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In this dissertation, we study the dynamics, fractal geometry and the topology of 

the Julia set of functions in the family H which is a set in the class S, the Speiser class 

of entire transcendental functions which have only finitely many singular values. 

One can think of a function from H as a generalized expanding function from the 

cosh family. 

We shall build a version of thermodynamic formalism for functions in H and we 

shall show among others, the existence and uniqueness of a conformal measure. Then 

we prove a Bowen’s type formula, i.e. we show that the Hausdorff dimension of the set 

of returning points, is the unique zero of the pressure function. We shall also study 

conjugacies in the family H, perturbation of functions in the family and related dynamical 

properties. 

We define Perron-Frobenius operators for some functions naturally associated 

with functions in the family H and then, using fundamental properties of these operators, 

we shall prove the important result that the Hausdorff dimension of the subset of 

returning points depends analytically on the parameter taken from a small open subset 

of the n-dimensional parameter space. 
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CHAPTER 1

INTRODUCTION

1.1. Discussion of the Problems

In this dissertation we investigate a family of transcendental entire functions. We study

the dynamics of these maps, the topology and the geometry of their Julia sets.

The dynamics in the class of transcendental entire functions, denoted usually by Ent are

di�erent from the dynamics in the class of rational maps, for example, mainly because of

the essential singularity at in�nity and since the phase space is not compact. By the Picard

theorem any neighborhood of in�nity is mapped with in�nite multiplicity over the entire plane

missing at most one point. This particular situation makes the topology of the Julia set look

very di�erent from that of rational maps.

There is a class of entire maps whose dynamics is relatively well understood. This is the

class S of entire functions that have �nitely many asymptotic and critical values (maps of

�nite type) i.e. maps which have only �nitely many singular values. More precisely, for every

element f 2 Ent; ! 2 Ĉ is a singular value if f is not a regular covering map over any

neighborhood of !: The set of singular values is denoted by Sing(f �1): Observe that, if !

is a non-singular value of f ; then there exists a neighborhood V of ! where every branch of

f �1 in V is well de�ned and is a conformal map of V. This set Sing(f �1) is very important

in our investigation and the last observation is used extensively throughout this thesis.

That is, let S denotes the set ff 2 Ent : Sing(f �1)is a finite setg: S is usually called the

class of �nite singular type (transcendental) entire functions or the Speiser class. This class

has been studied for many years and we refer the readear only to [16], [14] or [20]. Most of

work in the �eld of iterates of transcendental entire functions has been centered around this

class of maps and we also refer the reader for example to [16], [14], [23] [29], or [2]. This
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class S includes the 1-parameter exponential family f�ezg�2C� or the 1-parameter families

f� sin zg�2C� and f� cos zg�2C�: Maps from these last two families are conjugated to maps in

the 2-parameter cosh family faez + be�zg(a;b)2C2: In Chapters 1 and 2 of this thesis we shall

recall also some of the most interesting properties of maps from these families.

It is known that ([2], [20], [16]) the No Wandering Domains theorem holds for this type of

maps and that the Julia set of these maps, satisfying additional conditions, contains Cantor

Bouquets, as it was observed in [14]. Cantor bouquets are Cantor sets of curves called hairs.

For more details on these topological objects the reader may consult for example [37], [14]

or [1]. In section 1.4 we shall give the de�nition of a Cantor bouquet and we shall present

some of the basic properties of this topological object. Another important observation (see

for example [16]) is that maps in the class S have the property that their Fatou set contains

no Baker domain.

We shall present these and other fundamental properties of transcendental entire functions

in Chapters 1 and 2. In Chapter 1 we will also discuss the previous results obtained in [29] and

[30] by M.Urba�nski and A.Zdunik who studied expanding mappings f�(z) = �ez that have

an attracting periodic orbit. They developed the thermodynamic formalism for some special

potentials associated with these functions. The present work is an answer to the question

about the possibility of developing a similar theory for the cosh family. The fundamental

di�erence between the exponential family and the cosine family is that a map from the

second one has no asymptotic values (only critical values) and a map from the other has only

one singular value, the asymptotic value at 0.

In Chapter 1, sections 1.3 and 1.4, we recall some of the basic properties we need on the

Dynamics of transcendental entire functions, we de�ne the Speiser class and then we consider

Cantor bouquets, following the work of Devaney, Krych, Tangerman, Aarts and Oversteegen,

via the fundamental concept of straight brush introduced by Aarts and Oversteegen in [1] in

1991.
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In Chapter 2 we de�ne the family H � S and we will establish its basic dynamical prop-

erties. We discuss the topology of the Julia set of these maps and we shall observe that the

Julia set of these maps is a Cantor bouquet. In section 2.2 we prove the uniformly expanding

property and then in section 2.4 we study conjugacies in the family H: Next, in Chapter 3

we build a version of thermodynamic formalism for maps in H and we show, among others,

the existence and uniqueness of a (t; �)�conformal measure for maps in the family, so then

in section 3.3 it can be proven a Bowen's type formula. In Chapter 4 it is shown that the

Hausdor� dimension of the set of points in the Julia set of fa having non-escaping orbits

(denoted by Jrfa) depends analytically on the parameter a 2 Cn+1.

In what follows we discuss the problems we shall study in this dissertation. There are two

basic problems in iteration theory. The �rst, classical one is to study the iterative behavior of a

single function. The second one is to study families of functions, especially how the dynamical

behavior of a member in the family changes if the function is perturbed. The simplest (but

already su�ciently complicated) case being a family of functions depending on one parameter

(see for example the cases of exponential or sine families). A good understanding of the

dynamics of an individual function is of course necessary for the study of problems involving

perturbation of functions.

