GIS Modeling of Wetlands Elevation Change in Response to Projected Sea Level Rise, Trinity Bay, Texas

PDF Version Also Available for Download.

Description

This study is a test of a methodology to predict changes in elevation and shoreline position of coastal wetlands in Trinity Bay, Texas, in response to projected sea level rise. The study combines numerical modeling and a geographic information system. A smoothing technique is used on a United States Geographical Survey (USGS) digital elevation model to obtain elevation profiles that more accurately represent the gently sloping wetlands surface. The numerical model estimates the expected elevation change by raster cell based on input parameters of predicted sea level rise, mineral and organic sedimentation rates, and sediment autocompaction rates. A GIS is ... continued below

Creation Information

Lee, Erica Anne December 2005.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 512 times , with 6 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Lee, Erica Anne

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This study is a test of a methodology to predict changes in elevation and shoreline position of coastal wetlands in Trinity Bay, Texas, in response to projected sea level rise. The study combines numerical modeling and a geographic information system. A smoothing technique is used on a United States Geographical Survey (USGS) digital elevation model to obtain elevation profiles that more accurately represent the gently sloping wetlands surface. The numerical model estimates the expected elevation change by raster cell based on input parameters of predicted sea level rise, mineral and organic sedimentation rates, and sediment autocompaction rates. A GIS is used to display predicted elevation changes and changes in shoreline position as a result of four projected sea level rise scenarios over the next 100 years. Results demonstrate that this numerical model and methodology are promising as a technique of modeling predicted elevation change and shoreline migration in wetlands. The approach has potential utility in coastal management applications.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2005

Added to The UNT Digital Library

  • Feb. 15, 2008, 4:29 p.m.

Description Last Updated

  • Dec. 12, 2013, 2:31 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 512

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, Erica Anne. GIS Modeling of Wetlands Elevation Change in Response to Projected Sea Level Rise, Trinity Bay, Texas, thesis, December 2005; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc4953/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .