various approximations of DFT, Perdew coined the term 

“Jacob’s Ladder”.21  The ladder is composed of five rungs and as the ladder is climbed 

the sophistication of the theory is increased.  The ground of the ladder is the Hartree 

world, where only the Hartree energy is determined.  The first rung is the Local (Spin) 

Density Approximation (LSDA), the second rung is the Generalized Gradient 

Approximation (GGA), the third rung is Meta-GGA (MGGA), the fourth rung is hybrid 

functionals (HGGA), and the fifth rung is generally composed of double hybrid 

functionals (DHGGA). 

 In the LDA approximation, the density is treated locally as a uniform electron gas 

and the exchange energy is defined as 

𝐸𝑋𝐿𝐷𝐴[𝜌] = −𝐶𝑥 ∫𝜌
4
3(𝑟)𝑑𝑟         (2.33) 

If the alpha and beta spin densities are not equal, then the LSDA is employed.22  On 

average, the LSDA underestimates exchange energy by 10% and the correlation 

energy is overestimated by a factor of two;23 in turn, bond strengths are overestimated.  

Since the energy of the LSDA is a functional of only the electron density, inclusion of 

additional functions in the functional was considered in order to address the 

shortcomings of LSDA 

 GGA functionals incorporate the gradient (derivatives) of the electron density (∇ρ) 

in the form of the functional, in addition to the electron density.24,25  GGA functionals 

generally have the form 

𝐸𝑋𝐶 ≈ ∫𝜌(𝑟)𝐸𝑋𝐶(𝜌,∇𝜌)𝑑𝑟         (2.34) 

Functionals following this form include BLYP (Becke 88 exchange26 and Lee-Yang-Parr 

correlation27) and BP86 (Becke 88 exchange and Perdew 86 correlation28).  The 

19 



functionals differ by how they include the gradient of the density.  GGA functionals 

improve on the overestimation of binding energies by LSDA. 

 The third rung of the DFT Jacob’s Ladder is the MGGA functionals.29  The meta-

functionals include a dependence on the local kinetic energy density, in addition to the 

gradient of the density and the density.  The inclusion of the local kinetic energy density 

results in a functional form 

𝐸𝑋𝐶 ≈ ∫𝜌(𝑟)𝐸𝑋𝐶(𝜌, |∇𝜌|,∇ρ2)𝑑𝑟        (2.35) 

 Hybrid functionals30 compose the fourth rung of Jacob’s Ladder.  The non-

interacting system of DFT and the fully interacting many-body system are exactly 

connected via the adiabatic approach.31  The adiabatic approach gradually increases 

the electron-electron interaction from non-interacting (λ=0) to fully interacting (λ=1).  

When λ=0, the system can be described by Hartree-Fock.  The GGA functional can then 

be optimized to describe the fully interacting system.  The exchange-correlation energy 

of a hybrid functional can be written as 

𝐸𝑋𝐶 ≈ 𝑎𝐸𝐻𝐹 + 𝑏𝐸𝑋𝐶𝐺𝐺𝐴          (2.36) 

As implemented by Becke, the HGGA exchange-correlation energy is determined by 

𝐸𝑋𝐶 = 𝐸𝑋𝐶𝐿𝐷𝐴 + 𝑎(𝐸𝑋𝐻𝐹 − 𝐸𝑋𝐿𝐷𝐴) + 𝑏∆𝐸𝑋𝐺𝐺𝐴 + 𝑐∆𝐸𝐶𝐺𝐺𝐴     (2.37) 

The coefficients a, b, c are optimized with respect to reference data and the GGA and 

LDA selected is defined in the development.  Popular HGGA’s include B3LYP, 

B3PW91, and PBE1PBE.  These functionals include 20%, 20%, and 25% Hartree-Fock 

exchange (i.e., the value of a=0.20, 0.20, and 0.25), respectively.  With the inclusion of 

non-local Hartree-Fock exchange, the locality of LSDA and GGA is nearly cancelled; 

therefore, HGGA functionals produce binding energies closer to experimental energies. 
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 Double hybrid functionals have been deemed fifth rung functionals due to their 

inclusion of an additional variable, as well as their generally observed improved 

accuracy.32-35  DHGGA exchange-correlation energy includes correlation energy from 

second-order perturbation theory in addition to Hartree-Fock exchange energy.  The 

DHGGA exchange-correlation energy is 

𝐸𝑋𝐶 = (1 − 𝑎𝑋)𝐸𝑋𝐷𝐹𝑇 + 𝑎𝑋𝐸𝑋𝐻𝐹 + (1 − 𝑎𝑐)𝐸𝐶𝐷𝐹𝑇 + 𝑎𝑐𝐸𝐶𝑃𝑇2     (2.38) 

Generally, the percentage of Hartree-Fock exchange in DHGGA functionals is greater 

than in HGGA functionals; for example, Grimme’s B2-PLYP functionals has coefficients 

ax=0.53 and ac=0.27.32 

 Additional approximations have been implemented in DFT, including a correction 

for dispersion36 or long-range effects and introducing a parameter to separate the 

exchange energy at long ranges.37  DFT in its general definition does not account for 

van der Waals interactions.38  To address the long-range interactions, Grimme 

introduced a dispersion correction for modern DFT.  The dispersion correction is defined 

as 

𝐸𝑑𝑖𝑠𝑝 = −𝑠6 ∑ ∑
𝐶𝑖𝑗
6

𝑅𝑖𝑗
6

𝑁𝑎𝑡
𝑗=𝑖+1

𝑁𝑎𝑡−1
𝑖=1 𝑓𝑑𝑚𝑝(𝑅𝑗𝑖)       (2.39) 

where Nat is the number of atoms, s6 is a scaling factor depending on the functional 

used, Rij is the interatomic distance, Cij is the dispersion coefficient for atom pair ij and 

the damping function fdmp is defined as 

𝑓𝑑𝑚𝑝�𝑅𝑖𝑗� = 1

1+𝑒
−𝑑�

𝑅𝑖𝑗
𝑅𝑓

−1�
         (2.40) 

where Rf is the sum of the atomic van der Waals radii.  The dispersion corrected DFT 

exchange-correlation energy is then 
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𝐸𝑋𝐶𝐷𝐹𝑇−𝐷 = 𝐸𝑋𝐶𝐷𝐹𝑇 + 𝐸𝑑𝑖𝑠𝑝         (2.41) 

Long-range corrected functionals address the rapid decay of the non-Coulomb 

part of exchange functionals.  There are different ways to define the exchange-

correlation energy of long-range corrected functionals.  Within this dissertation, the long-

range corrected functionals developed by Head-Gordon and co-workers are 

employed.39,40  These functionals have the form 

𝐸𝑋𝐶𝐷𝐹𝑇 = 𝐸𝑋𝐿𝑅−𝐻𝐹 + 𝐸𝑋𝑆𝑅−𝐷𝐹𝑇 + 𝐸𝐶𝐷𝐹𝑇        (2.42) 

To establish the range cutoff, an error function is employed and the range parameter, ω, 

is within the error function. 

1
𝑟12

= erf (𝜔𝑟12)
r12

+ erfc (𝜔𝑟12)
r12

         (2.43) 

where 𝑟12 = |𝑟12| = |𝑟1 − 𝑟2|.  A smaller value of ω is associated with the SR operator 

being used for a longer range. 

 A variant of the long-range corrected functionals has also been defined, which 

includes a fraction of SR HF exchange in conjunction with the SR DFT exchange.  

These functionals have the form 

𝐸𝑋𝐶𝐷𝐹𝑇 = 𝐸𝑋𝐿𝑅−𝐻𝐹 + 𝑐𝑋𝐸𝑋𝑆𝑅−𝐻𝐹 + 𝐸𝑋𝑆𝑅−𝐷𝐹𝑇 + 𝐸𝐶𝐷𝐹𝑇      (2.44) 

and the value of 𝑐𝑋 is determined via fitting to experimental data.  The range-separated 

functionals have demonstrated a better performance than hybrid functionals for 

properties including dissociation energies and charge-transfer problems.39,40  

 

2.4  Basis Sets 

To solve the Schrödinger equation, the wavefunction must be constructed to 

represent the system of interest.  Mathematically, the wavefunction is composed of 
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basis functions combined in a linear combination in order to describe molecular orbitals.  

The wavefunction, as described in polar coordinates, can be separated into a product of 

two functions, radial (R) and angular (Y) 

Ψn,m,l(r, θ, φ) = Rn,l(r)Yl,m(θ, φ)        (2.45) 

The angular or spherical harmonic function is defined by the angular and magnetic 

quantum numbers (l,m).  The angular function determines the shape of the orbital 

space, i.e., s, p, d, f.  The radial function is variable with respect to r, the distance of the 

electron from the nucleus.  𝑅𝑛,𝑙(𝑟) describes the electron position and is expanded as 

𝑅𝑛,𝑙(𝑟) = 𝑟𝑥(𝑛,𝑙)𝑒−𝑦(𝑟)         (2.46) 

To describe the radial component of the wavefunction, there are two types of basis 

function: Slater-type orbitals (STOs)41 and Gaussian-type orbitals (GTOs)42.  STOs have 

the form 

𝑅𝑛,𝑙(𝑟) = 𝑟𝑛−1𝑒−𝜁𝑟          (2.47) 

and GTOs are of the form 

𝑅𝑛,𝑙(𝑟) = 𝑟2𝑛−1−𝑙𝑒−𝜁𝑟2         (2.48) 

The more notable differences between the two basis function types are in the regions: 

1) as r approaches zero and 2) as r approaches infinity.  In comparing the slopes of the 

basis functions at r=0, the STOs have a non-zero slope (often referred to as a cusp) and 

the GTOs have a slope equal to zero.  The 1s STO and GTO functions are depicted in 

Figure 2.3.   
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Figure 2.3.  The use of GTOs to model a 1s STO.  A linear combination of three GTOs 
is depicted (STO-3G).23  
 
  When r is large, the exponential of the GTOs decays more rapidly than the 

exponential of the STOs.  To qualitatively describe molecular orbitals, STOs are 

preferred over GTOs since STOs are able to model the molecular orbitals with less 

basis functions than would be needed with GTOs, STOs reproduce the cusp at the 

nucleus, a description necessary for properties such as nuclear magnetic resonance 

(NMR) and electron spin resonance (ESR), and STOs properly describe the tail of the 

function which is necessary to accurately model long-range effects, such as van der 

Waals interactions.  A downfall of STOs is the two-, three-, and four-centered integrals 

cannot be evaluated analytically.  The construction of the GTOs allows, for example, the 

reduction of a four-center integral into a two-center integral for the 1s function, in 
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addition to higher angular momentum functions.  While GTOs provide a simplified way 

to solve complex integrals, in comparison to STOs, the description of molecular orbitals 

by GTOs differs from an exact solution of the hydrogen atom, from which the concept of 

an orbital is derived.  To remedy shortcomings of GTOs, linear combinations of GTOs 

can be made to form a new GTO that more accurately reproduces an STO.  By making 

linear combinations of GTOs, referred to as primitives, a new Gaussian function, a 

contracted Gaussian function, is composed (see Figure 2.3 for STO-3G).  The 

contracted functions can be used to form molecular orbitals and save computational 

effort by fixing the coefficients of the functions in the linear combination to coefficients 

optimized for the atomic orbitals.   

 The Gaussian basis functions are modified based on the exponent and 

coefficient.  The exponents of GTOs and STOs are directly proportional to the value of ζ 

(zeta), which controls the width of the function. If a basis function has a large exponent 

(i.e., large ζ value), the function is considered tight.  If a basis function has a small 

exponent, the function is diffuse.  Diffuse functions are important for the description of 

long-range interactions. 

 The most commonly employed construction schemes for Gaussian-type basis 

sets are the Pople-type basis sets and Dunning correlation consistent basis sets.  

Correlation consistent basis sets are utilized within this dissertation and will be 

described.  The polarization consistent basis sets are an offshoot of the Dunning basis 

sets, but have been adapted for DFT. 

 Correlation consistent basis sets were developed by Dunning and co-workers.43-

47  The sets are constructed in order to systematically recover correlation energy from 
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the valence electrons through the systematic addition of basis functions according to 

their contribution to the correlation energy; for example, correlation consistent basis sets 

will have the form 3s2p1d, 4s3p2d1f, 5s4p3d2f1g, etc.  The correlation consistent basis 

sets are built from a minimal set of basis functions, e.g. 2s1p for lithium.  The basis sets 

are referred to as the correlation consistent polarized valence n-zeta basis sets (cc-

pVnZ), where n is the zeta level of the basis set.  To construct a double zeta, n=2 (D), 

basis set, additional polarized functions (one of each symmetry) of s, p, and d character 

are added to the minimal basis set.  For the example of lithium, the cc-pVDZ basis set 

would be composed of 3s2p1d basis functions.  With the systematic recovery of the 

correlation energy, the energies of the correlation consistent basis set converge 

asymptotically to the complete basis set (CBS) limit as the zeta level increases.  Since it 

is not possible to have an infinitely large basis set, the systematic nature of the 

correlation consistent basis sets allows for an extrapolation of the correlation energy to 

the CBS limit.  At the CBS limit, the error associated with the selection of basis set is 

removed and the remaining error in the (nonrelativistic) calculation is inherent to the 

selected method, e.g. CI, CCSD(T), MP2.48  Diffuse functions added to the correlation 

consistent basis sets are referred to as augmenting functions and the resulting basis 

sets are aug-cc-pVnZ.43  The inclusion of augmenting functions in the correlation 

consistent basis sets is used to aid in describing van der Waals interactions, hydrogen 

bonding, and anionic species.  While the cc-pVnZ sets recover correlation energy 

between valence electrons, there is additional correlation energy between the core and 

valence electrons and between the core electrons.  For the recovery of core-valence 

and core-core correlation energies, the correlation consistent basis sets can be 
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augmented with functions to account for the difference between all-electron and valence 

electron calculations (denoted cc-pCVnZ).49  Further work revealed that the core-

valence correlation energy converges more slowly than the core-core correlation 

energy; therefore, the weighted core-valence basis sets (cc-pwCVnZ) were developed 

to enhance convergence of the core-valence correlation energy.45  The balanced 

construction of the correlation consistent basis sets, coupled with the fact that properties 

determined with the basis sets can be extrapolated to the CBS limit, can enable 

accurate determination of molecular properties, including electron affinities, ionization 

potentials, and total energies when paired with a correlation method, such as CCSD(T). 

 Since the basis functions of the correlation consistent basis sets were optimized 

with ab initio methods, the monotonic convergence of the correlation energy as seen for 

ab initio methods is not guaranteed for density functional theory (DFT).  To address this 

deficiency, Jensen and co-workers constructed the polarization consistent basis sets to 

converge in a smooth and efficient manner for density functional calculations.50,51  As 

polarization effects occur within a molecule, as opposed to an atom, molecular 

calculations were used in the development of the polarization consistent basis sets. The 

resulting basis sets are noted as pc-n (n=0–4), where n is the polarization level beyond 

the isolated atom.  For example, pc-0 for a first row element consists of an s and a p 

function. The pc-1 basis set adds a d-function, while the pc-2 basis set adds an f-

function. The s and p functions were optimized for the atom, while the exponents of the 

additional ‘‘polarization’’ functions were optimized for a variety of bonding environments 

within molecules. 

 
2.5 Scaling and Accuracy 
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As eluded to in the discussions of ab initio methods, DFT, and basis sets, not all 

method and basis set combinations are appropriate for the determination of molecular 

properties.  Considerations must be made regarding the computational cost, i.e., 

memory, disk space, and CPU time requirements, and the desired accuracy level.  

Associated with the computational cost is the scaling of a method.  When referring to 

computational cost or computational scaling, the definition herein is with respect to N 

number of basis functions.  For ab initio methods, Hartree-Fock scales formally as N4, 

MP2 scales as N5, and CCSD(T) scales as N7.  While Full CI, with a complete basis set, 

would yield the exact solution to the electronic Schrödinger equation, the method scales 

as NN!.  Since there are a variety of approximations within DFT, the theory typically 

scales as N3 or N4.  As computational resources are a limiting factor for a calculation, 

the scaling of the method can be an important consideration. 

 In addition to the scaling of the method, the desired accuracy level of the 

calculation should be considered in the selection of a computational method.  Generally, 

post-Hartree-Fock methods have higher accuracy levels, i.e., in better agreement with 

experimental data for calibration, than DFT, though the accuracy comes with a higher 

scaling.  For computational work involving main group atoms, the definition of “chemical 

accuracy” is generally accepted as theoretically determined energetic properties (e.g. 

dissociation energies, enthalpies of formation) within one kcal mol-1 of reliable 

experimental data.  This definition of chemical accuracy was derived from the Arrhenius 

equation52 

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇            (2.49) 
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where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is 

the gas constant, and T is the temperature of a reaction.  Experimental and theoretical 

rate constants should agree within an order of magnitude 

0.1 < 𝑘𝑐𝑎𝑙
𝑘𝑒𝑥𝑝𝑡

< 10          (2.50) 

Therefore, at 298K (room temperature) the theoretical solution should be within one kcal 

mol-1 of the experimental energy, i.e., obtain chemical accuracy.  This definition of 

chemical accuracy is considered for main group elements.  Chemical accuracy for 

heavier systems, such as transition metals, will be discussed in Chapters 3 and 4.  In 

addition to chemical accuracy, another metric used by some composite methods is 

spectroscopic accuracy defined 1 kilojoule mol-1.   

 

2.6 Model Chemistries 

 To reduce the computational costs associated with increasing molecule size and 

basis set, model chemistries, or composite approaches, have been introduced within ab 

initio methodologies.  The result of a CCSD(T) calculation with a large basis set has 

been referred to as the “gold standard” for computational methods.47  Due to the scaling 

of CCSD(T), N7 where N is the number of basis functions, a CCSD(T) calculation with a 

large basis set has a high computational cost.  Through the combination of a high level 

of theory and small basis set (with respect to number of basis functions) calculations 

and low levels of theory paired with large basis sets, composite methods attempt to 

reproduce results obtained when a high level of theory is combined with a large basis 

set (i.e., the gold standard).  Thus, composite methods can obtain a high accuracy 

property, e.g. within chemical accuracy, at a lower computational cost than the gold 
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standard.  Examples of composite methods include the Gaussian-n methods (Gn),53-55 

the Weizmann-n methods (Wn),56,57 the High accuracy Extrapolated Ab initio 

Thermochemistry method (HEAT),58 the Complete Basis Set (CBS-n) theories,59 the 

focal point method,60 the Multi-Coefficient Correlation Method (MCCM),61 the Feller-

Peterson-Dixon (FPD) approach,62 and the correlation consistent Composite Approach 

(ccCA).63-72 

 While there are a variety of composite methods, each method differs by the 

components (methods and basis sets employed) of the methodology, the accuracy goal 

(chemical versus spectroscopic accuracy, i.e., on average within one kJ/mol of 

experiment), and the variants (designed for specific elements).  In this dissertation only 

two composite methods are discussed:  the Gn methods, since this is the earliest and 

most widely used family of composite methods,53 and ccCA, since a new variant of the 

method is the focus of Chapters 3 and 4.  To note, the Wn methods have proven to be 

one of the most accurate composite methods aming for chemical accuracy for main 

group species,56,57 but a further discussion of the Wn methods is not included. 

The Gn methods utilize Pople basis sets (e.g. 6-311G**, 6-311+G**) in 

conjunction with DFT and ab initio methods; for example, the G3 method includes MP2 

and QCISD single-point calculations.55  The Gn methods include a correction, which 

contains more than one empirical parameter, known as the high-level correction (HLC).  

The original HLC in G1 attempted to account for basis set deficiencies and was fitted to 

the experimental data of the test set.  In further developments of the Gn methods (n=2, 

3, 4), the number of parameters within the HLC increased to compensate for effects 

such as additional basis set deficiencies and unpaired electrons.  The major drawback 
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of the Gn methods is the HLC, which introduces a bias into the method since it depends 

on parameter(s) derived to fit computed data to a selected set of experimental results.  

It has been shown the magnitude of the HLC can be over 100 kcal mol-1.65  

The correlation consistent Composite Approach (ccCA) was developed by Wilson 

and co-workers and represents an ab initio composite method designed to approximate 

the energy obtained by a CCSD(T,FC1)-DK/aug-cc-pCV∞Z-DK calculation at the CBS 

limit. The ccCA method was designed with the goal of developing a theoretical model 

chemistry which is cost-effective as compared with methods such as W1 and HEAT, 

provides a chemically accurate (within 1 kcal mol-1 of experiment, on average) 

description of physical effects, is free of empirical parameters, and is applicable to a 

wide-range of systems. The convergence behavior of the correlation consistent basis 

sets is used to obtain a reference energy via extrapolation and then a series of additive 

single-point energy calculations are used to obtain the corrections to the reference 

energy; the resulting ccCA method approaches the CCSD(T,FC1)-DK/aug-cc-pCV∞Z-

DK energy at a reduced computational cost. The ccCA method has been applied to a 

wide range of molecules, demonstrating the robustness of ccCA. The ccCA 

methodology is MP2-based and involves no empirical parameters. 

The initial step in ccCA is a geometry optimization obtained with the B3LYP level 

of theory and cc-pVTZ basis set. The geometry is then utilized in a series of single 

energy point calculations. MP2 level calculations are computed with aug-cc-pVnZ basis 

sets with n=D(2), T(3), Q(4). The energies from these calculations are extrapolated to 

the CBS limit for the HF energy and the MP2 correlation energy, similar to the separate 

extrapolations employed by Halkier and co-workers,73 since the correlation energy 

31 



converges at a different rate than the HF energy. For the HF/CBS energy, an 

extrapolation scheme first proposed by Feller is utilized.74  The extrapolation proposed 

by Feller follows the form of:  

𝐸(𝑛) = 𝐸𝐶𝐵𝑆 + 𝐵𝑒𝑥𝑝(−𝐶𝑛)         (2.51) 

Further studies were carried out by Halkier and co-workers and an ideal C value 

of 1.63 was determined for HF/CBS extrapolations with triple and quadruple-zeta basis 

sets.75 Multiple extrapolation schemes can be utilized for the MP2 energy, but the 

following extrapolations were selected for ccCA. The mixed Gaussian/exponential 

equation was developed by Peterson and co-workers and is represented as:76 

𝐸(𝑛) = 𝐸𝐶𝐵𝑆 + 𝐵𝑒𝑥𝑝�−(𝑛 − 1)� + 𝐶𝑒𝑥𝑝(−(𝑛 − 1)2)     (2.52) 

With respect to ccCA, the Peterson extrapolation is referred to as ccCA-P. An 

alternative extrapolation, inversely related to the angular momentum, was developed by 

Schwartz and co-workers. Two versions are utilized: lmax
3 and lmax

4, where lmax is the 

highest order angular momentum with respect to the basis functions. For main group 

elements, lmax is equal to n. For transition metal species, lmax is equal to n+1.  The 

Schwartz extrapolation is described as:77 

𝐸(𝑙𝑚𝑎𝑥) = 𝐸𝐶𝐵𝑆 + 𝐵
(𝑙𝑚𝑎𝑥+

1
2)𝑥

         (2.53) 

The ccCA variant with x=3 is designated ccCA-S3 and to the fourth power (x=4) is 

ccCA-S4. A final extrapolation option is ccCA-PS3, which is the average of the ccCA-P 

and ccCA-S3 extrapolations. Through the Feller extrapolation the HF/CBS (EHF/CBS) 

energy is obtained and with the Peterson or Schwartz extrapolations the MP2/CBS 

(EMP2/CBS) energy is obtained.  Additional effects considered are scalar relativistic 

effects, core-valence effects, higher-order correlation energy beyond the MP2 level of 
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theory, and anharmonicity with respect to the zero-point energy. ccCA includes these 

effects as additive corrections.  

The Douglas-Kroll term, ΔE(DK), accounts for the scalar relativistic effects and is 

obtained with a spin-free, one electron Douglass-Kroll- Hess (DKH) second-order 

Hamiltonian and the triple-zeta correlation consistent basis set: 

∆𝐸(𝐷𝐾) = 𝐸(𝑀𝑃2/𝑐𝑐 − 𝑝𝑉𝑇𝑍 − 𝐷𝐾) − 𝐸(𝑀𝑃2/𝑐𝑐 − 𝑃𝑉𝑇𝑍)    (2.54) 

The core-valence electron correlation term, ΔE(CV), is determined via a frozen 

core MP2 calculation: 

∆𝐸(𝐶𝑉) = 𝐸(𝑀𝑃2,𝐹𝐶1)/𝑎𝑢𝑔 − 𝑐𝑐 − 𝑝𝐶𝑉𝑇𝑍) − 𝐸(𝑀𝑃2/𝑎𝑢𝑔 − 𝑐𝑐 − 𝑝𝑉𝑇𝑍)  (2.55) 

The FC1 keyword denotes the additional electrons to be correlated in the calculation. 

For example, for elements Li to Ne, all electrons are correlated; for Na to Ar, all 

electrons except 1s are correlated; and for K to Kr, all electrons excluding 1s2s2p are 

correlated. In other words, all electrons are correlated except those of the inner noble 

gas core.  

To account for higher order electron correlation effects, i.e., beyond the MP2 

level, a single point energy calculation is carried out with CCSD(T). The correlation 

correction, deemed ΔE(CC), is calculated as: 

∆𝐸(𝐶𝐶) = 𝐸(𝐶𝐶𝑆𝐷(𝑇)/𝑐𝑐 − 𝑝𝑉𝑇𝑍) − 𝐸(𝑀𝑃2/𝑐𝑐 − 𝑝𝑉𝑇𝑍)    (2.56) 

To finalize the ccCA energy, the scaled harmonic zero point energy must be 

added. In order to account for anharmonicity, a scale factor of 0.9890 was applied in 

calculating the zero point energy.  The zero-point energy is determined with B3LYP/cc-

pVTZ.  The scaled zero point energy is denoted ΔE(ZPE). The spin orbit coupling for 
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the atoms is included in the term ΔE(SO)a. With the additive corrections defined above 

and the extrapolated HF and MP2 energies, the ccCA energy is defined as: 

𝐸𝑐𝑐𝐶𝐴 = 𝐸𝐻𝐹/𝐶𝐵𝑆+𝐸𝑀𝑃2/𝐶𝐵𝑆 + ∆𝐸(𝐶𝑉) + +∆𝐸(𝐶𝐶) + ∆𝐸(𝐷𝐾) + ∆𝐸(𝑍𝑃𝐸) + ∆𝐸(𝑆𝑂)𝑎 (2.57) 

 Additional variants of ccCA have been developed, including a variant for first row 

transition metals (ccCA-TM), an implementation of the resolution-of-the-identity (RI-

ccCA), a layered approach using our own N-layered integrated molecular orbital and 

molecular mechanics (ONIOM-ccCA), a method for molecules with near-degeneracies 

or multireference character (MR-ccCA), and the relativistic pseudopotential variant (rp-

ccCA).  rp-ccCA is the subject of Chapters 3 and 4.  Each variant of ccCA has proven to 

be accurate, overall, and computationally efficient (as compared with a high-level 

calculation for the system studied, e.g. CCSD(T,FC1)-DK/aug-cc-pCV∞Z-DK). 

 ccCA is often applied to study the thermochemistry, e.g. enthalpy of formation, of 

a molecule via atomization energy, defined as: 

∆𝐻𝑓,𝑚(298𝐾) = ∑ 𝑛∆𝐻𝑓,𝐴(0𝐾)𝑎𝑡𝑜𝑚𝑠 − (∑ 𝑛𝐸𝐴 −𝑎𝑡𝑜𝑚𝑠 𝐸𝑀 − 𝐸𝑍𝑃𝐸) + �𝐻𝑀(298𝐾) −

𝐻𝑀(0𝐾)� − ∑ 𝑛(𝐻𝐴(298𝐾) − 𝐻𝐴(0𝐾))𝑎𝑡𝑜𝑚𝑠       (2.58) 

In Equation 2.58, the first term describes the enthalpy contribution from the atoms at 0 

K, the second term describes the atomization energy of the molecule, the third term 

describes the thermal contribution to the enthalpy from the molecule, and the fourth 

term describes the thermal contribution to the enthalpy from the atoms. 

 

2.7 Relativistic effects 

 Relativistic effects were briefly mentioned in Section 2.6 and a more detailed 

discussion is warranted.  The requirement that the speed of light be constant in all 
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coordinate systems is the root of the theory of relativity.  Additionally, physical laws 

should be equal in these systems; consequently; the description of a particle with the 

inclusion of relativity requires three space coordinates (e.g. x, y, z), as well as a time 

coordinate such that space-time is represented by a Lorentz invariant 4-vector, w, 

where w=(x,y,z,t).  A particle moves at a fraction of the speed of light; therefore, the 

mass of a moving particle is greater than when the mass of the particle at rest. 

𝑚 = 𝑚0 ��1 − 𝑣2

𝑐2
�
−1

          (2.59) 

where mo is the mass of the particle at rest, v is the speed of the particle, and c is the 

speed of light. 

 The inclusion of relativistic effects will change the chemistry of the particle in 

several ways.  If the Bohr radius is considered 

𝑎 = 𝜀0ℎ2

𝜋𝑚𝑒2𝑍
           (2.60) 

where εo is the permittivity of free space (1/4π), h is Planck’s constant, m is the mass of 

the particle, e is the charge of the particle, and Z is the atomic number, the relativistic 

increase in the mass of the particle will inversely affect the Bohr radius.78  As the atomic 

number increases the contraction of the Bohr radius will be greater, signifying the 

relativistic effects will increase with the atomic number; therefore, relativistic effects will 

be greater for heavier elements, such as transition metals.  The relativistic effects result 

in the contraction of the core orbitals.  In a many-electron system, the contraction of the 

core orbitals results in an increased screening of the nuclear charge for the valence 

orbitals.  In general, s and p orbitals will contract, and the d and f orbitals will expand.  In 

a molecular system, the contraction of the s and p orbitals will shorten the chemical 
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bond.  The contraction and expansion of orbitals due to relativity are referred to as 

direct and indirect effects, respectively; furthermore, these are considered scalar 

relativistic effects. 

 Further examination of relativity yields the spin-orbit interaction,79 resulting from 

the interaction of the spin and orbital angular momentum of an electron.  A moving 

electron generates an electric field, which will interact with the intrinsic magnetic 

moment, i.e., spin, of the electron.  Evidence of the spin-orbit interaction is seen in the 

splitting of p and d orbitals into sublevels with different energies.  As an example, 

subshells with orbital angular momentum, l=1 split into l-1/2 and l+1/2 with the l-1/2 

subgroup being lower in energy.  If l=2, then the splitting is l-1/2, l+1/2, l-3/2 and l+3/2.   

The spin-orbit splitting corresponds to the quantum number j, the total angular 

momentum. 

 The Schrödinger equation introduced in Equation 2.1 was in the non-relativistic 

limit.  In order to account for relativistic effects, corrections to the non-relativistic energy 

must be determined, including mass-velocity, Darwin, and spin-orbit.  The mass-velocity 

term and Darwin terms are considered scalar relativistic effects.  The mass-velocity 

term corrects the kinetic energy due to the relativistic change in mass.  Conceptually, 

the Darwin term is high frequency oscillations of the electron around its average position 

and can generally be thought of as a retarded potential due to the finite speed of light.  

The spin-orbit term is related to the electric field generated by the moving electron. 

 There are a variety of methods to include relativity within a calculation.  An exact 

treatment of relativistic effects requires the Dirac equation,80,81 a Lorentz invariant 

formulation of the Schrödinger equation that requires use of a 4-component 
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wavefunction.  Alternatively, an approximate decoupling of the large and small 

components can be used (e.g. Douglas-Kroll) to obtain scalar relativistic corrections to 

non-relativistic solutions of the Schrödinger equation.82,83  Within this dissertation, scalar 

relativistic effects are accounted for via an effective core potential, while the spin-orbit 

interaction is determined via an a posteriori calculation. 

 Heavy elements, such as transition metals, have a large number of core 

electrons, which are generally considered chemically unimportant.  A large number of 

basis functions are necessary to describe the core orbitals in order to properly describe 

the electron-electron repulsion with the valence orbitals.  In addition to the large number 

of core electrons, the effect of relativity cannot be ignored for heavier elements.  In 1935 

Hellmann proposed the replacement of the chemically inert core electrons with a 

function, referred to as a pseudopotential or effective core potential (ECP).84 ECPs are 

designed to model the core electrons, leaving the valence electrons to be treated 

explicitly with a corresponding basis set.  Since scalar relativistic effects directly impact 

the core electrons but only indirectly impact the valence electrons, the scalar relativistic 

effects can be modeled within the potential; therefore, the ECPs in conjunction with a 

non-relativistic method can yield energies that neglect only spin-orbit coupling.  By 

reducing the number of electrons in a calculation and accounting for relativistic effects 

with a non-relativistic method, ECPs afford the opportunity to use a high level of theory, 

i.e., greater scaling, to obtain more accurate results than would be possible with a 

system composed of a large number of explicitly treated electrons. 

 Considerations in the generation of an ECP include core size, fitting scheme of 

the core (energy consistent vs. shape consistent), and the level of calculations 
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employed for the fit.  ECPs are constructed as either large core or small core.  When a 

large-core potential is implemented, the valence electrons treated are the outermost 

valence electrons.  A small-core potential includes the outermost valence and the first 

sub-valence shell of electrons.  The additional electrons included in the valence of 

small-core potentials improve the accuracy, transferability, and uniformity of correlation 

energies and overall energetic results with generally a negligible loss of relativistic 

effects.85  Selection of the reference data, to which the potential is fit, determines 

whether the potential is energy consistent or shape consistent.  Energy consistent 

potentials are fitted to atomic energy spectra, while shape consistent potentials are 

fitted with respect to orbital shapes.  The ECPs can have the form 

𝑈𝐸𝐶𝑃(𝑟) = −𝑄
𝑟

+ ∑ 𝑉𝑙𝑗(𝑟)𝑙,𝑗 𝑃𝑙𝑗        (2.61) 

where Q is the core charge (and - 𝑄
𝑟
 represents the monopole potential of the spherically 

symmetric bare core), 𝑃𝑙𝑗 is the projector onto functions with quantum numbers l and j, 

and 𝑉𝑙𝑗 is defined as 

𝑉𝑙𝑗 = ∑ 𝐵𝑙𝑗,𝑘𝑒−𝛽𝑙𝑗,𝑘𝑟2𝑘          (2.62) 

where B and β are adjustable parameters to fit the potential to the reference data.  𝑉𝑙𝑗 is 

designed to describe the short-range radial potentials for Coulomb and exchange 

potentials of the core with Pauli-repulsion and relativistic effects, while the −𝑄
𝑟
 describes 

the long-range part of the radial potentials. The Gaussian functions within the potential 

are optimized to fit the reference data.  For the optimization, methods including 

relativistic Dirac-Hartree-Fock86 or numerical Hartree-Fock may be employed.87  The 

selection of the method for optimization is dictated by the intended use of the potentials.  
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If the potentials are designed to recover relativistic effects while being used with a non-

relativistic Hamiltonian, Dirac-Hartree-Fock calculations or other approximate relativistic 

methods may be used in the fit. 

 The obvious question regarding the potentials is the effect, with respect to 

accuracy, of replacing an all-electron basis set with pseudopotentials.  Dolg, Stoll, and 

co-workers have evaluated the accuracy of energy consistent ab initio pseudopotentials 

in comparison to all-electron results.88  Upon calculation of atomic excitation and 

ionization energies for first row transition elements, a difference of less than 0.1 eV (2.3 

kcal mol-1) was observed.  Advantages of the studied pseudopotentials include the 

computational savings and the facile inclusion of relativistic effects via re-optimization of 

the exponents and coefficients in the basis set with respect to valence energies.  The 

description of total valence correlation energies was assessed and the pseudopotentials 

gathered on average 2% more correlation energy than the all-electron values.  Based 

on the comparisons of pseudopotential and all-electron basis sets, pseudopotentials are 

considered a reliable means for studying heavy elements. 

 Though spin-orbit coupling may be parameterized within an ECP, there are 

additional methods to account for spin-orbit coupling in the energy of a system.  The 

spin-orbit Hamiltonian is defined as89 

𝐻�𝑆𝑂 = � 1
2𝑚𝑒𝑒𝑐2

� �1
𝑟
� �𝜕𝑉

𝜕𝑟
� 𝐿� ∙ 𝑆̂ = 𝜉𝐿� ∙ 𝑆̂       (2.63) 

where V is the Coulombic potential of the electrons, 𝐿� is the operator for the orbital 

angular momentum, and 𝑆̂ is the operator for the spin angular momentum.  The 

eigenfunctions (Ψ) and eigenvalues (E) of the Schrödinger equation can be determined 

with the spin-orbit coupling neglected, and then the spin-orbit coupling is accounted for 
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by perturbation theory.  Multireference Configuration Interaction (MRCI) can be used to 

determine the spin-orbit coupling contribution to the total energy by considering the 

energy splitting of the ground state of the system.90  As opposed to using one electron 

configuration to determine the energy, multiple configurations are employed.  Further 

discussion of multireference methods is outside of the scope of this dissertation.  The 

utilization of MRCI to determine spin-orbit coupling is addressed in context in Chapter 4. 
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CHAPTER 3 

A PSEUDOPOTENTIAL-BASED COMPOSITE METHOD: THE RELATIVISTIC 

PSEUDOPOTENTIAL CORRELATION CONSISTENT COMPOSITE  

APPROACH (RP-CCCA) FOR MOLECULES CONTAINING  

4D TRANSITION METALS (Y-CD)1 

3.1 Introduction 

Second row (4d) transition metals have wide applicability from their use in 

catalysis in areas such as ruthenium catalyzed reduction of alkenes91 to their use in 

medicine in areas such as soluble molybdenum-centered complexes to treat diabetes.92 

From diatomics to clusters to organometallics, second row transition metals (Y – Cd) 

are exploited for their unique properties such as conductivity and magnetic properties 

and promising industrial technologies including hydrogen fuel storage and olefin 

metathesis catalysis.93  As compared to development for main group species or lighter 

metals, the development of theoretical methods for accurate calculation of the 

thermochemical properties of 4d transition metal-containing molecules has lagged 

behind.  As the number of electrons increases for a species, there are an additional 

number of basis functions necessary to describe accurately the polarization of the atom 

and, in turn, molecules containing heavy (i.e., 4d) atoms.  The large basis sets limit the 

computational feasibility for calculations including heavier elements, such as the 4d 

transition metals.  Further computational hurdles may be encountered when high levels 

of theory are implemented, e.g. coupled cluster singles, doubles, and perturbative 

1 Work reported in this chapter has been published in M.L. Laury, N.J. DeYonker, W. 
Jiang, and A.K. Wilson, “A Pseudopotential-based Composite Method: The Relativistic 
Pseudopotential Correlation Consistent Composite Approach (rp-ccCA) for Molecules 
Containing 4d Transition Metals (Y-Cd),” J. Chem. Phys. 135, 214103 (2011). 
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triples (CCSD(T)), due to the scaling of the methods (N7 for CCSD(T), where N is the 

number of basis functions).  With the development of pseudopotentials and composite 

methods, quantitative computational studies for second row transition metal molecules 

are feasible. 

The correlation consistent Composite Approach (ccCA)64,66-71,94-96 is based on 

Møller-Plesset second-order perturbation (MP2) theory97 and utilizes the systematic 

convergence of the correlation consistent basis sets to approach the complete basis set 

(CBS) limit.9,43-45,49,98 Additive corrections for higher-order correlation by CCSD(T), 

core–valence electron interaction and relativistic effects by MP2 are included in the 

ccCA scheme.  The robustness and effectiveness of ccCA has been demonstrated by 

successful application to a wide-range of molecules.7  For molecules containing only 

main group elements, ccCA can yield a mean absolute deviation (MAD) of less than 1.0 

kcal mol-1 (within chemical accuracy) from experimental values.68,69  The properties of 

interest included enthalpies of formation, dissociation energies, ionization potentials, 

electron affinities, and proton affinities.  For first row transition metal thermochemistry, a 

modified version of ccCA, referred to as ccCA-TM, achieved transition metal accuracy, 

i.e., an MAD of 3.0 kcal mol-1 as compared to experimental and recommended values 

for enthalpies of formation and dissociation energies.70  ccCA has proven to be a 

reliable method for a wide variety of molecules and bonding types, and the extension to 

heavier elements, such as second row transition metals, is the focus of this work. 

An all-electron treatment of molecules containing transition metal atoms 

becomes computationally expensive due to an increase in basis set size and the 

number of correlated valence and core electrons.99,100 Since all electrons are included in 
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the SCF procedure to generate reference wave functions for correlated methods, HF 

convergence can become the bottleneck for molecules containing elements from the 4p 

block and beyond. Furthermore, for these heavier elements the inner electron radial 

velocities can be near the speed of light and relativistic effects become more 

significant.99,100  A viable means for studying molecules containing atoms from first row 

transition metals and beyond is the utilization of effective core potentials (ECP), or 

pseudopotentials, with corresponding valence basis sets.101  ECPs facilitate calculations 

by reducing the number of low-lying occupied orbitals, e.g. core orbitals, while 

simultaneously incorporating relativistic effects.  Small core pseudopotentials include 

the (n-1)s2(n-1)p6(n)sn(n-1)dm electrons explicitly; in contrast, large-core 

pseudopotentials include only the outermost s and d electrons, i.e., (n)sn(n-1)dm, in the 

valence region explicitly.102  The additional electrons considered in small-core potentials 

improve the accuracy, transferability, and uniformity of correlation energies and overall 

energetic results.85  Treatment of relativistic effects can be included within the 

potential.103 

Computational methodologies, such as density functional theory (DFT), have 

been used in conjunction with effective core potentials in order to determine geometries, 

ground states, vibrational frequencies, electron affinities, ionization potentials, and 

dissociation energies.  However, thermodynamic studies have been limited to specific 

types of molecules, including metal halides, carbides, oxides, nitrides, and borides, and 

are generally diatomic species.  For example, Cheng et al. studied the bond distances, 

vibrational frequencies, dipole moments, dissociation energies, electron affinities, and 

ionization potentials for second row transition metal halides with the hybrid functional 

43 



B3LYP and the Stuttgart/Dresden relativistic effective core potential for the metals and 

Gaussian basis sets for the halides.104  Qualitative trends for the row of 4d metals were 

reported.  Additionally, B3LYP and the Los Alamos potentials (LanL2DZ) have been 

utilized by Kharat et al. to determine spin states, bond lengths, vibrational frequencies, 

binding energies, and ionization potentials for diatomic metal carbides, oxides, nitrides, 

and borides.105  Though DFT provides efficient and viable methods for studying 

transition metal-containing molecules, many of the functionals (e.g. hybrid B3LYP) 

include multiple parameters.  There exist DFT methods designed for transition metals, 

e.g. M06, but, in spite of their construction, DFT may fall short for the accurate 

prediction of thermodynamic properties, such as enthalpies of formation.71,106  A 

comprehensive study by Tekarli et al. examined the performance of 44 DFT methods 

with correlation consistent basis sets for the determination of the enthalpy of formation 

of 3d transition metal molecules.71,106 For the range of functionals, the mean absolute 

deviations (MADs) ranged from seven to over sixty kcal mol-1, well outside any definition 

of accuracy.  Cundari et al. determined the enthalpies of formation for a set of first, 

second, and third row transition metals using B3LYP with the Los Alamos (LANL) 

effective core potentials and the Stevens effective core potentials (CEP-31G).107  The 

implementation of the LANL potentials resulted in an average absolute error of 50 kcal 

mol-1, while the CEP-31G protocol produced an average absolute error of 75 kcal mol-1.  

The errors were reduced when the carbonyl-containing molecules were excluded, but 

the B3LYP/LANL and B3LYP/CEP-31G methods, on average, significantly 

overestimated the enthalpy of formations for the molecule set.107 
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Wavefunction-based electron correlation methods, e.g. MP2 and CCSD(T), are 

void of empirical parameters and, specifically CCSD(T), is a high level of theory used for 

comparison to experimental results.  These electron structure methods are necessary 

for the accurate prediction of transition metal thermochemistry.  CCSD(T) and MP2 

calculations with Stuttgart/Dresden and LanL2DZ effective core potentials have been 

compared by Wu et al. to a range of density functionals for the determination of the 

electron affinities and ionization potentials of 4d atoms.108  The selected hybrid and pure 

density functionals were outperformed by the wavefunction-based methods as the basis 

set size increased.  Furthermore, Dixon et al. determined the geometries, electron 

affinities, fluoride affinities, and enthalpies of formation for six 4d hexaflourides (Mo, Tc, 

Ru, Rh, Pd, Ag) with a variety of DFT methods and utilized CCSD(T) calculations with 

correlation consistent basis sets with corresponding effective core potentials as 

benchmarks.109  The only experimental value for comparison was the enthalpy of 

formation of MoF6, for which the CCSD(T) level calculation was within 2 kcal mol-1.  

Fluoride affinities, electron affinities, and bond dissociation energies calculated via DFT 

had deviations from the CCSD(T) results ranging from 5 kcal mol-1 to 28 kcal mol-1.  

While the hybrid functionals yielded the best performance, the average deviations were 

still 5-6 kcal mol-1.109   Another study by Dixon et al. determined thermochemical 

properties, including total atomization energies and enthalpies of formation, for 

transition metal oxide clusters via CCSD(T) and DFT methods.  The DFT results were 

found to degrade with increasing cluster size and performance was strongly dependent 

on the electronic state of the transition metal atom.110,111 
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To complement the wavefunction-based electron correlation methods, the 

correlation consistent basis sets can be utilized with the ab initio method to obtain 

accurate, parameter-free results.9,43-45,49,98  Energies determined with the correlation 

consistent basis sets exhibit systematic convergence to the complete basis set (CBS) 

limit,98,112  and these energies may be obtained with the correlation consistent basis sets 

extrapolated to the CBS limit.  With the extrapolated energies, thermochemical and 

spectroscopic properties can be determined free of basis set truncation error.56,113  At 

the CBS limit the only remaining error is intrinsically related to the choice of method.48 

Energy-consistent relativistic pseudopotentials and accompanying correlation 

consistent basis sets for 4d transition metals (Y-Cd) have been developed by Peterson 

and co-workers.114  The pseudopotentials and corresponding valence and core–valence 

correlation consistent basis sets contain an [Ar]3d10 effective core and converge to the 

CBS limit as the ζ-level increases.  The pseudopotentials were determined through 

calculations with a Dirac–Coulomb Hamiltonian at the multi-configuration Dirac–

Hartree–Fock (MCDHF) level.114  The Breit interaction was included perturbatively.  

Through this construction scheme the pseudopotentials implicitly describe relativistic 

effects, e.g. scalar, magnetic interactions and retardation effects.  By parametrizing 

relativistic effects in the pseudopotentials, a non-relativistic Hamiltonian can be used.  

Neutral, low-charge (0, +1, +2) and high-charge configurations were included in the 

reference data for the fitting of the spd part of the pseudopotential.  Within the potential 

lies the mathematical description of the core charge, the Coulomb and exchange terms 

for the core, the Pauli-repulsion, and relativistic effects.  The pseudopotentials 

reproduce atomic valence spectra, i.e., orbital energies and electron configurations, 
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when combined with a non-relativistic Hamiltonian.  The maximum deviation of the 

pseudopotentials relative to the all-electron valence energies ranged from 0.03 eV for 

the yttrium atom to 0.39 eV for the palladium atom.114  The increase in deviation across 

the row is as expected, since the gap between the core and valence levels decreases.  

For the low lying states of each atom, the absolute differences in valence energies were 

usually within 0.01 eV.114   With the generation of relativistic pseudopotential and 

correlation consistent basis sets, the quantitative study of second row (4d) transition 

metals at the CBS limit becomes computationally amenable. 

In this work, a variant of ccCA that utilizes relativistic pseudopotentials and 

correlation consistent basis sets, referred to as the relativistic pseudopotential ccCA (rp-

ccCA), has been constructed. By utilizing the correlation consistent pseudopotentials 

within the ccCA methodology, larger transition metal molecules can be examined, as 

compared to previous CCSD(T)-based studies.  Additionally, ccCA has been shown, in 

general, to properly describe molecules with reasonable amounts of nondynamical 

correlation.68,69  Here, the accuracy, as compared to experimental data, and 

computational cost of rp-ccCA are examined for a greater range of molecules, whether 

single-reference or multireference.  The accuracy and computational cost in terms of 

CPU times of rp-ccCA is compared to all-electron ccCA for a set of molecules 

containing 4p elements referred to as G3/05-4p.  Upon establishment of the 

pseudopotential accuracy, the enthalpies of formation for 4d transition metal containing 

molecules, ranging from diatomics to carbonyl-containing systems, are evaluated with 

rp-ccCA and compared to experimental data.  The transition metal molecule set is 

designated TM-4d. 
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3.2 Computational Methodology              

The rp-ccCA energy calculations based on restricted open shell Hartree-Fock 

(ROHF) reference wavefunction were performed with MOLPRO 2009.1,115 while the 

unrestricted Hartree-Fock (UHF) computations were carried out with the Gaussian 03 

software package.116   To note, for the calculations denoted ROHF, a spin-restricted HF 

reference is used for the coupled cluster wavefunction and, due to the coupled cluster 

ansatz, spin contamination is introduced in the CCSD(T) calculation.117    

The rp-ccCA methodology follows a form similar to ccCA-TM.68  The steps where 

the two schematics differ are noted.  Additionally, the ccCA, ccCA-TM, and rp-ccCA 

schematics are listed in Table 3.1.  For rp-ccCA, pseudopotentials are implemented for 

elements gallium through krypton118,119  and the second row transition metals (Y-Cd), in 

place of the Douglas–Kroll basis sets used in ccCA-TM.114  The optimized geometry is 

obtained at the B3LYP/cc-pVTZ-PP level of theory.  At stationary points, harmonic 

vibrational frequencies are computed and scaled by 0.989 to account for 

anharmonicity.68  Thermal energy corrections are computed at 298.15K and 1 atm. 

Upon determination of the optimized geometry, single point energy calculations are 

carried out at higher levels of theory in order to determine the rp-ccCA energy.  To 

determine the reference energy of the molecule, single point energies are calculated at 

the MP2 level of theory with the aug-cc-pVnZ-PP (n=D, T, Q) basis sets.  Unlike all-

electron ccCA variants, no DKH Hamiltonian is employed in any portion of the rp-ccCA 

calculations since the pseudopotentials are not compatible with the DKH Hamiltonian 

and are constructed to account for relativistic effects from the heavy atom.  Separate 
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extrapolations are carried out for the Hartree-Fock (HF) and MP2 energies.  Feller and 

The Feller extrapolation is used for the determination of the HF/CBS energy:74,120   

𝐸(𝑛) = 𝐸𝐻𝐹/𝐶𝐵𝑆 + 𝐵𝑒−𝐶𝑛         (3.1) 

where C has previously been determined to be 1.63 by Halkier et al.75  The utilization of 

C=1.63 for extrapolations of transition metal energies has been proven to perform 

well.96  The extrapolation of the MP2 energy follows the form of a mixed 

exponential/Gaussian functional developed by Peterson, Woon, and Dunning,76 stated 

as 

𝐸(𝑛) = 𝐸𝑀𝑃2/𝐶𝐵𝑆 + 𝐵𝑒−(𝑛−1) + 𝐶𝑒−(𝑛−1)2       (3.2) 

where the double, triple, and quadruple-zeta level basis sets are utilized.  Previous 

ccCA studies include additional extrapolation schemes, such as the Schwartz inverse 

cubic (denoted ccCA-S3).  The selection of the Peterson extrapolation for the rp-ccCA 

development is based on previous transition metal studies with ccCA (i.e., ccCA-TM).70  

To determine the total energy of the molecule, additive corrections are applied to the 

HF/CBS and MP2/CBS energies. 

To account for correlation effects beyond the second-order perturbation, single-

point energy calculations at the CCSD(T) level of theory in conjunction with the cc-

pVTZ-PP basis set are employed.  The correlation correction was computed by 

𝐸𝐶𝐶 = [𝐶𝐶𝑆𝐷(𝑇)/𝑐𝑐 − 𝑝𝑉𝑇𝑍 − 𝑃𝑃] − 𝐸[𝑀𝑃2/𝑐𝑐 − 𝑝𝑉𝑇𝑍 − 𝑃𝑃]    (3.3) 

To adjust for core–valence correlation effects, an “FC1” calculation was utilized with 

CCSD(T) and the aug-cc-pCVDZ-PP basis set: 

𝐸𝐶𝑉 = 𝐸[𝐶𝐶𝑆𝐷(𝑇,𝐹𝐶1)/𝑎𝑢𝑔 − 𝑐𝑐 − 𝑝𝐶𝑉𝐷𝑍 − 𝑃𝑃] − 𝐸[𝐶𝐶𝑆𝐷(𝑇)/𝑎𝑢𝑔 − 𝑐𝑐 − 𝑝𝐶𝑉𝐷𝑍 − 𝑃𝑃](3.4) 
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The “FC1” Gaussian keyword denotes adding the next inner noble gas shell to the 

correlated molecular orbitals. For the second row transition metals, “FC1” indicates 

4s4p4d5s orbitals are correlated and the 3d orbitals are within the pseudopotential.   

For molecules, the complete rp-ccCA energy follows the form: 

𝐸𝑟𝑝−𝑐𝑐𝐶𝐴 = 𝐸𝐻𝐹/𝐶𝐵𝑆 + 𝐸𝑀𝑃2/𝐶𝐵𝑆 + 𝐸𝐶𝐶 + 𝐸𝐶𝑉 + 𝐸(𝑍𝑃𝐸)     (3.5) 

while atomic rp-ccCA energies  include experimental thermal corrections and spin–orbit 

corrections when needed.  

Correlation consistent pseudopotential basis sets are available for the 4p 

elements,118,119 which allows for comparison to all-electron calculations previously 

carried out with ccCA.  For comparison between rp-ccCA and ccCA, dissociation 

energies (and ∆Hf’s when available) for the G3/05 set were determined by rp-ccCA and 

all-electron ccCA.70  Additionally, ccCA-TM results were calculated for further 

comparison.  The selected molecules in the G3/05-4p set are: Br2, AsH, AsH2, AsH3, 

SeH, SeH2, BrH, GeO, BrO, BrCl, BrF, GaCl, KrF2, BrCH3, NaBr, Br2CO, BrC2H3, 

BrC3H7, BrCCl3, BrCF3, Br2C3H6, Br2C5H8, BrC2H5, and BrC6H5.  Enthalpies of formation 

under standard conditions were computed with rp-ccCA for 30 4d TM-containing 

molecules, which compose the TM-4d set: YO, ZrO, ZrO2, ZrBr, ZrCl, ZrCl2, ZrCl4, 

ZrBr4, NbO, NbO2, MoF, MoF2, MoO2Cl2, MoO2, MoF6, MoO3, MoOCl4, Mo(CO)5, 

Mo(CO)6, RuO4, RhC, RhO, RhCl2, AgH, Cd2, CdH, CdCl, CdCl2, CdBr, and CdBr2.  