Mathematical models for phenomena in the natural sciences often lead to iteration of

functions. But in what follows we study iteration theory for its own. Iteration theory of

functions in one complex variable (or Holomorphic Dynamics) essentially originated with the

work of Fatou [18] and Julia [19] at the begining of the last century. At the same time, the

iteration of rational functions was also investigated by Ritt [27]. In 1926 Fatou [18] extended

some of the results to the case of transcendental entire functions. Julia did not consider

the iteration of transcendental functions. In the last 30 years there was a renewed interest

in the iteration theory of Holomorphic functions. Nowdays there exist many introductory

books in the �eld of Complex Dynamics. We mention only [3], [25] and [41]. There are
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comparatively few expositions of the Dynamics of transcendental entire functions. We refer

to [13] for the iteration of the exponential function and we refer again to [41] which has a

chapter on the Dynamics of transcendental entire functions. But many papers were written

on the Dynamics of transcendental entire maps and we will mention some of them whenever

the research conducted there will interfer with our present work. In this thesis we answer

mainly to the following six questions. First question is about the existence and uniqueness

of a (t; �)� measure for maps in the family H: Second we ask the question if it is possible

to prove a Bowen's type formula for these maps. The third interesting question is about the

behavior of maps in the family under conjugating maps. The fourth, most important problem,

is about the possibility of developing a thermodynamic formalism for maps in the family. The

�fth important problem is on perturbation theory for maps in H: This question will direct us

to this fundamental sixth question: if we perturb a little bit the parameters on which a map

in the family depend on, how the Hausdor� dimension of the Julia set is changed?

1.2. Previous Results. Discussion of the Methods

The research conducted in [29], [30], [31] between 1999 and 2003 by Mariusz Urba�nski

and Anna Zdunik motivated essentialy our present work. In these papers, Urba�nski and Zdunik

investigated the fractal geometry, the dynamics and the theromodynamic formalism of maps

in the exponential family f�(z) = �ez : They considered both hyperbolic and non-hyperbolic

situations, and they proved �rst the existence and uniqueness of a probability conformal

measure (with an exponent greater than 1) for some maps associated with maps in the

exponential family (simply, these maps are projections of exponential maps on the perodicity

strips of height 2�i).

Then they proved various dynamical related properties, inluding a Bowen's type formula

and the fact that the Hausdor� dimension of the complement (in the Julia set Jf�) of the

set of points escaping to in�nity under forward iterates of f�, is less than 2. This set was

denoted by Jrf�:
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Next, for the hyperbolic situation, considering the parameters � such that f� has an

atracting perodic orbit (this family was denoted by Hyp) it is known that the Julia set of a map

in Hyp is a Cantor Bouquet (see Chapter 2). In [30] Urba�nski and Zdunik studied perturbations

in the exponential family and then, with the methods of thermodynamic formalism, they

showed that the function � ! HD(Jrf�) is real-analytic. They proved also that maps from

Hyp are uniformly expanding on their Julia set and they de�ned appropriately the topological

pressure for some potentials associated to these maps, Perron-Frobenius operators with some

more general potentials, and generalized (Gibbs) measures. It is important to observe that,

for these maps (in contrast to the case of subshifts of �nite type or distance expanding maps),

among other di�culties, the phase space is not compact, the potentials are unbounded, and

Perron-Frobenius operators are expressed as in�nite series of other appropiate operators.

The special methods used by Urba�nski and Zdunik for the analysis of the dynamics entire

transcendental functions are, as we already mentioned, the methods of Thermodynamic for-

malism. A question frequently asked is why the name \thermodynamic formalism"? Altough

the analogies are formal rather than physical, many of the ideas, such as the existence of

Gibbs measures, were originally developed in statistical mechanics, and translated to dynam-

ical systems many years later (refer to [17] for more comments).

The pair mathematics-physics is historically inseparable, with mathematics serving to

\model physical reality with the intent to rationally understand and clearly expose its laws"

(refer to [32]). Thermodynamics is a science created by (among others) Bollzman, Carnot,

Kelvin, Maxwell, and Gibbs. This physical science gave birth to the (mathematical) theory

of dynamical systems. Important to mention that the thermodynamic formalism generalized

to the case of rational maps whose Julia set contains no critical points is due to Denker and

Urba�nski (see [12]). Thermodynamic formalism applied to transcendental entire functions

was also initiated, as we already observed, by Mariusz Urba�nski and Anna Zdunik, with the

sequence of papers [29], [30], [31] published by the two authors between 2001 and 2003.
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1.3. The Speiser Class

In this section we follow the expositions from [4] and [41] on the Dynamics of transcen-

dental entire functions. We are going to collect the very basic but fundamental facts which

we need later in our exposition. We recall basic de�nitions and theorems emphasizing the

class of transcendental entire functions of �nite singular type (or the Speiser class). First

we consider topological properties of the Fatou sets and the Julia sets of these maps. The

point at in�nity is essential singularity of a transcendental entire function. The Picard the-

orem shows that, in a neighborhood of the point at in�nity, the action of such a function is

strongly \explosive". Thus, in general, iteration of transcendental entire functions is much

more complicated than that of polynomials. For an arbitrary polynomial, the point at in�nity

is always a superattracting �xed point. Hence the Julia set of a polynomial is compact in C:

On the other hand we have the following.

Proposition(Julia set is unbounded)

The Julia set of a transcendental entire function is unbounded in C:

Proof. Let f be a transcendental entire function. Choose a point ! in Julia set Jf which

is not exceptional value in the sense of Picard. Let U be any neighborhood of the point at

in�nity. The Picard theorem shows that there is a point � in U such that f (�) = !: Since

the Julia set is backward invariant, � is in Jf : Thus Jf is unbounded. �

Again recall that, in the case of a polynomial, the immediate basin of attraction of the

point at in�nity is completely invariant. Hence its boundary is the Julia set of the polynomial.

It follows that all Fatou components except for this basin are simply connected.

Proposition(No Herman rings)

Let f 2 Ent [ Poly ; where by Ent we denoted the set of transcendental entire functions

and by Poly we denote the set of polynomial functions. Then its Fatou set contains no cycles

of Herman rings.
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Proof. Suppose that there were a Herman ring H: Since ff ng1n=1 is uniformly bounded on

H, the maximum principle shows that ff ng1n=1 is uniformly bounded also in the bounded

component U of C�H: This is a contradiction because U contains points of Jf : �

Remark

The above Proposition does not imply non-existence of multiply connected components

of the Fatou set for transcendental entire functions. Baker was the �rst to give an example

of a multiply connected Fatou component (refer to [41]-Th 3.4.1). Also recall that (see for

example Theorem 3.15 in [41]) every unbounded Fatou component of a map in Ent is simply

connected and, as a corollary, observe that the Julia set of a map in Ent is never totally

disconnected.

De�nition(Singular values)

For every f 2 Ent we call � 2 Ĉ a singular value if f is not a smooth covering map over

any neighborhood of �. We denote the set of all singular values by Sing(f �1).

If � is a non-singular value of f ; then there exists a neighborhood V of � where every

branch of f �1 in V is well de�ned and is conformal map of V:

De�nition(Eremenko-Lyubich)

We call a transcendental entire function to be of �nite singular type or to belong to the

Speiser class if it belongs to S where

S = ff 2 Ent : Sing(f �1)is a finite setg:

Observe that

S = ff 2 Ent : the set of critical and asymptotic values is finiteg:

Recall that the set of critical points of a function f is de�ned by:

Cr it(f ) = fz : f 0(z) = 0g
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and the set of critical values is f (Cr it(f )): Also we make the following observation.

Remark

For f a polynomial or rational function the dynamics is determined in large measure by

the behavior of orbits of the critical values. For f 2 Ent, the set of singular orbits must be

extended as we can see for fa(z) = aez with 0 < a < 1
e ; fa has no critical points but the

essential role is played by 0 which is an omitted value of fa: In fact 0 is an asymptotic value.

For a map f 2 Ent a point w 2 C is an asymptotic value for f if there is a continuous

curve (t) (called a path of determination) satisfying

lim
t!1

(t) =1

and

lim
t!1

f ((t)) = w:

Any curve which tends to1 such that Re z ! �1 is such a curve  for fa (take for example

(t) = �t2 + i t) so 0 is an asymptotic value for fa:

A Picard exceptional value (omitted value) is an asymptotic value for an entire function(

see 0 and 1 for ez which are both omitted values).

We observe also that there is a dichotomy in the Speisser class as there exists for quadratic

polynomials, where there are basically two types of Julia sets, Cantor sets and Julia sets that

are connected; for maps in the Speiser class there is a similar dichotomy, either Julia set is C

or Julia set is a Cantor bouquet.

Fundamental Theorem

If f 2 S then the Fatou set Ff contains no wandering domains, no Baker domains and

every component of Ff is simply connected

For the proof we refer the reader to [41] or [4].

We also recall that the set of repelling periodic points is dense in the Julia set. Hence

the set of the points whose orbits are bounded is dense in the Julia set. Next we discuss the
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relation between the Julia set Jf and the set of escaping points (see[4] p.26).

If = fz 2 C : lim
n!1

f n(z) =1g:

If f 2 Poly then If is the immediate attractive basin of the superattracting �xed point

1: In this case it was proved that Jf = @If : Eremenko showed �rst that if f 2 Ent then If

is not an empty set and next he showed that if f 2 S then Jf = If : Eremenko asked then

two fundamental questions: Is every component of If unbounded? Can every point in If be

joined with 1 by a curve in If ? Clearly a positive answer to the second question will imply

that the answer to the �rst question is also positive. Eremenko proved that If does not have

bounded components and he remarked that a positive answer to the second question for a

restricted class of functions follows from the results of Devaney and Tangerman (see [14]).

We are going to present the results of Devaney and Tangerman and some others about

Cantor bouquets in the next section.

Cantor Bouquets. Hairs. Examples.

In a paper from 1986, [14], Devaney and Tangerman showed that maps in the Speiser

class satisfying some growth conditions admit \Cantor bouquets" in their Julia set. All of

the curves( hairs ) in the bouquet tend to1 in the same direction, and the map behaves like

the shift automorphism on the Cantor set. Hence the dynamics near 1 for these maps may

be analyzed completely. Among the maps in Ent; for which the Devaney and Tangerman

methods apply, are exp(z); sin(z); cos(z); cosh(z); sinh(z) and we will see that maps in

the more general family H (that we deal with in the research presented in this disseratation)

also satisfy Devaney-Tangerman conditions and the Julia set of these maps is itself a Cantor

bouquet.

