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Summary

A new procedure has been developed for the isolation of wild-type and mutant Arabidopsis trichomes. The
isolated trichomes maintained enzymatic activity and were used for DNA, protein, and RNA isolation. The RNA
was used to generate probes suitable for Affymetrix analysis. The validity of the Affymetrix results was
confirmed by quantitative PCR analysis on a subset of genes that are preferentially expressed in trichomes or
leaves. Sufficient quantities of trichomes were isolated to probe the biochemical nature of trichome cell walls.
These analyses provide evidence for the presence of lignin in Arabidopsis trichome cell walls. The
monosaccharide analysis and positive staining with ruthenium red indicates that the walls also contain a
large portion of pectin. The 2.23-fold ratio of pectin-related sugars compared with potential cellulosic glucose
suggests that the polysaccharides of the trichome cell walls are more like those of typical primary walls even
though the wall becomes quite thick. Overall, these analyses open the door to using the Arabidopsis trichome
cell wall as an excellent model to probe various questions concerning plant cell wall biosynthesis.
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Introduction

The development of Arabidopsis leaf trichomes has served
as a model for the study of plant cell fate, pattern formation,
and cell differentiation (Hulskamp, 2004; Marks et al., 1991;
Szymanski et al., 2000). The attributes of trichome develop-
ment in Arabidopsis as a model include accessibility (e.g.
ease of visualization), relative simplicity (unicellular cell
type), and dispensability (not required for laboratory
growth).

Trichome development begins when single protodermal
cells cease to divide and expand radially in the plane of the
leaf surface. Thereafter, committed cells proceed through a
series of readily identifiable stages of trichome differentia-
tion. Stage one is characterized by the radial expansion in
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the plane of the leaf; stage two, expansion out of the plane of
the leaf; stage three, development of branches; stage four,
branch expansion; stage five, diffuse expansion; and stage
six, cell wall maturation (Szymanski et al., 1998, 1999). Cell
division does not occur during normal trichome differenti-
ation, but trichome nuclear DNA does undergo several
rounds of endoreduplication (Hulskamp et al., 1994).
Because trichomes are not required for plant growth in the
laboratory, it has been possible to isolate many Arabidopsis
mutants with trichome abnormalities. The onset of abnor-
mal trichome development for many Arabidopsis trichome
mutants begins at a discrete stage. For example, the
abnormal development of glabra3-shapeshifter (gl3-sst)
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trichomes is first apparent during stage two (Esch et al.,
2003). The g/3-sst trichomes over-expand during this stage.
The trichomes on the stichel (sti) mutant lack branches, thus
this mutant has an alteration in stage three when branches
would normally initiate (llgenfritz et al., 2003). The distorted
class of mutants produce fairly normal trichomes up to stage
five (Szymanski et al., 1999). During stage five, rapid and
general diffuse growth occurs throughout a wild-type
trichome. However, the distorted mutants display altered
expansion resulting in twisted and unevenly expanded
trichomes. To better characterize wild-type and mutant
trichomes, it would be desirable to isolate large quantities
of trichomes suitable for biochemical and gene expression
analyses. This report describes a new method for the
isolation of Arabidopsis trichomes.

Two reports have described the isolation of mature
Arabidopsis trichomes. In the first, Arabidopsis leaves were
frozen in liquid nitrogen and then the trichomes were
removed one at a time with forceps (Wienkoop et al.,
2004). An analysis of the proteins from 1000 to 2000
trichomes via nano-liquid chromatography-mass spectro-
metry (nano-LC/MS) allowed a limited number of trichome
proteins to be identified. In another report, leaves were first
fixed in a solution containing formaldehyde and glutaralde-
hyde, and then infiltrated with a solution containing EGTA
(Zhang and Oppenheimer, 2004). Following incubation for
1-24 h the trichomes could be brushed off. Such trichomes
have been used for cytoskeletal and morphometric analyses.
However, it is likely that the fixation reduces the ability to
isolate intact proteins and nucleic acids. This report
describes a modified trichome isolation procedure that is
faster and does not require the use of fixation. In addition,
the procedure results in the isolation of much larger
quantities of trichomes than previously described. The
availability of larger quantities of a purified cell type has
opened the door for many types of biochemical analyses
that require larger amounts of tissue.