These molecules were selected based on their size (less than 15 atoms) and presence 

of an experimental gas phase enthalpy of formation in the literature.
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Table 3.1. Comparison of ccCA, ccCA-TM, and rp-ccCA methodology. 

  ccCA  ccCA-TM  rp-ccCA 
Geometry 
Optimization B3LYP/cc-pVTZ B3LYP/cc-pVTZ B3LYP/cc-pVTZ-PP 

Harmonic 
Frequencies B3LYP/cc-pVTZ scaled by 0.989 B3LYP/cc-pVTZ scaled by 0.989 B3LYP/cc-pVTZ-PP scaled by 0.989 

HF CBS HF/aug-cc-pVTZ HF/aug-cc-pVTZ-DK HF/aug-cc-pVTZ-PP 

 HF/aug-cc-pVQZ HF/aug-cc-pVQZ-DK HF/aug-cc-pVQZ-PP 
HF CBS fit E(n)=EHF-ECBS+Bexp(-1.63n) E(n)=EHF-ECBS+Bexp(-1.63n) E(n)=EHF-ECBS+Bexp(-1.63n) 

MP2 CBS MP2/aug-cc-pVDZ MP2/aug-cc-pVDZ-DK MP2/aug-cc-pVDZ-PP 

 MP2/aug-cc-pVTZ MP2/aug-cc-pVTZ-DK MP2/aug-cc-pVTZ-PP 

 MP2/aug-cc-pVQZ MP2/aug-cc-pVQZ-DK MP2/aug-cc-pVQZ-PP 

MP2 CBS fit E(x)=ECBS+Bexp[-(x-1)]+Cexp[-(x-1)2] E(x)=ECBS+Bexp[-(x-1)]+Cexp[-(x-1)2] E(x)=ECBS+Bexp[-(x-1)]+Cexp[-(x-1)2] 

∆CC CCSD(T)/cc-pVTZ CCSD(T)/cc-pVTZ-DK CCSD(T)/cc-pVTZ-PP 

  -MP2/cc-pVTZ  -MP2/cc-pVTZ-DK  -MP2/cc-pVTZ-PP 

∆CV MP2(FC1)/aug-cc-pCVTZ CCSD(T,FC1)/aug-cc-pCVDZ-DK CCSD(T,FC1)/aug-cc-pCVDZ-PP 
  -MP2/aug-cc-pVTZ  -CCSD(T)/aug-cc-pCVDZ-DK  -CCSD(T)/aug-cc-pCVDZ-PP 
∆DK MP2/cc-pVTZ-DK Included in each energy calculation Included in potential 
  -MP2/cc-pVTZ   
∆SO Experimental atomic values Experimental atomic values Experimental main group atomic values 
    FOCI Stuttgart ECP for molecules   
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3.3 Results and Discussion 

3.3.1 G3/05-4p Set 

3.3.1.1 Overall Statistics 

Before evaluating rp-ccCA for a molecule set of second row transition metal 

species, the performance must be compared to energetic properties obtained by all-

electron versions of ccCA, i.e., main group ccCA and ccCA-TM, for an established 

training set.  As a result, the G3/05-4p set containing 25 molecules (Table 3.2) with 4p 

elements (Ga – Kr) is used. The molecular properties for assessment were the 

dissociation energy (D0) for the smaller molecules (oxides, hydrides, halides, and 

methyl-substituted) and the enthalpy of formation (∆Hf) for the larger bromine-containing 

molecules.  The electronic ground states, experimental D0 and ∆Hf values, and 

deviations from experimental data for rp-ccCA, ccCA-TM, and ccCA are listed in Table 

3.2.  The MAD for rp-ccCA in comparison to experiment is 0.89 kcal mol-1, which is 

almost the same as the ccCA-TM MAD of 0.85 kcal mol-1, and only slightly inferior to the 

ccCA MAD of 0.76 kcal mol-1.  However, all three methodologies are within the targeted 

main group chemical accuracy, with an MAD less than or equal to 1.0 kcal mol-1.  The 

mean signed deviations (MSDs), 0.42 kcal mol-1 for ccCA, 0.00 kcal mol-1 for ccCA-TM, 

and 0.07 kcal mol-1 for rp-ccCA, indicate almost no overall bias for rp-ccCA and no bias 

for ccCA-TM.  Previously, ccCA and ccCA-TM have been proven to be reliable 

methodologies, and with the results presented here, the replacement of all-electron 

basis sets with pseudopotentials does not adversely affect the accuracy of ccCA. 
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Table 3.2. The ccCA, ccCA-TM and rp-ccCA signed deviations from experiment and 
statistical analysis for molecules containing 4p elements.  Units are in kcal mol-1. 

    Exptl. ccCA ccCA-TM rp-ccCA   
Property Species Ground Signed  Signed  Signed  Expt. 

    State121 Deviationa Deviationa Deviationa   
Do GaCl 1Σ+ 0.4 0.8 0.6 109.9 
 GeO 1Σ+ -2.0 -2.2 -2.1 155.2 
 AsH 3Σ- 1.5 1.0 0.8 64.6 
 AsH2 2B1 -0.5 -0.5 -0.8 131.1 
 AsH3 1A1 0.6 0.1 0.1 206.0 
 SeH 2П -0.2 -0.6 -0.7 74.3 
 SeH2 1A1 -0.2 -0.8 -1.1 153.2 
 Br2 1Σg

+ -0.6 -1.1 -1.1 45.4 
 BrH 1Σ+ -0.9 -1.1 -1.1 86.5 
 BrO 2П 0.9 1.2 1.0 55.3 
 BrF 1Σ+ 0.1 0.7 0.5 58.9 
 NaBr 1Σ+ -0.1 -0.9 0.0 86.2 
 BrCl 1Σ+ 0.1 0.4 0.3 51.5 
 BrCH3 1A1 -0.4 -0.3 -0.8 358.2 
 KrF2 1Σg

+ 0.3 0.1 -1.6 21.9 
∆Hf(298K) BrC2H3  1.5 0.3 1.0 18.9 
 BrCF3  0.5 -1.0 -0.2 -155.0 
 BrCCl3  0.9 0.6 1.2 -10.0 
 BrC3H7  0.6 1.1 0.3 -23.8 
 Br2CO  1.4 0.7 1.2 -27.1 
 BrC2H5  1.3 0.7 1.3 -14.8 
 BrC6H5  -0.2 -1.4 0.4 25.2 
 Br2C3H6  2.2 2.0 2.2 -17.1 
 Br2C5H8  2.9 0.1 0.3 -13.1 
       
MSD   0.42 0.00 0.07  
MAD    0.76 0.85 0.89   
RMSD   1.12 0.97 1.03  
Standard   0.92 0.99 1.05  
Deviation       

 
a Signed deviation determined by experimental value minus theoretical value. 
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3.3.1.2 CPU Time Savings 

The computational CPU times by rp-ccCA are compared to all-electron 

calculations by ccCA-TM (Table 3.3). Comparisons between rp-ccCA and ccCA are less 

meaningful as different methods (CCSD(T) versus MP2) have been used for the core–

valence correction step.  The all-electron basis sets and the pseudopotentials have the 

same number of valence electrons for the corresponding correlated calculation step 

(see Table 3.1 for details), i.e., MP2 or CCSD(T); therefore, the CPU time savings is 

rooted in the HF calculation due to a reduction in the number of explicit electrons and 

orbitals and in correlation methods due to an effective reduction in external orbital 

space.  It is understood that computations using ECPs will have reduced computational 

cost in comparison to all-electron basis sets due to reduced requirements in the SCF 

procedure and the initial computation of integrals, albeit there is a slight tradeoff in the 

accuracy of energies when utilizing pseudopotentials.118 A quantitative comparison of 

the CPU time is given as follows.  The pseduopotential percent CPU time savings 

ranges from 7% for Br2C3H6 to 67% for BrO, with an overall average CPU time savings 

of 32.5%.   Since both rp-ccCA and ccCA-TM are composite approaches, the 

examination of the rp-ccCA computational time savings for each step is warranted.  The 

largest average CPU time savings (40%) was observed for the utilization of the 

pseudopotential basis set in place of the Douglas–Kroll basis set for the MP2/aug-cc-

pVTZ step. Here and in the following text, the appendices of DK for the Douglas-Kroll 

basis set and PP for the pseudo-potential basis set are omitted for clarity.  Overall, rp-

ccCA not only obtains results in agreement with experimental, ccCA, and ccCA-TM 

values, but gives a 32.5% CPU time savings over ccCA-TM and a similar HF 
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convergence for molecules where correlation consistent pseudopotentials and 

accompanying basis sets are available. 

 
Table 3.3.  Percent of CPU time savings of rp-ccCA relative to ccCA-TM for each step 
within the composite method for the 4p molecule set. 
 

Composite method Percent CPU 
Components a time savings 

MP2/aug-cc-pVDZ 23.0 
MP2/aug-cc-pVTZ 40.2 
MP2/aug-cc-pVQZ 35.4 

CCSD(T,FC1)/aug-cc-pCVDZ 15.0 
CCSD(T)/aug-cc-pCVDZ 20.3 

CCSD(T)/cc-pVTZ 24.3 
Overall 32.5 

a The appendices of DK for the Douglas-Kroll basis set and PP for the pseudo-potential 
basis set (e.g. aug-cc-pVDZ-DK) are omitted for clarity. 
 

 

3.3.2 TM-4d Set 

3.3.2.1 Overall Statistics 

The 30 4d molecules and their electronic ground states are included in Table 3.4.  

For the complete TM-4d set, the MAD of ROHF-rp-ccCA is 2.89 kcal mol-1, compared to 

3.29 kcal mol-1 for UHF-rp-ccCA.  Transition metal chemical accuracy70 was previously 

defined as a MAD of less than 3 kcal mol-1, and ROHF-rp-ccCA is within the threshold of 

this definition.  To note, the average experimental uncertainty for the 4d molecule set is 

3.43 kcal mol-1. Experimental data for molecules containing only main group elements 

has been reported with smaller uncertainties, e.g. overall less than 2 kcal mol-1,109 while 

transition metal species tend to be associated with larger experimental uncertainties.  

Since the rp-ccCA MADs are within the average experimental uncertainty for the set, 

the validity of the rp-ccCA method is statistically supported.   
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Table 3.4. Signed deviations of UHF-and ROHF-rp-ccCA enthalpies of formation (∆Hf) 
at 298.15 K as compared with experiment.  Units are in kcal mol-1. 
 

  UHF ROHF   
 Ground rp-ccCA rp-ccCA   

Molecule  State deviation deviation Expt.   
YO 2∑+ 122 -9.8 -9.5 -11.0 ± 2.5 123  
ZrO 1∑+ 122 -0.9 -0.8 21.8 123   
ZrO2 1A1 

124 -2.4 -2.2 -68.4 ± 11.0 125  
ZrCl 2∆ 104 3.0 2.6 67.6 ± 5.7 123  
ZrCl2 

3∆ 126 3.2 2.4 -34.9 ± 3.6 123  
ZrCl4 

1A1 
127 4.1 3.6 -208.0 ± 0.6 123  

ZrBr 2∆ 127 -3.8 -3.5 71.9 ± 0.5 125  
ZrBr4 

1A1
 127 -2.5 -2.4 -166.0 ± 2.0 123  

NbO 4∑- 122 -3.7 -3.4 47.5 ± 5.0 128  
NbO2 2A1

 124 -4.5 -4.1 -47.8 ± 5.0 125  
MoO2 

3B1
 124 0.3 0.1 -2.0 ± 3.0 125  

MoO3 
1A1

 124 0.2 0.2 -86.7 ± 5.0 123  
MoOCl4 

1A1g
 129 0.7 0.6 -135.9 ± 1.4 123  

MoO2Cl2 
1A1g

 130 0.1 0.1 -151.6 ± 3.5 125  
MoF 6∑+ 105 1.6 0.7 67.6 ± 3.0 125  
MoF2 

5B2
 126 2.1 1.4 -38.9 ± 4.0 125  

MoF6 
1A1g

 131 7.0 5.9 -372.3 ± 2.2 123  
Mo(CO)5 

1A1
 132 3.5 2.4 -157.5 ± 5.0 123  

Mo(CO)6 
1A1

133 7.4 6.3 -219.0 ± 1.1 123  
RuO4 

1A1
 124 -1.2 -0.9 -46.0 ± 1.0 133  

RhC 2∑+ 105 -1.9 -1.8 164.1 ± 2.3 123  
RhO 4∑- 122 -1.1 -0.8 97.9 ± 10.0 123  
RhCl2 

4∑- 126 -7.5 -6.4 30.0 ± 3.0 123  
AgH 1∑+ 134 -1.7 -1.0 66.3 123  
Cd2 

1∑+ 128 -0.5 -0.5 51.4 123  
CdH 2∑+ 134 -8.8 -8.7 62.3 123  
CdCl 2∑+ 104 -5.9 -5.7 6.6 123  
CdCl2 1∑+ 126 -3.7 -3.7 -46.5 ± 1.1 123  
CdBr 2∑+ 104 -3.0 -2.7 15.9 123  
CdBr2 1∑+  -2.7 -2.2 -33.5 ± 1.1 123  

      
 Open Shell MSD -3.11 -2.63   
 Open Shell MAD 4.01 3.59 4.00 a  
 Open Shell RMSD 4.85 4.52   
 Open Shell Std. Dev. 4.09 3.68   
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 Closed Shell MSD -1.03 0.36   
 Closed Shell MAD 2.41 2.05 2.90 a  
 Closed Shell RMSD 3.38 2.89   
 Closed Shell Std. Dev 3.68 2.87   
      
 Overall MSD -2.63 -1.13   
 Overall MAD 3.29 2.89 3.43 a  
 Overall RMSD 4.18 3.79   
 Overall Std. Dev. 4.33 3.62   

a The average value of reported experimental uncertainties. 
 

The TM-4d set is composed of 15 closed shell and 15 open shell molecules, 

warranting the investigation of the performance of rp-ccCA for closed shell versus open 

shell molecules, which are often more challenging for theoretical methods.  The MADs 

of UHF- and ROHF-rp-ccCA (3.93 and 3.59 kcal mol-1, respectively) are both within the 

average experimental uncertainty of 4.00 kcal mol-1 for open shell molecules.   For 

closed shell molecules, the average experimental uncertainty is 2.90 kcal mol-1, smaller 

than that of the open shell set, and UHF- and ROHF-rp-ccCA results (MADs of 2.41 and 

2.05 kcal mol-1, respectively) are within the average experimental uncertainty and more 

accurate than open shell molecules.  While the molecular energies are the same for 

both UHF- and ROHF-rp-ccCA for closed shell molecules, the larger MAD of UHF-rp-

ccCA originates from the difference in the atomic energies for open shell constitute 

atoms.  Even though the size of the TM-4d set does not allow sub-categorization based 

on the range of experimental uncertainty, the two subsets of open and closed shell 

molecules do indicate a positive correlation between the accuracy of rp-ccCA and the 

experimental uncertainty.  

 Statistical analysis beyond the MAD includes the mean signed deviations 

(MSDs), root mean square (RMS) and standard deviation (σ) of rp-ccCA (Table 3.4).  
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Again, the results have been grouped into closed shell, open shell, and the complete 

set. On average, both UHF- and ROHF-rp-ccCA overestimate the enthalpy of formation 

for the 4d molecules.  Overall, the ROHF-rp-ccCA results in an improvement of the 

MAD by 0.40 kcal mol-1 over UHF-based rp-ccCA.  The scatter plot of Figure 3.1 depicts 

the ROHF-rp-ccCA enthalpy of formation relative to the experimental value.  With an R2 

value of 0.9993 and a slope of 1.017, ROHF-rp-ccCA determines gas phase enthalpies 

of formation with minimal systematic error.  The intercept value is positive (1.7433), 

indicating that ROHF-rp-ccCA overestimates the enthalpies of formation for the TM-4d 

set. 

 

Figure 3.1. rp-ccCA computed enthalpies of formation versus experimental enthalpies 
of formation for the TM-4d set.  Units are in kcal mol-1. 
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3.3.2.2 Spin Contamination and T1/D1 diagnostics 

As previously mentioned, prior ccCA developments, namely ccCA-TM,70 made 

note of the pronounced spin contamination for the first row transition metals studied.  

The MADs for the UHF- and ROHF-ccCA-TM were different by more than one kcal mol-

1, with the ROHF-based method yielding the lower MAD.  Compared to the difference of 

more than one kcal mol-1 for ccCA-TM for 3d transition metals, the discrepancy between 

the UHF- and ROHF-based MADs for rp-ccCA is smaller (0.40 kcal mol-1), but the 

discrepancy is still of great significance.  The smaller discrepancy between UHF and 

ROHF-based rp-ccCA as compared to the ccCA-TM results may be ascribed to the 

greater energy splitting between the 5s and 4d atomic orbitals, and thus less mixing of 

these two types of orbitals, as compared to the 4s and 3d atomic orbitals of the first row 

transition metals.114  Though the rp-ccCA results may point to negligible spin 

contamination in the second row transition metal molecule set, the possibility of spin 

contamination, as well as multireference character, were investigated.  The expectation 

value of S2-Sz
2-Sz and the T1/D1 diagnostics, for spin contamination and multireference 

character analysis respectively, are reported in Table 3.5.  The expectation values and 

diagnostics were determined by CCSD(T) with the aug-cc-pVDZ-PP basis set.  For 

open shell molecules, the implementation of a UHF-based method may significantly 

reduce the accuracy of an ab initio calculation.  UHF theory uses different orbitals for 

alpha and beta electrons. While this often leads to lower atomic/molecular energies, it 

may result in an artificial mixing of states with higher spin multiplicity because the UHF 

wavefunction is not an eigenfunction of the S2 operator, the square of the total 

electronic spin angular momentum.135 The ROHF calculations are based on a single 
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configuration; therefore, the ROHF wavefunction is an eigenfunction of the S2 operator. 

The single configuration of ROHF is composed of doubly and singly occupied molecular 

orbitals, where the different spins are not separately optimized.136  Even though spin 

contamination may be introduced in subsequent correlation calculations such as 

UCCSD(T), the amount of spin contamination is usually much less significant than 

UMP2 and UCCSD(T) based on UHF wavefunction.  Examination of the <S2-Sz
2-Sz> 

expectation values for the open shell 4d molecules reveals values on the order of 

thousandths and, therefore, spin contamination is not a factor in the deviation of ROHF-

rp-ccCA. 

Table 3.5. The T1 and D1 diagnostic values, T1/D1 ratio, and S2-Sz
2-Sz expectation value 

(for open shell molecules) for the 4d set of molecules. 
Molecule T1 D1 T1/D1 <S2-Sz

2-Sz> 
YO 0.0352 0.0794 0.4432 0.0003 
ZrO 0.0288 0.0757 0.3812  
ZrO2 0.0290 0.0861 0.3368  
ZrCl 0.0198 0.0485 0.4087 0.0060 
ZrCl2 0.0179 0.0421 0.4243 0.0024 
ZrCl4 0.0126 0.0536 0.2345  
ZrBr 0.0226 0.0457 0.4956 0.0064 
ZrBr4 0.0123 0.0593 0.2070  
NbO 0.0394 0.0756 0.5206 0.0033 
NbO2 0.0408 0.0861 0.4743 0.0063 
MoO2 0.0485 0.1186 0.4088 0.0022 
MoO3 0.0297 0.1263 0.2355  

MoOCl4 0.0192 0.1281 0.1502  
MoO2Cl2 0.0204 0.0968 0.2106  

MoF 0.0301 0.0624 0.4818 0.0029 
MoF2 0.0266 0.0832 0.3198 0.0026 
MoF6 0.0246 0.1061 0.2322  

Mo(CO)5 0.0194 0.0651 0.2980  
Mo(CO)6 0.0184 0.0493 0.3722  

RuO4 0.0281 0.1039 0.2700  
RhC 0.0298 0.0499 0.5978 0.0004 
RhO 0.0720 0.1828 0.3937 0.0042 
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Molecule T1 D1 T1/D1 <S2-Sz
2-Sz> 

AgH 0.0241 0.1031 0.2338  
Cd2 0.0123 0.0530 0.2318  
CdH 0.0267 0.0671 0.3978 0.0012 
CdCl 0.0224 0.0654 0.3432 0.0006 
CdCl2 0.0100 0.0623 0.1602  
CdBr 0.0253 0.0741 0.3414 0.0008 
CdBr2 0.0094 0.0623 0.1506   

   
 

T1 and D1 diagnostics are utilized in order to examine the multireference 

character of the 4d molecules.  While the diagnostics are a qualitative guide, cutoff 

values for the diagnostics have been suggested, e.g. for main group species,  when a 

T1 diagnostic value is greater than 0.02 and a D1 value is greater than 0.05, single-

reference electron correlation methods may not be reliable.137 Both diagnostic values 

from CCSD/aug-cc-pVDZ-PP calculations are reported since T1 values reflect the 

overall quality of the single-reference wavefunction, while D1 values may pinpoint local 

problem areas for the molecule.138   The ratio T1/D1 describes the homogeneity of the 

system, where a T1/D1 value of 1
√2

 indicates a homogeneous system.138   

For this molecule set, the T1, D1 and T1/D1 values are reported in Table 3.5.  

There are eleven molecules with a T1 diagnostic value less than 0.02 (ZrCl, ZrCl2, ZrCl4, 

ZrBr4, MoOCl4, MoO2Cl2, Mo(CO)5, Mo(CO)6, Cd2, CdCl2, CdBr2).  The MAD for the 

subset is 2.85 kcal mol-1 for UHF-rp-ccCA and 2.44 kcal mol-1 for ROHF-rp-ccCA.  

Within the subset, only two of the molecules have large D1 values, 0.1281 for MoOCl4 

and 0.0968 for MoO2Cl2, but both have very small rp-ccCA deviations (0.6 kcal mol-1 

and 0.1 kcal mol-1 respectively).  Consequently, for the molecules within the single-

reference T1 requirement, rp-ccCA performs well, which is expected since rp-ccCA is 
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composed of single-reference electron correlation steps.  There is one significant 

outlier, Mo(CO)6, within the single-reference character molecules.  The UHF-rp-ccCA 

deviation is 7.4 kcal mol-1 and the ROHF-rp-ccCA deviation is 6.3 kcal mol-1.  The 

closed shell, single-reference Mo(CO)6 should be accurately described by rp-ccCA and 

the resulting deviations suggest the experimental value for the enthalpy of formation 

may need to be re-evaluated (vida infra).  An example of a molecule on the border of 

the cutoff for the diagnostic values, ZrO2 (T1=0.0290, D1=0.0861), has been included in 

a CCSD(T) study by Li et al.111  The diagnostic values suggest that ZrO2 should still be 

accurately described by a single-reference method, e.g. CCSD(T).  The rp-ccCA ∆Hf for 

ZrO2 is -66.2 kcal mol-1, in good agreement with the experimental value of -68.4±11.0 

kcal mol-1 from the NIST-JANF tables123 and the previously calculated CCSD(T) value of 

-67.4 kcal mol-1.  The underestimation of the calculated values in comparison to 

experimental values was also observed in our laboratory for the 3d transition metal 

molecule TiO2, where the comparison included the CCSD(T)-based value and ccCA-

TM.72 The agreement between rp-ccCA and the high level of theory, CCSD(T), further 

validates the composite method results, specifically for molecules with single-reference 

character.   

There are six molecules (MoO2, MoO3, MoOCl4, MoF6, RhO, RhCl2) with D1 > 

0.1, significantly greater than the 0.05 cutoff.  For this subset of six molecules, UHF-rp-

ccCA yields an MAD of 2.80 kcal mol-1, while ROHF-rp-ccCA has an MAD of 2.33 kcal 

mol-1.  The experimental ∆Hf for MoO3 as reported in the Yungman compendium125 (-

86.7±5.0 kcal mol-1) is different from the value (-82.8±5.0 kcal mol-1) from the NIST-

JANAF tables.123  The rp-ccCA prediction of -86.5 kcal mol-1 is closer to the former data 
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by a deviation of 0.2 kcal mol-1.  Apparently, the performance of rp-ccCA does not 

deteriorate with the presence of multireference character in the molecular system.  

Among the molecules, RhO has the largest diagnostic values, a T1 value of 0.0720 and 

a D1 value of 0.1828.  Even though both diagnostics indicate RhO may not be reliably 

described by a single-reference method, the signed deviations of UHF- and ROHF-

based rp-ccCA for RhO are only -1.1 and -0.8 kcal mol-1 respectively, as compared to 

the experimental uncertainty of 10 kcal mol-1.   

In the study by Li et al.,111 total atomization energy (TAE) at 0 K and ∆Hf at 298K 

were determined for ZrO2 and MoO3 by CCSD(T) energies extrapolated to CBS limit 

with the correlation consistent basis sets and ECPs.  The rp-ccCA TAE for ZrO2 is 324.1 

kcal mol-1, compared to 328.5 kcal mol-1 obtained by CCSD(T).111  Similarly for MoO3, 

rp-ccCA obtained a TAE of 417.6 kcal mol-1, while Li et al. reported 412.3 kcal mol-1.  

The large D1 diagnostic value (0.1263) for MoO3 suggests the open-shell coupled 

cluster wavefunction may not be appropriate.  The observed discrepancy between rp-

ccCA and CCSD(T) may be attributed to this molecular quality.  Additionally, Jiang et 

al.51 utilized ccCA-TM for the TAE of first row transition metal oxides (CrO3 and TiO2) 

included in the test of Li et al.111  The comparison of ccCA-TM to the CCSD(T) results 

revealed good agreement between the values for TiO2 and a deviation between the 

values for CrO3.  The evaluation of ccCA-TM, the study by Li et al., and experimental 

values revealed the CCSD(T)-based result was lower than the experimental value for 

TiO2, but higher for CrO3.51 Therefore, for comparison to CCSD(T)-based calculations of 

molecules with possible multireference character results need to be evaluated 

individually. 
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3.3.2.3 Statistical Outliers 

There are five molecules within the overall TM-4d set where the ROHF-rp-ccCA 

results deviate by nearly or more than six kcal mol-1.  The signed deviations are -9.5, 

5.9, -6.4, -8.7, and -5.7 kcal mol-1 for YO, MoF6, RhCl2, CdH, and CdCl, respectively.  

For the cadmium molecules CdH and CdCl, the reported experimental values in the 

Yungman compendium do not include any experimental uncertainties.125  Additionally, 

the T1 and D1 values are close to the diagnostic threshold values and rp-ccCA is 

expected to perform well for CdH and CdCl; therefore, further experimental studies or 

high level, e.g. CCSD(T)/CBS, calculations are warranted to address the discrepancy 

between experiment and rp-ccCA results.  Additional work or multireference calculations 

may be needed for RhCl2 and MoF6, since their D1 values are larger than 0.10.  YO has 

the largest rp-ccCA deviation, -9.5 kcal mol-1, in absolute value from the experimental 

data with an error bar of 2.5 kcal mol-1. The diagnostic values (T1 = 0.0352 and D1 = 

0.0794) for YO beyond the threshold values suggest the salient presence of 

multireference character might be the reason for the incongruity. 

3.3.2.4 Dissociation Energies 

In Table 3.6 bond dissociation energies (BDEs) are reported for Mo(CO)6 and 

MoF6.   Previous calculations done with CCSD(T), by Ehlers and Frenking,139  and DFT, 

by Ziegler et al.,140 have yielded the first BDE of the hexacarbonyl Mo(CO)6 as 40.4 and 

42.5 kcal mol-1, respectively.  The experimental value obtained by photodissociation is 

40.5 ± 2.0 kcal mol-1.141  The BDE determined by ROHF-rp-ccCA for the reaction 

Mo(CO)6Mo(CO)5+CO is 39.9 kcal mol-1, which agrees well with the experimental 

data and CCSD(T) prediction.  While the BDE for the hexacarbonyl is within 
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experimental uncertainty, the ROHF-rp-ccCA ∆Hf for Mo(CO)6 deviates by 6.3 kcal mol-1 

from experiment, while the ROHF-rp-ccCA ∆Hf for Mo(CO)5 deviates by only 2.4 kcal 

mol-1, suggesting the experimental value may need to be revisited for Mo(CO)6. 

The dissociation energy of 86.4 kcal mol-1 determined by rp-ccCA for MoF6 

agrees well with the value of 86.0 kcal mol-1 reported by Dixon et al.109 using CCSD(T) 

with ECPs.  Experimental values are currently not available for this reaction.  The 

agreement between rp-ccCA, CCSD(T), and experimental values for the dissociation 

energies of the molybdenum molecules supports the reliable application of rp-ccCA for 

the determination of energetic properties. 

 

Table 3.6.  Dissociation energies (in kcal mol-1) for molybdenum hexa-substituted 
reactions. 

  rp-ccCA CCSD(T) DFT b Expt. 

Mo(CO)6Mo(CO)5+CO 39.9 40.4 53,a 42.5 
54 40.5 ± 2 55 

MoF6MoF5+F 86.4 86.0 24,c   
a  MP2 optimized geometries are used.  A small core ECP is used for the metal atom 
and the 6-31G(d) basis set for the carbon and oxygen atoms. 
b The density functional is composed of a Stoll-type correlation functional and Becke 
non-local exchange functional.  See reference 54 for further details. 
c  Dissociation energy calculated as sum of: extrapolated CCSD(T) energies to the 
complete basis set limit via mixed/Gaussian exponential formula, the zero point energy, 
a core–valence correction, a relativistic correction, and a spin–orbit correction. 
 

