
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED: 
 
Ram Dantu, Major Professor 
Hassan Takabi, Committee Member 
Cornelia Caragea, Committee Member 
Barrett Bryant, Chair of the Department of 

Computer Science and Engineering 
Costas Tsatsoulis, Dean of the College of 

Engineering 
Mark Wardell, Dean of the Toulouse 

Graduate School 

DDoS DEFENSE AGAINST BOTNETS IN THE MOBILE CLOUD 

David Jensen 

Thesis Prepared for the Degree of 

MASTER OF SCIENCE 

 
 

UNIVERSITY OF NORTH TEXAS 
 

May 2014 



Jensen, David. DDoS Defense Against Botnets in the Mobile Cloud. Master of Science 

(Computer Science), May 2014, 73 pp., reference list, 71 titles. 

Mobile phone advancements and ubiquitous internet connectivity are resulting in ever 

expanding possibilities in the application of smart phones. Users of mobile phones are now 

capable of hosting server applications from their personal devices. Whether providing services 

individually or in an ad hoc network setting the devices are currently not configured for 

defending against distributed denial of service (DDoS) attacks. These attacks, often launched 

from a botnet, have existed in the space of personal computing for decades but recently have 

begun showing up on mobile devices. Research is done first into the required steps to develop a 

potential botnet on the Android platform. This includes testing for the amount of malicious 

traffic an Android phone would be capable of generating for a DDoS attack. 

On the other end of the spectrum is the need of mobile devices running networked 

applications to develop security against DDoS attacks. For this mobile, phones are setup, with 

web servers running Apache to simulate users running internet connected applications for 

either local ad hoc networks or serving to the internet. Testing is done for the viability of using 

commonly available modules developed for Apache and intended for servers as well as finding 

baseline capabilities of mobiles to handle higher traffic volumes. Given the unique challenge of 

the limited resources a mobile phone can dedicate to Apache when compared to a dedicated 

hosting server a new method was needed. A proposed defense algorithm is developed for 

mitigating DDoS attacks against the mobile server that takes into account the limited resources 

available on the mobile device. The algorithm is tested against TCP socket flooding for 



effectiveness and shown to perform better than the common Apache module installations on a 

mobile device. 

 



Copyright 2014 

by 

David Jensen

 ii 



ACKNOWLEDGEMENTS 

First I would like to thank Dr Dantu. Completing my thesis has been the most challenging 

academic accomplishment I have ever undertaken and I would not have had that opportunity 

without him. Also he ensured I always provided my best work into this and pushed for nothing 

but the best of success. I also want to thank everyone from the lab for serving as a source of 

inspiration and understanding while I completed my thesis. In particular from the lab I thank 

Logan for being there with technical assistance. As well as Fazeen and Michael for serving to 

read and help me craft my thesis. 

Finally I thank my parents. I would not have accomplished anything without their never-

ending support and encouragement of this endeavor.  

 iii 



TABLE OF CONTENTS 

Page 
 
ACKNOWLEDGEMENTS ................................................................................................................... iii 
 
LIST OF FIGURES ............................................................................................................................... v 
 
CHAPTER 1: INTRODUCTION ........................................................................................................... 1 

Background ......................................................................................................................... 1 

DDoS Attack Types .............................................................................................................. 4 

Known Defense Methods.................................................................................................... 7 

Summary ........................................................................................................................... 12 
 
CHAPTER 2: MOBILE BOTNETS ...................................................................................................... 14 

Background ....................................................................................................................... 15 

Proposed Botnet ............................................................................................................... 19 

Capability of Android Based Bots...................................................................................... 23 

Summary ........................................................................................................................... 25 
 
CHAPTER 3: MOBILE SERVER DEFENSE AGAINST DDoS ................................................................ 27 

Problem Definition ............................................................................................................ 28 

Testing Environment ......................................................................................................... 28 

Examining Modules ........................................................................................................... 30 

Examination of ReqTimeout ............................................................................................. 35 

Summary ........................................................................................................................... 43 
 
CHAPTER 4: MOBILE DDoS DEFENSE FOR HTTP SERVICE ............................................................. 44 

Mobile DDoS Defense Proposal ........................................................................................ 48 

Multi Layer Defense .......................................................................................................... 59 

Summary ........................................................................................................................... 60 
 
CHAPTER 5: CONCLUSION ............................................................................................................. 63 

Future Work ...................................................................................................................... 64 
 
REFERENCE LIST ............................................................................................................................ 68 
 

 iv 



LIST OF FIGURES 
 

Page 
 
1. Sample ad hoc mobile cloud ............................................................................................... 2 

2. SMS push botnet structure ............................................................................................... 16 

3. ATbot structure ................................................................................................................. 20 

4. ATbot design ..................................................................................................................... 21 

5. Bot page requests shown in both 3q and wifi connections for number of requests each 
bot is capable of generating per second........................................................................... 24 

6. Bot testing for the total amount of bandwidth used in KB/s ........................................... 25 

7. Mobile server connections for ModSecurity shown as total successful connection 
contrasting base install of Apache to the enabling of ModSecurity ................................ 33 

8. Mobile server connections for ModSecurity shown as total failed connections 
contrasting base install of Apache to the enabling of ModSecurity ................................ 34 

9. ReqTimeout total successful connections on Motorola ................................................... 36 

10. ReqTimeout total successful connections on Samsung .................................................... 36 

11. ReqTimeout failed connection total on Motorola ............................................................ 37 

12. ReqTimeout failed connection total on Samsung ............................................................ 37 

13. Motorola connection totals in average by timeout value ................................................ 38 

14. Samsung connection totals in average by timeout value ................................................. 39 

15. Motorola average failed connections by timeout value .................................................. 40 

16. Samsung average failed connection by timeout value ..................................................... 40 

17. Motorola number of failed connections by number of successful connections .............. 41 

18. Samsung number of failed connections by number of successful connections............... 41 

19. Samsung large attack successful connections .................................................................. 42 

20. Samsung large attack failed connections ......................................................................... 43 

 v 



21. Page request connections successful for text and image page at 20 or 10 second timeout 
value .................................................................................................................................. 45 

22. Page request failed for text and image page at 20 or 10 second timeout value ............. 45 

23. Page request timeout improvements from lowering the timeout level from 20 to 10 
seconds ............................................................................................................................. 46 

24. Text page delays to transfer a complete text based page at both 20 and 10 seconds for 
timeout value .................................................................................................................... 47 

25. Image page delays to transfer a complete text based page at both 20 and 10 seconds for 
timeout value .................................................................................................................... 47 

26. Page transfer time average across all trials for 20 and 10 second timeouts for both text 
and image pages ............................................................................................................... 48 

27. Dynamic timeout adjust levels showing successful page requests completed ................ 53 

28. Dynamic timeout adjust levels showing failed page requests ......................................... 53 

29. Controlled Flood level effects on successful connection running proposed dynamic 
algorithm ........................................................................................................................... 54 

30. Time in ms to transfer complete page at different flood levels while running dynamic 
algorithm ........................................................................................................................... 55 

31. Total successful connections averaged compared from new dynamic algorithm to basic 
timeout setup.................................................................................................................... 56 

32. Total failed connections average compared from dynamic algorithm to basic timeout 
setup ................................................................................................................................. 56 

33. Improvement percentages for using dynamic algorithm ................................................. 58 

34. Extended levels of flood volume effect on connections .................................................. 58 

35. Extended flood level effect on transfer time .................................................................... 61 

36. Successful connections for changing page content .......................................................... 61 

37. Transfer time at different page content ........................................................................... 62 

 

 

 vi 



CHAPTER 1 

INTRODUCTION 

Background 

Denial of service (DoS) is a type of attack designed to prevent legitimate traffic from 

accessing a network resource. The term DoS refers to a single system launching the attack 

toward its intended target. Distributed denial of service (DDoS) refers to the case of multiple 

systems simultaneously carrying out the denial of service attack. In order to disrupt the 

operation of the targeted system the DDoS attacks focus on exhausting the resources in either 

the network or the actual server of the intended victim. DDoS attacks are traced back to 1999 

with the tools Trin00 and Tribe Flood Network (TFN).[1] The attacks have become increasingly 

sophisticated and effective since those first tools.[2] 

The two main vectors for DDoS attacks are either at the network level or the application 

level. Historically DDoS attacks would be focused on the network level attacking through 

methods such as malformed packets and spoofed IP addresses to exhaust bandwidth and 

routing resources. Recently the trend has been to see the DDoS attacks incorporate or rely 

exclusively in attacking on the application layer.[3][4] The popularity of application level attacks 

can be traced to their respective effectiveness in overwhelming one particular aspect of the 

victim’s resources. 

Mobile cloud computing is defined by one or more mobile phones forming an ad-hoc 

network that can provide web service to outside connections or intra network 

communications.[5] The mobile usage focused on the purpose of DDoS defense in a single 

mobile running a web server. This web server can be representative of a user wishing to have 

1



content with them at all times that can be displayed to all nearby local connection or to serve 

out to the internet. 

Another possibility from a mobile ad hoc network is the sharing of resources.[6] A 

mobile when needing to complete computationally intensive operations would be able to seek 

and enlist the aid of other nearby mobiles over WiFi connections to offload some of the 

required processing. The nearby mobiles that are idle would be able to share resources to 

complete small amounts of work for the requesting mobile. This example requires the assisting 

mobiles do not offer too much power for assistance as to not drain their own batteries or 

occupy resources to the deficit of the device operators’ intended usage. 

Figure 1. Sample ad hoc mobile cloud.

Example map of an ad hoc mobile cloud network. The mobiles are interconnected into 

an ad hoc mesh network through wireless or sensor communications. The ad hoc network has 

2



access to an internet gateway to communicate out from the network. Additionally each mobile 

maintains its connectivity to the internet. This is the structure unique to ad hoc network by 

using mobile to have constant internet connectivity as well as intra network communications. 

Finally mobile clouds can be leveraged by governments and military for various uses. 

Military and organizations alike that desire to host private networks can make use of a mesh 

network comprised of a mobile cloud. Here a force could setup the mobile cloud and handle 

communications and sensor reporting for all the mobiles in a given area with a mobile cloud 

passing the information.[7] This would be beneficial in comparison to mobile devices 

transferring information through traditional internet backbones as it would eliminate the 

traditional internet links that could be intercepted. A government may also wish to use a 

mobile cloud setting in cases of public safety needs. A mobile cloud can be setup around a 

disaster area to alert any mobiles entering into the cloud area of the danger.[8] Also the mobile 

cloud could track the movements of first responders and report location data to each other in 

the ad hoc network. 

Using a mobile phone as a web server also comes with advantages for potential users. 

Primary the mobile web server is an excellent starting point to develop the future in mobile ad 

hoc networks. Users can host web pages on their phones at all times that are being served to 

the users around them at any given point in the day. One potential expansion of that is users 

mobile web servers can give information about the user that is completely user controlled. 

Then over the WiFi ad hoc network business could gain access to user supplied information on 

shopping preferences. A framework is established in the coffee shop to use mobile ad hoc 

networking to automatically place orders for users that enter the business and have properly 

3



configured their own mobile servers to broadcast order information out. The other main 

advantage to hosting web servers on mobile phones is the ability to run those pages 

independent of the internet. Pages can be served by a user in an area that has no connectivity 

such as after disasters cause power loss. Users would be able to host information sharing on 

their mobiles to others in the area through an ad hoc network despite no access to internet 

gateways. 