The purified trichomes have been used for protein, RNA,
and DNA extractions. The extracted RNA has been used for
the generation of aRNA biotin labeled probes for hybridiza-
tion to Affymetrix chips, and a subset of the hybridization
results have been verified by quantitative (q)PCR. In addi-
tion, a biochemical analysis of trichome cell walls has been
performed. These latter studies provide data supporting the
presence of lignin in Arabidopsis trichome cell walls. They
also showed that the thick trichome walls have characters
that blend those typically associated with primary and
secondary walls since pectin is an abundant polysaccharide.

Results and discussion

To generate plant material for quick harvesting, Columbia
wild-type plants were grown on flats of potting medium
overlaid with perforated metal plates (Figure 1). Mature

Figure 1. Columbia wild-type plants grown on a perforated metal plate.
Image shows partially harvested flat of 28-day-old plants. Bar = 1 cm.

plants were rapidly harvested by shaving the plates with a
razor blade. Several different methods were used to attempt
to dislodge trichomes from the leaves of harvested material.
The first method consisted of simply vortexing leaves in an
isotonic PBS solution. This technique worked well for the
isolation of glandular trichomes from such species as Med-
icago truncatula and Cannabis sativa (MDM, unpublished
data). However, few trichomes were removed from Arabid-
opsis leaves. In a second attempt, small glass beads
(60-80 pm) were added. Again, vortexing removed few
trichomes. A third method made use of the previous finding
that extended incubation with solutions containing EGTA
could weaken the connection between trichomes and sur-
rounding epidermal cells. This was presumably due to the
chelation of Ca®* and the subsequence weakening of the
pectin component of the cell wall. However, short incubation
in EGTA followed by vortexing failed to displace trichomes
from the leaves. The addition of small glass beads and
EGTA followed by vortexing greatly enhanced removal of
trichomes from the leaves, as shown in Figure 2a. As
described in Experimental procedures, these trichomes
could be captured on 100-um mesh filters. Large quantities
of pure mature trichomes were easily and quickly isolated
(Figure 2b,d). As judged by microscopic analysis, these
trichomes have intact cytoplasm (e.g. arrows in Figure 2c).
The unknown structures highlighted in Figure 2c are similar
in size to plastids, which are very abundant in Arabidopsis
trichomes (see Figure S1). Further analyses have shown
that this technique could be used to isolate the trichomes
fram a range of different Arahidopsis trichome mutants
(Figure 3a—). These include try, g/3-sst, and gl/3-sst sim
trichomes, which have extra branches, exhibit variable
shapes, or are composed of multicellular clusters, respec-
tively (Esch et al., 2003; Marks et al., 2007; Schellmann et al.,
2002). This technique worked best on fully expanded leaves,
as trichomes on younger leaves were rarely dislodged
during the mixing (not shown).

Isolated trichomes were enzymatically active and were
subjected to a variety of molecular procedures. For example,
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Figure 2. Isolation of mature trichomes from Arabidopsis leaves.

(a) Comparison of leaf epidermal surfaces before (left) and after (right) vortex
treatment in solution containing EGTA and glass beads.

(b) Microscopic image of isolated trichomes.

(c) High magnification of an individual isolated trichome showing the
presence of an intact cytoplasmic system.

(d) A 1.5-ml microfuge tube containing approximately 10,000 isolated
trichomes.

The large arrow in (b) highlights the nucleus and the smaller arrows highlight
unknown intact membrane bound structures. Bars in (b) 250 pm and (c) 256 pm.

the trichomes could be stained with 4’-6-diamidino-2-
phenylindole {(DAPI) to yield information on nuclear DNA
content (Figure 4a), were assayed for GUS activity
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(Figure 4b), or were visualized with fluorescence micros-
copy to study GFP localization (Figure 4c). In addition, the
preparations were used for the isolation of trichome-
expressed proteins, total RNA, orgenomic DNA (Figure 4d-f).
RNA isolated from trichomes was useful for generating
probes for transcriptome analyses using the Affymetrix
ATH1 chip. In these analyses 200-500 ng of total RNA was
used as template for labeling with the Ambion Biotin I
Enhanced kit as described in Experimental procedures. In a
preliminary analysis, probes were made from both isolated
trichomes and from processed leaves from which the
trichomes were derived. Previously, transcription factors
such as GL2, ETC1, TRY, CPC, TTG2, which play roles in
trichome formation, were shown to be preferentially
expressed in trichomes (Esch et al., 2004; Johnson et al.,
2002; Kirik et al., 2004; Schelimann et al., 2002; Szymanski
et al, 1998). The results from the Affymetrix analysis
mirrored the previous findings (Table 1). Within the Affyme-
trix data, all these genes were shown to be highly expressed
in trichomes, and only TRY expression was called present in
the processed leaf transcriptome. The trichome-specific
expression was not due to a faulty leaf sample, as other
genes showed similar or higher expression in leaves com-
pared with trichomes (Table 1). Quantitative PCR was used
to further validate the Affymetrix results. In these analyses
RNA isolated from different leaf and trichome samples was
used to generate cDNAs for two-step qPCR. In all cases
tested, the same trends in expression as found for the
Affymetrix analysis were found for the qPCR analyses
(Table 1). These results confirm that RNA isolated from
trichomes as described can be used for Affymetrix tran-
scriptome analyses. A spreadsheet containing the normal-
ized results for trichome and processed leaf Affymetrix
analyses is given in Supplementary File S1. While a more
detailed analysis of the Arabidopsis trichome transcriptome
involving additional replications will be presented else-
where, an over-representation analysis (ORA) was per-
formed to identify categories of genes that are more highly
represented in trichomes than whole processed leaves.
Several Gene Ontology (GO) biological process ontology
groups having to do with cell wall biosynthesis were
significantly over-represented (P < 0.05). These included
groups of genes involved in carbohydrate biosynthesis
(P =0.001), cell wall precursor synthesis (P = 0.0009), and
phenylpropanoid lignin biosynthesis (P = 0.002).
Trichomes have cell walls that are over 1 um thick
(Figure 5a). These cell walls should provide an excellent
model system to study cell wall structure. Sufficient tri-
chome material was isolated to conduct several cell wall
analyses. The isolated trichomes were subjected to acid
hydrolysis to release wall monosaccharides as described in
Experimental procedures. The largest monosaccharide frac-
tions were composed of glucose, galactose, and arabinose;
followed by lesser quantities of mannose, rhamnose, xylose,
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Figure 3. Trichomes isolated from different
trichome mutants.

(a) try-29760.

(b) gi3-sst.

(c) g/3-sst sim double mutant.

Figure 4. Analysis of isolated trichomes.

(a) Merged image of 4'-6-diamidino-2-
phenylindole stained trichome showing nuclear
fluorescence.

(b) Image of an isolated trichome stained for
GUS activity.

(c) Merged fluorescence image of a trichome
expressing a nuclear localized GFP fusion
protein.

(d) Comparison of proteins isolated from leaves
and trichomes (lane1, marker; lane 2, fresh leaf;
lane 3, processed leaf; lane 4, trichome).

(e, f) Total RNA and genomic DNA, respectively,
from trichomes (marker lanes are on the left).

Table 1 Comparison of gene expression in trichomes (Tri) and processed leaves

AGI Name/function Trichome® Leaf® Trichome/leaf* gPCR trichomeyleaf®
AT1G79840 GL2 9456 -° Tri specific' Tri specific®
AT1G01380 ETC1 3047 -° Tri specific’ n.d."

AT5G53200 TRY 969.7 194.6 498 n.d.”

AT2G46410 cpPC 3186 -° Tri specific’ 222

AT2G37260 TTG2 1823 i# Tri specific’ nd."

AT3G61260 DNA binding 4248 4252 1.00 0.84

AT5G02500 HSC70-1 1.39 x 10 1.36 x 10° 1.02 0.38

AT3G59010 Pectinesterase 1.62 x 10* 4231 38.29 34

AT3G19710 BCAT4 124.6 7539 0.016 0.001

2bValues from Affymetrix ATH1 chips hybridized to probes derived from either trichomes or leaves, respectively. Hybridization signals on the chips

were normalized to 1000.
“Ratio of trichome over leaf using Affymetrix values.

9Ratio of trichome over leaf using QPCR as described in Experimental procedures.

*~" indicates a probability of greater than 0.04 that the value was not above background.

‘Expression is declared trichome specific if leaf value cannot be distinguished from background.