3.4 Conclusions 

 By implementing pseudopotentials within a parameter-free MP2-based 

composite method, the thermochemistry of molecules containing heavier elements such 

as 4p elements and second row (4d) transition metals can be addressed.  Specifically, 

the well-established ccCA method for main group molecules has been extended to 
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include relativistic pseudopotentials (rp-ccCA) for 4d transition metals.  The 

performance of rp-ccCA has been examined in comparison to ccCA-TM for the G3/05-

4p set and a 32.5% CPU time savings in computational cost was achieved. The rp-

ccCA has also been benchmarked for the calculation of enthalpies of formation for 4d 

transition metal-containing molecules.  For the TM-4d set, UHF- and ROHF-rp-ccCA 

MADs of 3.29 kcal mol-1 and 2.89 kcal mol-1 were obtained respectively, both lower than 

the average experimental uncertainty of 3.43 kcal mol-1.  The impact of spin 

contamination and multireference character on the molecule set was examined and 

overall neither was found to significantly increase the deviation of the ROHF-rp-ccCA 

results from experiment.   

With the development of a pseudopotential composite method, the realm of ab 

initio computations can be expanded to include larger and more diverse molecules 

containing heavier elements for which small-core psuedopotentials and corresponding 

correlation consistent basis sets exist.  The implementation of rp-ccCA greatly extends 

the applicability of ccCA and significantly contributes to the ccCA family as a pan-

periodic model.  rp-ccCA method, as a relativistic pseudopotential composite method for 

transition metals, is recommended as a reliable approach to complement and/or guide 

experimental studies of thermochemical properties of second-row transition metals. 
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CHAPTER 4 

EXAMINING THE HEAVY P-BLOCK WITH A PSEUDOPOTENTIAL-BASED 

COMPOSITE METHOD: ATOMIC AND MOLECULAR  

APPLICATIONS OF RP-CCCA* 

4.1 Introduction 

Molecules containing 5p (In-I) and 6p (Tl-At) elements have magnetic, energetic, 

spectral, and thermal properties with applications as intermediates for hydrogen 

storage,142 as precursors for semiconductors,143 as catalysts for the partial 

hydrogenation of acetylene to ethylene,144 and in nanotechnology applications where p-

block clusters can be used in the  synthesis of nanoparticles.145  Theoretical studies can 

aid in the experimental design and development of these applications; for example, 

knowledge about the HOMO-LUMO can provide insight into whether or not a material 

will be a useful conductor.  Recently first principle studies have been able to guide 

experimental work in the design of novel conducting oxide materials via doping with 

indium,146 in the development of small molecule organic solar cells,147 and in the design 

of novel catalysts with improved reactivity and enhanced product selectivity.148  First 

principle energetic calculations can be used in conjunction with optical experimental 

studies to predict the molecular electronic structure.  With theoretical energetic, 

spectroscopic, and thermodynamic data of the lower p-block molecules in combination 

with experiment, insight about the reactivity and stability of the 5p- and 6p-containing 

molecules can be gained, which can give rise to the design of ligands for 

* This chapter has been published in M.L. Laury and A. K. Wilson, “Examining the 
Heavy p-Block with a Pseudopotential-based Composite Method: Atomic and Molecular 
Applications of rp-ccCA,” J. Chem. Phys. 137, 214111 (2012). 
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supramolecules149 and semiconducting species for radiation detectors,150 in addition to 

the previously mentioned applications. 

The accuracy of theoretical methods, specifically ab initio methods, is dependent 

on the method and basis set selection.  For high accuracy results, high-level methods, 

such as coupled cluster singles, doubles, and perturbative triples [CCSD(T)] and large, 

balanced basis sets are needed.  Furthermore, for the lower p-block elements, it is 

necessary to include both scalar and spin-orbit relativistic effects in the 

calculation.100,151,152  To calculate the relativistic effects, the Dirac equation can be 

utilized, resulting in a computationally expensive four-component approach.80  However, 

the transformation of the Dirac Hamiltonian to a two-component approach via an 

approximate decoupling of the large and small components results in the Douglas-Kroll-

Hess (DKH) Hamiltonian can provide a useful, less costly alternative.  The second-order 

DKH Hamiltonian has proven to be an effective method for the inclusion of scalar 

relativistic effects within an all-electron calculation.83,153  To account for the remaining 

relativistic effects, namely spin-orbit coupling, a variety of approaches are available, 

including spin-orbit pseudopotentials85,154  and the Breit-Pauli operator.155  Accounting 

for relativistic effects for the lower p-block elements has a larger computational cost, 

with respect to disk space, memory, and central processing unit (CPU) time, than for 

molecules composed of main group elements with a similar number of atoms.  In order 

to mitigate the computational cost, composite methods and relativistic pseudopotentials 

can be implemented. 

Small core relativistic pseudopotentials and corresponding valence basis sets 

have been developed by Peterson and co-workers for the 5p and 6p elements.118,119,156  
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The small core pseudopotentials have an [Ar]3d10 core for the 5p elements and a [Kr] 

4d104f14 core for the 6p elements.  The accuracy of the 5p and 6p valence basis sets 

and pseudopotentials developed by Peterson and co-workers has been established 

through molecular energetic calculations.157  With the development of the 5p and 6p 

pseudopotentials, the application of rp-ccCA to these elements can be examined. 

While computational studies of lower p-block molecules have been intermittent 

throughout the past two decades, the lower group 13-17 elements have been gaining 

interest in recent years due to their semiconductor-like properties and utilization in 

catalysis.158  Early calculations were carried out by Balasubramanian and co-workers in 

order to determine electronic states, potential energy surfaces, and spectroscopic 

properties of various lower p-block containing molecules, such as TeH2, PoH2, and 

BiH.159  CASSCF and SOCI calculations were employed for the comparison of the low-

lying states of the molecules and spectroscopic properties.  Preuss and co-workers 

examined the influence of core-core overlap and core-valence correlation on the 

spectroscopic properties of diatomics, including dimers, hydrides, and oxides, of In, Sn, 

and Sb.160 In the work of Preuss et al., CASSCF and CISD  with energy-consistent 

pseudopotentials in which relativistic effects have been implicitly included, were utilized 

with pseudopotentials for the heavy elements and average deviations of 6.9 kcal mol-1 

were observed between experimental dissociation energies and the calculated results.   

In addition to the study of individual molecules, periodic trends, i.e., 6p versus 7p, 

have been examined including the relativistic effects and electron correlation effects on 

hydrides and halides containing group 13 elements.  The quadratic configuration 

interaction (QCI) trend analysis by Schwerdtfeger, Dolg, and co-workers concluded that 
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the lower valencies observed in molecules with heavy elements is due to the trend of 

weaker bonding enthalpies as the atomic number increases and the dissociation of MX3 

(M is a p-block element, X is a halide) becomes more exergonic when moving down the 

group 13 elements.161  The contribution of relativistic effects to various lower p-block 

atomic and molecular properties, such as bond lengths, atomization energies, ionization 

potentials, and dissociation energies, has been widely examined with ab initio methods 

and density functional theory.156,161-163  Rather than include details from each study, the 

importance of scalar relativistic effects and spin-orbit coupling for the heavier elements 

(In-Xe and Tl-Rn) is noted elsewhere.162,163  As previously mentioned, in order to 

mitigate the computational cost associated with ab initio calculations of heavy elements, 

core potentials may be introduced to decrease the number of correlated electrons in the 

calculation. Both model potentials and pseudopotentials have been employed in late p-

block calculations and similar accuracy levels were obtained.118,119,156,164  

Recent development of the correlation consistent basis sets to accompany small 

core relativistic pseudopotentials for the outer core electron correlation [(n-1)spd],156 in 

addition to the previously developed correlation consistent basis sets for valence nsp 

correlation,118,119 has provided the necessary components to extend the application of 

rp-ccCA past the second row transition metals.  In this work, a series of 80 energies – 

which we refer to as the LP80 data set – was considered, including the electron 

affinities and ionization potentials of the 5p and 6p elements were determined with rp-

ccCA.  For the molecular applications, the dissociation energies and enthalpies of 

formation at 298 K of XH, XO, and X2 (X=In-I, Tl-At) were determined.  Additionally, to 

consider systems larger than diatomics, the total atomization energies were calculated 
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for the Pbn clusters, n=2-6.  Overall, the LP80 set includes 10 electron affinities, 10 

ionization potentials, 30 dissociation energies (10 mono-hydrides, 10 mono-oxides, 10 

dimers) and 30 enthalpies of formation (10 mono-hydrides, 10 mono-oxides, 10 dimers).  

     

4.2 Computational Methodology 

Geometry optimizations and single-point energy calculations were carried out 

with GAUSSIAN 09, Revision A.02.165  The spin-orbit coupling calculations were 

performed using Molpro 2009.1.115 The rp-ccCA methodology is detailed in Chapter 3.2.  

Smal core pseudopotentials (PP) were used for the 5p and 6p elements,118,119,156 while 

the corresponding (aug-)cc-pVnZ basis sets were used for the main group elements.  

The geometry optimization was obtained at the B3LYP/cc-pVTZ-PP level of theory.  

While B3LYP was selected in the original development of rp-ccCA, the effect of 

functional selection was examined.  The impact on the rp-ccCA energy when other 

density functionals have been utilized in geometry optimizations was considered.  The 

functionals were selected for their performance in prior studies of transition metal 

species (B97-1), for inclusion of a dispersion correction (B97-D), to examine a widely-

used hybrid generalized gradient approximation (HGGA) functional (PBE1PBE), and 

compare a GGA functional to the HGGA (PBEPBE).   

 The molecular spin-orbit coupling corrections were computed with the aug-cc-

pVDZ-PP basis set for the 5p and 6p elements and aug-cc-pVDZ for the main group 

elements.  The multi-configuration self-consistent field (MCSCF) program multi in 

Molpro 2009 was employed for the spin-orbit coupling (SOC) calculations.  The atomic 

SOC values were determined from the atomic energy levels.166 

71 



The mean absolute deviations (MADs), mean signed deviations (MSDs), 

standard deviations (σ), and root mean square deviations (RMSDs) were calculated for 

the rp-ccCA energetic property values in comparison to the reported experimental 

properties. 

 

4.3 Results and Discussion 

4.3.1 Atomic Properties 

4.3.1.1 Electron Affinity (EA) 

  
 The electron affinities of the 10 atoms, indium through iodine and thallium 

through astatine, were computed with rp-ccCA and compared to experimental values as 

well as previously reported CCSD(T)/aug-cc-pV5Z-PP calculations.  The EAs are 

reported in Table 4.1.  With respect to the experimental values, the MAD of rp-ccCA is 

3.76 kcal mol-1.  While the average experimental uncertainty is 2.37 kcal mol-1, the 

experimental uncertainties range from 0.002 to 7 kcal mol-1.  Additionally, the MAD is 

skewed due to the inclusion of bismuth (deviation of 13.22 kcal mol-1).  A large deviation 

between calculated and experimental values for the EA of bismuth has previously been 

noted.  The deviation observed for bismuth may be attributed to the experimental 

energy levels of the bismuth anion multiplet being derived from the neutral polonium 

atomic splitting;167 therefore, comparison to high-level calculations is reasonable.  If the 

bismuth EA is removed from the set, the MAD of rp-ccCA from the experimental values, 

excluding bismuth, is 2.58 kcal mol-1.  To gauge the performance of rp-ccCA in 

comparison to other theoretical methods, previous CCSD(T)/aug-cc-pV5Z-PP 

calculations118,119,156 were used.  rp-ccCA yielded an MAD of 1.16 kcal mol-1 in relation 
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to the CCSD(T) results.  Bismuth was included in comparison and the theoretical 

methods differed by 1.4 kcal mol-1 for the EA of bismuth. 

 

Table 4.1. Atomic electron affinities in comparison to experimental values and 
CCSD(T)/aug-cc-pV5Z-PP results.  Units are in kcal mol-1. 
 

Atom rp-ccCA Expt. a CCSD(T)/ Deviation Deviation 
a5ZPP b from Expt. from CC 

In 9.4 7±5 9.94 -2.4 0.5 
Sn 30.9 32.7±0.09 32.52 1.8 1.6 
Sb 21.6 17.7±1.2 20.28 -2.9 -1.3 
Te 47.4 45.45±0.01 47.29 -2.0 -0.2 
I 74.0 77.791±0.002 76.41 3.8 2.5 

Tl 7.0 5±5 7.38 -2.0 0.4 
Pb 27.6 32.76±0.17 29.61 5.2 2.1 
Bi 16.6 3.4±0.2 17.99 -13.2 1.4 
Po 44.5 44±7 44.07 -0.5 -0.4 
At 73.4     

   MSD -1.36 0.73 
   MAD 3.76c 1.16 
   σ 5.31 1.22 

      RMSD 1.59 0.37 
a Reference 166. 
b Reference 118,119. 
c Reported MAD includes bismuth.  The MAD without bismuth is 2.58 kcal mol-1. 
 
 
4.3.1.2 Ionization Potential (IP) 

 Analysis of the IPs of the atoms provides insight into the electronic structure and 

changes in the orbital configuration, which are useful for reactions involving the ground 

state or oxidated state of the atom.  The IPs of the 5p and 6p elements were first 

experimentally reported over half a century ago.166  Since then, the IPs have been 

studied computationally and revisited experimentally.118,119,168  The IPs, as determined 

by rp-ccCA, are reported in Table 4.2.  The importance of spin-orbit coupling is 
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demonstrated for the IPs; in comparison to the experimental IPs,166 the rp-ccCA values 

without SOC resulted in an MAD of 9.84 kcal mol-1.  After inclusion of SOC for the 

atoms, the rp-ccCA MAD with respect to experiment dropped to 3.89 kcal mol-1.  Similar 

to the EA, the IP of the bismuth atom is the outlier of the set, with an absolute deviation 

(14.6 kcal mol-1) twice that of any other atom.  With the exclusion of the bismuth IP, the 

MAD drops to 2.55 kcal mol-1.   The rp-ccCA MAD in comparison to the previous 

computational work is 2.93 kcal mol-1.  The cationic and neutral states for each of the 

atoms are reported in Table II.  The rp-ccCA IPs are plotted in Figure 4.1.  A slight 

decrease in the ionization potential for Te and Po is observed, representing the 

favorable loss of an electron to obtain the quartet multiplicity.  As expected, the lowest 

IPs are for the elements with one p electron (In, Tl), since the closed shell, +1 oxidation 

is favorable.  Overall, rp-ccCA is not only able to determine qualitative trends, but has 

the great advantage of being able to yield quantitatively accurate results. 
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Table 4.2. Atomic ionization potentials in comparison to experimental values and 
MCDHF results.  Units are in kcal mol-1. 
 

IP Ground Cation rp-ccCA Expt.a Absolute MCDHF Absolute 
State Deviation Deviation 

In 2P1/2 1S0 131.1 133.06 1.9   

Sn 3P0 2P1/2 168.1 168.87 0.7   

Sb 4S3/2 3P0 201.1 198.7 2.4   

Te 3P2 4S3/2 204.9 207.23 2.4 205.95 1.1 

I 2P3/2 3P2 241.4 240.44 1.0 237.01 4.4 

Tl 2P1/2 1S0 132.7 140.44 7.8   

Pb 3P0 2P1/2 167.9 170.55 2.7   

Bi 4S3/2 3P0 172.2 167.6 14.6   

Po 3P2 4S3/2 195.4 193.89 1.5 197.73 2.3 

At 2P3/2 3P2 230.7   226.84 3.9 
    MSD 0.66 MSD -1.22 
    MAD 3.89b MAD 2.93 
    σ 3.59 σ 3.40 

        RMSD 1.09 RMSD 2.95 
a Reference 166. 
b Without bismuth, the IP MAD drops to 2.55 kcal mol-1. 
 
 

 
Figure 4.1. The ionization potentials of the 5p and 6p elements. 
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4.3.2 Diatomics 

 As noted in the methodology section, the selection of B3LYP for the geometry 

optimizations was validated by comparing B97-1, B97-D, PBEPBE, PBE1PBE, and 

B3LYP geometries.  On average, the re-optimized geometries differed from the B3LYP 

geometries by ±0.002 Å.  As this difference in geometry translated to differences in the 

energies in thousandths of a kcal mol-1, which will not change the overall enthalpies of 

formation or dissociation energies determined by rp-ccCA, the original implementation 

of rp-ccCA with B3LYP geometries was employed. 

4.3.2.1 Monohydrides 

While various studies have determined the dissociation energies (𝐷0’s) of the group 

13-17, both 5p and 6p, monohydrides, either experimentally or via calculations,152,162,169 

a compilation of the results does not exist.  Within this study, previous experimental and 

calculated values have been assembled for comparison (Table 4.3).   

For these heavier elements, spin-orbit coupling (SOC) contributes to the molecular 

and atomic energies, while the magnitude of the SOC varies across the row.  For 

example, the SOC lowers the dissociation energies of AtH and PbH by 15.6 and 16.6 

kcal mol-1, respectively.  The SOC for IH is 0.5 kcal mol-1.  The inclusion of SOC in the 

rp-ccCA energies for the dissociation of the monohydrides results in a MAD of 2.0 kcal 

mol-1 from the compiled previously calculated data.  The 𝐷0’s for InH and PoH are in 

exact agreement with CCSD(T) and 2-component relativistic calculations with shape-

consistent relativistic pseudopotentials and valence basis sets including f polarization 

functions.152 The statistics support the utilization of rp-ccCA, since accurate results are 

obtainable at a reduced computational cost.  For the five available experimental values 
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(IH, InH, PbH, SnH, and TlH), the rp-ccCA deviations are -2.6, 0.5, 0.6, 5.3, and 1.6 kcal 

mol-1, respectively, and the MAD with respect to experiment is 2.12 kcal mol-1.  Only two 

of the experimental values have larger uncertainties (5.0 and 3.0 kcal mol-1) and the rp-

ccCA MAD is within this uncertainty. 

The quantity of available experimental data for comparison for the monohydride 

enthalpies of formation (∆Hf’s) is similar to the dissociation energies, although there are 

no previous theoretical results for comparison.  Experimental values for only BiH, IH, 

InH, PbH, SnH, and TlH have been reported in the literature.  The rp-ccCA results are 

reported in Table 4.3.    In comparison to the available experimental values, rp-ccCA 

yielded a MAD of 1.82 kcal mol-1and a mean signed deviation (MSD) of -0.73 kcal mol-1. 
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Table 4.3. Group 13-17 monohydride dissociation energies and enthalpies of formation in comparison to experimental 
values and previously calculated results.  Units are in kcal mol-1. 
 
    𝐷0           ∆Hf,298     

Molecule 
Ground 

rp-ccCA Expt.a 
Previous  Deviation Deviation  rp-

ccCA Expt.a Deviation State Calc.b from 
expt. 

from 
calc.   

InH 1Σg 63.1 63.6 63.10 0.5 0.0  51.3 51.32 0.1 

SnH 4Σg 54.7 60.0±3 52.9 5.3 1.8  69.3 63.41 -5.9 
SbH 3Σg 59.4  62.10  2.7  56.4   

TeH 2π 64.9  63.48  1.4  32.1   
IH 1Σg 72.9 70.4 79.53 -2.6 6.6  3.2 6.35 3.2 

TlH 1Σg 45.7 47.4 46.00 1.6 0.3  49.4 49.16 -0.3 

PbH 2π 36.4 37.0±5 38.87 0.6 2.5  61.9 60.85 -1.1 

BiH 2π 52.9  49.68  3.2  43.4 43.01 -0.4 
PoH 2π 52.2  52.21  0.0  33.8   

AtH 1Σg 52.1  53.13  1.0  21.4   
     MAD 2.12 1.95   MAD 1.82 
     MSD 1.09 0.67   MSD -0.73 
     σ 2.84 1.84   σ 2.94 

        RMSD 1.22 0.60     RMSD 1.10 
a Reference 125. 
b Reference 118,119. 
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4.3.2.2 Mono-oxides 

Through the examination of the 𝐷0’s of mono-oxides, the thermodynamic 

favorability of an oxygen atom transfer, the oxidation of catalysts, properties of 

materials, and atmospheric catalytic ozone depletion can be deduced.    Experimental 

𝐷0’s are limited, but there exist a variety of computational studies (e.g. DFT, CCSD(T), 

QCISD) to supplement available experimental data for comparison.  Table IV includes 

the 𝐷0’s of the 5p and 6p mono-oxides, as compared to experimental data and 

previously calculated values.  The MAD of rp-ccCA in comparison to the compiled 

experimental data is 2.49 kcal mol-1.  Experimental uncertainties are reported for one-

third of the experimental values and the average experimental uncertainty is 6.17 kcal 

mol-1.  The MSD for the set is 1.75 kcal mol-1; therefore, the methodology is slightly 

biased toward over-estimating the 𝐷0’s of the mono-oxides.  When examining the plot of 

the 𝐷0’s with respect to the p orbital occupation, the largest 𝐷0 is observed for the p-

block atoms with the valence configuration ns2np2, where  n = 5, 6.     

For the ∆Hf’s of the p-block mono-oxides, experimental data is available for Sn, 

Sb, Te, I, Pb, and Bi.  The mono-oxide ∆Hf’s are included in Table 4.4.  rp-ccCA yielded 

a MAD of 3.13 kcal mol-1 and a MSD of -0.76 kcal mol-1, in comparison to the 

experimental ∆Hf’s.  As observed in rp-ccCA calculations for the ∆Hf here, and in 

previous work, there is minimal systematic bias in the method.  The largest deviation 

with respect to experimental ∆Hf’s occurs for a different element in each set.  For 

example, the mono-oxide of iodine has the largest deviation of -8.4 kcal mol-1, but for 

the mono-hydrides the deviation of iodine is 0.0 kcal mol-1 and the largest mono-hydride 

deviation is for tin (-5.9 kcal mol-1). 
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Table 4.4. Group 13-17 mono-oxide dissociation energies and enthalpies of formation in comparison to experimental 
values.  Units are in in kcal mol-1. 
 

    𝐷0       ∆Hf,298     

Molecule Ground 
State rp-ccCA Expt.a Deviation   rp-ccCA Expt.a Deviation 

InO 2Σ 74.5 75.6±10 1.1  52.2   
SnO 1Σ+ 126.2 126.1 -0.1  4.3 4.984 0.7 
SbO 2Π1/2 95.7 102.8±10 7.1  26.7 24.737 -1.9 
TeO 1Σ 80.9 89.1±5 8.2  37.3 41.563 4.3 
IO 2Π3/2 43.6 44±6 0.4  48.5 40.136 -8.4 

TlO 2Σ 58.3     58.3   

PbO 1Σ+ 92.6 90.3±3 -2.3  14.3 16.455+/-
1.3 2.1 

BiO 2Π1/2 78.7 79.7±3 1.0  29.8 28.416 -1.3 
PoO 1Σ 67.4 66.47 -0.9  17.8   
AtO 2Π3/2 30.2 31.57 1.3  42.4   

    MSD 1.75   MSD -0.76 
    MAD 2.49   MAD 3.13 
    σ 3.54   σ 4.37 
      RMSD 2.00     RMSD 1.96 

a Reference 125 except AtO and PoO (reference 170). 
 

80 
 



4.3.2.3 Dimers 

 The 𝐷0’s and ∆Hf’s of the p-block dimers were investigated as a precursor 

to a study of larger clusters of the atoms.  In addition, there are reported experimental 

values for the 𝐷0’s and ∆Hf’s for all of the elements In-I and Tl-At.  The average 

experimental uncertainty for the 𝐷0’s is 1.83 kcal mol-1.  The MSD and MAD, in 

comparison to experiment, of rp-ccCA for the 𝐷0’s of the dimers were -0.24 and 1.75 

kcal mol-1, respectively; therefore, rp-ccCA yields results within the limit of experimental 

uncertainty.  The complete list of De’s is reported in Table V.  The largest 𝐷0 is for the p3 

element in each series, Sb (5p3) and Bi (6p3), while the 𝐷0’s of the 6p dimers are less 

than the corresponding 5p dimers.  The greater 𝐷0’s of the 6p dimers can be attributed 

to inner shell f electrons and the relativistic expansion of the outer p orbitals of the 

atoms, i.e., a larger atomic radius. 

 While experimental values have been reported for the ∆Hf of each p-block dimer, 

the corresponding uncertainties for each experimental value are only reported for five of 

the molecules.  The average experimental uncertainty for the ∆Hf of the dimers is 1.92 

kcal mol-1.  The MSD of the rp-ccCA calculations from experiment was 0.20 kcal mol-1 

and the MAD was 2.53 kcal mol-1.  The dimer ∆Hf’s are detailed in Table 4.5.  The root 

mean square deviation (RMSD) was 0.93 kcal mol-1, supporting the accuracy of the 

method. 
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Table 4.5. Group 13-17 dimer dissociation energies and enthalpies of formation 
compared to experimental data.  Units are in kcal mol-1. 
 

  𝐷0       ∆Hf,298     

Molecule rp-ccCA Experimenta Deviation   rp-
ccCA Experimenta Deviation 

In2 20.2 19.5±2.5 -0.7  98.5 98.834 0.3 
Sn2 48.4 45.8±4 -2.6  98.4 99.4 1.0 
Sb2 75.2 70.6±1.5 -4.6  52.3 57.1±0.8 4.8 
Te2 50.5 51.0±3 0.6  35.0 40.061 5.1 
I2 35.9 35.566±0.016 -0.3  17.7 14.922 0.3 
Tl2 12.8 14 1.2  76.8 72.071 -4.7 
Pb2 15.1 19.4±1.4 4.3  77.2 79.501±4.59 2.3 
Bi2 44.2 45.29±0.6 1.1  57.2 53.8±0.2 -3.4 
Po2 36.7 35.0±1.0 -1.7  34.5 34.777±1.5 0.2 
At2 25.6 26±2 0.4  20.9 20.0±2.5 -0.9 
   MSD -0.24   MSD 0.20 
   MAD 1.75   MAD 2.53 
   σ 2.22   σ 2.87 
    RMSD 0.71     RMSD 0.93 

a Reference 125. 
 

4.3.3 Pb Clusters 

Thermodynamic data of small clusters consisting of metal atoms, such as lead, 

can be used to determine catalytic properties, in addition to being used as an indicator 

of bulk phase properties of the metal clusters.  In computational nanotechnology 

studies,171  clusters composed of lower p-block elements are routinely examined due to 

their conducting and optical properties, which may be attributed to relativistic effects, 

particularly spin-orbit coupling.  Spectroscopic properties, ground states, geometries, 

and energetic data of lead clusters composed of two to six atoms have been examined 

both experimentally and theoretically throughout the past few decades.  The total 

atomization energies (TAEs), including spin-orbit coupling, for Pbn (n=2-6) are reported 

in Table 4.6.  Experimental and previous theoretical values are included for comparison.  
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Previously reported calculations with multireference configuration interaction with single 

and double excitations and a Davidson correction (MRSDCI+Q) were included, as they 

utilized a high level of theory and accounted for both scalar relativistic and spin-orbit 

effects.172,173  The ground state geometries of each cluster are detailed in Figure 4.2.  

Agreement with the available experimental and theoretical data is observed for each 

lead cluster.  To note, the spin-orbit coupling, on average, decreases as the size of the 

cluster increases.  The largest SOC is observed for the lead dimer as a result of 

relativity causing the σg bonding orbital and πg anti-bonding orbital to mix.  The final 

structures selected for each cluster were chosen based on lowest energy criteria and 

previous studies.172-176  Multiple geometries were included; for example, for Pb3: linear 

(D∞h), planar (D3h), and bent (C2v) were considered.  For the reported experimental 

values, the MAD of rp-ccCA is 2.03 kcal mol-1, which is within the average experimental 

uncertainty of 3.13 kcal mol-1.  The accurate results obtained for the small lead clusters 

supports the utilization of rp-ccCA in future studies of group 13-17 clusters. 

Table 4.6.  Total atomization energy for the lead cluster Pbn, n=2-6.  Units are in kcal 
mol-1. 