Cantor bouquets arise very often in the dynamics of maps in S: Examples include maps for

the exponential family (see [13] or [37]) f� = �ez for parameters � satisfying 0 < � < 1
e or

maps in the sine family f� = � sin z with � real satisfying 0 < � < 1: Also (refer to [1]) it was
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shown that Julia sets of maps in the one parameter families f� cosh zg with 0 < � < 0:67)

and f� sinh zg for 0 < � < 0:85 are also Cantor bouquets. We do not go into detailes in

this thesis but in my paper [7], which is now in preparation, I shall treat these problems with

an accent on the family H � S which will be de�ned in the next section. Here we just want

to give a rigourous de�nition of a Cantor bouquet following [1] and [37]. To describe the

topological structure of a Cantor Bouquet, we need to introduce the notion of a straight

brush:

De�nition (Straight brush-Aarts/Oversteegen)

To each irrational number � , we assign (there are many ways to do this ( see for example

[37])) an in�nite string of integers n0n1n2::: as follows. We will break up the real line into

open intervals In0n1���nk wich have the following properties

(i) In0���nk+1 � In0���nk :

(ii) The endpoints of In0���nk are rational.

(iii) � = \1k=1In0���nk :

A straight brush B is a subset of [0;1)�N ; where N is a dense subset of irrationals, having

the following three properties

1. B is \hairy" in the following sense. If (y ; �) 2 B; then there exists a y� � y such

that (t; �) 2 B i� t � y�: That is the \hair" (t; �) is contained in B where t � y�:

And y� is called the endpoint of the hair corresponding to �:

2. Given an endpoint (y�; �) 2 B there are sequences �n " � and n # � in N such

that (y�n ; �n) ! (y�; �) and (yn ; n) ! (y�; �): That is, any endpoint of a hair in

B is the limit of endpoints of other hairs from both above and below.

3. B is closed subset of R2:

We observe that a straight brush is a remarkable topological object and we view it as

a subset of the Riemann sphere. Aarts and Oversteegen have shown that any two straight
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brushes are ambiently homeomorphic, i.e. there is a homeomorphism of R2 taking one brush

onto another. This important observation led to the formal de�nition of the Cantor bouquet.

De�nition

A Cantor bouquet is a subset of C that is homeomorphic to a straight brush with 1

mapped to 1.

We shall make the observation that the Julia set of a map in the family H; which we are

going to de�ne in the next Chapter, is a Cantor bouquet. We shall see that its existence

follows from [14] and then we shall conclude that with Aarts and Oversteegen's methods, it

can be shown that the Julia set of a map in H is indeed homeomorphic to a straight brush.

We mention that a more extensive approach is done in my paper [7] which is in preparation

and it will be ready to be submitted for publication in the near future.
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CHAPTER 2

THE FAMILY H

2.1. De�nition of H; Basic Properties

In this section we de�ne the family H and we establish basic dynamical properties of a

map fa 2 H: Then we we prove the important Lemma 2.1.

De�nition of H

We de�ne the family H as a family of maps in the Speiser class of transcendental entire

functions of �nite singular type.

Let a = (a0; a1; � � � ; an) 2 Cn+1 be a vector such that a0 6= 0, an 6= 0,

Pa(z) = anz
n + � � �+ a1z + a0 2 C[z ]

and

ga(z) =
Pa(z)

zk

where k is a positive integer strictly less than n = deg(Pa) � 2: De�ne

fa(z) = ga � exp(z) =
anenz+an�1e(n�1)z+���+a1ez+a0

ezk =
∑n

j=0 aje
(j�k)z

Observe that maps of this form do not have any �nite asymptotic values. This is the reason

why we restricted ourselves to integers k satisfying condition 0 < k < n. As it was mentioned

in Chapter 1, the most well known examples of this type of maps are maps from the cosine

family.

We denote by Crit(fa) the set fz : f 0a(z) = 0g. Observe that

f 0a(z) =
n∑
j=0

aj(j � k)e
(j�k)z
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and that g0a(z) = 0 if and only if zP 0
a(z)� kPa(z) = 0, which is equivalent to

n∑
j=0

aj(j � k)z
j = 0:

Therefore, there exist n non-zero complex numbers (counting multiplicities) s1; s2; � � � ; sn

such that z 2 Crit(fa) if and only if ez = sk for some k = 1; 2; � � � ; n i.e.

fzk = log sk + 2�im : m 2 Z; k = 1; � � � ; ng

is the set of critical points and observe that the set of critical values of a map fa is �nite.

Denote by H the family of functions

H =

{
fa(z) =

Pa(ez)

ekz
: degPa > k > 0 and �a > 0

}
;

where by Pfa we denote the post-critical set of fa i.e. the set

Pfa =
⋃
n�0

f na (Cr it(fa))

and

�a =
1

2
min

{
1

2
; dist(Jfa ;Pfa)

}
;

where

dist(Jfa ;Pfa) = inffjz1 � z2j : z1 2 Jfa ; z2 2 Pfag

is the Euclidean distance between the Julia set of fa, Jfa ; and the post-critical set of fa, Pfa :

The reason we de�ne �a in such a way will be more visible later on, starting with Chapter

3, and is due to the application (we shall need) of the Koebe Distortion Theorem since one

can observe that, for every y 2 Jfa and for every n � 1, there exists a unique holomorphic

inverse branch

(f na )
�1
y : B(f na (y); 2�a)! C

such that (f na )
�1
y � (f na )(y) = y .
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Then there exists a numerical constant K such that, for z1; z2 2 Jfa with jz1 � z2j < �a

and for y 2 f �na (z1),

(1)
1

K
�
j((f na )

�1
y )0(z1)j

j((f na )
�1
y )0(z2)j

� K:

Observe that Cr it(fa) � Ffa ; where Ffa is the Fatou set of fa: Consequently, maps in the

family H do not have neither parabolic domains nor Herman rings nor Siegel disks. Moreover,

as was written in Chapter 1 they do not have neither wandering nor Baker domains. Also for

every point z in the Fatou set there exists (super)attracting cycle such that the trajectory of

z converges to this cycle.

The cylinder and the de�nition of JrFa .

Since the map fa 2 H is periodic with period 2�i , we consider it on the quotient space

P = C=� (the cylinder) where

z1 � z2 iff z1 � z2 = 2k�i for some k 2 Z:

If � : C ! P is the natural projection, then, since the map � � fa : C ! P is constant on

equivalence classes of relation �, it induces a holomorphic map

Fa : P ! P:

The cylinder P is endowed with Euclidean metric which will be denoted in what follows by

the same symbol jw � z j for all z; w 2 P: The Julia set of Fa is de�ned to be

JFa = �(Jfa)

and observe that

Fa(JFa) = JFa = F�1
a (JFa):
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We shall study the set Jrfa consisting of those points of Jfa that do not escape to in�nity

under positive iterates of fa: In other words, if

I1(fa) = fz 2 C : lim
n!1

f na (z) =1g;

then

Jrfa = JfanI1(fa)

and, if

I1(Fa) = fz 2 P : lim
n!1

F n(z) =1g;

then

JrFa = JFanI1(Fa):

In what follows we �x a 2 Cn+1 and we denote for simplicity fa 2 H by f . The following

Lemma reveals some background information for a better understanding of the dynamical

behavior of maps in our family H: This lemma will be used several times and it will be a key

technical ingredient for many proofs.

Observe �rst that, if we consider a = (a0; � � � ; an) 2 Cn+1; since

(2) fa(z) =
n∑
j=0

aje
(j�k)z

we have

(3) f 0a(z) =
n∑
j=0

aj(j � k)e
(j�k)z :

Lemma

Let fa be a function of form (2). Then there exist M1;M2;M3 > 0 such that, for every z

with jRe z j � M3, the following inequalities hold.

(i) M1eqjRe z j � jfa(z)j � M2eqjRe z j

(ii) M1eqjRe z j � jf 0a(z)j � M2eqjRe z j

(iii) M1
M2 jf

0
a(z)j � jfa(z)j �

M2
M1 jf

0
a(z)j
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where q =

 k if Re z < 0

n � k if Re z > 0:

Proof. Note that (iii) follows from (i) and (ii). The proof of (i) and (ii) follows from the fact

that

jfa(z)j = janje
(n�k)Re z + o(e(n�k)Re z) as Re z !1

jfa(z)j = ja0je
�kRe z + o(e�kRe z) as Re z ! �1

and from the observation that f 0a is a function of the same (algebraic) type as fa (see (3)). �

2.2. The Uniformly Expanding Property

In this section we shall prove, mainly, the very important result, Proposition 2.2, using

McMullen's result from [23], that any map fa 2 H is uniformly expanding on its Julia set.

Proposition

For every f 2 H there exist c > 0 and  > 1 such that

j(f n)0(z)j > cn

for every z 2 Jf :

Proof. By [23, Proposition 6.1], for all z 2 Jf ,

(4) lim
n!1

j(f n)0(z)j =1:

Since f is periodic with period 2�i we consider

A = Jf \ fz : Im z 2 [0; 2�]g:

and we let Am denotes the open set

fz 2 A : j(f m)0(z)j > 2g:

16



Then by (4) fAmgm�1 is an open covering of A. Moreover, it follows from Lemma 2.1 that

there exists M such that, if jRe z j > M, then jf 0(z)j > 2. Therefore

fz 2 A : jRe z j > Mg � A1:

Since A \ fz : jRe z j � Mg is a compact subset of A, it follows that there exists k � 1

such that the family fA1; A2; : : : ; Akg covers A. It implies that, for every z 2 A, there exists

k(z) � k for which j(f k(z))0(z)j > 2. Therefore, for every n > 0 and every z 2 A we can

split the trajectory z; f (z); : : : ; f n(z) into l � b nk c+ 1 pieces of the form

zi ; f (zi); : : : ; f
k(zi )�1(zi)

for i = 1; : : : ; l � 1, and, for i = l ,

zl ; f (zl); : : : f
j(zl) = f n(z);

where z1 = z , zi = f k(zi�1)(zi�1) and j is some integer smaller than k . Then

j(f n)0(z)j � 2b
n
k c�k�1;

where

� = inf
z2Jf

jf 0(z)j 6= 0;

since Jf contains no critical points and because of Lemma 2.1 (ii). It follows that

j(f n)0(z)j � 2
n
k�1�k�1 =

�k�1

2
(2

1
k )n:

�

17



More remarks on the family H.

We observed that the family H is a family in the class of transcendental entire functions,

which was denoted by Ent. Moreover, every function fa fromH has only �nitely many singular

values, in other words fa has �nitely many asymptotic and critical values so H is a family of

functions which belong to the Speiser class S de�ned in Section 1.3. Moreover, for every

map in H the Julia set is a Cantor bouquet as it was observed in [14] ,[41] or [37] for maps

in the Speiser class with an attracting cycle.

Note also that the assumption 0 < k < degPa implies that any map fa 2 H does not have

a �nite asymptotic value since Pa(z)=zk converges to in�nity when z aproaches 0 or 1. If

this condition is not satis�ed then one of the limits is �nite and it would be a �nite asymptotic

value of fa. Even in this case, the main result from section 4.3 may be established, using the

proofs from this thesis with some minor changes. We additionally assume that maps from

the family H, which we consider, satisfy the following extra-condition.

If z is a periodic point of period m then j(f m)0(z)j 6= 0:

Of course we rise the question if it is possible to develop a similar theory we shall present

in Chapters 3 and 4 and to prove the main result of section 4.3, without this extra-condition.

This problem remains open but we believe the answer is positive.

Applying Thermodynamic Formalism on the family H (the reader interested in Thermo-

dynamic formalism and its connection with dynamics is refered to [26], [32],[29] or [30])

we shall prove that the Hausdor� dimension of the subset of the Julia set of such maps,

consisting of the points for which the forward orbit does not escape to in�nity i.e. the set

Jrfa = JfanI1(fa);

where I1(fa) = fz 2 C : limn!1 f n(z) = 1g, depends real-analytically on the parameter

a 2 Cn+1:

18



In order to do that we study �rst quasiconformal conjugacies in the family H and then we

de�ne Perron-Frobenius operators associated with some special potentials. The classical

theorem of Hartogs will help us to prove the main tool of this thesis (see section 4.1)

which will allow us to prove the main result in section 4.3 which shows that these Perron-

Frobenius operators can be embedded into a family of operators which depend holomorphicaly

on the parameter a chosen from a designed open set G � Cn+1 and then, using perturbation

theory (Kato-Rellich theorem) and the results from Chapter 3, where we prove mainly that

HD(JrFa) = h is the unique zero of the pressure function t ! P (t) for t > 1 and a 2 Cn+1,

we obtain that the function a 7! HD(Jrfa) is real-analytic.

It is also important to remark that the derivative f (s)b (z) of a map fb 2 H has the

expression:

f (s)b (z) =
n∑
j=0

bj(j � k)
se(j�k)z

for every b = (b0; � � � ; bn) 2 Cn+1 and every positive integer s � 0: Moreover observe that

the derivative with respect to the variable parameter b 2 Cn+1 has the expression:

(5)
@F 0

b
@b

(z) =
@f 0b
@b

(z) =



@f 0b
@b0 (z)

@f 0b
@b1 (z)

� � �

@f 0b
@bj (z)

� � �

@f 0b
@bn (z)


=



�ke�kz

(1� k)e(1�k)z

� � �

(j � k)e(j�k)z

� � �

(n � k)e(n�k)z


:

Hence

(6)

∣∣∣∣∣∣∣∣@f 0b@b (z)
∣∣∣∣∣∣∣∣2 = ∣∣∣∣∣∣∣∣@F 0

b
@b

(z)

∣∣∣∣∣∣∣∣2 = n∑
j=0

(j � k)2e2(j�k)Re z ;

where jj � jj means the norm on Cn+1 de�nied by the formula

jj(z0; : : : ; zn)jj =

√√√√ n∑
j=0

jzj j2
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for (z0; : : : ; zn) 2 Cn+1. Similarly, it is clear that

(7)

∣∣∣∣∣∣∣∣@fb@b (z)
∣∣∣∣∣∣∣∣2 = ∣∣∣∣∣∣∣∣@Fb@b (z)

∣∣∣∣∣∣∣∣2 = n∑
j=0

e2(j�k)Re z :

2.3. Bounded Orbits

We �x again a 2 Cn+1 and we denote fa by f , Fa by F and the Julia set of F by JF : Our

goal in this section is to prove Proposition 2.3. In order to prove this proposition we apply

the thermodynamic formalism for compact repellers.

De�nition

Let f be a holomorphic function from an open subset V of C into C and J a compact

subset of V:

The triplet (J; V; f ) is a conformal repeller if

(i) there are C > 0 and � > 1 such that j(f n)0(z)j � C�n for every z 2 J and n � 1:

(ii) f �1(V ) is relatively compact in V with

J =
⋂
n�1

f �n(V ):

(iii) for any open set U with U \ J not empty, there is n > 0 such that

J � f n(U \ J):

It is worth noting that there are no critical points of f in J:

Conformal repellers.

Let (J; V; g) be a (mixing) conformal expanding repeller( see for example [32] for more

properties). In the proof of Proposition 2.3, J = J1(M) is a compact subset of C, limit of

a �nite conformal iterated function system, g = F , is a holomorphic function for which J is

invariant and for which there exist  > 1 and c > 0 such that, for all n 2 N and for all z 2 J,

j(gn)0(z)j � cn. For t 2 R we consider the topological pressure de�ned by

Pz(t) = lim
n!1

1

n
logPz(n; t);
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where

Pz(n; t) =
∑

y2g�n(z)
j(gn)0(y)j�t :

The function P (t) = Pz(t) as a function of t is independent of z , continuous, strictly

decreasing, limt!�1 P (t) = +1 and the following remarkable theorem holds.

Bowen's Formula Hausdor� dimension of J is the unique zero of P (t).

For more details and de�nitions concerning the thermodynamic formalism of conformal

expanding repellers ( initiated by Bowen and Ruelle) we refer the reader to [32] or [26].

In order to prove Proposition 2.3, i.e. to show that HD(J) > 1; we use Bowen's formula

and we observe that, from the de�nition of Pz(n; t); it is enough to �nd a constant C > 1

such that, for all z 2 J,

(8) Pz(1; 1) � C:

Proposition

Let f 2 H. Then the Hausdor� dimension of the set of points in Julia set of f having

bounded orbit is strictly greater than 1.

Proof. Let N be a large number, H = fz 2 C : Re z > Ng. Observe that there exists U

such that U � fz : s � � < Im z < s + �g for some s 2 (��; �]; Re U > 0; f jU is univalent

and f (U) = H. Note that, since N is large, by Lemma 2.1 there exists N > 1 such that, if

Re z � N, then

(9) jF 0(z)j = jf 0(z)j > N:

For every M > N de�ne

P (M) = fz 2 U : N � Re z � Mg:

Then, for j 2 Z, let Lj : H ! U be de�ned by the formula

Lj(z) = (f jU)
�1(z + 2�ij);
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and let

(10) Qj(M) = Lj(P (M)):

The set P(M) and the family of functions

fLjgj2KM

with

KM = fj 2 Z : Qj(M) � IntP (M)g;

de�ne a �nite conformal iterated function system . By J1(M) we denote its limit set. The set

J1(M) is forward F�invariant. From (9) and from the fact that the Julia set is the closure

of the set of repelling periodic points it follows that

(11) J1(M) � JF :

Next we need a condition for j which guarantees that Qj(M) � IntP (M) (equivalently

j 2 KM) for all M large enough. Observe that

(12) KM � KM+1

for all M large enough. To prove (12), let j 2 KM and let z 2 Qj(M + 1) n Qj(M). Note

that, if we assume that M > M2e(n�k)(N+1), then we can be sure that Re z > N+1 (n and k

are de�ned in section 2.1). Therefore, to get (12), it is enough to prove that Re z < M +1.

Since

F (Qj(M + 1) nQj(M)) = P (M + 1) n P (M);

it follows from Lemma 2.1 that jF 0(z)j � M1
M2 jf (z)j � M and, then,

Qj(M + 1) nQj(M) � B
(
z;
M22�

M1M

)
� B(z; 1):

But we know, that, for y 2 Qj(M), Re y � M. This proves (12).
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The next step is to prove that there exists j0 2 N such that, for all M 2 N large enough,

(13) j0; j0 + 1; : : : ; ebM=2c 2 KM:

Note that we can �nd j0 such that, for every j � j0, Re Qj(M) > N. By Lemma 2.1 it is

enough to take

j0 =

⌈
M2e(n�k)N + 2�

�

⌉
:

So, to prove (13) it remains to show that j < ebM=2c implies

Re Qj(M) � M:

Striving for a contradiction, suppose that j < ebM=2c and there exists z 2 Qj(M) such that

Re z > M. Then by Lemma 2.1 we have

(14) jf (z)j > M1e
(n�k)M:

Since z 2 Qj(M), f (z) 2 P (M) + 2�ij . Then the square of the distance from zero to the

upper-right corner of P (M) + 2�ij is greater than jf (z)j2, i.e.

M2 + (s + � + 2�j)2 > jf (z)j2:

By (14) and the assumption j < ebM=2c; it follows that

(M1e
(n�k)M)2 < M2 + (s + � + 2�)2eM:

Hence we have the required contradiction since for large M the inequality is false.

Finally observe that by Lemma 2.1, for j 2 KM and z 2 Qj(M), the following is true

jF 0(Lj(z + 2j�i))j �
M2
M1

jf (Lj(z + 2�ij))j �
M2
M1

(2j� + 2� +M):

Then

Pz(1; 1) =
∑

y2F�1(z)\J1(M)

1
jF 0(y)j =

∑
j2KM

jL0j(z + 2j�i)j
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�
ebM=2c∑
j=j0

1
M2M1 (2j�+2�+M)

:

Since , if M is large enough, the right side of this inequality can be as large as we want, (8)

and the proposition are proved. �

2.4. Quasiconformal Conjugacy

In this section we present some analytic and geometric properties of the family H. We

follow the analysis from [30], which in turn follows the more elaborated descriptions from [16]

and [42]. As in [16] every f 2 H � S is viewed as an element of a �nite dimensional complex

analytic manifold Mf = H � S: In the refered paper [16] various analytical and geometrical

results are proved on Mf :

For the theory of quasiconformal maps in the plane we refer the reader to the books written

by Lehto and Virtanen [40], Ahlfors [34], the paper of Astala [35] and the �rst chapter of the

book by F.Gardiner and N.Lakic [38].

A sense-preserving homeomorphism f of a domain G is called quasiconformal if its maximal

dilatation K(G) is �nite. If K(G) � K <1 then f will be called K�quasiconformal (see [40,

p.16]). Following the terminology used in the conformal case we also call a quasiconformal

homeomorphism a quasiconformal mapping.

The topology of H

The domain of all functions from H is the non-compact complex plane, and the most

natural topology of H is the topology of uniform convergence on compact subset of C.

Observe that this topology is equivalent to the Euclidean topology on Cn+1 when we identify

a parameter a with the function fa. Therefore, throughout this paper we sometimes write

a 2 H with the meaning that fa 2 H. Moreover, whenever we say b is close to a we mean

that fb is close to fa as well. We also say b is su�ciently close to a whenever we need b to

be chosen from a small open neighborhood of a 2 Cn+1. (compare [16]).
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After this short introduction on the topological structure of H we can formulate a lemma

which follows from the results of Eremneko and Lyubich ([16], Proposition 5, p.1016) on

structural stability of maps in the Speiser class (see also [42]).

Lemma

For a 2 H, fa is structurally stable i.e. if b is su�ciently close to a, then there exists a

conjugating quasiconformal homeomorphism hb : C! C such that

fb � hb = hb � fa:

Moreover the map b 7! hb(z) is holomorphic for every z 2 C and the mapping (b; z) 7! hb(z)

is continuous. The quasiconformal constant converges to 1 as b approaches a.

This is the moment when we need our extra-condition, since, if fa has a superatracting

periodic point, then fa is not structurally stable. This property of stability of the family H

stated in the previous Lemma is a crucial fact. But we need to have some control over the

changes resulted from the action of the quasiconformal homeomorphism in a neighborhood of

a: This is stated in Proposition 2.4. To obtain this result we need to povide some information

about quasiconformal maps and give some properties of functions from H.