9GL2 qPCR reaction using cDNA derived from leaf RNA required more than 37 cycles for detection (note: 26.23 + 0.23 cycles were required for

detection GL2 cDNA derived from trichome RNA).
"Not done.

and fucose (Figure 5b). To test for the presence of lignin, the
walls were subjected to thioacidolysis to release lignin
subunits involved in arylglycerol--aryl (B-O-4) linkage as
described in the Experimental procedures. This analysis
revealed the presence of guaiacyl (G) units that are typically
derived from lignin.

Histochemical staining was used to further characterize
the walls (Figure 6). Interestingly, in all procedures used, the

detached trichomes stained much better than intact tric-
homes on the leaves (compare Figure 6a and b, e and f, and
g and h for intact versus detached trichomes for staining
with Sudan black, ruthenium red and Maiile regent, respec-
tively). These comparisons highlight the utility of using
isolated trichomes for cell wall analysis. Consistent with
the aliphatic outer fayer frequently found in trichomes of
diverse species (Peterson and Vermeer, 1984), Arabidopsis
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Figure 5. Biochemical analysis of isolated
trichome cell walls.

(a) Transmission electron microscope image of a
cross-section through the cell wall of a trichome
branch (bar = 0.5 um).

(b) Quantification of trichome cell wall mono-
saccharides [left, histogram showing relative
abundance of individual monosaccharides; right,
gas chromatography (GC) trace of resolved
monosaccharides (rha, rhamnose; fuc, fucose;
ara, arabinose; xyl, xylose; man, mannose; gal,
galactose; glc, glucose)].

{c) The GC-MS traces of thioacidolysis mono-
mers (G, guaiacyl unit; S, syringyl unit).
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trichomes still attached to the leaf stained, albeit lightly, with
lipophilic Sudan black B (Figure 6a). The outer layer was a
barrier to the penetration of histological probes into the cell
wall, for example Sudan black B stained isolated trichomes
more intensely (Figure 6b). Similar to the Sudan black B
result, three other probes yielded almost null reactions for
trichomes attached to leaves, but strong reactions for
isolated trichomes: (i) Tinopal LPW, a fluorescent brightener
with affinity for cellulose (Taylor et al., 1996) (Figure 6c,d);
(i) ruthenium red, a stain for pectin (Figure 6e,f); and (iii) the
potassium permanganate-HCI (Malile) reagent, which typi-

© 2008 The Authors

cally stains lignin (Figure 6g,h). Unstained trichomes had no
autofluorescent signal {data not shown) under the same
conditions used to record the Tinopal LPW fluorescence
(Figure 6d). The Maiile reagent stained trichomes light
brown (Figure 6h), whereas control gymnosperm (pine)
lignin run in parallel stained dark brown (Figure 6i). Auto-
fluorescence typical of lignin and other phenolics was
observed in both isolated trichomes (data not shown) and
those still attached to leaves (Figure 6j). In cases where
branches of trichomes attached to leaves were broken so
that stains could enter the lumen, signal intensity with
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Figure 6. Light micrographs of stained Arabid-
opsis trichomes, either isolated or attached to a
leaf.
(a, b) Sudan black B stained the lipids of attached
trichomes (a) lightly and those in isolated tric-
homes more strongly (b).
(¢, d) Tinopal LPW, a fluorescent probe for
cellulose, stained only isolated trichomes. No
fluorescent signal was detected in attached tric-
homes photographed under the same conditions
(data not shown). Part (c) shows simultaneous
fluorescent and brightfield imaging, whereas (d)
shows only Tinopal LPW fluorescence from the
same trichome. Insets in (c) and (d) are higher-
magnification views of the cell wall area indi-
cated by the arrowheads, with cell wall (cw)
width indicated by the vertical line in each case.
Comparison of (c) and (d) shows that in the statk
of the trichomes, Tinopal LPW only reacted with
the innermost layer of the thick cell wall. Intense
spots of fluorescence in branches correspond to
bends (created during sample processing) where
wall structure was probably disrupted, allowing
more access of the fluorochrome to internal
cellulose.
(e, f) Ruthenium red, a stain for pectin, was null
on attached trichomes (e), but reacted strongly
with isolated trichomes (f). The micrograph in (e)
also illustrates that ruthenium red did not react
with an intact leaf through its cuticle (lower green
area) but did penetrate and stain the cut edge of a
leaf (right side) as well as the basal cell of a
nearby trichome.
(g, h) The Maiile reaction, which stains guaiacy!
units brown, was null on attached trichomes (g)
and positive on detached trichomes (h).
(i} The Maiile reaction stained pine wood dark
brown.
(j) Autofluorescence of an attached trichome;
similar results were observed for isolated tric-
homes (data not shown). The bar in (j) = 100 pm
is for all large micrographsin {a-j). For the insets
in (c) and (d), the bar in (j) corresponds to