    TAE     
Cluster 

size 
Ground 

State rp-ccCA Expt. Deviation 

2 3Σ 15.1 19.4±1.4 a 4.3 
3 1Σ 53.8 53.5±4 b -0.3 
4 1Σ 95.7 97.5±-4 b 1.8 
5 1A1 116.7 115.0 c -1.7 
6 1A1g 144.2 144.9 d 0.7 
    MSD 0.96 
    MAD 1.76 
    σ 2.27 
      RMSD 0.92 

a Reference 125. b Reference 174.  
c Reference 176. d Reference 173. 
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Figure 4.2. Geometries of the lead clusters Pbn (n=2-6). 
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4.4 Conclusions 

The relativistic pseudopotential variant of ccCA (rp-ccCA) has previously been 

demonstrated to yield accurate thermodynamic data for second-row transition metals.  

The method has been extended to lower p-block elements, indium through iodine (5p) 

and thallium through astatine (6p), as well as p-block containing molecules.  The 

performance of rp-ccCA has been examined for energetic properties, including 

ionization potentials, electron affinities, and atomization energies, as well as for 

thermodynamic data, i.e., enthalpies of formation.  In the absence of energetic and 

thermodynamic data from experiment for comparison, rp-ccCA results were reported in 

comparison to theoretical data.  Scalar relativistic effects were included in the 

calculations via pseudopotentials, while spin-orbit coupling was included a posteriori.  

The magnitude of the spin-orbit coupling ranged from zero to the same magnitude as 

the property of interest.  rp-ccCA results, on average, for the LP80 set were within 

reported experimental uncertainties, e.g. the rp-ccCA MAD was 1.75 kcal mol-1 whereas 

the average experimental uncertainty  was 1.83 kcal mol-1 for the dissociation energies 

of the p-block dimers.  For the atomic electron affinities, rp-ccCA yielded an MAD of 

3.06 kcal mol-1 from experimental data and an MAD of 1.05 kcal mol-1 in comparison to 

CCSD(T)/aug-cc-pV5Z-PP calculations.  Atomic results also included the ionization 

potentials, where rp-ccCA obtained an MAD of 2.49 kcal mol-1 from experiment.  To 

further demonstrate the accuracy of rp-ccCA, the total atomization energy of Pbn (n=2-

6) clusters was examined and the MAD of rp-ccCA was 2.03 kcal mol-1, while the 

reported experimental uncertainty was 3.13 kcal mol-1.   

By implementing rp-ccCA, energetic and thermodynamic data, on average within 
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3 kcal mol-1 of experimental values and within reported experimental uncertainties, of 

the lower p-block-containing molecules are obtainable.  The quantitative performance of 

rp-ccCA is obtained with a significantly reduced computational cost as compared with 

high-level CCSD(T) calculations.  Previous work detailed the utility of rp-ccCA for 

second row transition metals and in the current study the applicability of rp-ccCA has 

been extended to the lower p-block elements.  rp-ccCA yields accurate results, in 

comparison to experimental data and previous computational studies, for the heavier 

elements by accounting for scalar relativistic effects within the pseudopotentials 

employed and for spin-orbit coupling via an a posteriori correction. The rp-ccCA results, 

within this work and in future applications, can be used to supplement and guide 

experimental work.    
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CHAPTER 5 

HARMONIC VIBRATIONAL FREQUENCIES: SCALE FACTORS FOR PURE, HYBRID, 

HYBRID META, AND DOUBLE-HYBRID FUNCTIONALS IN CONJUNCTION  

WITH CORRELATION CONSISTENT BASIS SETS§  

5.1 Introduction 

Density functional theory (DFT) is a popular methodology due to its ability to 

account for electron correlation at a reduced computational cost, as compared with 

correlated ab initio methods.23,177  Its uses include the determination of ground state 

geometries, transition structures, molecular interactions, and thermodynamic properties, 

including bond dissociation energies, atomization energies, enthalpies of formation, and 

vibrational frequencies.  DFT has been used to predict thermodynamic properties of 

both small, simple molecules and complex molecules, including transition metals,178 

solvated species179 and solid state materials.180   

For the description of thermochemical properties such as enthalpies of reaction, 

vibrational frequencies and zero-point vibrational energies are required. Unfortunately, 

calculated vibrational frequencies tend to overestimate the corresponding fundamental 

frequencies due to basis set truncation effects, the incomplete treatment of electron 

correlation, and the omission of anharmonic effects.181  As the deviation between 

experimental vibrational frequencies and calculated vibrational frequencies is 

moderately systematic, this allows for the development of multiplicative scale factors for 

application to the calculated frequencies to provide comparison with the experimentally 

observed fundamental frequencies.1-3 

§ The research presented has been published in M.L. Laury, S.E. Boesch, I. Haken, P. 
Sinha, R.A. Wheeler, and A.K. Wilson, J. Comp. Chem. 32, 2339 (2011). 
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Since theoretical results are dependent upon the method and basis set selection, 

scale factors that are unique to each method and basis set combination are needed.  As 

shown in prior studies, significant improvement in calculated vibrational frequencies as 

compared with experiment is achieved when scale factors are utilized for specific levels 

of theory.1-3  For 38 molecules, Pople et al. observed that HF method with a 3-21G 

basis set overestimated experimental frequencies by 12%.  A scale factor of 0.8929 was 

then determined for HF/3-21G.182  Hehre et al. determined that HF/6-31G(d) 

overestimated experimental fundamental frequencies by 13%; similar to the results 

obtained by Pople et al.182  Additionally, Hehre et al. calculated a 7% deviation between 

experimental frequencies and calculated frequencies for the MP2/6-31G(d) level of 

theory.  Scale factors for Hartree-Fock (HF) and various post-HF methods, including 

second-order Møller-Plesset (MP2), coupled cluster with single, double, and quasi-

perturbative triple excitations (CCSD(T)), and quadratic configuration interaction (QCI), 

previously have been developed for the methods in combination with Pople type basis 

sets, as well as correlation consistent basis sets.1,2,183,184    

Previous studies have also given attention to the combination of density 

functionals with a variety of basis sets.  For example, Scott and Radom examined 

exchange-correlation functionals, BLYP, B3LYP, BP86, B3P86, and B3PW91, together 

with the Pople type basis sets: 3-21G, 6-31G(d), 6-31+G(d), 6-31G-(d,p), 6-311G(d,p), 

and 6-311G(df,p).1  Scott and Radom determined scale factors for vibrational 

frequencies, zero-point vibrational energy (ZPVE), and the thermal contributions to 

enthalpy and entropy for each method and basis set combination. The scale factors for 

ZPVEs were derived from a set of 25 diatomic molecules, while a set of 122 molecules 
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was used for the remaining scale factors.  Additionally, for BLYP, B3LYP and B3PW91 

used in conjunction with the Sadlej basis sets, Halls and co-workers determined scale 

factors for vibrational frequencies.185  For B3LYP and the correlation consistent basis 

sets, scale factors were determined by Wilson and co-workers.183  Their study also 

included HF and MP2 levels of theory with the correlation consistent basis sets.  Irikura 

et al. assessed the uncertainty associated with scale factors for HF, MP2, QCISD, 

BLYP, B3LYP, B3PW91, mPW1PW91, and PBEPBE in conjunction with Pople type 

basis sets.186  Irikura et al. concluded that the scale factors have only two significant 

digits, revealing the corresponding uncertainties to be larger than previously recognized.  

Upon evaluation of the standard uncertainties, Irikura et al. showed the scale factors 

were weakly dependent upon the selected basis set.186  Truhlar and co-workers have 

recently designed functionals, including BB1K,34 MC3BB, and MC3MPW.34  For each of 

the functionals in conjunction with Pople type basis sets, the scale factors for the zero-

point vibrational energies were determined.  An extensive study of scale factors was 

recently conducted by Merrick, Moran, and Radom, where a variety of DFT 

formulations, specifically with respect to the amount of HF exchange, were studied in 

conjunction with Pople type basis sets.  A few of their chosen functionals were also 

assessed in combination with the cc-pVDZ and aug-cc-pVDZ basis sets.2  Merrick et al. 

included scale factors for vibrational frequencies, ZPVE, and thermal contributions to 

enthalpy and entropy in their study.  Additionally, Halls and Schlegel reported harmonic 

vibrational frequency scale factors for hybrid functionals (i.e., SVWN, BLYP, B3LYP, 

and B3PW91) in comparison to scale factors for HF and MP2 calculations.187  They 

concluded that the hybrid functionals yielded scaled results in near accord with 
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experimental frequencies and overall were more reliable than HF and MP2 for the 

prediction of vibrational frequencies.187 Recently, Truhlar and co-workers determined 

scale factors for zero-point energies, harmonic frequencies, and fundamental 

frequencies, as well as what they have defined as universal scale factor ratios, for use 

with certain density functionals, semi-empirical methods, and correlated methods in 

conjunction with triple-zeta quality basis sets.188  Functionals in their study with ZPE 

scale factors closest to unity included MPWLYP1M, BB95, MPW3LYP, BLYP, BP86, 

B3LYP, VSXC, and τHCTHhyb.  The triple-zeta quality basis sets of interest included 

MG3S, 6-31G(d,p), def2-TZVPP, aug-cc-pVTZ, and maug-cc-pV(T+d)Z.188   

The development of local, pure, hybrid, hybrid meta, and double-hybrid meta 

functionals continuously progresses, with a goal to design functionals that result in 

decreased errors in molecular property prediction and functionals that address known 

shortcomings in DFT, e.g. the ability to describe weak bonds189 and van der Waals 

forces.36  Following Perdew’s “Jacob’s Ladder”190 of density functionals, local 

functionals are considered on the first rung and are determined through the local spin 

density approximation (LSDA).  Pure functionals, e.g. BLYP, PBEPBE, are second rung 

functionals and follow the generalized gradient approximation (GGA).  Hybrid and 

hybrid-meta functionals are denoted as fourth rung functionals.  Hybrid functionals, such 

as B3P86 and B3PW91, incorporate Hartree-Fock (HF) exact exchange energy with 

approximate DFT exchange.  Hybrid meta functionals, e.g. M05, M05, include HF exact 

exchange energy and kinetic energy density.  Double-hybrid functionals are considered 

fifth rung functionals and include HF exact exchange energy, approximate DFT 

exchange, and MP2 correlation energy.   
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Foremost, scale factors should be determined for the new and widely used 

Minnesota, hybrid meta exchange-correlation functionals, M05,191 M05-2X,192 M06, and 

M06-2X,193 used for the description of thermochemistry, thermochemical kinetics, and 

non-covalent interactions.  The 2X represents the double amount of nonlocal exchange, 

which was specifically parameterized for non-metals.  The M05-2X and M06-2X 

functionals are thus recommended for non-transition metal containing molecules.  A few 

recent applications of these functionals include stacking interactions of nucleobase pairs 

and non-covalent interactions in biomolecules.194  The utility of the M05, M05-2X, M06, 

and M06-2X functionals make them ideal hybrid meta functionals for scale factor 

development.   

Double-hybrid functionals have received attention for their determination of 

thermochemical properties and barrier heights.  Studies have claimed that double-

hybrid functionals outperform meta-hybrid DFT with respect to equilibrium 

thermochemistry;195  in fact, the thermodynamic and energetic results obtained by these 

functionals approach those determined by composite ab initio methods, e.g. G1 and 

G2.195  An example of a double-hybrid functional is B2GP-PLYP, which is a robust 

functional for the determination of properties including thermochemical data and non-

dynamic correlation energy, as well as the study of extremely polar molecules, e.g. 

SO3.195  No scale factors have yet been determined for this functional.    

An attractive property of the correlation consistent basis sets in conjunction with 

ab initio methods, such as MP2 and CCSD(T), is the convergence to the CBS limit for a 

variety of properties (e.g. correlation energy, dissociation energy, bond lengths, total 

energy).9,43-45,49,98  These characteristics have resulted in the wide use of the correlation 
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consistent basis sets.35  Other properties of interest include harmonic vibrational 

frequencies, zero point vibrational energies, and thermal contributions.  When studying 

vibrational properties, scale factors are necessary for accurate results.  To date, a 

greater focus has been the development of scale factors for Pople type basis sets.  

However, as the correlation consistent basis sets are widely used with DFT, the 

corresponding scale factors are needed. 

When implemented in combination with DFT, the convergence to the CBS limit 

(Kohn-Sham limit for DFT) seen for the correlation consistent basis sets with ab initio 

methods is not guaranteed for properties such as dissociation energies196 and 

equilibrium geometries.197  Convergence to the Kohn-Sham limit is dependent upon the 

functional selection.  For example, the convergence of atomization energies was not 

observed for the pure functionals (BLYP, BPW91, BP86) and standard correlation 

consistent basis sets (cc-pVnZ),196 while convergence for bond lengths and electron 

affinities was seen for the hybrid functional B3LYP with aug-cc-pVnZ (n=D,T,Q,5) basis 

sets.198  

In this work vibrational frequencies were determined for a set of functionals in 

conjunction with the correlation consistent basis sets (cc-pVnZ and aug-cc-pVnZ, where 

n=D(2), T(3) ,Q(4)).  The functionals include the double-hybrid B2GP-PLYP, hybrid 

meta M05, M05-2X, M06, and M06-2X, hybrid B3P86,28,30,199 B3PW91,200-202 BPW91,26  

PBE1PBE,203  BH&HLYP,204 and MPW1K,204 and pure BLYP,27,160  PBEPBE,205  

HCTH93206,207 and BP86.208    These broad-purpose functionals were selected based on 

their prevalence within computational chemistry and the lack of vibrational frequency 
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scale factors to accompany the functionals in conjunction with the correlation consistent 

basis sets. 

 

5.2 Theoretical Procedure 

Calculations were carried out with the Gaussian 09 software package.165  Fifteen 

density functionals were used in combination with the correlation consistent basis sets 

[cc-pVnZ and aug-cc-pVnZ, where n=D(2),T(3),Q(4)]. The calculated vibrational 

frequencies were compared to the experimental fundamental frequencies for 40 main 

group molecules from a set previously studied by Healy and Holder.209  Scale factors 

were determined for calculated vibrational frequencies, ZPVEs, and thermal 

contributions to enthalpy and entropy.  An additional set of 24 molecules consisting of 

mostly main group diatomics and triatomics, by Schaefer and co-workers, was utilized 

to determine the scale factors for zero-point vibrational energies.210 

 

5.2.1 Vibrational Frequencies 

With quantum chemical predictions of low frequency vibrations, the interpretation 

of the fingerprint region of experimental vibrational spectra is facilitated.  However, the 

frequencies in the lower region of the spectra are difficult to distinguish experimentally 

due to the high concentration of states.187  Additionally, for thermochemical properties, 

such as the enthalpic and entropic thermal contributions, the lower frequencies result in 

larger contributions.  Therefore, separate scale factors for the high and low frequencies 

were determined.  In this study, the distinction between low and high frequencies is 

made at 1000 cm-1 based on our previous studies utilizing the same series of 
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molecules.183 Determination of the scale factors followed a procedure as outlined by 

Scott and Radom.1,2 

 

5.2.1.1 High Frequencies 

The scale factors for the high frequency range were determined by the least-

squares method, defined previously by Scott and Radom.1,2 The residual, Δ, to be 

minimized is defined as 

∆= ∑ (𝜆𝜔𝑖
𝑐𝑎𝑙𝑐 − 𝜈𝑖

𝑒𝑥𝑝𝑡)2𝑎𝑙𝑙
𝑖          (5.1) 

where t
i
expν  is the experimental vibrational frequency, calc

iω  is the calculated frequency, 

and where i indicates the ith calculated harmonic vibrational frequency and the ith 

experimental fundamental frequency.  The scale factor, λ, is arrived at by   

𝜆 =
∑ (𝜔𝑖

𝑐𝑎𝑙𝑐𝜈𝑖
𝑒𝑥𝑝𝑡)𝑎𝑙𝑙

𝑖
∑ (𝜔𝑖

𝑐𝑎𝑙𝑐)2𝑎𝑙𝑙
𝑖

          (5.2) 

Upon obtaining the scale factor λ the minimized residual, ∆min, is determined by 

Equation 5.1 and the root mean square (rms) error is found by 

𝑟𝑚𝑠 = �∑ Δ𝑚𝑖𝑛
𝑛𝑎𝑙𝑙

𝑛𝑎𝑙
𝑖 �

1
2          (5.3) 

where nall is the total number of vibrational modes for all molecules in the set. 

 

5.2.1.2 Low Frequencies   

The low frequency scale factors were determined by an inverse method.  The 

minimization of the residual is determined by 

Δ = ∑ � 1
𝜆𝜔𝑖

𝑐𝑎𝑙𝑐 −
1

𝜈𝑖
𝑒𝑥𝑝𝑡�

2
𝑎𝑙𝑙
𝑖          (5.4) 
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between the experimental vibrational frequencies t
i
expν  and the calculated frequencies

calc
iω , where i indicates the ith calculated harmonic vibrational frequency and the ith 

experimental fundamental frequency.  The scale factor was then determined by  

𝜆 =
∑ � 1

𝜔𝑖
𝑐𝑎𝑙𝑐�

2
𝑎𝑙𝑙
𝑖

∑ 1

𝜔𝑖
𝑐𝑎𝑙𝑐𝜈𝑖

𝑒𝑥𝑝𝑡
𝑎𝑙𝑙
𝑖

          (5.5) 

and the rms was calculated as in equation 5.3.   

 

5.2.2 Thermodynamic Properties 

 

5.2.2.1 Enthalpic Contribution 

The thermal contribution to enthalpy is rooted in the vibrational frequency, where 

the enthalpic contribution is expressed as 

Δ𝐻𝑣𝑖𝑏(𝑇) = 𝑁ℎ𝑐 ∑ 𝜈𝑖
𝑒𝜇𝑖−1𝑖          (5.6) 

where N is Avogadro’s number, h is Planck’s constant, c is the speed of light, and 

𝜇𝑖 = ℎ𝑐𝑣𝑖
𝑘𝑇

           (5.7) 

with T for temperature, k equal to Boltzmann’s constant, and  iν is the frequency in cm -

1.  The units of the enthalpic contribution are kJ/mol.  The residual to be minimized is 

Δ = ∑ �λΔ𝐻𝑣𝑖𝑏𝑐𝑎𝑙𝑐(𝑇𝑖) − Δ𝐻𝑣𝑖𝑏
𝑒𝑥𝑝𝑡(𝑇𝑖)�

2𝑎𝑙𝑙
𝑖        (5.8) 

 

5.2.2.2 Entropic Contribution 

Similar to the enthalpic contribution, the thermal contribution to entropy is derived 

from the vibrational frequency as 
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𝑆𝑣𝑖𝑏(𝑇) = 𝑅∑ � 𝜇𝑖
𝑒𝜇𝑖−1

− ln (1 − 𝑒−𝜇𝑖)�𝑖        (5.9) 

where R is the gas constant and μ is determined as in Equation 5.8.  The residual to be 

minimized for the entropic contribution is 

Δ = ∑ �λΔ𝑆𝑣𝑖𝑏𝑐𝑎𝑙𝑐(𝑇𝑖) − Δ𝑆𝑣𝑖𝑏
𝑒𝑥𝑝𝑡(𝑇𝑖)�

2𝑎𝑙𝑙
𝑖        (5.10) 

The scale factor for the entropic contribution was determined by mimicking the 

procedure for the enthalpic contribution. 

 

5.2.3 Zero-point Vibrational Energies 

The ZPVE is necessary for the accurate determination of thermodynamic 

properties such as the enthalpy of formation at 298K.  The ZPVE can be derived from 

the computed frequency by the relation 

𝑍𝑃𝑉𝐸 = 1
2
∑ ℎ𝜔𝑖

𝑐𝑎𝑙𝑐
𝑖           (5.11) 

The experimentally observed frequencies are anharmonic, while the calculated 

frequencies do not account for anharmonic effects.  The ZPVE scale factor helps 

correct for the anharmonic effects.  Using the scale factors, residuals were minimized as 

in Equation 5.1 and root mean square (rms) errors were determined for the 

functional/basis set combinations by Equation 5.3. 

 

5.3 Results and Discussion 

The scale factors for the high (above 1000 cm-1) vibrational frequencies are 

reported in Table 5.1.  The scale factors for the high vibrational frequencies are slightly 

lower than those for the low-end vibrational frequencies.  A distinction between the pure 

DFT and the hybrid DFT is seen.  The pure functionals (BLYP, PBEPBE, HCTH93, 

96 



BP86) scale factors are closer to one and are less dependent on basis set.  A scale 

factor of 0.99 is recommended for BLYP and 0.98 for PBEPBE, HCTH93, and BP86.  

Overall, the root-mean-square (rms) errors for high frequencies are almost three times 

the size of the rms errors of the low vibrational frequencies.  Through the application of 

the multiplicative scale factors determined here, the deviation between the harmonic 

vibrational frequencies and experimental fundamental frequencies is lowered. 
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Table 5.1.  High frequency scale factors and overall root mean square (rms) in cm-1.a 

 

Functional Functional 
Type Scale Factors RMS 

  
cc- 

pVDZ 
cc-

pVTZ 
cc-

pVQZ 
aug-
cc-

pVDZ 

aug-
cc-

pVTZ 

aug-
cc-

pVQZ 

cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-
cc-

pVDZ 

aug-
cc-

pVTZ 

aug-
cc-

pVQZ 
BLYP Pure 0.9939 0.9898 0.9914 0.9902 0.9912 0.9911 35.1 33.6 27.3 31.9 28.4 27.7 

PBEPBE Pure 0.9850 0.9864 0.9867 0.9832 0.9863 0.9865 31.2 26.1 24.4 27.8 25.1 24.8 
HCTH93 Pure 0.9721 0.9750 0.9752 0.9714 0.9747 0.9752 28.5 26.3 25.9 27.2 26.0 26.3 

BP86 Pure 0.9890 0.9891 0.9897 0.9874 0.9894 0.9897 32.2 24.6 24.5 30.0 25.0 24.5 
B3P86 Hybrid 0.9572 0.9591 0.9595 0.9567 0.9592 0.9598 26.1 22.6 22.7 23.0 22.4 24.3 

B3PW91 Hybrid 0.9599 0.9614 0.9609 0.9584 0.9611 0.9614 30.6 23.8 23.3 23.0 22.5 23.0 
BPW91 Hybrid 0.9842 0.9847 0.9853 0.9826 0.9849 0.9854 30.8 24.9 25 29.5 26.9 26.7 

PBE1PBE Hybrid 0.9532 0.9565 0.9569 0.9532 0.9568 0.9569 26.0 24.2 24.1 23.8 23.9 24.3 
BH&HLYP Hybrid 0.9328 0.9344 0.9346 0.9326 0.9345 0.9347 29.3 25.9 25.7 29.4 25.3 25.6 
MPW1K Hybrid 0.9319 0.9364 0.9378 0.9345 0.9378 0.9379 29.3 32.2 29.2 30.6 39.0 31.6 

M05 Hybrid meta 0.9560 0.9589 0.9577 0.9571 0.9600 0.9574 54.5 45.4 46.7 56.7 45.7 46.9 
M05-2X Hybrid meta 0.9495 0.9483 0.9493 0.9501 0.9491 0.9490 44.3 38.6 38.7 46.8 39.2 38.8 

M06 Hybrid meta 0.9670 0.9674 0.9634 0.9675 0.9690 0.9635 54.2 44.9 46.1 56.1 45.1 47.2 
M06-2X Hybrid meta 0.9572 0.9567 0.9572 0.9579 0.9574 0.9574 47.9 40.4 40.4 49.2 40.7 40.6 
B2GP-
PLYP 

Double-
hybrid 0.9522 0.9528 0.9532 0.9551 0.9541 0.9535 45.5 41.8 42.4 50.9 43.2 40.8 

 
a Of the molecule set, acetone was removed from the study due to the suggestion of reference 183. b Common practice is 
to report scale factors to four places past the decimal, which could overstate the accuracy of the scale factors.   
Application of the scale factors should include two places past the decimal to avoid introducing uncertainty. 
 
 

98 
 



The percent error between the harmonic vibrational frequencies and 

experimental fundamental frequencies are tabulated in Table 5.2 and Figures 5.2, 5.3, 

and 5.4 for all of the functionals, BLYP, and M06-2X, respectively.  Table 5.3 

documents the percent of harmonic vibrational frequencies within 3% of experimental 

fundamental frequencies for the augmented correlation consistent basis sets.  After 

application of the scale factors, over 90% of the high harmonic vibrational frequencies 

are within 3% of the experimental fundamental frequencies for the cc-pVnZ and aug-cc-

pVnZ basis sets (n=D,T,Q).  Without implementation of a scale factor, around 25% of 

the calculated frequencies deviate more than 3% from experimental frequencies.  Even 

though the hybrid meta functionals and double-hybrid functional present a deviation 

between calculated and experimental frequencies, the application of the multiplicative 

scale factors determined here present a means to achieve high vibrational frequencies 

in near agreement with experiment. 

 

Table 5.2.  Percent of scaled, calculated high frequencies within a given error range for 
PBE1PBE.  
 
% error cc-

pVDZ 
cc-pVTZ cc-

pVQZ 
aug-cc-pVDZ aug-cc-pVTZ aug-cc-

pVQZ 
       
0-1 76.8 75.4 73.8 79.6 75.2 73.2 
1-2 15.2 18.3 19.8 13.9 17.7 19.0 
2-3 5.1 4.9 5.0 2.2 5.7 6.4 
3-4 2.2 0.7 0.7 3.6 0.7 0.7 
4-5 0.7 0.7 0.7 0.0 0.7 0.7 
≥5 0.0 0.0 0.0 0.7 0.0 0.0 
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Table 5.3. Percent of scaled, calculated high frequencies within 3% error of 
experimental frequencies. 

Functional cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

BLYP 99.2 94.7 97.7 93.1 96.2 96.9 
PBEPBE 99.2 98.5 99.3 99.2 96.2 98.5 
HCTH93 98.4 99.2 99.2 98.4 99.2 99.2 

BP86 98.5 99.2 99.2 96.1 99.2 99.2 
B3P86 97.1 99.3 99.3 96.4 99.3 99.3 

B3PW91 98.6 99.3 99.3 97.1 99.3 99.3 
BPW91 99.2 99.2 99.2 96.2 99.2 99.2 

PBE1PBE 97.1 98.6 98.6 95.7 98.6 98.6 
BH&HLYP 93.3 99.4 99.4 90.9 99.4 99.4 
MPW1K 85.5 98.2 99.4 86.6 98.8 98.2 

M05 61.6 74.7 71.3 58.8 73.0 69.2 
M05-2X 74.5 92.1 92.2 69.6 90.7 91.8 

M06 63.5 83.9 77.4 63.7 76.4 75.5 
M06-2X 68.6 91.8 91.8 69.0 91.3 91.8 

B2GP-PLYP 87.5 91.6 91.0 74.3 89.1 85.5 
 

Figure 5.1. Percent error of scaled frequencies in conjunction with the aug-cc-pVTZ 
basis set. 
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Figure 5.2. Percent of calculated frequencies within percent error of experimental 
values for BLYP with the cc-pVnZ and aug-cc-pVnZ (n=D,T,Q) basis sets. 
 

 

 

Figure 5.3. Percent of calculated frequencies within percent error of experimental 
values for M06-2X with the cc-pVnZ and aug-cc-pVnZ (n=D,T,Q) basis sets. 
 
 

The scale factors for the low (under 1000 cm-1) vibrational frequencies are 

reported in Table 5.4.  The scale factors range from 0.9666 to 1.0500 and have a 

stronger dependence on the functional than the chosen basis set.  The hybrid, hybrid 

meta, and double-hybrid functionals scale factors are less than one.  The pure DFT 

scale factors are greater than unity; therefore, the pure functionals underestimate the 

low frequencies. The M06 functional in combination with the augmented double-zeta 
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correlation consistent basis set results in the scale factor closest to unity and, therefore, 

predicts the vibrational frequency closest to the experimental frequency.  The scale 

factors for M05 and M06 are slightly higher (closer to one) than the scale factors for 

their corresponding 2X functionals, while the scale factors for B2GP-PLYP fall in 

between the 2X and non-2X functionals.  The lower optimal scale factors for M05-2X 

and M06-2X, in comparison to M05 and M06, indicate the overestimation of the 

vibrational frequencies of the 2X functionals for the lower (i.e., finger-print region) 

frequencies.  Scale factors for several of the density functionals presented have 

previously been reported, but in conjunction with Pople type basis sets.  The 

underestimation of the low frequencies by the pure functionals (BLYP, BP86, HCTH93) 

was observed by Merrick et al.10 when Pople type basis sets were used.  The scale 

factors, with respect to the correlation consistent basis sets, are closer to unity than the 

previously determined scale factors for the Pople type basis sets and, therefore, the 

correlation consistent basis sets predict low vibrational frequencies in closer accord with 

experimental frequencies than the Pople type basis sets. 
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Table 5.4.  Low frequency scale factors and overall rms in cm-1 . 
Functional Scale Factors RMS 

 cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-
cc-

pVQZ 

cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-
cc-

pVTZ 

aug-
cc-

pVQZ 
BLYP 1.0236 1.0292 1.0289 1.0500 1.0329 1.0298 10.30 7.60 7.10 8.50 6.90 6.70 

PBEPBE 1.0141 1.0189 1.0191 1.0353 1.0230 1.0208 10.20 7.10 6.90 7.70 6.50 6.60 
HCTH93 1.0010 1.0066 1.0070 1.0213 1.0098 1.0084 9.40 6.90 6.50 7.70 6.30 6.00 

BP86 1.0201 1.0231 1.0234 1.0418 1.0277 1.0225 10.10 7.20 6.90 7.90 6.90 6.70 
B3P86 0.9771 0.9803 0.9804 0.9934 0.9833 0.9808 8.00 6.80 6.50 6.40 6.60 6.70 

B3PW91 0.9771 0.9829 0.9824 0.9940 0.9859 0.9839 8.00 6.70 6.60 6.10 6.60 6.40 
BPW91 1.0204 1.0209 1.0215 1.0378 1.0249 1.0201 10.90 7.10 6.60 7.60 6.60 6.90 

PBE1PBE 0.9696 0.9747 0.9743 0.9855 0.9776 0.9760 8.10 6.80 6.70 6.30 6.60 6.60 
BH&HLYP 0.9397 0.9417 0.9423 0.9538 0.9444 0.9434 8.40 7.90 8.00 7.20 7.90 7.80 
MPW1K 0.9450 0.9486 0.9508 0.9591 0.9521 0.9492 8.30 7.90 8.40 7.30 7.80 7.80 

M05 0.9624 0.9682 0.9682 0.9840 0.9751 0.9718 15.79 14.75 13.77 14.09 15.09 13.70 
M05-2X 0.9684 0.9714 0.9803 0.9837 0.9726 0.9846 14.57 14.59 18.65 12.93 14.45 19.76 

M06 0.9640 0.9607 0.9662 0.9810 0.9862 0.9907 15.77 15.35 14.45 13.45 21.39 21.27 
M06-2X 0.9652 0.9657 0.9654 0.9800 0.9698 0.9752 15.47 15.82 14.93 13.78 15.90 15.47 
B2GP-
PLYP 0.9737 0.9713 0.9705 0.9969 0.9755 0.9668 12.53 8.40 8.29 9.86 8.00 6.97 
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Thermodynamic scale factors and rms errors for the enthalpy contribution are 

reported in Table 5.5.  The pure, hybrid meta, and double-hybrid functional and basis 

set combinations underestimated the thermal contribution to enthalpy since the scale 

factors are slightly greater than one.  Overall, the scale factors fluctuate between 1.0058 

and 1.0601.  The hybrid functionals overestimated the thermal contributions to enthalpy 

and vary between 0.9352 and 0.9941.  The lowest scale factor for each functional is at 

the augmented double-zeta level.  The previous work with the Pople type basis sets 

mirrored the underestimation of the pure functionals and the overestimation of the 

enthalpic contribution by the hybrid functionals (B3P86, B3PW91, BH&HLYP, 

MPW1K).2 
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Table 5.5.  Thermal contribution to enthalpy scale factors for 298.15 K and overall rms in kJ/mol. 
 

Functional Scale Factors RMS 

 cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-
cc-

pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

BLYP 1.0354 1.0359 1.0342 1.0564 1.0373 1.0343 0.030 0.023 0.022 0.027 0.021 0.020 
PBEPBE 1.0242 1.0238 1.0233 1.0418 1.0257 1.0234 0.028 0.020 0.019 0.024 0.019 0.018 
HCTH93 1.0094 1.0101 1.0101 1.0268 1.0117 1.0100 0.026 0.019 0.018 0.023 0.018 0.017 

BP86 1.0299 1.0273 1.0275 1.0479 1.0303 1.0267 0.028 0.020 0.020 0.025 0.019 0.019 
B3P86 0.9806 0.9781 0.9778 0.9936 0.9800 0.9796 0.021 0.019 0.019 0.016 0.019 0.019 

B3PW91 0.9811 0.9801 0.9796 0.9941 0.9823 0.9801 0.022 0.019 0.019 0.020 0.019 0.018 
BPW91 1.0284 1.0241 1.0243 1.0431 1.0267 1.0235 0.031 0.020 0.019 0.024 0.019 0.018 

PBE1PBE 0.9724 0.9718 0.9716 0.9852 0.9735 0.9724 0.022 0.020 0.020 0.017 0.020 0.020 
BH&HLYP 0.9387 0.9353 0.9353 0.9491 0.9370 0.9352 0.027 0.029 0.029 0.023 0.029 0.029 
MPW1K 0.9429 0.9413 0.9442 0.9540 0.9435 0.9429 0.026 0.027 0.029 0.023 0.027 0.028 

M05 1.0392 1.0401 1.0409 1.0144 1.0378 1.0397 0.160 0.150 0.160 0.110 0.150 0.160 
M05-2X 1.0534 1.0601 1.0580 1.0343 1.0565 1.0561 0.200 0.210 0.210 0.160 0.200 0.200 

M06 1.0310 1.0438 1.0399 1.0127 1.0288 1.0282 0.130 0.150 0.150 0.090 0.120 0.130 
M06-2X 1.0503 1.0566 1.0563 1.0366 1.0511 1.0496 0.180 0.190 0.190 0.150 0.180 0.180 
B2GP-
PLYP 1.0343 1.0423 1.0436 1.0058 1.0370 1.0419 0.160 0.170 0.170 0.100 0.160 0.150 
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The scale factors and rms errors for the thermal contribution to entropy are 

reported in Table 5.6.  Similar to the thermal contributions to enthalpy, the pure, hybrid 

meta, and double-hybrid functionals underestimate the thermal contribution to entropy.  

The scale factor of 1.0057 for the B2GP-PLYP functional and aug-cc-pVDZ is nearest to 

unity.  For each of the functionals, variations in entropic contribution scale factors are 

between the cc-pVnZ basis set (n=D,T,Q) and the corresponding augmented basis set.  

The agreement (e.g. over or underestimation of properties) between earlier work with 

Pople type basis sets2 and the current correlation consistent basis set study extends 

through the entropic contribution. 
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Table 5.6.  Thermal contribution to entropy scale factors at 298.15 K and overall rms in J/K mol.   
 

Functional Scale Factors RMS 

 cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

BLYP 1.0298 1.0337 1.0326 1.0563 1.0361 1.0333 0.18 0.13 0.12 0.16 0.12 0.12 
PBEPBE 1.0184 1.0218 1.0214 1.0401 1.0249 1.0224 0.18 0.12 0.12 0.14 0.11 0.11 
HCTH93 1.0049 1.0087 1.0087 1.0253 1.0113 1.0094 0.16 0.12 0.11 0.14 0.10 0.10 

BP86 1.0251 1.0260 1.0260 1.0470 1.0299 1.0251 0.18 0.12 0.12 0.15 0.12 0.12 
B3P86 0.9776 0.9788 0.9787 0.9935 0.9815 0.9789 0.13 0.12 0.11 0.10 0.11 0.11 

B3PW91 0.9777 0.9811 0.9806 0.9939 0.9839 0.9817 0.13 0.12 0.11 0.10 0.11 0.11 
BPW91 1.0254 1.0233 1.0236 1.0425 1.0268 1.0225 0.19 0.12 0.11 0.14 0.11 0.11 

PBE1PBE 0.9693 0.9726 0.9721 0.9848 0.9749 0.9735 0.14 0.12 0.12 0.10 0.12 0.12 
BH&HLYP 0.9378 0.9378 0.9380 0.9507 0.9401 0.9381 0.16 0.16 0.16 0.13 0.16 0.16 
MPW1K 0.9422 0.9441 0.9465 0.9554 0.9470 0.9454 0.15 0.15 0.16 0.13 0.15 0.15 

M05 1.0465 1.0407 1.0419 1.0206 1.0361 1.0388 0.17 0.16 0.16 0.12 0.15 0.15 
M05-2X 1.0450 1.0508 1.0439 1.0284 1.0473 1.0404 0.18 0.20 0.18 0.15 0.19 0.17 

M06 1.0347 1.0438 1.0380 1.0148 1.0215 1.0207 0.05 0.05 0.06 0.06 0.10 0.11 
M06-2X 1.0536 1.0583 1.0571 1.0384 1.0518 1.0459 0.19 0.19 0.19 0.16 0.18 0.17 

B2GP-PLYP 1.0373 1.0432 1.0448 1.0057 1.0376 1.0467 0.16 0.17 0.17 0.10 0.16 0.16 
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In Table 5.7, the scale factors and rms errors for the ZPVEs are detailed.  Similar 

to the vibrational frequencies, the pure DFT (BLYP, PBEPBE, HCTH93, BP86) scale 

factors are greater than one, signifying the underestimation of the ZPVE.  The 

remaining functionals have scale factors for the ZPVE less than unity.  The ZPVE scale 

factors for the double-hybrid functional, B2GP-PLYP, are similar to the hybrid meta 

functionals with twice the non-local exchange, represented by the 2X.  The pure and 

hybrid DFT resulted in rms errors over three times greater than the rms errors of the 

hybrid meta and double-hybrid functionals.  For HCTH93 there is a fluctuation above 

and below unity for the scale factor.  This curiosity is mirrored in the scale factors for the 

Pople type basis sets;2 though the deviation based on the change of basis for each 

functional is less for the correlation consistent basis sets. 
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Table 5.7.  Scale factors for zero point vibrational energy (ZPVE) and rms in kJ/mol.   

Functional Scale Factors RMS 

 cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

cc-
pVDZ 

cc-
pVTZ 

cc-
pVQZ 

aug-cc-
pVDZ 

aug-cc-
pVTZ 

aug-cc-
pVQZ 

BLYP 1.0165 1.0128 1.0134 1.0186 1.0136 1.0131 0.57 0.42 0.40 0.44 0.43 0.42 
PBEPBE 1.0135 1.0098 1.0105 1.0134 1.0105 1.0114 0.49 0.43 0.43 0.57 0.44 0.44 
HCTH93 0.9992 0.9973 0.9978 1.0018 0.9977 0.9977 0.45 0.42 0.41 0.45 0.41 0.42 

BP86 1.0220 1.0173 1.0178 1.0240 1.0181 1.0176 0.56 0.43 0.41 0.44 0.44 0.43 
B3P86 0.9874 0.9844 0.9847 0.9898 0.9849 0.9847 0.50 0.43 0.42 0.40 0.44 0.43 

B3PW91 1.0057 1.0020 1.0029 1.0076 1.0028 1.0026 0.44 0.41 0.38 0.43 0.42 0.43 
BPW91 1.0165 1.0128 1.0134 1.0186 1.0136 1.0131 0.57 0.42 0.40 0.44 0.43 0.42 

PBE1PBE 0.9793 0.9768 0.9772 0.9809 0.9774 0.9775 0.54 0.50 0.50 0.52 0.51 0.52 
BH&HLYP 0.9565 0.9541 0.9542 0.9589 0.9544 0.9542 0.63 0.58 0.57 0.55 0.60 0.59 
MPW1K 0.9597 0.9597 0.9600 0.9633 0.9602 0.9600 0.59 0.58 0.57 0.54 0.59 0.59 

M05 0.9809 0.9814 0.9801 0.9843 0.9824 0.9795 0.15 0.14 0.13 0.11 0.14 0.13 
M05-2X 0.9697 0.9666 0.9678 0.9725 0.9673 0.9675 0.14 0.14 0.14 0.13 0.14 0.15 

M06 0.9921 0.9881 0.9846 0.9951 0.9907 0.9849 0.18 0.17 0.15 0.14 0.18 0.16 
M06-2X 0.9773 0.9735 0.9734 0.9804 0.9741 0.9733 0.16 0.14 0.14 0.14 0.14 0.15 

B2GP-PLYP 0.9754 0.9732 0.9731 0.9807 0.9744 0.9735 0.10 0.12 0.11 0.12 0.12 0.10 
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5.4 Conclusions 

Scale factors for (a) low and high harmonic vibrational frequencies, (b)thermal 

contributions to enthalpy and entropy, and (c) ZPVEs have been determined for seven 

hybrid functionals (B3P86, B3PW91, BPW91, PBE1PBE, BH&HLYP, MPW1K), four 

pure functionals (BLYP, PBEPBE, HCTH93, BP86), four hybrid meta functionals (M05, 

M05-2X, M06, M06-2X) and one double-hybrid functional (B2GP-PLYP), in conjunction 

with the correlation consistent basis sets (cc-pVnZ and aug-cc-pVnZ, n=D,T,Q).  For the 

low frequency scale factors and ZPVEs, the hybrid, hybrid meta, and double-hybrid 

functionals scale factors are less than one, while the pure functionals underestimate the 

low frequencies and have scale factors greater than unity.  The thermal contributions to 

enthalpy and entropy are overestimated by the pure, hybrid meta, and double-hybrid 

functionals.  Overall, the properties determined are more affected by the choice of 

functional than the level of correlation consistent basis set and similar functionals 

provide similar results.  Through the application of the scale factors for high vibrational 

frequencies, the percent of calculated frequencies within 3% of experimental values 

rose from 25% to approximately 90% for the augmented basis sets in conjunction with 

each of the pure, hybrid, hybrid meta and double-hybrid functionals.  The nearly one 

hundred levels of theory presented here represent the largest published compilation of 

scale factors for a variety of density functionals in conjunction with the correlation 

consistent basis sets. 
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CHAPTER 6 

VIBRATIONAL FREQUENCY SCALE FACTORS FOR DENSITY FUNCTIONAL 

THEORY AND THE POLARIZATION CONSISTENT BASIS SETS** 

 
6.1 Introduction 

Infrared (IR) and Raman spectroscopy are two widely used techniques for the 

characterization of chemical molecules including reaction products, inter- and intra-

molecular interactions, and mixture components.  The interpretation of the observed 

bands in a spectrum is aided by utilizing theoretically determined frequencies and 

intensities.  However, calculated vibrational frequencies often employ the harmonic 

approximation, resulting in a neglect of anharmonic effects.  To account for anharmonic 

effects, multidimensional potential energy surfaces (PES) must be computed with 

respect to the equilibrium geometry.  The complexity, i.e., number of grid points, of the 

PES increases with molecular size and degrees of freedom (3N-6, where N is the 

number of atoms).  While anharmonic frequencies have been determined via 

multidimensional PES211 and anharmonic force fields,212 the simplest and most common 

approach to ab initio calculations of vibrational frequencies is to determine harmonic 

frequencies and then utilize universal scale factors (specific to each method/basis set 

combination) to aid in predicting frequencies observed via experiment.  The 

development of such scale factors for harmonic frequency calculations allows for the 

reliable determination of calculated vibrational frequencies.  Scaled harmonic 

** The research presented has been published in M.L. Laury, Matthew J. Carlson, and 
A.K. Wilson, J. Comp. Chem. 33, 2380 (2012). 
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frequencies are within 3% error of experimental frequencies without the additional 

calculations for anharmonicity.184   

The scaling factors for the harmonic frequencies correct for the neglect of 

anharmonic effects, in addition to the incomplete treatment of electron correlation and 

basis set truncation effects inherent in the methodology selection.181  In general, 

theoretically determined vibrational frequencies overestimate the experimental 

fundamental frequencies.   For example, harmonic frequencies determined by Hartree-

Fock typically overestimate fundamental frequencies by 10%.  The gap between 

calculated and experimental frequencies lessens when correlated methods [e.g. 

CCSD(T)] are employed.213  The deviations between calculated vibrational frequencies 

and the fundamental frequencies are, on the whole, systematic.  Because of the 

systematic nature of the deviations, uniform multiplicative scale factors are determinable 

for a theory.1-3  Previous scaling work has examined what contribution to the frequency 

should be scaled.  For example, should a separate scale factor be applied to the 

stretching and to the bending force constants?214  Should the force constants included 

in the Hessian be scaled?215 Or should the vibrational frequencies themselves be 

scaled?1-3 

 Common practice is to determine one scale factor for the harmonic vibrational 

frequencies obtained with a method and basis set combination.  Scale factors have 

been developed for vibrational frequencies determined with the Pople-type basis sets, 

correlation consistent basis sets,2,183,216 segmented contracted basis sets,217 the Sadlej 

basis sets,185   as well as semi-empirical methods.218 For B3LYP, HF, and MP2 level 

calculations with correlation consistent basis sets (cc-pVnZ and aug-cc-pVnZ, n=D,T,Q), 
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Wilson and coworkers have determined scale factors for vibrational frequencies and 

ZPVEs.183  Scale factors for the correlation consistent basis sets in conjunction with a 

broad range of density functionals, including Hybrid (H), Hybrid Meta (HM), Double 

Hybrid (DH), and those based on the Generalized Gradient Approximation (GGA) were 

detailed in Chapter 5.216  Scale factors for vibrational frequencies computed with Sadlej 

basis sets were determined by Halls et al, where they concluded the hybrid functionals 

with the Sadlej pVTZ basis sets yielded the most reliable vibrational frequencies in the 

most cost-effective manner.185    Generally scale factors are determined via a least-

squares method, but there exist other approaches, such as the effective scaling 

frequency factor (ESFF) method.  The ESFF method relies on local scaling factors 

obtained from local mode contributions to the normal mode.219  Truhlar and co-workers 

have compiled a scale factor database, including a range of computational methods, 

such as wavefunction-based methods and semi-empirical methods.188 

 While previous scale factor development has focused on the Pople-type basis 

sets, correlation consistent basis sets, and Sadlej basis sets, scale factors defined for 

the polarization consistent basis sets developed by Jensen have been omitted.    The 

next obvious step in scale factor development is to determine scale factors for widely-

popular density functionals in combination with the polarization consistent basis sets. 

 An ideal method will obtain accurate results while being computationally efficient, 

with respect to memory, disk space, and central processing unit (CPU) time.  To obtain 

results at the fully correlated level, extrapolations of energies have been employed.  The 

correlation consistent basis sets were designed to systematically recover correlation 

energy with increasing basis set size.9,43-45,49,98 The extrapolation of the resulting 
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correlation energy is an inverse power series as a function of the highest angular 

moment in the basis set.77,220 Jensen and coworkers have shown Hartree-Fock and 

DFT energies converge as an exponential.50,221 Based on this observation, Jensen and 

coworkers determined basis sets to systematically converge, in a smooth and efficient 

manner, for density functional calculations.51 The resulting basis sets are referred to as 

polarization consistent.  Since polarization effects occur within a molecule, as opposed 

to an atom, molecular calculations were employed in the development of the 

polarization consistent basis sets.  The resulting basis sets are noted as pc-n (n=0-4), 

where n is the polarization level beyond the isolated atom.51 For example, pc-0 for a first 

row element consists of an s and a p function.  The pc-1 basis set adds a d-function, 

while the pc-2 basis set adds an f-function.  The s and p functions were optimized for 

the atom, while the exponents of the additional “polarization” functions were optimized 

for a variety of bonding environments within molecules.  The extrapolation of the 

polarization consistent basis sets for density functional calculations has been shown to 

yield total atomization energies in errors of less than 0.01 kJ/mol per atom.51 

 In this work, scale factors were determined for vibrational frequencies and 

ZPVEs calculated with the polarization consistent basis sets pc-n (n=0,1,2,3,4) in 

combination with a diverse set of density functionals.  The functionals include six hybrid 

functionals (B3LYP,26,27,30 B3P86,28,30 B3PW91,200-202 PBE1PBE,203 BH&HLYP,87 

mPW1K),204 five pure functionals (BLYP,27,160 BPW91,26,199,200 PBEPBE,205 

HCTH93,206,207 and BP86),208 four hybrid meta functionals (M05,191 M05-2X,192 M06,193 

and M06-2X)193, one double-hybrid functional (B2GP-PLYP)195,222, and one dispersion 

corrected functional (B97-D).223  This scale factor work is a continuation of the work 
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presented in Chapter 5.67  This chapter has included B97-D in the functional set, due to 

the increasing utilization of dispersion corrected functionals.  With the previously 

assigned scale factors and the presently defined scale factors, vibrational frequencies 

determined with DFT should no longer be reported in error. 

  

6.2 Computational Methodology 

All calculations employed the Gaussian 09 software package.165  The polarization 

consistent basis sets [pc-n, n=0,1,2,3,4] in combination with the seventeen functionals 

[B3LYP, B3P86, B3PW91, PBE1PBE, BH&HLYP, MPW1K, BLYP, BPW91, PBEPBE, 

HCTH93, BP86, M05, M05-2X, M06, and M06-2X, B2GP-PLYP, and B97-D] were used 

for the determination of the harmonic vibrational frequencies and zero-point vibrational 

energies (ZPVEs).  Calculated vibrational frequencies were determined for 41 

molecules as defined in a set by Healy and Holder.209 For the ZPVEs, a set, organized 

by Schaefer and coworkers, of 24 molecules composed of diatomics, triatomics, and 

symmetric molecules was used.210  With the calculated frequencies and ZPVEs, scale 

factors were determined for high and low vibrational frequencies, ZPVEs, and the 

thermal contributions to enthalpy and entropy.  Additionally, the variation of the scale 

factor when using the augmented polarization consistent basis sets was examined.  The 

scale factor equations have been detailed in Chapter 5.2. 
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6.3 Results and Discussion 

6.3.1 High Frequencies 

 Scale factors and rms errors for the high vibrational (>1000cm-1) frequencies for 

each of the functional and basis set combinations are reported in Table 6.1.  The high 

vibrational frequencies are characteristic of stretching vibrations associated with the 

functional groups of a molecule.  For example, the OH stretching is broad peak 

observed around 3300 cm-1 and the C=O stretching is a sharp peak around 1760 cm-1.  

The scale factors for all of the density functionals included in the study are less than 

one; therefore, all of the functionals overestimate the high vibrational frequencies.  The 

GGA functionals, including B97-D, have scale factors nearest one, e.g. 0.9954 for 

BLYP/pc-2 (written as method/basis set).  To note for the functionals including Hartree-

Fock (HF) exchange, as the amount of HF exchange increases, the scale factors 

deviate farther from one.  The utility of the scale factors is supported by the rms errors, 

which are less than 4 cm-1.  The lowest errors for the scale frequencies were from 

BH&HLYP calculations with the pc-n basis sets (n=1,2,3,4).  On average the pc-0 basis 

set resulted in rms errors one wavenumber greater than the rms errors for the basis 

sets with additional functions for polarization.  The larger errors observed for the pc-0 

basis set have been seen in previous frequency work by Anez et al., where they 

reported the importance of polarization functions in the basis set, specifically for 

carbonyl-containing molecules.224  Generally, the polarization consistent basis sets with 

additional functions for polarization (n=1,2,3,4) are employed and this work further 

supports the necessity of polarization functions for the accurate determination of 

properties, such as vibrational frequencies. 
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Table 6.1. Scale factors and rms errors (cm-1) for high vibrational (>1000 cm-1) frequencies. 
      λ         rms         

Functional Typea %HF pc-0 pc-1 pc-2 pc-3 pc-4 pc-0 pc-1 pc-2 pc-3 pc-4 
BP86 GGA   0.9891 0.9924 0.9932 0.9944 0.9945 3.9 2.5 2.5 2.4 2.4 

BPW91 GGA   0.9849 0.9874 0.9889 0.9901 0.9901 4.0 3.6 2.5 2.6 2.6 
BLYP GGA   0.9929 0.9958 0.9943 0.9954 0.9955 4.1 2.7 2.6 2.6 2.5 

HCTH93 GGA   0.9748 0.9752 0.9785 0.9798 0.9798 4.0 2.5 2.5 2.4 2.4 
PBEPBE GGA   0.9873 0.9890 0.9908 0.9919 0.9920 3.9 2.7 2.6 2.6 2.6 

B97-D D, GGA  0.9876 0.9904 0.9879 0.9923 0.9913 4.0 2.4 2.5 2.4 2.5 
B3LYP H 20 0.9625 0.9654 0.9662 0.9673 0.9674 3.6 2.2 2.2 2.2 2.2 
B3P86 H 20 0.9560 0.9593 0.9616 0.9628 0.9629 3.6 2.3 2.3 2.2 2.2 

B3PW91 H 20 0.9580 0.9606 0.9634 0.9646 0.9647 3.5 2.3 2.2 2.1 2.1 
PBE1PBE H 25 0.9539 0.9555 0.9592 0.9604 0.9605 3.5 2.4 2.3 2.2 2.2 
mPW1K H 42.8 0.9317 0.9332 0.9381 0.9393 0.9394 3.4 2.3 2.2 2.2 2.2 

BH&HLYP H 50 0.9289 0.9311 0.9342 0.9355 0.9355 3.4 1.9 1.9 1.9 1.8 
M06 HM 27 0.9628 0.9648 0.9638 0.9630 0.9645 3.1 2.5 2.4 2.2 2.5 
M05 HM 28 0.9516 0.9524 0.9545 0.9576 0.9590 3.6 2.8 2.8 2.6 2.9 

M062X HM 54 0.9510 0.9541 0.9557 0.9568 0.9566 3.4 2.3 2.2 2.1 2.1 
M052X HM 56 0.9367 0.9447 0.9470 0.9483 0.9470 4.0 2.6 2.4 2.4 2.6 

B2GP-PLYP DH 65 0.9464 0.9457 0.9498 0.9523 0.9526 4.0 2.3 2.3 2.2 2.1 
a Functional types are denoted as GGA (Generalized Gradient Approximation), H (Hybrid), HM (Hybrid Meta), DH (Double 
Hybrid), D (Dispersion). 
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6.3.2 Low Frequencies 

Table 6.2 details the scale factors and rms errors for low (<1000 cm-1) 

frequencies for the polarization consistent basis sets and the density functionals.    All of 

the GGA functionals underestimate the low vibrational frequencies and have scale 

factors greater than one.  The scale factors associated with the pc-0 basis set are all 

greater than one; therefore, the omission of polarization leads to an underestimation of 

the low vibrational frequencies.  Similar to the high vibrational frequencies, the rms 

errors of the pc-0 basis sets are twice as large as the rms errors of the pc-n (n=1,2,3,4) 

basis sets.  For the functionals including HF exchange (hybrid and hybrid meta 

functionals) and the pc-n (n=1,2,3,4) basis sets, the scale factors are less than one.  

The overestimation of the low vibrational frequencies increases as the amount of HF 

exchange increases within the functional.  If the uncertainty of the scale factors is 

considered (i.e., only two significant digits), then the scale factors for the low vibrational 

frequencies are more dependent on the functional than the level of polarization included 

in the basis set.  This holds true except for the pc-0 basis set where there is no 

polarization.  In fact, pc-0 should, as best be used as an anchor in an extrapolation 

procedure if absolutely required (as it essentially is a single-zeta basis set).  pc-0 is not 

advocated for frequency calculations, but is included here for completion.  A separate 

scale factor should be employed for pc-0 calculations versus pc-n (n=1,2,3,4) 

calculations with each density functional. 
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Table 6.2. Scale factors and rms errors (10-5 cm-1) for low vibrational (<1000 cm-1) frequencies. 