DDoS Attack Types 

Network Layer 

The main focus in network layer DDoS attacks is to consume all of the available 

bandwidth of the victim’s network. One such method to accomplish this is to a data flooding 

attack where the attacker sends massive amounts of data that must be processed by the victim 

allowing for the occupying of all the available bandwidth on the victims network. [9] Another 

way to accomplish expending all the available bandwidth is a UDP Flood attack. This is sending a 

high number of UDP packets to the victim across random ports. The packets have spoofed IP 

addresses so the victim returning unreachable destination packets will not be returned to the 

attackers, thus occupying no additional resources for the attack. The sheer number of UDP 

packets that can be sent to the victim will accomplish the task of occupying all bandwidth.[10] 

TCP SYN floods are a commonly successful network layer attack.[11] This attack utilizes 

an exploit in the TCP handshake process where a server is required to allocate a data structure 

on the stack to handle the incoming connection. [12] The attacker executes the SYN flood by 

sending the victim server a TCP SYN request with a spoofed nonexistent source IP address. The 

victim server will receive the SYN request and allocate its data structure on the stack to 

4



represent the connection request. It then sends a SYN-ACK packet to confirm the connection to 

be started. Because the attacker is using spoofed source IP addresses the SYN-ACK packet will 

not be responded to with the expected ACK as the attacker never intends to establish the 

connection.[13]  The received connection request will then sit on the victim memory stack until 

it reaches its timeout limit and drops the connection data. During the delay from generating the 

connection request data the timeout and attacker is able to generate such requests to the point 

that there is no longer room on the stack to receive any additional requests. Without the ability 

to receive any additional TCP connections all legitimate traffic is dropped from the victim until 

the TCP flood has ended. 

While becoming less common the smurf attack is an attack accomplished through an 

ICMP flood capable of disabling the target. The attack uses an ICMP echo request to abuse a 

broadcast address. The attack will spoof an ICMP echo request with the source IP address as 

that of the intended victim. The request is send to an intermediary broadcast network address. 

Upon receiving this request this intermediary broadcast will send all of its network members 

the echo request. Each of these network members then send their echo replies back to the 

source IP which is given as the intended victim. The high number of echo replies then will 

overwhelm the bandwidth available to the victim. 

Application Layer 

As opposed to network layer attacks focused on occupying all the bandwidth application 

layer attacks target the exhausting of a victims resources (some examples being sockets, CPU, 

memory, or I/O).  A main advantage of application layer attacks is they are harder to detect as 

often attack traffic is indistinguishable from normal HTTP traffic. Though different in focus the 

5



reflection attacks on the application layer serve much of the same function as the network layer 

attacks. A common method is to use DNS servers as the reflection point.[14] The attacker will 

create DNS requests with source IP address as the intended victim. The DNS server responds to 

queries with its response messages which are much larger in size to the received queries. These 

large messages are directed toward the target where it’s unable to handle the flood of 

responses. 

More specific to the application layer are attacks that use the HTTP for specific functions 

to achieve the DDoS.[15] First is the session flood. This can also be known as the excessive VERB 

attack. The attack is designed to generate connection requests from the attacker in such 

numbers as to overwhelm and prevent access from legitimate users. The attacker has no need 

to spoof IP address and will simply send as many valid GET or POST requests as the systems can 

usually carried out with a botnet. A variation of that attack is the excessive VERB single session 

in which the attacker makes many valid requests within its single HTTP session.  This can 

succeed when the victim has a security system capable of constraining the number of sessions. 

An attack that relies less on the number of attacking systems needed is the slowloris 

attack.[16] This is where the attacker will send HTTP requests without the complete set of 

header or body content. The victim server will open these connections while the attacker slowly 

sends the rest of the information. Exploiting the server keeping these connections open will 

allow the attacker to continue opening more and more connections under this method 

eventually occupying all of the server’s available connection sockets. With no available sockets 

legitimate connection requests will fail to establish with the server. 

6



A variation on the slowloris attack is the slow POST attack. Here the attacker will send a 

POST request with the correctly specified body field length. The attacker then sends the 

content at a managed and slow rate. The victim server will keep these connections alive while 

receiving the content so slowly the attacker is able to overwhelm the amount of available 

connection sockets much like the slowloris attack.  This attack has been shown successful 

against IIS and Apache servers.[17] 

Depending on the victim’s application a successful route to DDoS can be achieved in 

exploiting specific application vulnerabilities. These attacks will succeed by overloading the 

victim CPU. An example would be attackers learning of SQL injection vulnerability and flooding 

the victim with injections to lock up the CPU and bring the whole server down. 

Known Defense Methods 

Defending against DDoS attacks is a task that requires the wide scope to encompass as 

many known attack types as possible while remaining capable of mitigating attacks not yet 

developed with known signatures.[18] The ideal defense strategy would be to stop a DDoS 

attack closest to the attacking source to prevent the wasting of resources not only at the victim 

but on the routing path to the victims system.[19]  The challenge faced is that detection of a 

DDoS attack is accomplished much more successfully at the destination point of the attack. The 

two main classifications for describing current defense strategies will be divided on where they 

take place in terms of the defense mechanism location. 

7



Source and Hybrid 

Source and hybrid based defenses will describe methods of protecting and detecting 

DDoS attacks that occur closer to that attackers system or will encompass components from 

multiple locations in the route for the attack.[20][21] 

One method designed to combat network layer attacks is ingress filtering for source 

edge routers. [22][23] The proposed method is to have the edge routers determine if packets 

that originate in their own system have their source IP address set to a valid range within the 

systems IP address limits. If the packets do not then the edge router will deny the packet and 

not forward it along its intended path. The main limitations of this filtering will be that attacks 

originating from attackers that do not spoof their source IP address will not be stopped.[24] 

And this system could also harm mobile phone users as the current structure of IPv4 has 

mobiles receiving internal private IP addresses based on the network providers routing. 

Therefore as a mobile phone moves across the network its IP address will stay associated to its 

home agent while changing the edge router it would send traffic through. 

Another proposal for stopping DDoS attacks close to the source of the attackers is D-

WARD.[25] This method monitors traffic flow both in and out of the edge router. The totality of 

the traffic is considered to be a flow. This flow is analyzed for patterns that would represent 

typical or atypical behavior in a network. Flows are stored based on the originating IP within the 

edge routers network, holding statistics on TCP, UDP, and ICMP traffic. An example being the 

monitoring of TCP to detect number of packets in versus the number of packets out. After a set 

interval the flow is compared to the data of a typical TCP flow to detect for abnormalities. A 

limitation of D-Ward as a solution is first in storing of the flows statistics. Due to memory 

8



constraints not all source IP address can have flow statistics saved indefinitely. A hash table of 

recent connections and higher use connections is thus implemented to track as many IP 

address as the system can handle. The other main limitation is a matter of incentive for 

networks to implement a D-WARD system. The system may be effective in filtering out DDoS 

attacks originating in the network but that tangible benefit is not as easily seen as the intended 

victims of DDoS attacks that are being stopped by D-WARD are not required to be running D-

Ward themselves. 

A similar method that instead will focus on the bandwidth of traffic flowing both in and 

out of edge routers is found in MULTOPS and TOPS. [26][27] MULTOPS is designed to monitor 

the bandwidth looking for an imbalance of activity flowing out of the network compared to 

return traffic over its specified IP addresses. The MULTOPS router will store packet bandwidth 

rates for each of its IP addresses and drop packets when an imbalance that may represent a 

DDoS attack is detected. A limitation of this is that the memory used to store bandwidth rates 

for each IP address can be attacked itself and quickly exhausted of available space. Knowing this 

the TOPS solution was proposed that instead of a dynamically build structure for storing IP 

addresses traffic a fixed table will be generated to represent all internal IP addresses. With the 

benefit of a fixed table the TOPS method will not be vulnerable to DDoS attacks. The drawback 

though still shared with the MULTOPS system though is that legitimate network traffic is 

capable of existing at an imbalance of bandwidth to and from an IP. An example would be a 

stream of multimedia content will largely be one directional and has the potential to set off the 

abnormality filter while having no place in a DDoS attack. 

9



No single source of defense is capable of stopping DDoS attacks, so current methods 

being proposed are focused around the hybrid model with different components of the defense 

located in separate locations along the internet and networks.[28] Basically the setup could be 

that the detection of a DDoS attack would occur at the destination location which would then 

implement filtering closer to the attackers systems.[29] 

At the application level a hybrid approach is the Speak-up.[30] The novel approach here 

is not to filter or limit the bandwidth on attackers. But instead have the destination detect 

attacks as they are in progress then send requests out to all incoming connections to increase 

their respective upload rates. DDoS attacking systems will be operating at maximum upload 

rates already so the only connection that will attempt to increase are the legitimate users.[31] 

These legitimate users are then able to occupy a higher percentage of the resources and 

complete their tasks largely unaffected by the DDoS. The drawback to this method is it is only 

fit to be deployed on systems large enough to handle the higher traffic loads. A limited resource 

server would only serve to harm itself faster. 

An application specific defense commonly undertaken is to determine if a user is a 

human or if it is a bot. One proposal is to have browsing statistics designed to store the typical 

human user interaction with a web server.[32] One key component is detecting bots based on 

the speed at which they can request additional pages. Typical browsing data will show humans 

to redirect at expected time periods. While an aggressive bot will instead generate traffic at its 

maximum rate by minimizing time between requests those bots can then be filtered against. 

Another proposed feature is adding links and text fields that are small enough to be invisible to 

a human browser. Then any interaction with said links will signify that user as a bot. 

10



Another hybrid based example is a trust based model. The proposal is to monitor a 

user’s connection to the server and use browsing statistics to generate trust levels.[33] An 

Entropy is used to serve as a measure of randomness to help represent the interaction of 

human user. Then when a DDoS attack is detected the method will continue forwarding packets 

associated to users with high trust values and low trust values will immediately begin being 

dropped. [34]  Unknown trust values will be evaluated and if upon receiving an entropy value 

that deviates too far from predefined expectation that session is dropped and source is 

identified with low trust. 

Destination 

These methods will refer to the defense against DDoS attacks taking place at the 

destination of the attacks, being either the victim server or its edge router. These methods in 

comparison to source based defenses will much more accurately be capable of detecting 

attacks as they occur.[35] 

The first solution to defense occurring at the destination is that of enlisting IP traceback 

methods.[36] This is specifically to trace the true sources of attacker IP addresses and help 

overcome the attacker’s usage of spoofed IP address.[37] Solving this problem from the 

destination is accomplished by determining which connections are attackers then recursively 

test upstream links to locate where the attacker is originating from.[38] The limitation with 

finding sources through this method is the extensive overheads required as the ISP would also 

need to cooperate in moving up the upstream connections. 

Another attempt is to keep logs of connection usage when the system is not under a 

DDoS attack. The method will then when under attack check previous logs in order to filter 

11



traffic according to the past behavior.[39]  Only allowing previously established connection in 

the log will effectively filter out an attack and not compromise use of the correct users with a 

previous visit though it will not assist legitimate users on their first connection attempts. 

Application layer attack defenses at the destination include a proposed defense against 

amplification attacks.[40] The first step is to disable open recursion on name servers from 

external sources. The proposal is then to keep a database that will track DNS messages.[41] The 

table will track all the DNS requests going out and then upon receiving a DNS reply can cross 

check that there exists and request before forwarding along the reply to its destination. The 

limitation is that the router must maintain the database and the overhead associated to the 

additional step of logging all DNS messages. 

DDoS-Shield is a proposed tool to protect at the destination through monitoring HTTP 

session activity profiles.[42] A value is assigned to each session that in contrast to most 

methods is not a binary value but a continuous value. Then the shield will serve as a rate limiter 

giving bandwidth and connectivity assignments based on the connections value. 

Summary 

The further purpose of the paper is to focus on the possibilities of DDoS attacks in the 

environment of mobile devices.  Chapter two provides background on how a botnet capable of 

DDoS attacks could be constructed on the android phone platform and what its attack 

capabilities would be. This will show the design and structure of a potential botnet and its 

feasibility in attack output per bot. 

 The third chapter will then focus on how resilient a mobile is against DDoS given the 

current common tools available to Apache servers. Readily available modules will be examined 

12



for their potential success operating on a mobile device. Then a proposal of a mobile specific 

method is created to serve as a better method of defense against DDoS attacks that is 

specifically created for use on a mobile device. 