(@)

31.5 um.
Tinopal LPW and ruthenium red was similar to that with lucent layer and dark-staining layer underneath, resembles
isolated trichomes (data not shown). walls of regular epidermal cells that have a waxy outer layer
The transmission electron microscope (TEM) image of the underlain by a cuticulated cell wall. In this specialized type of
trichome wall (Figure 5a), with its thin outer electron trans- wall, cutin is typically interspersed with pectin and cellulose

& 2008 The Authors
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(Fahn, 1990). The more intense Sudan black B staining of
isolated trichomes, in which the stain could move through
the cell interior, is consistent with cutin existing within the
cell wall. The binding of Tinopal LPW selectively to the inner
surface of the thick wall in the stalk of isolated trichomes is
also consistent with the binding sites of cellulose being
covered by other molecules in the bulk of the wall, but not
the inner layer (Figure 6c,d). Logically, the outer layer of the
trichome must be highly hydrophobic in order to maintain
the overall epidermal water barrier. However, both cuticu-
lated and lignified cell walls (see below) stain densely black
in other plant samples prepared for TEM and either cutin or
lignin could block the staining of cellulose. Therefore,
further work with more specific probes will be required to
determine the exact mixture of hydrophobic molecules that
are intercalated into the trichome cell wall.

The staining of isolated trichome walls with Tinopal LPW
is consistent with a cellulosic component, as characterized
before by the reduction of birefringence (in the polarizing
microscope) and acetic/nitric-insoluble cellulose in the tbr
mutant (Potikha and Delmer, 1995) and with the substantial
levels of glucose (34.3 ug mg™") in the total trichome cell
wall monosaccharides that were assayed as alditol acetate
derivatives after H,SO,4 hydrolysis (Blackeney et al., 1983).
The large cumulative proportion of rhamnose, arabinose,
and galactose (76.5 ug mg™’), as well as positive staining
with ruthenium red, is consistent with the presence of a
large amount of pectin. Although part of the glucose may be
in non-cellulosic polysaccharides such as xyloglucan, the
2.23-fold ratio of pectin-related sugars compared with
potential cellulosic glucose suggests that the trichome wall
is more like typical primary walls even though it becomes
quite thick. Accounting for the other monosaccharides,
xylose (11.5 ug mg~") may be a component of xyloglucan
or xylan (although this typically occurs in classical cellulose-
rich, pectin-depleted secondary walls such as those in
xylem) and fucose (2.0 ug mg~") may be a minor component
of pectin and xyloglucan. The mannose (22.4 pg mg~') may
be found in cell wall mannans, which are known to occur as
matrix components in the thickened outer walls of regular
epidermal cells of Arabidopsis stems and leaves (Handford
et al., 2003).

Although soluble phenolics as deterrents of herbivory are
commonly found in trichomes, the existence of lignin in the
cell walls has not been documented before (Peterson and
Vermeer, 1984). Our data support the existence of lignin in
trichome cell walls, which is consistent with their high
stiffness and strength as part of their defensive roles. Results
of thioacidolysis showed the predominance of guaiacyl (G)
units that are typically found in lignin, which corresponded
with a brown chromophore arising in trichome walls from
the potassium permanganate-HCI (Maiile) test (Dean, 1997).
Gymnosperm (pine) lignin, with abundant G-lignin, also
stained brown in a control reaction. Although syringyl
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(S)-units would stain red in this reaction, thioacidolysis
indicated that they are the minor component of lignin in the
trichome cell walls. In contrast, the phloroglucinol-HCI test
{the Weisner reaction) producing a red reaction on wood
pulp fiber run in parallel was null on both isolated and intact
trichomes (data not shown). The red chromophore typically
arises from the acid-catalyzed condensation of phloroglu-
cinol with coniferaldehyde (free aldehyde) units of lignin to
yield cinnamaldehydes (Dean, 1997). However, examples of
angiosperm (transgenic tobacco) lignin without phloroglu-
cinol-positive free aldehydes are known (Franke et al., 2000),
and it is also possible that free aldehydes in trichome walls
are blocked by other molecules. Like lignin, suberin also
contains hydroxycinnamic acids and their derivatives and is
electron dense after fixation and staining for TEM. However,
suberin is usually specifically located at the plasma mem-
brane/cell wall interface (Nawrath, 2002). In contrast, the
trichome walls have their maximum electron density toward
the outer surface, which makes it less likely that the positive
Maiile stain in trichomes arose from any guaiacyl terminal
units that might exist in suberin.