  λ         rms         
Functional  pc-0 pc-1 pc-2 pc-3 pc-4 pc-0 pc-1 pc-2 pc-3 pc-4 

BP86 1.071 1.021 1.024 1.025 1.025 2.0 0.8 0.7 0.7 0.7 
BPW91 1.068 1.016 1.022 1.023 1.023 1.9 0.8 0.7 0.6 0.6 
BLYP 1.073 1.028 1.030 1.031 1.031 1.8 0.9 0.7 0.7 0.7 

HCTH93 1.054 0.9995 1.005 1.007 1.006 1.6 0.8 0.6 0.9 0.6 
PBEPBE 1.062 1.013 1.018 1.021 1.020 1.9 0.8 0.7 0.6 0.6 

B97-D 1.072 1.020 1.020 1.021 1.055 2.1 1.1 1.0 1.0 0.7 
B3LYP 1.036 0.9808 0.9833 0.9844 0.9842 1.9 0.7 0.7 0.6 0.6 
B3P86 1.036 0.9727 0.9776 0.9783 0.9780 2.2 0.7 0.7 0.6 0.6 

B3PW91 1.035 0.9739 0.9795 0.9805 0.9803 2.0 0.7 0.7 0.6 0.6 
PBE1PBE 1.023 0.9634 0.9698 0.9709 0.9708 1.9 0.7 0.7 0.7 0.7 
mPW1K 1.001 0.9386 0.9435 0.9445 0.9445 1.9 0.8 0.8 0.8 0.8 

BH&HLYP 0.9950 0.9352 0.9374 0.9374 0.9379 1.8 0.8 0.8 0.8 0.8 
M06 1.021 0.9563 0.9577 0.9695 1.0418 2.0 0.9 0.9 0.8 0.7 
M05 1.028 0.9563 0.9634 0.9713 1.0600 2.2 0.9 0.9 0.7 0.8 

M062X 1.036 0.9603 0.9559 0.9631 0.9631 2.6 0.9 1.1 0.9 0.9 
M052X 1.111 0.9725 0.9688 0.9852 1.0566 4.6 0.8 0.9 1.2 0.6 

B2GP-PLYP 1.021 0.9710 0.9732 0.9712 0.9619 1.5 0.7 0.6 0.5 0.5 
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6.3.3 Vibrational contributions to thermodynamic properties (Entropy and Enthalpy) 

The scale factors and rms errors for the vibrational contributions to enthalpy and 

entropy are reported in Tables 6.3 and 6.4, respectively.  There is a distinct relationship 

between the number of polarized functions included in the basis set and the scale 

factor.  The unpolarized basis sets, denoted pc-0, have scale factors that differ, on 

average, by 0.05 from the scale factors for the polarized basis sets, i.e., pc-n 

(n=1,2,3,4).  This difference is within the significant digits of the scale factors and 

highlights the effect polarization has on calculated vibrational frequencies.  The GGA 

functionals (BP86, BPW91, BLYP, HCTH93, PBEPBE, B97-D) all overestimate the 

frequencies, especially in conjunction with the pc-0 basis set.  For the hybrid meta and 

the majority of the hybrid functionals, there is a divide, with respect to over- and 

underestimation, between the pc-0 and the remaining basis sets.  For the pc-0 basis 

set, the hybrid meta and four of the six hybrid functionals overestimate the vibrational 

contributions to enthalpy and entropy.  Additionally, the rms errors associated with the 

pc-0 basis set are, on average, three times the magnitude of the rms errors for the 

remaining basis sets.  For the pc-n (n=1,2,3,4), the same functionals underestimate the 

contributions.  The hybrid functionals with the largest percentages of HF exchange 

(mPW1K with 42.8% and BH&HLYP with 50%) underestimate the vibrational 

contributions for all of the polarization consistent basis sets.  The scale factors for the 

two hybrid functionals and the basis sets with polarization (n=1,2,3,4) are near 1.10.  

The combination of a large percentage of HF exchange in the density functional design, 

and an increase in the number of polarization functions in the basis set, leads to a 

notable underestimation of the vibrational contributions to enthalpy and entropy.  For 
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these methods, the scale factor is imperative for the accurate determination of the 

thermodynamic properties. 
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Table 6.3. Scale factors and rms errors (kJ/mol) for vibrational contributions to enthalpy. 

 λ         rms         
Functional  pc-0 pc-1 pc-2 pc-3 pc-4 pc-0 pc-1 pc-2 pc-3 pc-4 

BP86 0.9186 0.9493 0.9508 0.9509 0.9511 0.032 0.010 0.009 0.009 0.009 
BPW91 0.9221 0.9563 0.9559 0.9558 0.956 0.032 0.010 0.009 0.009 0.009 
BLYP 0.9094 0.9364 0.9394 0.9401 0.9404 0.033 0.013 0.012 0.011 0.011 

HCTH93 0.9330 0.9806 0.9788 0.9789 0.9787 0.030 0.010 0.009 0.008 0.008 
PBEPBE 0.9257 0.9588 0.9577 0.9571 0.9573 0.032 0.010 0.009 0.009 0.008 

B97-D 0.9114 0.9490 0.9528 0.9536 0.9427 0.033 0.012 0.012 0.011 0.013 
B3LYP 0.9687 1.014 1.017 1.017 1.017 0.037 0.012 0.013 0.013 0.013 
B3P86 0.9794 1.030 1.030 1.030 1.030 0.037 0.010 0.012 0.012 0.012 

B3PW91 0.9766 1.028 1.026 1.026 1.026 0.036 0.011 0.012 0.012 0.012 
PBE1PBE 0.9911 1.045 1.043 1.042 1.042 0.036 0.011 0.016 0.012 0.012 
mPW1K 1.033 1.100 1.097 1.096 1.096 0.040 0.015 0.018 0.017 0.017 

BH&HLYP 1.038 1.106 1.107 1.108 1.107 0.042 0.018 0.020 0.019 0.019 
M06 0.9945 1.042 1.050 1.044 1.007 0.037 0.013 0.015 0.016 0.026 
M05 0.9983 1.047 1.046 1.042 0.9916 0.036 0.012 0.013 0.014 0.025 

M062X 0.9969 1.050 1.059 1.054 1.055 0.042 0.016 0.019 0.018 0.019 
M052X 1.006 1.047 1.056 1.051 1.036 0.047 0.016 0.020 0.019 0.018 

B2GP-PLYP 0.9912 1.040 1.042 1.045 1.049 0.033 0.099 0.099 0.089 0.010 
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Table 6.4. Scale factors and rms errors (J/K*mol) for vibrational contributions to entropy. 

 
λ         rms         

Functional  pc-0 pc-1 pc-2 pc-3 pc-4 pc-0 pc-1 pc-2 pc-3 pc-4 
BP86 0.8949 0.9468 0.9458 0.9458 0.9462 0.27 0.09 0.08 0.07 0.07 

BPW91 0.8985 0.9540 0.9505 0.9504 0.9506 0.27 0.09 0.08 0.08 0.07 
BLYP 0.8837 0.9320 0.9331 0.9337 0.9341 0.28 0.11 0.10 0.10 0.09 

HCTH93 0.9108 0.9811 0.9765 0.9765 0.9763 0.25 0.09 0.08 0.07 0.07 
PBEPBE 0.9036 0.9579 0.9539 0.9529 0.9532 0.27 0.09 0.08 0.07 0.07 

B97-D 0.8848 0.9463 0.9481 0.9492 0.9090 0.28 0.11 0.10 0.10 0.14 
B3LYP 0.9438 1.015 1.015 1.015 1.015 0.30 0.10 0.11 0.10 0.10 
B3P86 0.9558 1.032 1.028 1.028 1.029 0.31 0.09 0.10 0.10 0.10 

B3PW91 0.9531 1.029 1.025 1.025 1.025 0.29 0.09 0.10 0.10 0.10 
PBE1PBE 0.9693 1.049 1.043 1.042 1.042 0.29 0.09 0.11 0.10 0.10 
mPW1K 1.010 1.104 1.098 1.097 1.097 0.31 0.21 0.14 0.14 0.14 

BH&HLYP 1.013 1.110 1.108 1.109 1.109 0.33 0.14 0.16 0.15 0.15 
M06 0.9744 1.052 1.056 1.045 1.007 0.30 0.11 0.13 0.13 0.37 
M05 0.9772 1.056 1.050 1.043 0.9916 0.29 0.11 0.11 0.11 0.23 

M062X 0.9691 1.052 1.061 1.054 1.054 0.35 0.13 0.16 0.14 0.16 
M052X 0.9700 1.043 1.052 1.041 1.036 0.43 0.13 0.15 0.17 0.21 

B2GP-PLYP 0.9656 1.043 1.042 1.046 1.053 0.27 0.08 0.08 0.07 0.08 
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6.3.4 ZPVEs 

The scale factors and rms errors for the ZPVEs are detailed in Table 6.5.  Of interest is 

the distinct effect the inclusion of Hartree-Fock (HF) exchange has on the calculated 

ZPVE.  For the GGA functionals and the polarization consistent basis sets, the scale 

factors for the ZPVEs are greater than one, signifying an underestimation of the ZPVEs.  

B97-D, a GGA functional with a dispersion correction, yields ZPVEs in near agreement 

with the GGA functionals included in this study; therefore, the inclusion of a dispersion 

correction has a negligible effect on the determination of the ZPVE.  For the hybrid and 

hybrid meta functionals, the scale factors deviate farther from one as the amount of HF 

exchange is increased.  This observation is supported by the known overestimation of 

HF for ZPVEs and a scale factor near 0.9000, depending on the basis set employed.20   

The majority of the rms errors for each of the functional and basis set combinations are 

less than 0.25 kJ/mol, demonstrating the accuracy of the scaled calculated frequencies.  

The lowest rms errors are for the hybrid functionals with between 20 and 25% of HF 

exchange (B3LYP, B3P86, B3PW91, PBE1PBE) and the GGA functional HCTH93.  

Raw, calculated frequencies for HCTH93 and the polarization consistent basis sets pc-n 

(n=1,2,3,4) are in near agreement with experimental frequencies.  The scale factors, 

when considering uncertainty, are 1.0 and the rms errors are on the order of 0.25 

kJ/mol.  For the scale factors, the selection of the functional has the greatest impact, 

while the change in the amount of polarization included in the basis set results in an 

unappreciable change in the scale factor. 
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Table 6.5.  Scale factors and corresponding rms errors (kJ/mol) for zero-point vibrational energies. 
  λ         rms         

Functional pc-0 pc-1 pc-2 pc-3 pc-4 pc-0 pc-1 pc-2 pc-3 pc-4 
BP86 1.016 1.017 1.017 1.017 1.017 0.03 0.04 0.04 0.04 0.04 

BPW91 1.012 1.012 1.012 1.013 1.013 0.02 0.03 0.03 0.03 0.03 
BLYP 1.018 1.020 1.016 1.017 1.017 0.03 0.04 0.04 0.04 0.04 

HCTH93 1.002 1.000 1.002 1.003 1.003 0.02 0.01 0.01 0.01 0.01 
PBEPBE 1.015 1.014 1.015 1.015 1.016 0.03 0.03 0.03 0.04 0.04 

B97-D 1.023 1.012 1.011 1.011 1.012 0.07 0.02 0.02 0.02 0.02 
B3LYP 0.9870 0.9880 0.9869 0.9876 0.9877 0.04 0.03 0.03 0.03 0.03 
B3P86 0.9801 0.9819 0.9834 0.9844 0.9845 0.02 0.02 0.02 0.02 0.02 

B3PW91 0.9835 0.9832 0.9851 0.9861 0.9861 0.02 0.02 0.02 0.02 0.02 
PBE1PBE 0.9793 0.9784 0.9812 0.9822 0.9823 0.03 0.02 0.02 0.02 0.02 
mPW1K 0.9554 0.9540 0.9584 0.9594 0.9595 0.03 0.03 0.03 0.03 0.03 

BH&HLYP 0.9511 0.9510 0.9526 0.9536 0.9537 0.02 0.03 0.03 0.02 0.02 
M06 0.9860 0.9863 0.9849 0.9829 0.9853 0.04 0.03 0.03 0.04 0.03 
M05 0.9770 0.9751 0.9771 0.9806 0.9848 0.02 0.02 0.02 0.02 0.02 

M062X 0.9737 0.9728 0.9728 0.9734 0.9733 0.03 0.03 0.03 0.03 0.03 
M052X 0.9635 0.9656 0.9661 0.9676 0.9670 0.06 0.05 0.05 0.04 0.05 
B2GP-
PLYP 0.9698 0.9669 0.9705 0.9726 0.9722 0.04 0.03 0.02 0.03 0.02 
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6.3.5 Augmented Basis Sets 

 In general, the inclusion of augmenting functions in the polarization consistent 

basis set has little effect on calculated frequencies. This result was also observed in 

previous work with the correlation consistent basis sets.183,216  For each of the 

functionals, the augmented correlation consistent basis sets, in general, had negligible 

contributions to the vibrational frequencies.  A brief analysis was carried out for 

frequencies calculated using the augmented pc-3 basis set with one functional of each 

definition (pure, hybrid, hybrid meta, and double hybrid). Augmenting functions had the 

greatest effect on frequencies calculated using B2GP-PLYP, with rms errors of 15 cm-1 

from those calculated with the non-augmented basis set. The remaining functionals 

tested had rms errors on the order of 1 cm-1. Similarly, augmenting functions do not 

have an effect on the calculated ZPVE, with the largest rms errors on the order of 0.01 

kJ/mol when compared to the calculated ZPVE without augmenting functions. The effect 

of augmenting functions on the scale factor is negligible, suggesting that the same scale 

factor can be used for both augmented and non-augmented basis sets for vibrational 

frequencies and ZPVEs.   

 

6.4 Conclusions  

Scale factors for harmonic vibrational frequencies, vibrational contributions to 

enthalpy and entropy, and ZPVEs have been defined for five pure functionals (BP86, 

BPW91, BLYP, HCTH93, PBEPBE), six hybrid functionals (B3LYP, B3P86, B3PW91, 

PBE1PBE, mPW1K, BH&HLYP), four hybrid meta functionals (M05, M06, M05-2X, 

M06-2X), one double hybrid functional (B2GP-PLYP), and one dispersion corrected 
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functional (B97-D) in combination with the polarization consistent basis sets (pc-n, 

n=0,1,2,3,4).  For the high (>1000 cm-1) vibrational frequencies, the functional and basis 

set combinations all overestimate the frequencies and the recommended scale factors 

are less than unity.  The effect of the percent of HF exchange included in the functional 

is evident for each property, e.g. increasing the percent of HF exchange results in 

greater overestimation of the high vibrational frequencies.  The low vibrational 

frequencies, as well as the vibrational contributions to enthalpy and entropy, are 

sensitive to the inclusion of polarization functions in the basis set.  For un-polarized 

basis sets (pc-0), the scale factors are distinctly different for each of the properties and 

methods.  The rms errors of the pc-0 basis set for the calculated frequencies and 

vibrational contributions are twice as large as the rms errors for the rest of the 

polarization consistent basis sets (pc-n, n=1,2,3,4) and the pc-0 basis set is not 

recommended for molecular calculations.  The scale factors for the ZPVEs are more 

dependent on the method than the level of polarization in the basis set.  The pure 

(GGA) functionals all underestimate the ZPVEs and have scale factors greater than 

one.  Additionally, the inclusion of a dispersion correction for a GGA functional does not 

significantly change the ZPVE.  The remaining hybrid, hybrid meta, and double hybrid 

functionals overestimate the ZPVEs.  If the uncertainty of scale factors is considered, 

i.e., scale factors have only two significant digits, then unique scale factors for each 

functional, when employed with polarization consistent basis sets, can be defined for 

the determination of vibrational frequencies, vibrational contributions to enthalpy and 

entropy, and ZPVEs.
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CHAPTER 7 

PERFORMANCE OF DENSITY FUNCTIONAL THEORY FOR FIRST AND SECOND 

ROW TRANSITION METAL THERMOCHEMISTRY††  

7.1 Introduction 

 Density functional theory (DFT) is widely used to study transition metal 

(TM) molecules since it accounts for electron correlation at a reduced computational 

cost, as compared to correlated ab initio methods.  DFT is routinely employed for TM-

containing molecules to determine ground state geometries, transition structures, 

spectroscopic constants, and energetic properties, including bond dissociation energies 

and enthalpies of formation.193,225    Through numerous studies of main group species, 

shortcomings of DFT, such as self-interaction and neglect of long-range effects have 

emerged.23,226  For transition metal species, where functionals are not well (or at all) 

parameterized, many fewer studies indentifying successes and shortcomings of 

functionals have been done. In fact, only some of the shortcomings of certain density 

functionals for TM, namely 3d TM, species have been identified in the literature (see, 

e.g., Ref. 71,72,104,107), e.g. deviations from 3d TM experimental enthalpies of 

formation on the order of 100 kcal mol-1 for B3LYP, while a focus on calibrating 

functional performance for 4d TM species is needed. 

Benchmark studies of functional performance for 4d metal thermochemistry have 

been limited at best, despite the importance of these species in areas such as 

†† The work regarding the first row transition metals has been published in W. Jiang, 
M.L. Laury, M. Powell, and A.K. Wilson, “Comparative Study of Single and Double 
Hybrid Density Functional for the Prediction of 3d Transition Metal Thermochemistry”, J. 
Chem. Theory Comput. 8, 4102 (2012). 
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catalysis91 and medicine.92 Only recently have Truhlar and co-workers examined the 

performance of DFT for 4d atom multiplicities and ionization states.227 

 While DFT is widely employed, ab initio calculations are generally preferred for 

more accurate prediction of energetic properties.  For example, for first row transition 

metals, an ab initio composite method, the correlation consistent composite approach 

(ccCA-TM)70,72 results in a mean absolute deviation (MAD) of 3 kcal mol-1 from 

experiment for enthalpies of formation (∆Hf’s), whereas DFT, e.g. B97-1, has been 

shown to have errors in excess of 6 kcal mol-1 from experimental ∆Hf’s and widely-used 

functionals, such as B3LYP, have deviations of more than 10 kcal mol-1 from 

experiment.71,228  Based upon the larger average experimental uncertainties observed 

for transition metal enthalpies of formation in comparison to main group species, 

chemical accuracy for 3d transition metals has been defined as ab initio calculations 

being within 3 kcal mol-1 from experimental values (as opposed to the main group 

definition of chemical accuracy of within 1 kcal mol-1 of experiment).  

In considering second row transition metals, ab initio methods such as CCSD(T) 

are often hindered by the large number of correlating electrons requiring additional 

basis functions and the scaling of the method (N7 for CCSD(T), where N is the number 

of basis functions).  To mitigate the computational cost associated with the 4d elements, 

pseudopotentials or effective core potentials (ECP) may be employed with valence 

basis sets.  By replacing the core electrons with an effective potential, the ECPs reduce 

the total number of electrons in the calculation and, in turn, the number of basis 

functions in a calculation.101   
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 Recently the authors developed a relativistic pseudopotential-based composite 

method, defined as rp-ccCA, and examined the performance of the method for 4p and 

4d molecules.67  The rp-ccCA methodology67 follows a similar schematic as defined for 

main group ccCA68,69 and ccCA-TM70,72 for first row transition metals.  ccCA and its 

variants have proven to be robust methodologies for main group and first row transition 

metal energetic and thermodynamic studies.64,65,67-70,72,95,96,121,229  The reduced 

computational cost afforded by the composite strategy was then further reduced by the 

use of energy-consistent, small core ECPs for 4p and 4d elements.67  In the rp-ccCA 

work (Chapters 3 and 4) a molecule set composed of 30 ∆Hf’s of 4d TM-containing 

molecules was defined, called TM-4d.67  It is composed of TM halides, oxides, hydrides, 

carbides, dimers, and carbonyls, as well as open and closed shell molecules.  Selection 

for inclusion in this set was based the availability of reliable experimental data.  The TM-

4d set and rp-ccCA will be utilized as measures for DFT performance in the current 

work. 

The density functionals considered in the current study were selected based on 

past studies of those demonstrating more successful performances in 3d TM and 4d, 

their level of parameterization, and the frequency of their use in chemical application 

studies, e.g. the design of a novel catalyst, for both main group and transition metal 

research.  The selected density functionals include third, fourth, and fifth rung 

functionals.   

Due to the diverse methods of parameterization and the goal to address 

shortcomings of DFT, there are density functionals that have been designed for specific 

properties such as barrier heights (B3LYP-LOC),233 nonbonded interactions 
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(PW6B95),234 and kinetics (BMK).235  When comparing average DFT results for main 

group species to those obtained for transition metals, two observations are made: 1) the 

best functionals for main group chemistry are not typically the best for transition metal 

chemistry,236 and, 2) the average errors observed for DFT for transition metal 

thermochemistry are generally at least 3-5 kcal mol-1 greater than the DFT errors 

observed for main group molecules containing the same number of non-hydrogen 

atoms and/or the same functional groups.71,228   

Though most functionals do not include transition metal data within their 

parameterization sets, there are a few density functionals that include transition metals 

within the parameterization of the functional (e.g. the TMAE9/05 set of 9 atomization 

energies of metal diatomics, MLBE21/05 of 21 metal-ligand bond energies, 

3dTMRE18/06 of 18 reaction energies, and MAEE5 of 5 metal atom excitation 

energies).193  These functionals include M06 and M06-2X, and they are included within 

the current study.   

In a recent study by Truhlar and Luo, the multiplicities and ionization states of 4d 

TM atoms were examined with a variety of density functionals.227  Within the study the 

occupancies of the 4d and 5s orbitals, as determined by DFT, were used as one of the 

measurements of error for functional performance.  Overall it was observed that GGA 

functionals favored filling the 4d orbitals before the 5s orbitals, while Hartree-Fock 

favored filling the 5s orbitals before the 4d orbitals.  The observation about the order of 

orbital occupation via GGA functionals is counter to what is reported experimentally.  In 

order to fill the 4d and 5s orbitals in agreement with experiment, a percentage of HF 

exchange must be introduced to the GGA functional, i.e., employ HGGAs.   

131 



In this study, the performance of a variety of density functionals in conjunction 

with ECPs and valence basis sets is gauged for the prediction of 4d TM 

thermochemistry to determine preferred functionals for TM thermochemistry and to 

compare with prior studies.  The TM-4d set of 4d ∆Hf’s was utilized to compare the DFT 

results to those previously obtained with rp-ccCA.67  Because of the well-established 

success of the correlation consistent sets, these basis sets were used as the valence 

basis sets in conjunction with the small core ECP in both this study and in the 

construction of rp-ccCA.  Here, ground states of the 4d molecules and the ∆Hf’s 

determined by DFT are examined in comparison to rp-ccCA results and experimental 

data. 

   

 

7.2 Computational Methodology 

All DFT calculations were carried out with the GAUSSIAN 09 software 

package.165   

7.2.1 3d Transition Metals 

For the first row transition metals, the ccCA-TM/11 molecule set of enthalpies of 

formation was employed.72  Geometry optimizations and separate single point energy 

calculations were carried out for each functional.  Overall, the 3d study examined the 

performance of 13 density functionals, though the results of the B97 family of 

functionals (B97-1, B97-2, wB97, wB97X, wB97XD) will be detailed in this dissertation.  

For each functional in the B97 family of functionals, aug-cc-pVQZ single point 

calculations were conducted at the aug-cc-pVTZ geometry (i.e., B97-1/aug-cc-
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pVQZ//B97-1/aug-cc-pVTZ).  “Fine” grids were  applied to all calculations. 

7.2.2 4d Transition Metals  

For the second row transition metals, the small core, energy-consistent 

relativistic pseudopotentials and the corresponding valence correlation consistent basis 

sets of triple- and quadruple-zeta quality were employed.114  For each molecule in the 

TM-4d set (see Table 7.1), B3LYP/cc-pVTZ-PP optimized geometries were utilized for 

single-point energy calculations for each functional and molecular ∆Hf’s were 

determined.  22 functionals were considered, including GGAs (BLYP,26,27,160 BP86,28 

TPSSKCIS,237  PBEPBE,24,205 M06-L238), hybrid (B3LYP,30 B97-1,207 PBE1PBE,239 

B3P86, X3LYP,241 mPW1LYP,242 B1LYP,243 BMK,235 M06 and M06-2X193), range-

separated (ωB97 and ωB97X,39 ωB97XD,40 CAM-B3LYP,232 LC-ωPBE244), and double 

hybrid functionals (B2GP-LYP,195 mPW2-PLYP33).  The list of functionals by type, 

including percentage HF exchange, percentage PT2 correlation, and the value of the 

range-separation parameter for the pertinent functionals, is summarized in Table 7.2.  

Fine grids were employed for all calculations.  Fine grids are defined as 75 radial shells 

with 302 angular points per shell (approximately 7000 points per atom).  Enthalpies of 

formation were calculated via the atomization energy approach, i.e., via the dissociation 

of the ground state molecule into its constituent ground state atoms.  Experimental data 

was used for the atomic enthalpies of formation.245  Zero-point energies were scaled by 

the appropriate scaling factor for each functional as determined in previous work by the 

authors.216  The impact of functional choice upon the optimized structure and the 

corresponding impact on the ∆Hf’s was examined for each functional.  The cc-pVTZ-PP 

basis set was used for the geometry optimization to compare to the B3LYP/cc-pVTZ-PP 
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geometries from rp-ccCA and the cc-pVQZ-PP basis set was used for the determination 

of the ∆Hf’s based on previous TM studies. 

Table 7.1. The TM-4d molecule set. 
 

Molecule Ground 
State   Molecule Ground 

State 
YO 2Σ+  MoF2 5B2 
ZrO 1Σ+  MoF6 1A1g 
ZrO2 1A1  Mo(CO)5 1A1 
ZrCl 2∆  Mo(CO)6 1A1 
ZrCl2 3∆  RuO4 1A1 
ZrCl4 1A1  RhC 2Σ+ 
ZrBr 2∆  RhO 4Σ- 
ZrBr4 1A1  RhCl2 4Σg

+ 
NbO 4Σ-  AgH 1Σ+ 
NbO2 2A1  Cd2 1Σg

+ 
MoO2 3B1  CdH 2Σ+ 
MoO3 1A1  CdCl 2Σ+ 

MoOCl4 1A1g  CdCl2 1Σg
+ 

MoO2Cl2 1A1g  CdBr 2Σ+ 
MoF 6Σ+   CdBr2 1Σg

+ 
 

Table 7.2.  The twenty-two functionals arranged by type and parameter values. 
 

Functional %Ex
HF %Ec

PT2 ω Type1 Functional %Ex
HF %Ec

PT2 ω Type1 
BLYP    GGA B1LYP 25   HGGA 
BP86    GGA M06 27   HGGA 

PBEPBE    GGA BMK 42   HGGA 
TPSSKCIS    GGA M06-2X 54   HGGA 

M06-L    GGA ωB97XD 22.2  0.2 RSH 
B3P86 20   HGGA ωB97X 15.8  0.3 RSH 
B3LYP 20   HGGA CAM-B3LYP 20  0.33 RSH 
B971 21   HGGA ωB97   0.4 RS 

X3LYP 21.8   HGGA LC-ωPBE   0.4 RS 
PBE1PBE 25   HGGA mPW2-PLYP 55 25  DH 
mPW1LYP 25     HGGA B2GP-LYP 65 36   DH 

 1 Generalized Gradient Approximation (GGA), hybrid (H), Range-separated (RS), 
Double (D). 
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7.3 Results and Discussion 

7.3.1 First Row Transition Metal Thermochemistry-Overall Results 

Of the 13 density functionals studied in conjunction with the correlation consistent 

basis sets, the hybrid B97-1 and double hybrid mPW2-PLYP functionals yielded the 

lowest overall mean absolute deviations (MAD) from experimental enthalpies of 

formation with 7.2 and 7.3 kcal mol-1, respectively.   

The B97-1 functional, using the cc-pVQZ basis set, yields an MAD of 7.2 kcal 

mol-1 for the overall ccCA-TM/11 set, significantly less than the MAD of 13.0 kcal mol-1 

obtained with B3LYP (Figure 7.1).  The relatively large errors of B3LYP might originate 

from an overestimation of metal-ligand binding energies by B3LYP, as shown by the 

overall B3LYP MSD of -11.1 kcal mol-1, comparing to the B97-1 MSD of -2.4 kcal mol-1.  