13



CHAPTER 2 

MOBILE BOTNETS 

With the growth in amount of active mobile phones running the Android platform there 

are security risks that while known and defended against on PC are viable for implementation 

on Android devices. [43] Botnet is described as a collection of infected Android devices that can 

receive and execute commands from the botmaster, who will have sole control over the 

botnet. The main focus is in designing for the ability of the botnet to show capability in 

launching a denial of service attack.  The botnet was tested for the amount of bandwidth 

capable of occupying as well as the volume of connections that can be occupied. 

The purpose of building a mobile botnet is in having the full capabilities in a traditional 

botnet at the hands of the botnet spread across many mobile in a platform that is not ideally 

ready to have defenses against being infected.[44][45] Worms, Trojans, and other popular 

propagation methods are at this point well known enough on the pc that antivirus software or 

operating systems themselves are able to detect and disable most.[46] Currently the mobile 

platforms are not as strongly secured for the average user. This means that designing a botnet 

for mobile phones can easily be spread and left to run on the mobile with a lowered chance of 

detection from the infected users operating system.[47] Android uses permissions to alert users 

to what services of the mobile an app is requesting access too. The downfall is that these 

permission categories are often much too vague for a user to make a proper informed decision. 

In granting an app permission to use internet connections a user has unwittingly enabled an 

app to run a bot in both command and attacks over that internet connection. 

14



The mobile botnets end result is to generate traffic flows sufficient for successful DDoS 

attacks against a chosen victim. A mobile cloud can further be used to advantage in the creation 

of a botnet as connected devices would be able to propagate the infecting code as well as pass 

command messages within the ad hoc network saving further chances of detection from 

making calls out to the internet for instructions. 

Background 

Botnets have existed on the PC arena for over a decade and are evolving constantly as 

the defense mechanisms respond to each newly found botnet design.[48]  The project focused 

less on the distribution of a botnet and instead work on the command and control and 

execution aspects.  There are two main methods for command and control of a botnet, push 

and pull.[49] Push means the botmaster will issue commands and have these commands sent 

to bots and spread throughout the botnet by forwarding the commands to each bot.[50] Pull 

uses a method where the botmaster will setup the command and have all the bots set to look 

for the command on schedules and execute from there. Most early botnets relied on pull 

structure often using IRC as the method of posting commands. Security professionals have been 

able to severely limit the viability of this method and have ushered in many more peer to peer 

style push botnets. The main limitations to pull command and control botnets on PC was the 

ability of defenders to quickly detect the botnet and begin receiving the commands or 

potentially injecting their own commands into the system.[51] 

 The presence of botnets on mobile devices is a recent advance with some examples of 

potential consequences of the spread of an effective botnet. The main method of mobile 

botnet so far created has been that of using SMS to develop a push style command and control. 

15



The advantages of using SMS are laid out. First the passing of commands by SMS greatly 

reduces likelihood of detection as SMS traffic[52] is not frequently monitored. Additionally the 

usage of push control through SMS allows devices not currently on network to still receive 

commands when they return to coverage areas. The Android platform allows for the reading of 

SMS messages and deleting the contents before users are even alerted to the arrival of 

messages reducing chances users will discover the bot on their device. 

Figure 2. SMS push botnet structure.

One approach has been to implement command and control elements into SMS while 

also building other command and control elements into the botnet to form a hybrid.[53]  This 

brings in the use of Bluetooth picked for its availability on most smartphones. The Bluetooth 

can assist in short range command forwarding. Though the design must be careful to enable 

and disable the Bluetooth to only run when the botnet needs it, as extended running time of 

16



Bluetooth will create noticeable battery loss for the smartphone.[54] The final component is to 

use HTTP channels to deliver information from the bots back to a server under the botmasters 

control. HTTP in this botnet is not used to deliver commands or spread the botnet in any way. 

The topology of the botnet is structured as a tree with the use of selected bots to serve as 

cluster heads responsible for forwarding commands on down the tree. 

Another approach to building a mobile botnet was to exploit the availability of 

unsecured WiFi access points encountered in most cities. [55] WiFi is chosen exclusively over 

phones data connections as it provides a much stealthier channel. In order to use open WiFi 

connections the botnet is designed to handle all its traffic over port 80 as HTTP traffic. This will 

prevent the occasions where an access point has restricted opening traffic through any other 

ports. In order to function then the bots will join open access points when possible and 

immediately attempt to retrieve commands from the botmaster by HTTP to the botmasters 

controlled server. The topology is centralized control where no bot relies on another to relay 

commands. This build showed not only the capability of using open WiFi but demonstrates the 

potential DDOS results in the botnet issuing SYN requests over WiFi connections as potentially 

capable of flooding sites if scaled up across multiple geographic locations. 

One of the most important design features in developing a botnet is to keep the 

command and control as stealthy as possible. A potential method for this was developed to use 

Google’s cloud to device messaging (C2DM) as the basis for command and control.[56] C2DM is 

a service provided to have Google servers forward commands to installed apps on mobile 

devices. This push command will be sent to available devices and delayed and resent to devices 

that are not immediately available when the command is first issued. The botnet is able to take 

17



advantage of the high uptime availability of Google’s servers to help overcome the single point 

of failure introduced by having all commands in C2DM. C2DM was deprecated by Google on 

6/26/2012 and replaced by Google Cloud Messaging (GCM). GCM alleviates some of the 

difficulties the C2DM botnet faced in terms of messaging limits allowing for the botnet to not 

have to be broken down into smaller botnets. A major advantage in this design is the ability to 

deliver a payload with the commands compared to SMS botnets where commands were limited 

to just delivering a message. 

One of the main difficulties with centralized command and control is the danger in 

having a single point of failure to issue commands from. To combat this SURL Flux is designed to 

seek commands from a set of sources.[57]  This is accomplished by each bot generating URLs 

that are potentially under the control of the botmaster that will be holding a special jpeg file 

that has the commands encoded and appended to it. This generating of URL at the bot level is 

an advancement made forward from Andbot that requires getting the URL by accessing a blog 

server. 

 The recent developments of mobile botnets are showing a growth of sophistication in 

the methods used for command and control. This focus of discovering the potential in varied 

structures is allowing the developers of botnets to select methods best suited for the actual 

construction of their botnets. One aspect of the botnet not focused on is the propagation. The 

main method currently for propagation is to use repackaging or Trojan applications. [58] This is 

chosen especially on the Android for its ease of delivery and exploit the trust of users in their 

application downloading decisions. Furthering the advantage of the attacker is that there exists 

18



no universal or centralized method of security for mobile devices. Given the CPU and battery 

needs a robust antivirus solution does not exist that can trap and detect mobile botnets. 

Proposed Botnet 

The design for the botnet exists in two main pieces. First is the code that carries out 

attacks from the compromised mobile devices. This was designed to be as modular as possible 

in order to function as the execution aspect regardless of how the botnet is structured or 

spread across devices. The main focus here was for generating site traffic for the purpose of 

denial of service.[59] This was accomplished through one of the known methods of denial of 

service traffic. 

The second piece of the botnet design was the creation of a sample application that 

demonstrates the setup in infecting a device and receiving and handling of instructions from 

the botmaster that are then handed off to the attack piece. 

For the purpose of the project this application piece focused on the exploitation of 

Twitter. To begin an app was created that can offer users Twitter services and designed as a 

simpler user experience compared to the official app. The choice is to set the app apart and 

generate downloads and installs from users that trust and utilize the application for its stated 

purpose. Application is structured around a main view and activity calling the model for 

functions and a separate service that will be setup to run from the main activity and then start 

on boot from phone.[60] With the integration of Twitter for hiding commands the botnet will 

now be referred to as ATbot for android twitter botnet. 

19



By using Twitter for legitimate reasons and the front of the application users will be 

granting the app authorization to Twitter. For the purposes of ATbot the harvesting and 

malicious use of the authorization tokens being passed to infect devices was not explored. The 

benefit of authorized devices is for the command and control. The botmaster will be able to 

simply setup and public Twitter account and post command instructions to that account. 

Infected devices on schedule will then pull down such tweets and follow the command from 

there. Having infected devices authorized on Twitter will hide the command pulls inside of 

otherwise legitimate network traffic. Detection of ATbot from receiving instructions is greatly 

reduced as Twitter traffic will frequently be white listed from security applications and not 

monitored. [61][62] 

Figure 3. ATbot structure.

20



ATbot was designed to interpret and execute a set number of commands. There was 

also a requirement of basic functionality that serves as the false front of the app that users are 

interacting with that ultimately leads to Twitter authorization. The building of the front app will 

be ignored as anything that will grant Twitter authorization codes will be considered sufficient 

to help propagate the botnet. 

Function structure of ATbot 

Figure 4. ATbot design.

ATbot was setup to work as modular as possible to fit into any false front application 

that is designed. Therefore The MainActivity calling the TwitterModel will only need to 

differentiate the app specific tweet needs such as posting a high score to the users timeline. 

TwitterService works as a background service and will be called on device boot or opening of 

21



the app. The MainActivity checks for proper access tokens before launching though to ensure 

the service will be capable of retrieving the commands. 

TwitterService is setup so that it is passed a main botmaster account and time in which 

to check on its startup. The functions exist such that the service will fetch and reset its 

botmaster Twitter handle. The design is such that a with multiple applications capable of 

building in ATbot there needs to be a single Twitter account on first access for non updated 

release packages that can point to the current botmaster account for current commands. A 

handle may be capable of being detected on the side of Twitter if the botnet has grown to a 

size such that thousands of accounts checking a single user would alarm Twitter to an account 

acting outside of expected bounds. Having set the first master account the app checks as 

merely a handle forwarder should prevent a simultaneous surge of timeline checks as the apps 

only will view the once on their granting of access tokens. The other functions that must be 

capable of are setting the time in which to check for commands and resetting to future 

botmaster accounts. Likely operation of the account would be to set the pull time and issue a 

new botmaster account in every tweet the bot pulls down. Finally TwitterService will need to be 

capable of calling another background service to launch an actual DDoS attack. 

The PageAttackService is as simple as a background service that is also designed to 

function independent of the false front application an infected user downloaded. Launching the 

attack service will require only a where, when, and how long. It is capable of receiving the site 

to attack and given a time and for how long the attack is planned to last. 

One key aspect of the pulling of tweets from the botmaster is that the instructions must 

be encoded and make use of short instruction sets. Encoding will assist in hiding the exact 

22



nature of the botmasters tweets lowering the change of discovery of the function of the 

botnet.[63] Instruction sets must be kept as small as possible as a main limitation of Twitter is 

the 140 character maximum. 

Capability of Android Based Bots 

The proposal of ATbot relies on the infected android phones being capable of 

generating traffic sufficient to harm the function of a site and thus function as a DDoS attack. 

Designing of code that can properly execute an attack from android requires working around 

the built in limitations and security preventions. The main limitation is that java for android will 

not allow the spoofing of source on IP headers. Without this capability the use of a network 

layer attack is not examined any further. The focus of the attack code was to work on the 

application layer by generating page requests in sufficient number to overload a servers 

capacity on either bandwidth or connection limitations. 

The attack always occurs with an intent service to allow background operation as a user 

would not allow the operation of a botnet on their phone if they are capable of discovering its 

operation through something as trivial as a foreground icon or alerts. Also of note is that 

attacks should not be used at too frequent of a rate such that a user could be capable of 

noticing a large uptick in their data usage and discover the botnets presence in solving for 

potentially higher bills. 

To determine the capabilities of individual phones as bots in a DDoS the test is setup to 

pull down a target webpage for a set number of iterations. The time was recorded for total time 

to complete the test. This allowed to generate and expected number of page requests the 

23



phone is capable of generating per second off of a typical web server. The first test was to 

check if the phone can operate successfully from both a 3g and WiFi connection. The attack was 

directed to run in a short burst at www.cse.unt.edu. These tests were not designed to actually 

impair the performance of the targeted site so results did not produce timeout or forbidden 

http responses. 

Figure 5. Bot page requests shown in both 3q and wifi connections
for number of requests each bot is capable of generating per second.