In conclusion, a robust procedure for isolating Arabidop-
sis trichomes suitable for a wide range of biochemical and
molecular analyses has been described. This procedure
should facilitate the use of Arabidopsis trichomes in the
study of many topics including the epigenetic modifications
of genomic DNA, transcriptome analyses, enzyme activity
assays, metabolite analyses, cell wall analyses, etc. Of
particular note, the cell walls of the Arabidopsis trichome
provide a good model system for the analysis of wall
structure and biochemistry. Given that plants do not require
trichomes, it should be possible to genetically engineer and
manipulate trichome cell walls in ways not possible for
whole plants.

Experimental procedures

Growth of plants

To minimize contaminating potting medium and to speed the iso-
lation of plant material, Arabidopsis plants were grown on flats
containing Sunshine LP5 potting medium (Sun Gro Horticulture,
http://www.sungro.com/) overlaid with perforated metal plates
(Figure 1). Plants were grown under continuous illumination at
22°C. After approximately 4 weeks, seedlings were harvested by
shaving the plants off the metal plates with razor blades. Seedlings
were rinsed twice in tap water to remove extraneous debris.
Columbia wild-type plants were used for all analyses.

Trichome isolation

Seedlings were stuffed (approximately 1.5 g per tube) into 50-ml
test tubes (Greiner Bio-One, http://www.greinerbioone.com/)
containing approximately 50 mg of 60/80 um glass beads
(Alltech, part number 5420, http://www.discoverysciences.com/)
and 15 ml of a solution containing 50 mm ethylene glycol-bis
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(2-aminoethylether)-N,N,N',N-tetraacetic acid (EGTA pH 7.5 with
KOH; Sigma-Aldrich, http://www.sigma-aldrich.com) and 1x
modified phosphate-buffered saline (PBS). The PBS solution was
essentially made as described in Sambrook et al. (1989) with the
exception that all potassium salts were used. Tubes containing
the seedlings were mixed at maximum speed (four cycles of
30 sec on and 30 sec rest on ice) on a Genie 2 vortex (Scientific
Industries, http://www.scientificindustries.com/). It was important
not to overload the seedlings in the tubes to the point that they
could not freely rotate during mixing. Up to 12 tubes of seed-
lings were processed at the same time. The processed seedlings
were collected in a 500-ml beaker and the solution was strained
through four layers of screen door mesh (Home Depot, http:/
www.homedepot.com/) into a flask. The seedlings in the beaker
were rinsed several times with the PBS solution (no EGTA) to
free trichomes trapped in the plant material. The rinse solutions
were filtered and combined in the flask with the original filtrate.
The resulting solution was sieved through a 100-um cell strainer
(Falcon-Becton Dickinson, http;//http://www.bdbiosciences.com/).
Trichomes ensnared on the mesh were rinsed with several
milliliters of PBS, and then the cell strainer was inverted into a
small Petri dish. Approximately 10 ml of PBS solution was used
to dislodge the trichomes from the filter. Any remaining plant
debris that co-purified with the trichomes was removed with fine
forceps. The solution containing the trichomes was transferred
to a 15-ml centrifuge tube and spun at 150 g for 1.5 min. The
supernatant was carefully removed, leaving the trichomes ready
for downstream processing. Five grams of seedlings was suffi-
cient to isolate approximately 15000 trichomes, as quantified
with a hemocytometer.

Staining and imaging

Trichomes were directly assayed for GUS activity, DAPI stained for
DNA content, or examined for GFP fluorescence as previously
described (Marks et al., 2007).