When utilizing ccCA-TM for the ccCA-TM/11 set, a monotonic decrease of the MAD is 

observed as the experimental uncertainty decreases.228  In contrast to the ccCA-TM 

results, the B97-1 MADs do not show any discernible increasing/decreasing patterns 

across the subsets of decreasing experimental uncertainty.    The B98 functional, 

sharing the same formulas of B97-1, was re-optimized using the G2/97208 set of 148 

main group ∆Hf’s.  However, B98 yields larger MADs than B97-1 for the TM systems, 

and the overall MAD is 8.9 kcal mol-1, which is 2.7 kcal mol-1 greater than that of B97-1.  

The B97-1 and B98 MADs (7.2 and 8.9 kcal mol-1, respectively) for the ccCA-TM/11 set 

are much higher than their MADs (3.1 and 6.9 kcal mol-1, respectively) for the 19-

molecule set in our earlier study.71  The substantial increase of the B97-1 MADs from 

the 19-molecule set to the ccCA-TM/11 set suggests that the assessment of certain 

functionals may lead to fortuitous results if the molecule set is limited in size and/or 
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bonding features.   The ωB97X functional,  containing a long range correction to the 

exchange energy, has more empirical parameters (17 parameters) than B97-1 (10 

parameters) and outperforms B97-1, for the G3/99 set of 223 main group ∆Hf’s, by a 

notable margin (MAD of 2.09 kcal mol-1 vs. 4.85 kcal mol-1).40  However, the 

modifications in ωB97X deteriorate the overall quality of calculated ∆Hf’s for TM species 

considered in this study, yielding an overall MAD of 10.4 kcal mol-1 for the ccCA-TM/11 

set. 

  

Figure 7.1. MADs of the single-hybrid functionals in the 3d DFT thermochemistry study 

organized by increasing experimental uncertainties. 

Due to the promising performance of B97-1, we considered additional variants of 

the B97 functional, including B97-2, ωB97, ωB97X, and ωB97XD (Figure 7.2).  To 

examine the highest level of accuracy obtainable with DFT for transition metals, 

augmented basis sets (aug-cc-pVnZ, n=T,Q) were utilized in the extended study of the 

variants of the B97 functional.  While the hybrid GGA functionals B97-1 and B97-2 were 
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each fit to energetic data from the G2-1 training set, the B97-2 functional has the 

additional fitting to a Zhao, Morrison, and Parr (ZMP) exchange-correlation potential 

derived from ab initio Brueckner doubles or MP2 electron densities.246  The ω of the 

ωB97, ωB97X, and ωB97XD has been used to correct the asymptotic behavior of a 

pure exchange functional by defining the regions described by the long-range Coulomb 

operator. Three range-separated hybrid functionals based on PBE were compared to 

other functionals for the predictions of equilibrium geometries and dissociation energies 

of TM complexes,247 but none of the ωB97, ωB97X, and ωB97XD functionals have 

been considered systematically for TM thermochemistry prior to our study. The X in 

ωB97X and ωB97XD indicates the inclusion of Hartree–Fock exact exchange in the 

short-range exchange and the D represents the inclusion of a dispersion correction 

within the ωB97XD functional.  For a few of the molecules, severe convergence 

problems in the calculations were encountered with all or some of the functionals.   The 

absolute deviations of ∆Hf from experimental data by ωB97X and ωB97XD were greater 

than 150 kcal mol-1 for Cr2. As a result, 13 molecules including Cr2 were excluded from 

the ccCA/TM11 set for the B97/aug-cc-pVQZ//B97/aug-cc-pVTZ calculations (Figure 

1b). Compared to the B97/cc-pVQZ calculations, the performance of B97-1 was 

comparable, but the MAD of ωB97X was slightly larger. The increases in MAD are 0.2 ~ 

0.4 kcal mol-1 for B97-1 and 0.3 ~ 1.5 kcal mol-1 for ωB97X. 
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Figure 7.2. MADs of the B97 family of functionals organized by increasing experimental 

uncertainties. 

B97-1 gives the lowest MADs among the five B97 functionals. The 

parameterization using the ZMP potential in the fitting of the B97-2 functional does not 

improve the results as compared to B97-1, possibly because the ZMP potential 

derivation is based upon main group species. The B97-2 MADs show the same patterns 

across the subsets as those of B97-1, but are 1.4 ~ 1.7 kcal mol-1 greater. The long-

range corrected ωB97 functional results are inferior to B97-1 (overall MAD of 9.4 kcal 

mol-1 for ωB97 and 7.5 kcal mol-1 for B97-1), but show improvements over ωB97X 

(overall MAD of 11.7 kcal mol-1) and ωB97XD (overall MAD of 11.1 kcal mol-1). The 

hybrid use of Hartree-Fock exchange for the short-range interactions in ωB97X, where 

ω already introduces the Hartree-Fock exchange for the long-range interactions, 

increases the overall MAD for the TM ∆Hf’s by over 2.5 kcal mol-1.  The introduction of a 
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dispersion parameter slightly improves the performance of the long-range corrected 

hybrid functional for the prediction of TM ∆Hf’s. 

 

7.3.2 Second Row Transition Metal Thermochemistry 

7.3.2.1 Overall Results 

The mean absolute deviation (MAD), mean signed deviation (MSD), root-mean-

square deviation (RMSD), and standard deviation (σ) for the predicted enthalpies of 

formation of the TM-4d set relative to experiment for each functional are reported in 

Table 7.3.  The MADs are depicted in Figure 7.3 and the MSDs are represented in 

Figure 7.4.  The double hybrid functional, mPW2-PLYP, yields the lowest MAD of 4.25 

kcal mol-1 for the TM-4d molecule set.  The MAD of mPW2-PLYP is approximately two 

kcal mol-1 greater than the MAD obtained with rp-ccCA, supporting the utility of the 

double hybrid functional for 4d molecules outside the scope of rp-ccCA.  Similarly, a low 

MAD was obtained by the other double hybrid functional studied, B2GP-LYP (5.19 kcal 

mol-1).  The experimental uncertainty for the TM-4d molecule set is 3.43 kcal mol-1. 
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Table 7.3. Overall DFT statistics (MAD, MSD, RMSD, σ) for the TM-4d molecule set.  Geometries obtained with 
B3LYP/cc-pVTZ-PP. 
 
Functional MSD MAD RMSD σ   Functional MSD MAD RMSD σ 

BLYP 12.09 16.69 25.39 19.13  B1LYP -16.37 16.71 22.43 14.96 
BP86 22.87 23.87 37.13 28.44  M06 1.74 8.36 10.63 6.26 

PBEPBE 25.07 26.03 40.32 30.80  BMK -1.28 12.86 15.76 9.10 
TPSSKCIS 13.31 14.15 22.74 17.80  M06-2X -8.76 10.84 14.09 8.62 

M06-L 9.43 11.98 17.80 12.73  ωB97XD 0.04 6.52 8.71 5.78 
B3P86 4.93 8.34 13.40 10.48  ωB97X 3.05 7.42 10.15 6.93 
B3LYP -5.81 8.74 10.53 5.93  CAM-B3LYP -5.53 8.06 10.65 6.96 
B971 5.28 8.10 12.28 9.24  ωB97 4.92 8.74 13.03 9.66 

X3LYP -5.63 8.32 9.92 5.40  LC-ωPBE -4.60 11.47 14.84 9.42 
PBE1PBE -5.18 8.53 11.01 6.96  mPW2-PLYP -2.21 4.25 5.67 3.76 
mPW1LYP -12.08 12.61 16.87 11.20   B2GP-LYP -1.26 5.19 7.87 5.92 

140 
 



 

 
 
Figure 7.3. Mean absolute deviations (MADs) of the density functionals and rp-ccCA. 
 

 
 
Figure 7.4. Mean signed deviations (MSDs) of the density functionals and rp-ccCA. 
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 While the fifth rung functionals, the double hybrids, yielded the most accurate 

∆Hf’s, in comparison to experiment, for the TM-4d set, the third run functionals, GGAs, 

resulted in the largest MADs.  BP86 and PBEPBE had MADs of 23.87 and 26.03 kcal 

mol-1.  The large MAD was rooted in the carbonyl-containing molecules, three of the 

molybdenum molecules and RuO4.  The determination of the enthalpy of formation of 3d 

TM carbonyl-containing molecules has previously been shown by Tekarli et al. to result 

in large deviation from experiment for DFT calculations (e.g. over 50 kcal mol-1 for 

GGAs, over 80 kcal mol-1 for MGGAs, and over 40 kcal mol-1 for HGGAs)71 and these 

deviations are also observed in this work for 4d TM carbonyl systems. When the 3d TM 

carbonyls were studied with ccCA-TM, a high-level ab initio composite method, the 

deviations were significantly reduced (the majority of the ccCA-TM enthalpies of 

formation deviating less than 10 kcal mol-1 from experiment), but the average absolute 

deviation of the 3d TM carbonyls was 6.3 kcal mol-1, a considerable deviation when the 

accuracy goal of ccCA-TM is properties within 3 kcal mol-1 from experiment.72  A similar 

trend is observed when comparing the DFT deviations for the 4d TM carbonyls to the 

deviations obtained with rp-ccCA.  The significant lowering of the deviation, when 

changing from DFT to ab initio methods, of the calculated enthalpy of formation from the 

experimental value signifies the need for high-level methods for the carbonyl-containing 

molecules.  With a higher level of theory, a more accurate description of the π-back 

bonding present in the TM-carbonyl systems is obtainable and, in turn, the calculated 

enthalpy of formation of the TM-carbonyl systems is more accurate. 

 The previous DFT 4d atomic study by Truhlar and Luo reported that the hybrid 

functionals SOGGA11-X, B1LYP, B3LYP, CAM-B3LYP, BMK, and PW6B95 provide the 
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best comparison with experimental ionization potentials and spin states of the 4d 

atoms.227  These observations are mirrored in the current study for 4d molecular ∆Hf’s; 

the hybrid functionals, both single and double, with a percentage of HF exchange 

between 20% and 40% yield the lowest deviations from experimental ∆Hf’s.  This 

percentage of HF exchange for 4d thermochemistry is in agreement with the ideal 

percentage of HF exchange for 3d transition metal ∆Hf’s as observed in a previous 

study by Tekarli et al.  Furthermore, the ideal percentage of HF exchange (20-40%) for 

4d ∆Hf’s is in agreement with observations for 4d reaction energies involving C-O bond 

cleavage.{Liu, 2013 #355}     

The overall experimental uncertainty for the TM-4d molecule set is 3.43 kcal mol-

1.  Furthermore, the ∆Hf’s determined via rp-ccCA resulted in an MAD of 2.89 kcal mol-1 

from experimental ∆Hf’s.  Except for RhO and ZrO2, ∆Hf’s from DFT calculations exceed 

the experimental uncertainties for each molecule.  It should be noted that the ∆Hf’s  for 

these two molecules had the largest experimental uncertainties of 10.0 and 11.0 kcal 

mol-1, respectively.  

 

7.3.2.2 Generalized Gradient Approximation (GGA) Functionals 

Common outliers for the GGA functionals were MoCO5, MoCO6, MoF6, and 

RuO4.  The BP86 and PBEPBE functionals resulted in significant deviations, near 100 

kcal mol-1, for these molecules.  By excluding the outliers for BP86, PBEPBE, and 

BLYP, the MADs dropped by nearly 70% to 8.75, 10.18, and 10.60 kcal mol-1, 

respectively.  The deviation observed for the outliers of TPSSKCIS and M06-L were 

nearly half of the deviations seen for BP86, PBEPBE, and BLYP; therefore, the drop in 
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the MAD with the exclusion of the outliers was not as drastic (50%) for TPSSKCIS and 

M06-L, 7.12 and 6.91 kcal mol-1, respectively.  All of the GGA functionals overestimated 

the enthalpies of formation by, on average, 15 kcal mol-1. Since the enthalpies of 

formation are determined via atomization energies, the overestimation of the enthalpies 

of formation is in agreement with the known overestimation of the binding energies.  As 

mentioned previously in this chapter, the introduction of HF exchange into the GGA 

formula, as designed by Becke, yields the HGGA functionals, where the HF exchange 

has been shown to mitigate the overestimation of binding energies. 

 

7.3.2.3 Hybrid GGA Functionals 

 Since there were ten hybrid functionals included in the study, the effect the 

percentage of Hartree-Fock exchange has on the performance of the functional for the 

TM-4d set could be examined.  For the hybrid functionals there was not a trend with 

respect to the MADs and the percent of Hartree-Fock exchange.  The inclusion of three 

parameters in the Becke exchange (i.e., B3) significantly reduces the overall MAD in 

comparison to the Becke exchange (B), while one parameter did not have any impact 

(B1).  The MAD’s of B3P86 and B3LYP were 8.3 and 8.7 kcal mol-1, respectively, in 

contrast to 16.7 kcal mol-1 of BLYP and B1LYP and 23.9 kcal mol-1 of BP86.  While non-

local Hartree-Fock exchange did not improve the accuracy of the functionals with 

Becke-type exchange, Hartree-Fock exchange did improve the performance of the PBE 

functionals; the MAD of PBE1PBE was 8.5 kcal mol-1 and 26.0 kcal mol-1 for PBEPBE.  

The M06 functional yielded a comparable MAD (8.4 kcal mol-1) to PBE1PBE.  Doubling 

the amount of exchange for the M06 functional, i.e., M06-2X, did not improve the 
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performance of the functional for 4d enthalpies of formation (MAD of 10.8 kcal mol-1).  

The failure of M06-2X for transition metals, specifically 4d transition metals, is 

consistent with observations from Truhlar and Luo’s study of DFT for 4d atoms.227  For 

the TM-4d set, the HGGAs with the percentage of Hartree-Fock exchange ranging from 

20 to 27 percent have lower MADs in comparison to the HGGAs with additional HF 

exchange, with the exception of mPW1LYP and B1LYP; the 4d results, with respect to 

HF exchange, are in agreement with previous results for 3d thermochemistry.  The 

outliers for these two HGGAs are similar to the outliers of the GGA functionals (e.g. 

carbonyls, RuO4); therefore, the inclusion of the additional parameter for HF exchange, 

even the desired percentage in the twenties, does not necessarily improve the 

performance of a density functional for second row transition metal thermochemistry.  

To note, the inclusion of the second order perturbation correlation energy significantly 

reduces the errors observed, specifically for mPW1LYP (HGGA) versus mPW1PLYP 

(DHGGA). 

 

7.3.2.4 Range-Separated Functionals 

 The range-separated functionals ωB97X, ωB97XD, and CAM-B3LYP include 

Hartree-Fock exchange in the long- and short-range description of exchange, while 

ωB97 and LC-ωPBE include Hartree-Fock exchange only in the long-range description 

of exchange.  The remaining short-range exchange is described by DFT for each of the 

range-separated functionals.  The inclusion of short-range HF exchange yields lower 

overall MADs for the range-separated functionals.  There is no trend in error with 

respect to increasing the percentage of Hartree-Fock short-range exchange, but there is 
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an increase in the overall MAD with respect to the increase in the value of ω, the range-

separation parameter.  The ωB97XD functional, with ω value of 0.2, obtains the lowest 

MAD, 6.52 kcal mol-1, for the range-separated functionals.  Examination of the impact of 

the value of ω on the theoretical enthalpies of formation, as the ω value increases from 

0.30 (ωB97X) to 0.33 (CAM-B3LYP) to 0.40 (ωB97, LC-ωPBE), the MADs increase 

(7.42, 8.06, 8.74, 11.47 kcal mol-1, respectively).  Comparison of the B97-based 

functionals yields the observation, as the sophistication of the functional definition 

increases (ωB97<ωB97X<ωB97XD), the deviation of the functional-determined ∆Hf’s 

from experimental values decreases, where ωB97XD is the most accurate.  While the 

molecules within the TM-4d set are not composed of long-range interactions, the 

inclusion of a dispersion correction within the B97 family of functionals appears to 

reduce deviations from experiment for the enthalpies of formation.  This observation is 

misleading since the inclusion of a dispersion correction is also accompanied by a 

decrease in the value of ω and an increase in the percentage of HF exchange.  The 

trend in the B97-based functionals is counter to the conclusion for first row transition 

metals; the functionals performed worse as the number of terms in the functional 

increased.228  As noted for the HGGA functionals, the percent of HF exchange is ideally 

in the range of 20-27.  The ωB97X functional includes 15.8% HF exchange, while 

ωB97XD includes 22.2%.   

 

7.3.2.5 Double-Hybrid Functionals 

 Of the functionals included in the study, the two double-hybrid functionals had the 

lowest overall MADs (mPW2-PLYP, 4.25 kcal mol-1 and B2GP-LYP, 5.19 kcal mol-1).  
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Similar conclusions were made for 3d transition metals, where the double hybrid 

functionals (B2-PLYP, B2GP-PLYP, and mPW2-PLYP) yielded the smallest deviations 

from experimental enthalpies of formation.  The double functionals have 55% and 65% 

Hartree-Fock exchange, respectively.  In comparison to the single hybrid functional 

M06-2X, which has a comparable amount of Hartree-Fock exchange with 54%, the 

inclusion of second-order perturbation theory correlation is noticeable.  The M06-2X 

functional resulted in an MAD of 10.84 kcal mol-1.  The addition of 25% PT2 correlation 

energy, with 55% Hartree-Fock exchange, of mPW2-PLYP resulted in an MAD lowering 

of over 6 kcal mol-1.  While the different parameterizations of M06-2X and mPW2-PLYP 

may account for some of the discrepancy, the effect of ab initio correlation energy is 

evident for the second row transition metals.  As noted in the original examination of the 

molecule set with rp-ccCA, the use of a single-reference method does not compromise 

the theoretically-determined enthalpies of formation.  This observation is reinforced by 

examining the effect of double versus single hybridization for density functionals. 

 

7.3.2.6 Geometry Comparison 

 The geometries for the complete TM-4d set were also optimized for each of the 

functionals in combination with the cc-pVTZ-PP basis set.  The DFT/cc-pVTZ-PP 

geometries were compared to the geometries used within rp-ccCA (B3LYP/cc-pVTZ-

PP, i.e., functional/basis set).  On average the bond lengths differed by 0.016 Å.  Using 

ZrO2 as an example, the Zr-O bond length as determined by B3LYP, B97-1, wB97XD, 

and mPW2-PLYP was 1.776, 1.770, 1.759, and 1.786 Å, respectively.  The O-Zr-O 
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bond angle as determined by the same functionals (B3LYP, B97-1, wB97XD, and 

mPW2-PLYP) was 108.5°, 108.4°, 109.2°, and 108.1°, respectively.   

While the deviations between the B3LYP geometries and the geometries 

determined by the other functionals included in this study may seem trivial, the impact of 

the geometries optimized for each functional on the enthalpies of formation (∆Hf’s) and 

the overall deviations of the ∆Hf’s from experiment were examined.  On average, 

utilizing the geometry optimized by a functional for the single point energy calculation 

used to determine the ∆Hf did not change the MADs and MSDs from experiment.  The 

MAD and MSD for the ∆Hf’s based upon the DFT-specific optimized structure for each 

functional are reported in Table 7.4.  The most notable changes in MADs and MSDs 

were for two of the GGAs (TPSSKCIS and M06-L).  The utilization of the TPSSKCIS 

and M06-L optimized geometries resulted in a reduction of the MADs for these two 

functionals by 7.0 and 2.0 kcal mol-1, respectively.   
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Table 7.4. Overall DFT statistics (MAD, MSD, RMSD, σ) for the TM-4d molecule set.  Geometries were re-optimized with 
each functional.  
 
 
Functional MSD MAD RMSD σ   Functional MSD MAD RMSD σ 

BLYP 13.48 17.87 28.95 21.47  B1LYP -15.41 15.76 22.90 15.49 
BP86 14.35 15.90 28.53 22.47  M06 3.20 7.96 10.83 6.63 

PBEPBE 11.06 24.75 43.99 32.99  BMK 0.88 11.53 14.69 8.26 
TPSSKCIS 5.05 7.17 15.85 13.51  M062X -7.52 9.57 12.56 7.43 

M06-L 8.25 9.87 18.84 13.98  wB97XD -8.35 10.61 16.04 11.26 
B3P86 5.24 8.89 14.85 11.24  wB97X 1.25 9.31 15.67 11.37 
B3LYP -4.72 8.46 11.55 7.25  CAM-B3LYP -4.11 7.85 11.11 7.30 
B971 3.00 6.27 11.08 8.66  wB97 -3.67 8.79 13.52 9.64 

X3LYP -5.96 9.51 14.84 10.71  LC-wPBE -2.88 11.68 15.96 10.04 
PBE1PBE -3.97 8.44 11.76 7.59  mPW2-PLYP -2.40 5.14 12.14 9.87 
mPW1LYP -20.72 20.72 29.42 19.40   B2GP-LYP -0.92 4.95 8.38 6.39 
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7.4 Conclusions 

 The performance of density functional theory in conjunction with ECPs for the 

determination of the enthalpy of formation of 4d TM molecules has been evaluated.  

Overall, the performance of 22 density functionals, including GGAs, HGGAs, HMGGAs, 

RS, and DHGGAs, in combination with the correlation consistent basis sets and 

effective core potentials, was examined for the determination of the enthalpy of 

formation of 30 second row transition metal-containing molecules (TM-4d set).  

Previously, rp-ccCA was used to study the molecule set and an MAD of 2.89 kcal mol-1 

from experimental enthalpies of formation was observed.  The average experimental 

uncertainty for the set is 3.43 kcal mol-1.  None of the functionals included in the current 

study matched the accuracy level of rp-ccCA, though the double hybrid functionals, 

mPW2-PLYP and B2GP-PLYP, yielded the lowest MADs (4.25 and 5.19 kcal mol-1, 

respectively).  The GGA functionals had the largest deviations from experiment and are 

not recommended for second row transition metal thermochemistry.  The HGGAs, 

specifically those with 20-30% Hartree-Fock exchange, deviated from experiment by, on 

average, 6-10 kcal mol-1, depending on the functional employed.  For the range 

separated functionals, the inclusion of short-range HF exchange did not systematically 

improve the deviation of the functionals, but it was observed that increasing the value of 

ω, the range separation parameter, increased the MAD of the range separated 

functional [0.30 (ωB97X) to 0.33 (CAM-B3LYP) to 0.40 (ωB97, LC-ωPBE), the MADs 

increase (7.42, 8.06, 8.74, 11.47 kcal mol-1, respectively)].   Overall, to obtain the best 

performance with DFT and the small core ECPs with the valence correlation consistent 

basis sets, the double hybrid functionals, namely mPW2-PLYP, in combination with the 
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cc-pVQZ-PP basis set and ECP should be employed for second row TM 

thermochemistry. 
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CHAPTER 8 

CONCLUDING REMARKS 

In this dissertation the presented research exhibits advances in the accuracy and 

reliability of electronic structure methods for the prediction of energetic and 

spectroscopic properties.  Developments include the design of a variant of a composite 

method for heavier elements (e.g. second row transition metals), the development of 

scaling factors to account for common approximations employed within electronic 

structure methods, and the identification of density functionals suitable for transition 

metals.  The presented research can be utilized as a launching point for future studies 

and a synopsis of each project with ensuing investigations are detailed.  

 In Chapter 3, the development and initial study of the relativistic pseudopotential 

correlation consistent Composite Approach (rp-ccCA) was presented.  The 

pseudopotential variant of ccCA allowed for the accurate examination of second row 

transition metal thermochemistry via an ab initio method.  The developed method was 

first studied for molecules containing 4p elements (Ga-Kr) and the accuracy and time 

savings of rp-ccCA was compared to ccCA with all-electron basis sets.  Overall, a 

32.5% CPU time savings was observed and chemical accuracy for the main group 

molecules of interest (within 1 kcal/mol of experimental values) was maintained.  rp-

ccCA was then applied to second row transition metals where the experimental 

uncertainty for the enthalpies of formation of 30 molecules was 3.43 kcal/mol.  rp-ccCA 

yielded an average absolute deviation of 2.89 kcal/mol (within the experimental 

uncertainty).  Chapter 4 detailed the further application of rp-ccCA to lower p-block (5p 

and 6p) elements.  The method was applied to both atomic (ionization potentials, 
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electron affinities) and molecular (dissociation energies, enthalpies of formation) 

properties.  Agreement between the calculated and experimental values was observed.  

Since rp-ccCA represents the furthest extension of ccCA down the periodic table, 

additional development of the method in order to address third row transition metals and 

lanthanides and actinides is warranted.  The challenges faced with second row 

transition metals, such as the limited amount of experimental data and the design of 

components of the methodology to recover all electronic effects, will need to be 

addressed in the design of a new variant or extension of rp-ccCA to the heavier metals, 

lanthanides and actinides.  The current formulation of rp-ccCA will be useful in future 

studies of second row transition metals; for example, in transition metal-catalyzed 

reactions. 

 In Chapters 5 and 6, scale factors for density functional theory in conjunction with 

the correlation consistent basis sets and the polarization consistent basis sets were 

introduced.  The scale factors for harmonic vibrational frequencies, zero-point 

vibrational energies, and thermal contributions to enthalpy and entropy were presented.  

With the application of the scale factors to the vibrational frequencies, deviations 

between calculated and experimental frequencies were reduced.  The developed scale 

factors were designed for calculations employing the harmonic approximation, 

therefore, neglecting anharmonic effects.  Scale factors typically are generated based 

upon a test set of organic molecules; therefore, it would be of interest to generate a test 

set of inorganic molecules and examine how the scale factors may differ for inorganics 

in comparison to organic species.  In the scale factor development for organic 

molecules (Chapters 5 and 6), there were over 1,000 experimental frequencies from 40 
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molecules used to determine the scale factors.  The main challenge of in the 

development of scale factors for inorganics would be the need for a large number of 

reported experimental vibrational frequencies for the inorganic molecules, including both 

main group (non-carbon-based molecules) and transition metals.  There are 

experimental vibrational frequencies reported in the literature for transition metal 

systems, e.g. chalcogenides, but the ability to compose a test set of vibrational 

frequencies of a range of transition metal systems (e.g. different ligands) could be a 

limiting factor because in order to capture the diversity of the inorganics, the needed 

data set would be enormous (much larger than the prior work including 40 molecules 

with similar molecular-type composition).  Examination of the deviations between 

experimental and theoretical vibrational frequencies for main-group (non-carbon-based) 

molecules is also of interest, though the hurdles for comparison are similar to those for 

transition metals.  

 In Chapter 7, the accuracy level of density functional theory for transition metal 

thermochemistry was investigated.  Both first row and second row transition metals 

were studied.  The type of functional employed (e.g. GGA versus HGGA versus 

DHGGA) significantly impacted the accuracy of the calculated enthalpies of formation.  

Furthermore, the percent of Hartree-Fock exchange in the HGGA functionals played a 

role in the accuracy of the methodologies.  This study pinpoints the failures of DFT for 

transition metal systems and the development of a functional for transition metal 

molecules is of interest.  Density functionals are parameterized based upon 

experimental data, but very few functionals have included transition metal data in their 

parameterization and, if they have included transition metals, the number of molecules 
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and properties is marginal.  For example, the M06 functional includes transition metals 

in the parameterization, but there are only 53 transition metal data points (9 metal 

atomization energies, 21 metal-ligand bond energies, 18 reaction energies, and 5 metal 

atom excitation energies) in comparison to 350 main group energetic properties (e.g. 

barrier heights, dissociation energies, noncovalent interaction energies).  Furthermore, 

as highlighted in the 3d DFT study (Chapter 7), the M06 functional yields a deviation of 

11.0 kcal/mol for the ccCA-TM/11 test set, which is composed of over 200 enthalpies of 

formation for transition metal molecules.  Through the 3d and 4d transition metal DFT 

studies presented in this dissertation, the B97-1 functional seems to be a strong starting 

point for re-parameterization for transition metals.  By utilizing the ccCA-TM/11 test set, 

in addition to ionization potentials and electron affinities reported in the literature and/or 

determined via ccCA-TM and selected main group test sets (e.g. noncovalent 

interaction energies, bond dissociation energies, atomization energies) for 

completeness, the ten parameters of the B97-1 functional can be re-optimized, most 

likely through a least-squares fitting procedure, for transition metals.  Since the 

parameterization of the functional would include a large number of transition metal 

systems and at least a half-dozen properties, the expected performance of the new 

functional should be improved over current density functionals. 
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