The results of 10 trial runs for pulling page requests from the site show more a slightly 

greater amount of pages per second from WiFi. The averages being 4.3 pages per second on 3g 

and 4.6 pages per second on WiFi. While not insignificant, may show improvement for 

operation on the potential large scale of a botnet >1000 bots. The data supports that the 

android phones will be capable of producing traffic for a DDoS on either WiFi or mobile data 

connection. This will allow the attack code to run when designed without concern for the user 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

1 2 3 4 5 6 7 8 9 10 

R
e

q
u

e
st

 p
e

r 
Se

co
n

d
 

Trial 

Page Requests for cse.unt.edu 

3g 

wifi 

24



being on WiFi or not. The only limitation to the attack would be the phone is off or in an area 

without access to WiFi or data. 

Figure 6. Bot testing for the total amount of bandwidth used in KB/s.

The bandwidth test conducted the page requests at the maximum rate capable over 

WiFi to determine the potential maximum traffic a single mobile can produce. The results are 

reflective of the amount of content a page serves and is inversely related to the page request 

yield in connection numbers. With unchanged attack of page requests the specific site to be 

targeted may thus show resource exhaustion in a different manner depending on its content 

volume. The other feature for a botmaster to be aware of is that in attacking a site with more 

content on the page being requested there will exist greater potential data usage for the phone 

user to take notice of the botnets presence. 

Summary 

The conclusion is that creating a botnet on the Android platform is not only possible but 

can result in a botnet that is capable of generating the traffic to launch DDoS attacks and 

363.9019644 

1141.434898 

1561.811914 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

1 

K
B

/s
 

Bandwidth Test 

Google 

cse.unt 

Yahoo 

25



succeed in affecting a web server. With a strong propagation method the mobile botnet can 

spread to enough devices to be viewed as a true threat to server operators and must be 

accounted for in their defenses. 

26



CHAPTER 3 

MOBILE SERVER DEFENSE AGAINST DDOS 

With smartphones constantly becoming more ubiquitous one new potential area to use 

them is in the hosting of personal web servers. Phone connectivity has shown that in 2013 the 

average smartphone generated 529MB per month.[64] As the common user is experiencing a 

more stable network and reliable data connections the ability to host their own servers is 

rapidly becoming a possibility. A use for a personal web server can be in always having a 

personal web page or blog that the user can update on the go. Or users can hold their 

presentation information on the phone and in instances without a full audience on the internet 

a local network can still allow connections to view all of their information. 

As for why a mobile cloud and servers need to be examined for defense against a DDoS 

attack, the reasons depend on the intended operation for the mobiles. In the most general 

example malicious agents could be attacking mobile servers for no direct benefits but find gain 

by disrupting a users network from standard operation. If the operation for example was in 

ecommerce this would disrupt a business even though it provides no direct benefit to the 

attacking agent. 

 In the example of military based ad hoc network a DDoS attack could be directed at 

nodes in the network from an outsider interested in breaking the communications. For instance 

a military ad hoc network may have resources with mobiles reporting status and location. A 

DDoS attack could then overwhelm a selected resource and prevent other mobiles in the ad hoc 

network from being able to communicate. This may lead to a decision of operations being sent 

27



out to investigate the now non reporting node that would lead to wasting of resources or 

danger to the military. 

Problem Definition 

The purpose of testing an apache server for success and failure of performance against 

DDoS attacks is to discover and overcome the unique challenge of a mobile phone compared to 

a traditional server environment. Experimenting is done to discover the best defense against 

DDoS while maintaining any changes to default Apache to have as small a footprint as possible 

as the capability of the mobile to serve a page is limited to begin with and adding cumbersome 

tools will degrade the performance too greatly for legitimate users. The goal is for the mobile 

web server to detect and reduce the effectiveness on any incoming DDoS attacks that are 

launched against it. Ultimately the aim is to design a DDoS defense mechanism that requires 

little additional resources beyond the basic installation of apache while providing substantial 

improvements in defending against DDoS attacks in comparison to the standard installation of 

apache. 

More powerful web services could be provided by linking multiple mobile phones 

together to form an ad hoc network. For the purpose of examining the effects of DDoS attacks 

against a mobile web server ad hoc networks are not analyzed. They are not looked at as the 

complexity of maintaining the network and resource and connection sharing will change the 

approach to defending against DDoS attacks. 

Testing Environment 

With the mobile phone web hosting still being in its earliest stages the web servers are 

not optimized and secured such as one would find in looking to setup a traditional server. For 

28



the purpose of the testing the web server is setup to have basic security measures in place by 

virtue of demonstrating a simple web server run from updated publicly released resources. 

Namely the server is to run on apache and the webpage is off of wordpress code. The testing 

will thus be done entirely on mobile web server performance under small scale DDoS attacks. 

In order to demonstrate easily available resources Apache and wordpress for the 

experiment a LAMP stack needed to be setup on mobile devices. With a Linux distribution 

running on top of android for the Motorola android device and the developer release of Ubuntu 

touch on the Samsung the installation of the AMP stack is the same straightforward process 

and server could undertake through shell access. The phones are run with root access being 

granted to the Linux shell in order to make all necessary file system modifications. While not 

ideal to require root access for a smartphone owner to setup the web server the test scenario 

was not focused on the ease of end user web server installation but on the configuring of said 

server. 

After the basic installation of the LAMP stack and verification of a connection the server 

is then given the default installation of a wordpress site. No theme or content changes are 

given, the site is installed just to provide a small amount of content to transfer above the 

apache default index.html page. The wordpress installation also ensures the proper LAMP setup 

as it will fail to function without the required sql and php downloads. 

Testing of the DDoS defenses will be accomplished by creating an attack against the 

mobile web server and monitoring the performance during this attack. The type of attack used 

can be characterized as a sustained TCP flooding attack. This attack is designed to exhaust 

server memory resources to generate failed connections and broken data transfers. This attack 

29



is accomplished by having machines open sockets on the mobile server as fast as they can back 

to back. Those sockets once opened will not be used further from the machines but no close 

connection messages will ever be sent. Forcing the mobile server to keep opening new 

connections and maintaining memory devoted to the sockets that are no longer going to have 

any messages come in through them. 

Examining Modules 

The most advanced module that can be attached to Apache2 for defense against DDoS 

attacks is mod_evasive. This mod is accepted at being successful in helping Apache servers 

mitigate DDoS attacks, but for the mobile setting it is not deemed an acceptable tool. The 

drawbacks that limit its effectiveness on a mobile web server start with the footprint left from 

its operation. Mod_evasive works by creating a running hash table on the IP addressing making 

requests to the server per child thread that is spawned from Apache. Essentially the trouble 

here is that in creating and watching for repeated page requests on the same child 

mod_evaisve is efficient in denying access to the IP address making those requests at the 

expense of processing the connections for each individual child. The mobile does not have the 

spare resources to constantly maintain the checks at each child level. While configurable 

another limitation is that the checks are designed to run as a set limit on the number of 

requests per defined time period. With the already limited processing power and bandwidth 

available to the mobiles the configuration for mod_evasive would have to be extremely narrow 

windows to catch the attacks. The setting would need to be in the nature of a few requests per 

second to represent a DDoS attacker. That figure runs too dangerously close to a legitimate 

user making a burst of refresh requests and accidentally blacklisting themselves. This kind of 

30



chance at false positives is unacceptable to the needs of a web server. Mod_evasive is really left 

to its best usage on a server that can support the bandwidth needed to configure the settings 

such that the chance of confusing a legitimate user from malicious bot activity approaches zero. 

The other huge drawback in mod_evasive on the mobile is that even when triggering for a 

malicious user the connection requests are still able to queue before being replied to with 403 

forbidden http messages.  For these reasons no testing scenarios are executed to work on 

mod_evasive on the mobiles as the installation of it would be impractical to the goals of 

reasonable DDoS defense. 

The next examined module is ModSecurity. This module at its core is designed for to see 

HTTP traffic and then allow for analyzing and logging for events the user is watching.[65] The 

benefits of using ModSecurity are found in its foundation of hooking into Apache at specific 

points and reading the information going through the server. ModSecurity hooks into Apache at 

the five locations: request headers, request body, response headers, response body, and 

logging. The module is also built around the concept of using rules to detect conditions and 

take specific action when those conditions are found at any of the hook in points. The flexibility 

offered in writing custom rules at a predefined point in the connection process can allow for 

powerful usage of the module to achieve specific goals. One consistent area of success with 

ModSecuirty is defending against XSS or SQL injections as the rules can read the requests and 

properly strip the malicious attempts before passing them along. The final main advantage is 

the ability to utilize persistent storage from the rules. This can be a key feature in monitoring 

the IP addresses of malicious requests to filter and deny. 

31



Despite the flexibility and potential successful usage of ModSecurity, drawbacks were 

found that prevent it from being a good tool for defending against DDoS attacks on a mobile 

web server. The first limitation is that the module is not designed to function as a successful 

defense application out of the box. Users must either create or download preexisting rules and 

configure them. The danger here is that the process of creating rules can be quite complex to 

get correct and leaves a high change that the user will create rules that either do not fully 

accomplish the stated goals or worse may leave the server vulnerable in some new unplanned 

way. Even in downloading preexisting rules from trusted sources the configuration must be 

looked at carefully as no two servers will have the exact same needs and improperly configuring 

downloaded rules can also create unintended consequences. In both cases incorrectly setup 

rules can result in blocking service to legitimate users by generating too many false positives. 

The main limitation on implementing ModSecurity for the mobile web server though is 

in the amount of resources required to run it. One of the first features is that on the request 

body and headers ModSecurity will buffer the data until the whole request is finished. This is 

helpful in analyzing the incoming traffic but will place a RAM burden on the server to keep all its 

requests buffered until complete. In the case of slow incoming connections on the mobile these 

buffered requests can quickly add up to occupy too much memory for proper server function. 

Additionally the mod will parse all of the information it is pulling in order to implement the data 

with the rules sets. This parsing, especially on complex information such as XML, will place extra 

strain on the CPU as well as holding the parsed data will again add to the needs of RAM. Finally 

the logging process depending on how it is configured has the potential to become very I/O 

expensive if too much information is being logged. 

32



In order to determine if the resource usage was acceptable in the context of providing 

DDoS defense without sacrificing operation ModSecurity was setup for the first test. Here 

apache is setup on the mobile and ModSecurity is installed and configured with the OWASP 

Core Rule Set.[66] The rule set is designed to be a starting foundation for web server security 

with the module and needs little configuration to see results. The rule set states that it will 

assist in defense against HTTP level DOS attacks in both flooding and slowloris variety. For the 

testing the server is flooded connections over HTTP port 80 that are then left dormant to 

occupy connection space while more connection requests are sent as soon as the previous 

connection has been established. 

Figure 7. Mobile server connections for ModSecurity shown as total successful

connections contrasting base install of Apache to the enabling of ModSecurity.

Here is the example of 10 trials run on the mobile server. First is with the default Apache 

setup and running Apache2 with no changes. And then run again with ModSecurity enabled 

with the OWASP Core Rule Set. This shows that the ModSecurity setup was generally able to 

process more successful connections while being enabled. 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

1 2 3 4 5 6 7 8 9 10 

C
o

n
n

e
ct

io
n

s 

Trials 

Successful Connections 

Default Apache 

ModSecurity 

33



Figure 8. Mobile server connections for ModSecurity shown as total failed

connections contrasting base install of Apache to the enabling of ModSecurity.

Here is the other side of the experiment in looking at the failed connections returned to 

the machines in timeouts. Ideally here the ModSecurity would achieve a more consistent lower 

value as the timeout represent connections that are not able to establish. Non established 

connections are a goal of DDoS in that users will be unable to access the targeted website. 

Ultimately what is being seen is that while ModSecurity is capable of generating more 

connections it is doing so at the expense of losing potential connections. Having not been able 

to achieve a reliable reduction in timeouts the server would still be vulnerable to DDoS as much 

as the default Apache. It is for this reason ModSecurity is not examined any further. 

The final module to look at is ReqTimeout. This is examined for its ability to maintain 

operation for new connections while under a flood attack as well as detect and mitigate from 

slow attacks. This is a key distinction from the other two modules as they were not designed 

around monitoring for slow attacks which are rising from the ability to affect on network but 

also at application layer. [67] CPanel in fact specifically recommends ReqTimeout for defending 

0 

20 

40 

60 

80 

100 

120 

140 

160 

1 2 3 4 5 6 7 8 9 10 

Ti
m

e
o

u
ts

 

Trials 

Failed Connections 

Default Apache 

ModSecurity 

34



slow DDoS attacks. [68] ReqTimeout comes as a disabled module by default in Apache2, 

allowing end users very easy enabling and configuring for DDoS defense needs. ReqTimeout 

works by keeping track of all the servers established connections and monitoring for how long 

the connection has been open without either completing or receiving any further requests. The 

delay on how long a connection will be left open is configurable as is a minimum transfer rate. 

Examination of ReqTimeout 

ReqTimeout is examined further for its viability in defending against DDoS attacks 

primarily for its smaller footprint on resource usage especially in comparison to benefits 

offered. The test scenario is setup first on the Motorola razr and repeated for the Samsung 

nexus 4. Motorola runs a 1.2GHz CPU and 1GB RAM, and the Samsung 1.5GHz with 2GB RAM. 

The testing is to show connections that are successful versus the unsuccessful for the web 

server in the states of default Apache, then with ReqTimeout enabled to timeouts of 20 

seconds, 10 seconds, and 5 seconds. Testing is not completed below 5 seconds as given the 

nature of a mobile connection lowering the timeout window too far would begin to drop 

legitimate users when signal strength is not the best on both the server and requesting users 

ends of the connection. The testing is again done to open as many connections as possible then 

no further transfer is requested. This is used as a hybrid simulation in flooding and slow attack 

as the connections are designed to flood and occupy all of the available connection sockets on 

the server while then requesting no further data. Actual slow requesting is not tested as the 

module is predefined t o handle that and would result in the same rate of flooding as only 

opening the connections. Not slow attacking also guarantees that the attacking machines are 

not expending any further resources on the connections once they open them. All testing is 

35



completed in a local network setting to maximize the attacking users ability to generate 

requests. 

Figure 9. ReqTimeout total successful connections on Motorola.

Figure 10. ReqTimeout total successful connections on Samsung.

These first tests for successful connections demonstrate the effects of ReqTimeout in 

granting the most possible connections. Both mobiles show a strong increase in effectiveness 

going from the base Apache install to having enabled ReqTimeout even at the timeout level of 

0 

2000 

4000 

6000 

8000 

10000 

12000 

1 2 3 4 5 

C
o

n
n

e
ct

io
n

 S
u

cc
e

ss
fu

l 

Trial 

Motorola 

Base 

ReqTimeout 20 

ReqTimeout 10 

ReqTimeout 5 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

1 2 3 4 5 

C
o

n
n

e
ct

io
n

 S
u

cc
e

ss
fu

l 

Trial 

Samsung 

Base 

ReqTimeout 20 

ReqTimeout 10 

ReqTimeout 5 

36



20 seconds. The Motorola shows on average a 130% improvement while the Samsung 74%. The 

gains are not as significant for the Samsung and this is attributed to being a more powerful 

device, so by default it is more capable of handling and processing the connections. 

Figure 11. ReqTimeout failed connection total on Motorola.

Figure 12. ReqTimeout failed connection total on Samsung.

These represent the failed connections during the same trial runs as the previous 

successful connections tests. Both mobiles show a decrease in the amount of connections that 

0 

10 

20 

30 

40 

50 

60 

70 

1 2 3 4 5 

Fa
ile

d
 C

o
n

n
e

ct
io

n
s 

Trial 

Motorola 

Base 

ReqTimeout 20 

ReqTimeout 10 

ReqTimeout 5 

0 

5 

10 

15 

20 

25 

30 

35 

40 

1 2 3 4 5 

Fa
ile

d
 C

o
n

n
e

ct
io

n
s 

Trial 

Samsung 

Base 

ReqTimeout 20 

ReqTimeout 10 

ReqTimeout 5 

37



timeout and result in failure. Here the improvements in moving from default Apache to a 20 

second timeout are 8.5% for Motorola and 55% on the Samsung. The gains for the Motorola 

show a much more respectable 32% from default  when the connection timeout is lowered to a 

10 second threshold. The difference again can be attributed to the different phone specs. The 

Samsung is capable of serving more concurrent connections and thus shows a greater benefit in 

clearing non active connections at any point then the Motorola which is still suffering from the 

flood in keeping open 20 seconds connections. The average connections do well to show the 

advantage in enabling ReqTimeout. 

Figure 13. Motorola connection totals in average by timeout value.

0 

2000 

4000 

6000 

8000 

10000 

12000 

Base Req 20 Req 10 Req 5 

C
o

n
n

e
ct

io
n

 S
u

cc
e

ss
fu

l 

Mod setup 

Motorola 

38



Figure 14. Samsung connection totals in average by timeout value.

The average number of successful connections is shown across each of the trials for the 

settings of the server. The most noticeable item here is the decline in successful connections on 

the Samsung when lowering the connection timeout from 10 to 5 seconds. This is a result of the 

mobile spending more resources clearing out the connections at 5 seconds when its capable of 

just generating the new connections it needs and ignoring them . The Motorola shows a steady 

improvement as on the lower spec phone the more sockets it can free up the better 

performance that will be achieved. 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

Base Req 20 Req 10 Req 5 

C
o

n
n

e
ct

io
n

 S
u

cc
e

ss
fu

l 

Mod setup 

Samsung 

39



Figure 15. Motorola average failed connections by timeout value.

Figure 16. Samsung average failed connection by timeout value.

On the timeout side of things the mobiles both show steady improvements in the 

number of connections that fail as the timeout setting is lowered. There exists a similar pattern 

to successes that the Motorola doesn’t realize its best gains until lowering the timeout down to 

10. Here the Samsung is still showing improvements from 10 to 5 seconds unlike the successful

connections. This is further proving that the resources to keep open for all incoming 

0 

10 

20 

30 

40 

50 

60 

Base Req 20 Req 10 Req 5 

Fa
ile

d
 C

o
n

n
e

ct
io

n
s 

Mod Setup 

Motorola 

0 

5 

10 

15 

20 

25 

30 

35 

Base Req 20 Req 10 Req 5 

Fa
ile

d
 C

o
n

n
e

ct
io

n
s 

Mod setup 

Samsung 

40



connections are succeeding at the expense of the rate at which new connections are actually 

being established. 

Figure 17. Motorola number of failed connections by number of successful connections.

Figure 18. Samsung number of failed connections by number of successful connections.

Here the plots for each of the tests under changing ReqTimeout settings are shown as 

successful connection against timeouts on that trial. Both mobiles are displaying the 

relationship of increased number of timeouts is correlated with lowered value of successful 

R² = 0.6117 

0 

2000 

4000 

6000 

8000 

10000 

12000 

0 10 20 30 40 50 60 70 

Su
cc

e
ss

fu
l C

o
n

n
e

ct
io

n
s 

Failed Connections 

Motorola 

R² = 0.5783 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

0 5 10 15 20 25 30 35 40 

Su
cc

e
ss

fu
l C

o
n

n
e

ct
io

n
s 

Failed Connections 

Samsung 

41



connections. What these do not take into account is cases where a connection is successful but 

will require more time to establish. Of note also is the Motorola operating even at lowered 

values of timeout is not able to establish any volume of connections without incurring over 20 

failed attempts. 

To check on the viability of the Samsung with increased traffic loads the tests are run 

again with double the machines creating connections. 

Figure 19. Samsung large attack successful connections.

0 

5000 

10000 

15000 

20000 

25000 

1 2 3 

C
o

n
n

e
ct

io
n

 S
u

cc
e

sf
u

l 

Trials 

Samsung 

Base 

Req 20 

Req 10 

Req 5 

42



Figure 20. Samsung large attack failed connections.

With the increased attack volume the Samsung shows results more similar to the 

original tests run on the Motorola. This provides that the enabling of ReqTimeout is 

advantageous, the better benefit is found at lowering the timeout threshold to 10 seconds. 

Summary 

In conclusion the ReqTimeout module is easily installed and configured to establish a 

base level of defense against TCP flooding attacks in the case of generating the socket 

connections successful at over a 90% rate. A configured timeout value shows the potential to 

provide over 100% more successful connections in the same time frame as the apache server 

not running the ReqTimeout Module. The limitation though remains in this module suited only 

to drop TCP connections and has no ability to detect a DDoS attack and mitigate accordingly. 

0 

20 

40 

60 

80 

100 

120 

140 

160 

1 2 3 

C
o

n
n

e
ct

io
n

 T
im

e
o

u
t 

Trials 

Samsung 

Base 

Req 20 

Req 10 

Req 5 

43



CHAPTER 4 

MOBILE DDoS DEFENSE FOR HTTP SERVICE 

The previous testing as all has been to demonstrate the server’s performance in opening 

the greatest number of TCP sockets as possible in the fixed time. This testing was sufficient to 

show the scenario of network layer only connections but that does not do a sufficient job of 

demonstrating a more practical example of the servers’ usage during a sample attack. To 

establish a better idea parameters going forward will always be for the legitimate user to 

request a page from the server. To establish a success the page must be transferred in full 

without a timeout in establishing the connection which would be similar to the TCP only checks. 

But also the page cannot have a failure during the sending of the page objects. Either of those 

will result in a failed connection for the testing. Also the transfer time for the pages will be 

looked at a significant slowing of page transfer performance can be a metric for successful 

attacking. 

The next set of tests is run to show the results in having a combination test of running a 

6 machine attack against the server while having a different 6 machines actually connect and 

requests the full webpage. Here the focus is on testing for the number of failed connections as 

well as the time required to complete a page. Two variations are run on the pages, one is a 

page with a high resolution image and the other is a page with multiple small text sections. 

Both are looked at for examples of if the content in the page could affect the speed at which 

the page is served. 

44



Figure 21. Page request connections successful for text and image page at 20 or
10 second timeout value.

Figure 22. Page request failed for text and image page at 20 or 10 second timeout value.

These graphs repreesnt the successful and failed connection count on the page requets 

in achieveing the connection and transfering the complete page. Here the results show a 

distinct difference in result with the timeout being lowered. This is expected as finding sofar has 

shown under stress the mobile server performs better with the lowered timeout. 

0 

10 

20 

30 

40 

50 

60 

1 2 3 4 5 

Su
cc

e
ss

fu
l c

o
n

n
e

ct
io

n
s 

Trials 

Page Request Success 

img page req 20 

txt page req 20 

img page req 10 

txt page req 10 

0 

2 

4 

6 

8 

10 

12 

1 2 3 4 5 

Fa
ile

d
 C

o
n

n
e

ct
io

n
s 

Trials 

Page Request Failed 

img page req 20 

txt page req 20 

img page req 10 

txt page req 10 

45



Figure 23. Page request timeout improvements from lowering the timeout level from

20 to 10 seconds.

This shows the percentage improvement achieving in lowering the timeout from 20 to 

10 seconds. The image webpage performed better from the adjustment in both successful and 

failed connections. Both though show improvements that place value in the lowered timeout 

value while the server is under attack. 

0 

20 

40 

60 

80 

100 

120 

img page  txt page 

%
 Im

p
ro

ve
m

e
n

t 
Lowering Timeout Improvement 

successful 

failed 

46



Figure 24. Text page delays to transfer a complete text based page at both 20 and
10 seconds for timeout value.

Figure 25. Image page delays to transfer a complete text based page at both 20 and 10

seconds for timeout value.

These show the average time to complete a page request and receive the whole page 

across the trials. The difference in times is significant when adjusting the timeout value down 

from 20 to 10 seconds. Also of note here is the volatility in the 20 second timeout lines. The 

page transfer times have a much greater range than is seen in the 10 second timeout lines. That 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(m
s)

 c
o

m
p

le
te

 t
ra

n
sf

e
r 

Trials 

Text Page Transfer 

Req 20 

Req 10 

0 

10000 

20000 

30000 

40000 

50000 

60000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(m
s)

 c
o

m
p

le
te

 t
ra

n
sf

e
r 

Trials 

Image Page Transfer 

Req 20 

Req 10 

47



volatility is a signifier of the success of the attack creating unstable server connection and 

operations. 

Figure 26. Page transfer time average across all trials for 20 and 10 second timeouts
for both text and image pages.

Finally this is the representation of the average time in milliseconds to complete a 

successful page request while the web server is under attack. Using the timeout value of 10 

seconds there is no real difference shown in the text page versus image page. The gains from 

changing the timeout value are 36% on text pages and 45% on image pages. This reiterates that 

the transfer while not under duress is stable but the image file transfer tends to struggle more 

while the server is under attack. 

Mobile DDoS Defense Proposal 

The mobile web server is currently not equipped well enough to handle any form of 

coordinated DDoS attacks. While it is found that the correct settings on the ReqTimeout 

module can reduce the effectiveness of a flooding attack or a slowloris, the server is still easily 

exhausted in serving static pages to many users simultaneously. Phone technology and 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

45000 

A
ve

ra
ge

 t
ra

n
sf

e
r 

(m
s)

 

Transfer Time 

Req 20 txt 

Req 20 img 

Req 10 txt 

Req 10 img 

48



hardware is progressing constantly and can certainly alleviate some of the weakness as seen by 

the comparatively better results achieved on the Samsung with the higher end hardware specs. 

Ultimately though a better solution must be found to have any real chance of mitigating small 

or medium scale DDoS attacks. A large scale attack is not going to be defended against on the 

mobile as the flooding can quickly overwhelm the data connection rates alone for a mobile 

device. 

The first major step in looking at how to better defend a mobile web server from DDoS 

attacks is understanding the switch to IPv6 occurring in the mobile phone networks. The 

internet topology for data connections over IPv4 required mobiles to route traffic through first 

its current tower and then to its home agent that would direct the traffic back to the mobile. 

With IPv6 mobiles are able to access internet resources directly from communicating with their 

current tower connection.[69] This benefits the servers in the first for achieving a static IP 

address that can be accessed from users without the constant changing of location requiring a 

new address to find the web content. As of 2009 Verizon has mandated that all its phones that 

are to use the LTE network must support IPv6. [70] In terms of what this means for defending 

against a DDoS attack against the mobile, the effect of having a static IP address means the 

testing results from modifying Apache will not be dependent on network provider routing. 

The proposed defense strategy is designed to make use of a server end only solution to 

defense but make a better use of available resources. Knowing the limitations of the mobile 

itself the proposal is the have the phone monitor its number of incoming connections. If those 

connections in a minute ever exceed a set threshold then the server will recognize a potential 

DDoS attack and begin attempts to mitigate the attack. The first step is to monitor connection 

49



count on a 5 minute interval. This is due to the presence of a potential attack is found quickly 

when exceeding the threshold and the defense will only recheck every 5 minutes as detecting 

the attack has finished too late will not have detrimental effect to the legitimate users the same 

as detecting the start too late would. 

http_request.c 

establish IP address table for incoming connections 

capture incoming IP address 

compare IP address to all addresses listed in IP table 

if( table entry matches current incoming ) 

if( count on matched IP > threshold ) 

drop connection 

else increment count on matched IP 

else insert IP address with count of 1 in next open table 

location and 

increment next count 

on exit of timer reset tables to blank 

reqtimeout.c 

if( timeout variable is false) 

if( total count exceeds threshold  ) 

reduce timeout 

set timeout variable to true 

else increment connection counter 

on exit of timer reset timeout variable to false and 

reset total count 

50



The defense mechanisms will enable when the attack is occurring. The first mechanism 

is the lowering of the timeout down from the always enabled 20 seconds. This is done as the 

testing data showed consistent gains in connection handling while the server was under stress 

by reducing that value. This is accomplished in the reqtimeout.c file, this is the file for where 

ReqTimout is found. Here the connection counts are monitored on a global basis. The timeout 

lowering is completed by creating each new thread after the threshold is exceeded by 

overwriting the structures ccfg timeout member to be the new value not found from the 

configuration file. This step occurs on the TCP layer in order to fully work against SYN-ACK and 

slowloris type attacks. 

The next step is to begin populating a table that will store the incoming IP addresses 

along with the number of requests that IP address is associated with.  This work is completed in 

the file http_request.c where incoming IP addresses are found in the struct conn_rec. The table 

size is not predefined as that will be a source of potential difference based on the capabilities of 

the particular mobile. The table though regardless must be of sufficient size to capture a DDoS 

so a recommended minimum would be of 50 entries. Knowing a mobile botnet of 29 phones 

can begin to affect a server the table must at least account for that case and have room for 

legitimate users sending requests during an attack. A running list also must be kept on the table 

to know the order updated on the tables. So when an incoming IP is to be logged it will first 

check if already exists and increment its counter. If it does not the table is checked for an empty 

cell and places the IP in with a counter of 1. Otherwise the update list will be checked for the 

last entry to have been incremented and the incoming IP will be inserted into that cell with a 

counter initialized to 1. 

51



If a counter in the IP table on the mobile reaches the threshold then the mobile has 

recognized an attacking IP address and needs to directly stop connections from that source. 

This blocking will occur at the HTTP level and is accomplished by setting the 

ap_conn_keepalive_e variable to AP_CONN_CLOSE signaling apache to close that connection. 

Here a flood of page requests would be stopped from clogging bandwidth in their constant use 

of the server uploading content to the attacking connections. 

At the completion of every 5 minute cycle the connection counters reset. This will allow 

for the mobile to properly monitor the incoming attack. The IP addresses sent to the network 

for filtering will still be filtered so there is no work being repeated in detecting malicious 

sources. Once the mobile detects the attack is no longer greater than the threshold of 

connections per second the local counters and IP table are all reset. 

The threshold and timeout reduction values are not given as a set value. The results in 

testing ReqTimeout showed that the reduction to 10 seconds on the timeout offered a general 

defense level capable of mitigating from DDoS attacks with success. Those tests were done 

though in the static setting of starting and finishing with the same timeout value. Here some 

tests were done to lower the timeout and to 10, 8, and 6 seconds. The testing was all done at 

high level flooding of 5,000 connections with 3 machines requesting pages as legitimate users. 

52



Figure 27. Dynamic timeout adjust levels showing successful page requests completed.

Figure 28. Dynamic timeout adjust levels showing failed page requests.

These results in modifying the timeout level and the number of connection before the 

timeout is lowered. This shows that the lowering of the timeout down below the previously 

successful level of 10 seconds shows substantial improvements. The failures also tend to 

benefit from lowering the timeout. What is happening is that by lowering the timeout below 

the 10 seconds the server is saying that knowing it is under attack it is acceptable to potentially 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

To
ta

l S
u

cc
e

ss
fu

l 

Page Requests 

10 seconds 1000 count 

8 seconds 1000 count 

6 seconds 1000 count 

8 seconds 500 count 

6 seconds 500 count 

0 

2 

4 

6 

8 

10 

12 

14 

To
ta

l F
ai

le
d

 

Page Requests Fail 

10 seconds 1000 count 

8 seconds 1000 count 

6 seconds 1000 count 

8 seconds 500 count 

6 seconds 500 count 

53



lose slow legitimate connections as the benefit is found in greatly increasing the legitimate 

connections successful while under attack. Having the dynamic adjustment difference is also 

looked at from lowering the total connection count before changing the timeout. Here similar 

jumps in success are seen at either the 8 or 6 second timeouts. This is as expected that the 

lowering of the count allows the server to begin combating the DDoS at an earlier time. The 

improvement on 8 and 6 second timeouts in lowering the connection counter threshold was 

10% and 11% respectively. This means that lowering the timeout at an earlier time period in the 

attack should generate successes at similar rates no matter what the timeout is ultimately 

lowered to. 

Figure 29. Controlled flood level effects on successful connection running
proposed dynamic algorithm.

This is the results of running TCP flooding against the algorithm setup to operate at the 

500 connection count threshold and 6 second timeout adjustment. This shows the exponential 

decline in successful connections seen as the volume of attack flood is increased. The server 

and algorithm show fairly steep decline in the performance approaching 3000 attack 

0 

50 

100 

150 

200 

250 

300 

350 

400 

0 1000 2000 3000 4000 5000 6000 

Su
cc

e
ss

fu
l C

o
n

n
e

ct
io

n
s 

Flood Level 

Success at variable flood 

54



connections. The decline in the rate of lowered successful connections seen as the flood level 

increases is attributed to the threads becoming increasingly saturated by the open sockets and 

the further attempts to open new sockets will begin to delay as the slots fill. The base level of 0 

flood is nearly similar to the 1000 flood rate indicating the server can near optimally survive 

under the 1000 attack connections and show no effect on legitimate users. 

Figure 30. Time in ms to transfer complete page at different flood levels while running
dynamic algorithm.

This is from the same data as the previous figure for testing the 500 count connection 

threshold and 6 second timeout adjustment at different levels of TCP flooding. The results here 

are displayed for the total time the legitimate page requests are taking to completely transfer 

all of the page data. The results are demonstrating an exponential increase in time take for 

successful transfers. This is from the effects of the server being under a and more 

overwhelming level of flooding requiring additional resources and bandwidth, this begins to 

severely limit resources given to the actual transfer of web page objects to the established 

0 

5000 

10000 

15000 

20000 

25000 

0 1000 2000 3000 4000 5000 6000 

(m
s)

 T
ra

n
sf

e
r 

Ti
m

e
 

Flood Level 

Transfer time variable flood level 

55



connections. The delays grow very slowly under the lower level flood volumes and being to 

increase rapidly as the flooding affects the server. 

Figure 31. Extended levels of flood volume effect on connections.

Figure 32. Extended flood level effect on transfer time.

These graphs show the effect on the trend when the flood level of the TCP attack is 

extended out to greater volume than the previously tested controlled rate floods. Again the 

0 

50 

100 

150 

200 

250 

300 

350 

400 

0 5000 10000 15000 20000 25000 

Su
cc

e
ss

fu
l C

o
n

e
ct

io
n

s 

Flood Volume 

Flood Volume Extended Successful 
Connections 

0 

10000 

20000 

30000 

40000 

50000 

60000 

0 5000 10000 15000 20000 25000 

(m
s)

 T
ra

n
sf

e
r 

Ti
m

e
 

Flood Volume 

Flood Volume Extended Transfer 
Time 

56



results represent on a per machine basis the amount of connections achieved as successful first 

and then shown as the total time to transfer the page for each iteration. The additional flooding 

levels bring an interesting not to compare when viewing the trend lines. First that the 

Successful connections graph displays the similar fashion but is much flatter to begin 

representing a better picture to the weak effects of lowest level flooding be nearly handled 

completely by the server without effect. The extended graph for transfer times paints the same 

picture as the trend is still showing sharp increase. Although here the transfer times being to 

decline in the rate of increase. This is attributed to the flood volumes approaching a saturation 

level quickly that then will show more consistent effects on transfer speed for the more rare 

connections that are established and capable of completing the transfer. On both extended 

graphs the data points change sides of the trend near to 4000 connections on the flood. This is 

an ideal base level for flooding to represent an attack on this mobile server. Additional units 

over that volume will assist in exhausting resources but less would be invalid in creating a true 

attack environment. 

57



Figure 33. Successful connections for changing page content.

Figure 34. Transfer time at different page content.

These figures demonstrate the relationship found from controlling the flood level at the 

over 1,000 TCP connections while requesting the page content. The page was structured using 

image files to load as separate objects. The number of images is then tested showing the 

successful connections of how many total pages were pulled down. Each image was 

0 

5 

10 

15 

20 

25 

0 5 10 15 20 

Su
cc

e
ss

fu
l C

o
n

n
e

ct
io

n
s 

# of Images 

Image Count Connections 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

0 5 10 15 20 

(m
s)

 T
ra

n
sf

e
r 

Ti
m

e
 

# of Images 

Delay by Image Count 

58



approximately 350 KB. This has a fairly linear and steady decline in connection count as the 

number of images was increased. Looking at the transfer times from these tests also show a 

more linear increase in times. This all means that as the attack is occurring the connections are 

transferring at roughly the same rates once established independent of the number of objects. 

The successful connections though lowers as the delays are higher but also from the longer 

transfer time introducing greater chance of that connection failing. 

Multi Layer Defense 

The next step in creating the best DDoS defense algorithm is to adapt to communicate 

through multiple levels of networking together. So instead of leaving the connection count 

monitors completely separate from the TCP and HTTP layers a single connection counter is 

introduced at the HTTP level. This counter will then be capable of also signaling the TCP layer 

dynamic timeout adjust to lower if an attack level is discovered. This is accomplished through 

adding a global variable ccounts into the header file for http_request.c . Then on each incoming 

HTTP request on the apache server the variable ccounts will be incremented by one. In the 

reqtimeout.c file then the counter can be seen as http_request.h is an imported file by default. 

In the same check for total tcp connections to exceed the threshold will be OR checked with if 

the ccounts of HTTP requests has exceeded its threshold. These thresholds can be set 

independently to allow a smaller number of HTTP requests to trigger the timeout lowering. 

The multi layer approach is designed and added to better assist the apache server in 

defending against a greater number of attack types. The best example of a new attack 

defended by this addition is the slowloris attack. Slowloris is an application layer attack that 

59



uses TCP sockets being kept alive to exhaust server resources. The slowloris attack would not 

previously been efficiently detected as the TCP counter wouldn’t be reaching threshold to 

lower timeouts and free up sockets. And an HTTP counter that may have triggered did not have 

a defense mechanism attached that was designed for clearing out sockets that are associated 

to malicious connections. 

In sharing information from the application layer and the TCP layer the apache server 

will stand a better chance to not only detect a DDoS attack in progress but then to properly 

launch all of the defense mechanisms in place to mitigate the attack more successfully. 

Summary 

The proposed defense solution will be effective in mitigating DDoS attacks on the 

application layer. The network layer attacks could still prove effective against a mobile phone in 

high enough volume as the defense strategy against those requires a firewall or better control 

over the additional routers before the server to defend. 

60



Figure 35. Total successful connections averaged compared from new dynamic algorithm
to basic timeout setup.

Figure 36. Total failed connections average compared from dynamic algorithm to basic
timeout setup.

The final results of testing the dynamically adjusting timeout algorithm to defend better 

shows significant differences when compared to the server when originally established with 

just the ReqTimeout module installed and setup to run with 20 second timeouts. 

0 

10 

20 

30 

40 

50 

60 

C
o

n
n

e
ct

io
n

 S
u

cc
e

ss
fu

l 

Total Improvement Success 

Base ModReqtimeout 

Dynamic Algorithm 

0 

0.5 

1 

1.5 

2 

2.5 

3 

C
o

n
n

e
ct

io
n

 F
ai

lu
re

 

Total Improvement Failed 

Base ModReqtimeout 

Dynamic Algorithm 

61



Figure 37. Improvement percentages for using dynamic algorithm.

Shown as improvement by percentage we see that the successful connections have a 

194% greater rate when the dynamic algorithm as added while the failures are 42% lower. 

These tests were done by setting the algorithm to pass the TCP threshold at 500 connections 

and lower the timeout value to 6 seconds when the limit was reached. Both the dynamic and 

base were tested with a TCP flood level set to 5,000 connection attempts. 

In the end the defense of a mobile web server from a DDoS attack is going to require a 

multifaceted approach. There is no single solution that will out of the box protect a user. The 

addition of a multi layer approach will assist in mitigating attacks on both the TCP level in 

opening sockets and application layer attacks. Ultimately as the hardware capabilities of phones 

advance and users begin to experiment running their own web servers the tools must evolve to 

be capable of detecting and mitigating from the known types of DDoS attacks that could affect 

the server. Ideally these defense tools could also be used to help detect and identify the 

presence of infected mobiles serving as bot and stamp out the issue closer to the source. 

194 

42 

0 

50 

100 

150 

200 

250 

Successful Failure 

%
 

Dynamic Algorithm % Improvement 

62



CHAPTER 5 

CONCLUSION 

The proper configuration and enabling of the ReqTimeout module showed certain 

promise to assist a mobile web server mitigate DDoS attacks. However even though these 

connections are successful and completing does not mean that service is ideal under the attack. 

The improved rates under timeout of 10 seconds for completing a page request are just over 

20,000 milliseconds. 20 seconds would be unacceptable delays for a user to access most 

websites. A single connection requesting the page repeatedly with no additional flooding 

connections averages around 5 seconds to complete the transfer in comparison. 

Knowing that bot can be created on an Android device that is capable of generating just 

over 4 page requests per second to well established servers. The capabilities of botnet can 

quickly overwhelm the defenses available to a web server on a similar mobile. Even under the 

most ideal setup of the Samsung mobile with 10 second timeout enabled the amount of 

average connections handled was 37795. That represents connections handled sent from 6 

machines for 5 minutes. So the server in that case was handling 126 requests per second. Given 

the rate a bot was tested at 4.3 requests per second, the equivalent flooding rate would need a 

botnet of just over 29 mobiles to being to affect the server. 

Distributing the botnet to have control over 30 phones does not represent a challenge 

or concern for the ultimate goal of disabling a web server through the use of DDoS. The mobile 

server with no ReqTimeout demonstrated over 4 times more failure in handling its reduced 

capacity for connections. The successful connections on the default Samsung represent 57 per 

minute. Which would be susceptible to being replicated by a botnet of just 13 mobiles.  Finally 

63



the unsecured Motorola only demonstrated itself to handle just under 11 connections per 

second. That would merely need the coordination of 3 phones to begin exhausting resources 

and succeeding as an attack. 

Finally in order to affect the mobile web servers ability to serve pages in a reasonable 

time we know the testing showed a flood of 6 machines was enough to slow the page request 

completion times to speeds that would be unacceptable to users. With the limiting factor of the 

upload processing a mobile botnet would also be able to accomplish this task in less than 10 

phones. 

The dynamic algorithm proposed resulted in improvements on connections handled 

from the default configurations. The benefit to using the dynamic timeout value is that it can 

offer better performance for both during attacks and when the server is not under attack. An 

optimally selected static timeout value on the other hand was forcing compromise in either 

losing slower connections during normal operation or to not be tuned to best drop malicious 

connections during an attack. 

Future Work 

The defense algorithm is successful currently against smaller scale DDoS attacks and is 

designed to work against TCP or HTTP layer attacks. Improvements could be looked for in 

changing the behavior of the defense mechanisms by monitoring the rate of incoming 

connections with multiple levels of connections resulting in different mechanisms activating 

instead of the current method of clearing a single threshold value and activating all the 

defenses. One such case could be to keep a separate IP table that keeps attacker IP addresses 

64



after an attack has completed. This table could then be used as a blacklist at an early stage of 

DDoS detection to mitigate a repeat attacker. 

Further testing can also be looked at in establishing different modifications on the DDoS 

attack flood being sent to the mobile. An example being more application layer attacks that 

would be focused solely on crashing the server without being mitigated as easily from the TCP 

layer defense adjustments. 

The mobile were not examined for better performance in the instance of a genuine 

large volume of users all legitimately trying to access pages. In such a case the mobile server 

would be expected to quickly struggle to provide content to all of the users. A quality of service 

mechanism would be ideal to kick in under such conditions. The mobile server would need to 

first detect the connections were in fact not a coordinated attack. The method best to fit in 

with the timeout adjustments would be to have a second lower HTTP threshold level that 

adjusts upload rates down to all connections when the threshold is passed. And then if the 

original is passed the timeout adjustments are made. Simply the lower threshold would be just 

traffic detection while the second remains the flag for a DDoS attack in progress. 

The main limitation in modifying the algorithm comes from the inherent limitations of 

running the web server on the mobile phone. The mobiles are currently only capable of 

processing so many threads which is what allows the flooding of connections to quickly occupy 

all of the threads. Therefore the defense strategies must focus on detecting and removing the 

malicious connections as fast as they can be discovered. Users running a mobile web server will 

not have reliable access to a configurable firewall or edge router so all the defense mechanisms 

must be kept on the local server. This means caution must also be taken that the defenses 

65



added to the mobile are not so robust that the computational needs would exceed the 

expected gains from defending a DDoS attack. Phone hardware is advancing continually though 

not enough to rely on that to be the sole solution. A more native basis for running servers on 

mobiles will also assist in improving performance under attack. Late 2014 is to see the first 

commercial release of Ubuntu phones running a Linux as the main operating system. This will 

allow the server better service as the Linux isn’t being placed onto Android devices.[71] 

Along with monitoring the computational needs of more advanced DDoS defense 

mechanisms the mobiles can be tested for server performance with any amount of added 

defense for the affect on battery consumption. The mobile web servers advantages of providing 

access in ad hoc settings at the users location will result in scenarios where the user is not able 

to constant power supply available to the mobile. Not only can adding extra processing to the 

server require potentially more battery usage. A DDoS attack on the mobile server could be 

successful even against well tuned defense algorithms if the connections flood for long enough 

duration to run the mobile out of battery completely taking down the server. Monitoring 

defense algorithms under longer attacks for battery usage could result in the need for unique 

mechanisms to prevent a mobile from running itself out of power. 

The final path for work to look into is a properly configured ad-hoc network with 

multiple mobiles capable of all serving the same web content. Testing would need to be done 

on balancing where outside incoming connections would go between the mobile servers as well 

as the mobiles ability to communicate with each other and how that will ultimately change the 

needs of the defense algorithm to make use of additional servers without leaving each server as 

an independent operation. 

66



The goal of the research was to test for the viability of using a mobile phone to serve as 

a personal web server that would then be capable of still offering some level of acceptable 

performance to a legitimate user when under a DDoS attack. Running a defense against DDoS 

was also designed to require the least amount of resources in order to be successful. The 

resulting usage of the ReqTimeout module and dynamic adjusting algorithm alongside a 

temporary IP address blacklist accomplish these goals. Securing mobiles against DDoS attacks 

going forward thus can be accomplished through creation of specific defense mechanisms that 

while similar to common defenses will account for the unique platform of a mobile phone. 

67



REFERENCE LIST 

1. Criscuolo, P. J. (2000). Distributed Denial of Service: Trin00, Tribe Flood Network, Tribe Flood
Network 2000, and Stacheldraht CIAC-2319 (No. CIAC-2319). CALIFORNIA UNIV LIVERMORE 
RADIATION LAB. 

2. Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review,34(2), 39-53. 

3. Dobbins, R., & Morales, C. (2011). Worldwide infrastructure security report.Arbor Networks,
Ann Arbor, Michigan, USA, Tech. Rep, 7. 

4. Prolexic Technologies, Retrieved from http://prolexic.com/index.php_knowledge-
center/frequently-asked-questions/index.html 

5. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14-23. 

6. Khan, A., Othman, M., Madani, S., & Khan, S. (2013). A survey of mobile cloud computing
application models. 

7. Conit, Marco., Giodano, Silvia. (2014, January). Mobile Ad Hoc Networking: Milestones,
Challenges, and New Research Directions. IEEE Communications Magazine (pp. 85-96). IEEE 

8. Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: milestones, challenges, and new
research directions. Communications Magazine, IEEE,52(1), 85-96. 

9. Douligeris, C., & Mitrokotsa, A. (2004). DDoS attacks and defense mechanisms: classification
and state-of-the-art. Computer Networks, 44(5), 643-666. 

10. RioRey Taxonomy of DDoS Attacks, Retrieved from http://www.riorey.com/x-
resources/2012/RioRey_Taxonomy_DDoS_Attacks_2012.eps 

11. Geng, X., & Whinston, A. B. (2000). Defeating distributed denial of service attacks. IT
Professional, 2(4), 36-42. 

12. Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of network-based defense
mechanisms countering the DoS and DDoS problems. ACM Computing Surveys (CSUR), 39(1), 3. 

13. Wang, H., Zhang, D., & Shin, K. G. (2002, June). Detecting SYN flooding attacks. In INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications 
Societies. Proceedings. IEEE (Vol. 3, pp. 1530-1539). IEEE. 

68



14. Security and Stability Advisory Committee. (2006). DNS distributed denial of service (DDoS)
attacks. Advisory, ICANN, March. 

15. Akbar, M. A., & Farooq, M. (2014). Securing SIP-based VoIP infrastructure against flooding
attacks and Spam Over IP Telephony. Knowledge and Information Systems, 38(2), 491-510. 

16. Slowloris HTTP DOS, Retrieved from http://ha.ckers.org/slowloris

17. Researchers to Demonstrate New Attack That Exploits HTTP, Retrieved from
http://www.darkreading.com/vulnerability-management/167901026/security/attacks-
breaches/228000532/index.html  

18. Abliz, M. E. H. M. U. D. (2011). Internet denial of service attacks and defense
mechanisms. University of Pittsburgh, Tech. Rep. TR-11-178. 

19. Ranjan, S., Swaminathan, R., Uysal, M., & Knightly, E. W. (2006, April). DDoS-Resilient
Scheduling to Counter Application Layer Attacks Under Imperfect Detection. In INFOCOM. 

20. Mirkovic, J., Prier, G., & Reiher, P. (2003, April). Source-end DDoS defense. InNetwork
Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on (pp. 
171-178). IEEE. 

21. Chen, R., Park, J. M., & Marchany, R. (2006, November). NISp1-05: RIM: Router Interface
Marking for IP Traceback. In Global Telecommunications Conference, 2006. GLOBECOM'06. 
IEEE (pp. 1-5). IEEE. 

22. IFerguson, P. (2000). Network ingress filtering: Defeating denial of service attacks which
employ IP source address spoofing. 

23. Huici, F., & Handley, M. (2007). An edge-to-edge filtering architecture against DoS. ACM
SIGCOMM Computer Communication Review, 37(2), 39-50. 

24. Burch, H., & Cheswick, B. (2000, December). Tracing Anonymous Packets to Their
Approximate Source. In LISA (pp. 319-327). 

25. Mirkovic, J., Prier, G., & Reiher, P. (2002, November). Attacking DDoS at the source.
In Network Protocols, 2002. Proceedings. 10th IEEE International Conference on (pp. 312-321). 
IEEE. 

26. Gil, T. M., & Poletto, M. (2001, August). MULTOPS: a data-structure for bandwidth attack
detection. In USENIX Security Symposium. 

69



27. Abdelsayed, S., Glimsholt, D., Leckie, C., Ryan, S., & Shami, S. (2003, December). An efficient
filter for denial-of-service bandwidth attacks. In Global Telecommunications Conference, 2003. 
GLOBECOM'03. IEEE (Vol. 3, pp. 1353-1357). IEEE. 

28. Zargar, S., Joshi, J., & Tipper, D. (2013). A survey of defense mechanisms against distributed
denial of service (DDoS) flooding attacks. 

29. Argyraki, K., & Cheriton, D. R. (2009). Scalable network-layer defense against internet
bandwidth-flooding attacks. IEEE/ACM Transactions on Networking (TON), 17(4), 1284-1297. 

30. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., & Shenker, S. (2006, September).
DDoS defense by offense. In ACM SIGCOMM Computer Communication Review (Vol. 36, No. 4, 
pp. 303-314). ACM. 

31. Srivatsa, M., Iyengar, A., Yin, J., & Liu, L. (2008). Mitigating application-level denial of service
attacks on Web servers: A client-transparent approach. ACM Transactions on the Web 
(TWEB), 2(3), 15. 

32. Oikonomou, G., & Mirkovic, J. (2009, June). Modeling human behavior for defense against
flash-crowd attacks. In Communications, 2009. ICC'09. IEEE International Conference on (pp. 1-
6). IEEE. 

33. Xie, Y., & Yu, S. Z. (2009). A large-scale hidden semi-Markov model for anomaly detection on
user browsing behaviors. Networking, IEEE/ACM Transactions on, 17(1), 54-65. 

34. Devi, S. R., & Yogesh, P. (2012). A hybrid approach to counter application layer DDoS
attacks. International Journal on Cryptography and Information Security (IJCIS), 2(2). 

35. Wu, Y. C., Tseng, H. R., Yang, W., & Jan, R. H. (2011). DDoS detection and traceback with
decision tree and grey relational analysis. International Journal of Ad Hoc and Ubiquitous 
Computing, 7(2), 121-136. 

36. John, A., & Sivakumar, T. (2009). Ddos: Survey of traceback methods.International Journal
of Recent Trends in Engineering, 1(2), 241-245. 

37. Cabrera, J. B., Lewis, L., Qin, X., Lee, W., Prasanth, R. K., Ravichandran, B., & Mehra, R. K.
(2001). Proactive detection of distributed denial of service attacks using mib traffic variables-a 
feasibility study. In Integrated Network Management Proceedings, 2001 IEEE/IFIP International 
Symposium on (pp. 609-622). IEEE. 

38. Yaar, A., Perrig, A., & Song, D. (2003, May). Pi: A path identification mechanism to defend
against DDoS attacks. In Security and Privacy, 2003. Proceedings. 2003 Symposium on (pp. 93-
107). IEEE. 

70



39. Peng, T., Leckie, C., & Ramamohanarao, K. (2003, May). Protection from distributed denial
of service attacks using history-based IP filtering. InCommunications, 2003. ICC'03. IEEE 
International Conference on (Vol. 1, pp. 482-486). IEEE. 

40. Yu, J., Fang, C., Lu, L., & Li, Z. (2009). A lightweight mechanism to mitigate application layer
DDoS attacks. In Scalable Information Systems (pp. 175-191). Springer Berlin Heidelberg. 

41. Kambourakis, G., Moschos, T., Geneiatakis, D., & Gritzalis, S. (2008). Detecting DNS
amplification attacks. In Critical Information Infrastructures Security (pp. 185-196). Springer 
Berlin Heidelberg. 

42. Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A., & Knightly, E. (2009). DDoS-shield: DDoS-
resilient scheduling to counter application layer attacks.IEEE/ACM Transactions on Networking 
(TON), 17(1), 26-39. 

43. Yuanyuan Zeng , Kang G. Shin , Xin Hu, Design of SMS commanded-and-controlled and P2P-
structured mobile  
botnets, Proceedings of the fifth ACM conference on Security and Privacy in Wireless and 
Mobile Networks, April  
16-18, 2012, Tucson, Arizona, USA 

44. Hund, R., Hamann, M., & Holz, T. (2008, December). Towards next-generation botnets.
In Computer Network Defense, 2008. EC2ND 2008. European Conference on (pp. 33-40). IEEE. 

45. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P., & La Porta, T. (2009,
November). On cellular botnets: measuring the impact of malicious devices on a cellular 
network core. In Proceedings of the 16th ACM conference on Computer and communications 
security (pp. 223-234). ACM. 

46. Jing, L., Yang, X., Kaveh, G., Hongmei, D., & Jingyuan, Z. (2009). Botnet: classification,
attacks, detection, tracing, and preventive measures. EURASIP journal on wireless 
communications and networking, 2009. 

47. Vogt, R., Aycock, J., & Jacobson Jr, M. J. (2007, February). Army of Botnets. In NDSS.

48. Flo, A.R., Josang, A: Consequences of Botnets Spreading to Mobile Devices. In: 14th
IT Systems, Oslo(2009) 

49. Cooke, E., Jahanian, F., & McPherson, D. (2005, July). The zombie roundup: Understanding,
detecting, and disrupting botnets. In Proceedings of the USENIX SRUTI Workshop (Vol. 39, p. 
44). 

71



50. Starnberger, G., Kruegel, C., & Kirda, E. (2008, September). Overbot: a botnet protocol
based on Kademlia. In Proceedings of the 4th international conference on Security and privacy 
in communication netowrks (p. 13). ACM. 

51. Maymounkov, P., & Mazieres, D. (2002). Kademlia: A peer-to-peer information system
based on the xor metric. In Peer-to-Peer Systems (pp. 53-65). Springer Berlin Heidelberg. 

52. G. Geng, G. Xu, M. Zhang, Y. Yang, and G. Yang. An improved sms based heterogeneous
mobile botnet model.  
In Information and Automation (ICIA), 2011 IEEE International Conference on, pages 198--202. 
IEEE, 2011. 

53. Pieterse, Heloise, and Martin Olivier. "Design of a hybrid command and control mobile
botnet." Academic  
Conferences and Publishing International Ltd, 2013. 

54. Wang, P., Sparks, S., & Zou, C. C. (2010). An advanced hybrid peer-to-peer
botnet. Dependable and Secure Computing, IEEE Transactions on, 7(2), 113-127. 

55. Matthew Knysz, Xin Hu, Yuanyuan Zeng, Kang G. Shin, Open WiFi Networks: Lethal Weapons
for Botnets?, The  
31st Annual IEEE International Conference on Computer Communications: Mini Conference. 

56. Zhao, Shuang, et al. "Cloud-based push-styled mobile botnets: a case study of exploiting the
cloud to device  
messaging service." Proceedings of the 28th Annual Computer Security Applications 
Conference. ACM, 2012. 

57. Shuai, Wang, et al. "S-URL Flux: A Novel C&C Protocol for Mobile Botnets."Trustworthy
Computing and Services.  
Springer Berlin Heidelberg, 2013. 412-419. 

58. Meisam Eslahi, Rosli Salleh, Nor Badrul Anuar, MoBots: A New Generation of Botnets on
Mobile Devices and  
Networks, 2012 International Symposium on Computer Applications and Industrial Electronics 
(ISCAIE 2012),  
December 3-4, 2012, Kota Kinabalu Malaysia. 

59. Khaled M Elleithy, Drazen Blagovic, Wang Cheng, Paul Sideleau, Denial of Service Attack
Techniques: Analysis,  
Implementation and Comparison. Systemics, Cybernetics and Informatics, Volume 3- Number 1. 

72



60. Kartaltepe, E. J., Morales, J. A., Xu, S., & Sandhu, R. (2010, January). Social network-based
botnet command-and-control: emerging threats and countermeasures. In Applied 
Cryptography and Network Security (pp. 511-528). Springer Berlin Heidelberg. 

61. G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and Control Channels in
Network Traffic. 
In Proc. of NDSS, 2008. 

62. Guofei Gu , Roberto Perdisci , Junjie Zhang , Wenke Lee, BotMiner: clustering analysis of
network traffic for  
protocol- and structure-independent botnet detection, Proceedings of the 17th conference on 
Security  
symposium, p.139-154, July 28-August 01, 2008, San Jose, CA 

63. Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, Zang Tianning, Andbot: Towards advanced
mobile botnets,  
Proceedings of the 4thMA 

64. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018 -
Cisco. (n.d.). Retrieved from http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.html 

65. Ristic, I. (2010). ModSecurity Handbook. Feisty Duck.

66. Retrieved from
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project 

67. Aiello, M., Papaleo, G., & Cambiaso, E. (2014, January). SlowReq: A Weapon for
Cyberwarfare Operations. Characteristics, Limits, Performance, Remediations. In International 
Joint Conference SOCO’13-CISIS’13-ICEUTE’13(pp. 537-546). Springer International Publishing. 

68. How to Mitigate Slowloris Attack. (n.d.). Retrieved March 3, 2014, from
docs.cpanel.net/twiki/bin/view/EasyApache/Apache/SlowlorisAttacks 

69. Mobile IPv6 Tutorial. (n.d.). Retrieved March 3, 2014, from
http://www.usipv6.com/ppt/MobileIPv6_tutorial_SanDiegok.pdf 

70. Verizon Mandates IPv6 Support for Next-Gen Cell Phones. (n.d.). Retrieved from
http://www.circleid.com/posts/20090609_verizon_mandates_ipv6_support_for_next_gen_cell
_phones/ 

71. Wallen, J. (2014, Feb 21). The ubuntu phone is official: Let the madness begin!. Retrieved
from http://www.techrepublic.com/article/the-ubuntu-phone-is-official-let-the-madness-
begin/ 

73