RNA, DNA, and protein isolation

Trichomes destined for RNA isolation were placed in a solution of
RNAlater (Ambion, http:/www.ambion.com/) and subjected to a
vacuum for 5-10 min for infiltration. Trichomes were stored in
RNAlater for up to a month or more at 4°C. For RNA isolation, up to
100 mg (approximate wet weight) of trichomes was moved to a
1.5-ml microfuge tube and centrifuged for 30 sec at 350 g. Residual
RNAlater was then removed. RNA was isolated from the tri-
chome pellet using the Plant RNeasy kit (Qiagen, http:/www.
giagen.com/) with one modification. The trichome pellet was
resuspended in 100 pl of supplied RLT buffer and then frozen solid in
liquid nitrogen. As the pellet thawed, it was ground to a fine paste
using a small pestle. An additional 350 pl of RLT was added and then
the RNA was isolated following the kit's instructions. After isolation
the RNA was subjected to DNase treatment using TurboDNAse
(Ambion) and then concentrated using a RNA MinElute spin column
(Qiagen). RNA was eluted in a small volume and stored at -80°C.
For protein isolation, approximately 50-100 mg (wet weight) of
trichomes was frozen in liquid nitrogen in a 1.5-ml microfuge tube
and ground to a fine powder with a pestle. Before the samples
thawed, 50-100 ul of 2x Leammli SDS-PAGE buffer (Weigel and
Glazebrook, 2002) was added and the trichomes were subjected to
further grinding. The samples were boiled for 2 min and centrifuged
at maximum speed in a microfuge for 5 min. Thirty microliters of
the supernatants were resolved on a precast BioRad 5-20% SDS

polyacrylamide gel (http:/www.bio-rad.com/) and the proteins were
visualized by silver staining. DNA was isolated using the Master-
Pure Plant Leaf DNA Purification Kit (Epicentre Biotechnologies,
http://www.epibio.com/).

Monosaccharide analysis

Isolated trichomes were extracted twice in 70% ethanol at 70°C and
once in acetone. Trichomes were dried in a desiccator and inositol
was added as an internal standard to 0.5-1 mg material. The tric-
homes were subjected to hydrolysis and acetylation as previously
described (Blakeney et al., 1983). The acetylated monosaccharides
were extracted with methylene chloride and directly subjected to
gas chromatography (GC) analysis using an Agilent gas chro-
matograph (6890N; Agilent, http://www.agilent.com/chem/GC)
equipped with a Supelco SP-2330 capillary column (Sigma-Aldrich)
as described in Bauer et al. (2006). Individual acetylated mono-
saccharide standards plus inositol were run for comparison.

Lignin analysis

Thioacidolysis was used to study the lignin composition of isolated
trichomes as previously described (Chen et al., 2006; Lapierre et al.,
1986, 1995). Briefly, thioacidolysis reagent was added to 1 mg dried
trichomes. Samples were heated for 4 h at 80°C. Docosane was
added as an internal standard, followed by water and a solution of
saturated NaHCO; (final pH 3-4). Samples were extracted three
times with methylene chloride and the combined extractions were
dried under N,. Samples were resuspended in pyridine and silylated
with N-methyl-N-trimethylsilytrifluoroacetamide to increase the
volatility of the thioethylated monomers. The resulting suspensions
were subjected to GC-MS. The main thioacidolysis monomer peaks
were obtained from the total ion chromatogram using a m/z of 239
for the ethanethiol derivative of p-hydroxyphenyl (H) units, 269 for
guaiacyl (G) units and 299 for (S) syringyl units.

Affymetrix analysis

The MesageAmp lI-Biotin Enchanced kit (Ambion) was used fol-
lowing kit directions to convert total trichome or leaf RNA into
biotin-labeled aRNAs. During this procedure a single round of T7
polymerase-driven amplification was used to generate the biotin-
labeled aRNA. As little as 300 ng was sufficient to generate over
15 ug of probe. For hybridization, 15 ug of aRNA was fragmented
using the supplied fragmentation buffer and the resulting products
were sent to the University of Minnesota BioMedical Genomics
Center for hybridization to Affymetrix ATH1 Genchips (Affymetrix,
http://www.affymetrix.com/). The resulting data files were normal-
ized and analyzed using Expressionist software (Genedata, http://
www.genedata.com/products/expressionist/).

gPCR

Quantitative PCR analyses of select genes were performed using the
Lightcycler (Roche, http://www.roche.com/) as previously described
in detail (Marks et al., 2007). Briefly, shoot cDNA was used as a
template in a conventional PCR reaction with the primers shown
below to generate DNA fragments to be used as standards. Stan-
dards were gel purified and serially diluted. Diluted standards and
equivalent amounts of cDNA derived from either processed leaves
or isolated trichomes were amplified. Relative levels of leaf and
trichome expression were calculated with Lightcycler Software
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using the values derived from the reactions containing the diluted
standard DNA fragments. All reactions were performed in duplicate
along with a control without DNA.

Shown below are the genes that were analyzed by qPCR along
with the sequence of the primers that were used and the size of
products:

AT3G61260 DNA-binding

293 bp product

For GATGACTCCAAAGCCCTTACT
Rev CTCTCTGCATACTCTGCTTTCT
AT5G02500 HSC70-1

305 bp

For AACCCCGTTAACACCGTTTTC
Rev CAGCATCCTTTGTAGCCTGA
AT3G59010 pectinesterase

341 bp

For AGTAGAAGAGCTGAGACCTC
Rev CTACAGCTTGCTCCGAGTTT
AT3G19710 BCAT4

283 bp

For AGTGGAACTGGTGGTGTGAA
Rev CCACTAGAGGAATCGTACGT
AT2G46410Q CPC

211 bp

For AGGCTTCTTGTTCCGAAGAGG
Rev AAGTCTCTTCGTCTGTTGGCAA
At1g79840Q GL2

442 bp

For CGAGAACTCAGGACCCACGAGATC
Rev GGAGTTTTCGAGGTGGAGATCATCGG

Histochemical assays

Trichomes, both isolated and attached to leaves, were processed in
parallel. Procedures for staining were: (i) Malle reaction and
ruthenium red according to (Chaffey, 2002); (ii) 10 min in 1% (w/v)
phloroglucinol in a 55% (v/v) dilution of concentrated HCI, followed
by mounting in distilled H,0 and immediate observation; (iii)
10 min in 0.1% (w/v; saturated) Sudan black B, followed by a brief
wash in 50% ethanol, then mounting in water; (iv) 5 min in 0.005%
{(w/v) Tinopal LPW® (a gift from Ciba Geigy, now Ciba, http://
www.cibasc.com; Cl no. 40622, equivalent to Calcofluor®) in PBS
and mounting in PBS. Micrographs were captured with an Olympus
BH-2 microscope (http://www.olympusmicro.com) and a Q-5 cooled
digital camera (http://www.gimaging.com). Dyes were photo-
graphed with brightfield optics (Koehler illumination and condenser
aperture fully open so that contrast arose primarily from the stains).
Tinopal LPW fluorescence was captured with modified ultraviolet
excitation (UG-1 with an additional 20 nm narrow band pass at
365 nm), and autofluorescence was captured with violet (V; BP405)
excitation (http:/www.olympusmicro.com). Digital images were
optimized by histogram (Levels) adjustment in Adobe Photoshop,
with identical processing of any two images in which staining
intensity was compared.

TEM analysis

Young leaves were harvested from 20-day-old seedlings and fixed
in Karnovsky's fixative (1% paraformaldehyde + 0.1% glutaralde-
hyde). After several rinses in PBS buffer, tissue was refixed with 1%
osmium tetroxide. Tissue was dehydrated by a series of incubations

© 2008 The Authors

in solutions containing increasing concentrations of ethanol. Eth-
anol was replaced with LR white for embedding. All incubations
were performed using the PELCO 3441 Tissue Microwave Process-
ing System (Ted Pella Inc., http://www.tedpella.com/). incubation
times and other details are available on request. Blocks containing
tissue were trimmed and sectioned in an RMC MT-7000 ultramicro-
tome (RMC Inc., http://www.rmcproducts.com/). Sections of 85 nm
were viewed using a Phillips CM12 transmission electron micro-
scope.

Over representation analysis (ORA)

The 5000 most highly expressed genes in the trichome and
processed leaf datasets were compared using the ORA tool located
at http://mapman.mpimp-golm.mpg.de/general/ora/ora.shtml and
described in Usadel et al. (2006).
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