Let K, � > 0. We say that a map h : C! C is (K;�)-H�older continuous if

jh(z1)� h(z2)j � Kjz1 � z2j
�

for all z1; z2 2 C such that jz1 � z2j < 1.

But what we are really interested in is the distortion of Euclidean distances under nor-

malized K�quasiconformal maps. Let us �rst recall the classical theorems of Koebe and

Mori. For the proof of Koebe's theorems the reader can see [15] and for the proof of Mori's

theorem see for example [40, p.66].
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Koebe's One-Quarter Theorem & Koebe's Distortion theorem

Let f : B(z0; �)! C be a univalent map. Then

B(f (z0);
1

4
jf 0(z0)j�) � f (B(z0; �))

Moreover , for 0 < � < 1 and for z 2 S(z0; ��) = fz 2 C : jz � z0j = ��g

(i) jf 0(z0)j��
(1+�)2 < jf (z)� f (z0)j <

jf 0(z0)j��
(1��)2

(ii) 1��
(1+�)3 <

jf 0(z)j
jf 0(z0)j <

1+�
(1��)3

(iii) j arg( f
0(z)

f 0(z0))j � 2 ln(1+�1��)

Mori's theorem

Let f be a K�quasiconformal mapping of the unit disk onto itself normalized by f (0) = 0:

Then for every pair of points z; w with jz j < 1 and jw j < 1 we have

jf (w)� f (z)j � 16jw � z j
1
K

The number 16 cannot be replaced by any smaller bound if the inequality is to be hold for all

K:

Now we formulate three lemmas about functions from the family H. The �rst is very

similar to Lemma 2.1 but we bring it into attention, once again, for the sake of completness.

Lemma

For a 2 H there exist positive numbers M1, M2, M3 and r such that for all b 2 B(a; r)

and for all z 2 C with jRe z j > M3 the following inequalities hold.

(i) M1e jRe z jq(z) � jf 0b(z)j � M2e jRe z jq(z),

(ii) M1e jRe z jq(z) � jf 00b (z)j � M2e jRe z jq(z),

(iii) M1e jRe z jq(z) � j
@f 0b
@b (z)j = j

@F 0b
@b (z)j � M2e jRe z jq(z),

where

q(z) =

 k if Re z < 0

n � k if Re z > 0:

26



Another important observation is that we can maintain the bounds from Lemma 2.4 when

we apply the quasiconformal homeomorphism hb to the points of Jfa : Note the parts (iii) and

(iv) follow from the equalities (6) and (7).

Lemma

For a 2 H there exists M1, M2, M3 and r such that for all b 2 B(a; r) and for all z 2 C

with jRe z j > M3 the following inequalities hold.

(i) M1e jRe z jq(z) � jf 0b(hb(z))j � M2e jRe z jq(z),

(ii) M1e jRe z jq(z) � jf 00b (hb(z))j � M2e jRe z jq(z),

(iii) M1e jRe z jq(z) � j
@f 0b
@b (hb(z))j = j

@F 0b
@b (hb(z))j � M2e jRe z jq(z),

(iv) M1e jRe z jq(z) � j@fb@b (hb(z))j = j@Fb@b (hb(z))j � M2e jRe z jq(z),

where

q(z) =

 k if Re z < 0

n � k if Re z > 0:

Consequently, we can also generalize Proposition 2.2 from section 2.2 and we obtain that

for a �xed parameter a 2 H (i.e. fa 2 H) , a map fb 2 H is expanding on its Julia set

uniformly over a small neighborhood B(a; r) � H:

Lemma

For every a 2 H there exist c > 0,  > 1, r > 0 such that, for all b 2 B(a; r),

j(f nb )
0(z)j > cn

for every z 2 Jfb :

We state now the main result of this section.
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Proposition

Fix a 2 H. For b su�ciently close to a, we can choose hb : C ! C, the quasiconformal

conjugacy homeomorphism, such that the following three properties hold.

(i) supz2Jfa

{
jdhbdb (z)j

}
is bounded.

(ii) hb : C! C is (K(Q); 1=Q)-H�older continuous, where Q is quasiconformal constant

of hb and K : [1;1)! (0;1) is increasing.

(iii) For every z 2 C we have hb(z + 2�i) = hb(z) + 2�i: This shows that hb is well

de�ned on the cylinder P:

Proof. First we will prove (i). Let fa; fb be as above. Also consider Jfb , Jfa and hb : C ! C

with ja � bj < " for a small " > 0: We need to show that

sup
z2Jfa ;b2B(a;")

∣∣∣dhb(z)
db

∣∣∣ <1

By the conjugacy relation we get

hb � fa(z) = fb � hb(z) for every z 2 C:

Therefore, for every n � 0; we have that

hb(f
n
a (z)) = f nb (hb(z)):

We consider �rst z 2 Jfa a periodic point with period n � 1: De�ne the function f : Cn�C!

C by the formula

f (b; z) = fb(z)

Then by the conjugacy relation we obtain, for every b 2 B(a; "),

f n(b; hb(z)) = hb(z)

because f na (z) = z: Di�erentiating the above relation with respect to the variable b; we get

D1f
n(b; hb(z)) +D2f

n(b; hb(z)) �
dhb
db

(z) =
dhb
db

(z):
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Since periodic points from the Julia set are not parabolic, this implies that

dhb
db

(z) =
D1f n(b; hb(z))

1�D2f n(b; hb(z))
:

It follows then from Lemma 2.4, the expanding property of maps in the family H on the Julia

set, that if the period n of z is large enough, then

(15)
∣∣∣dhb
db

(z)
∣∣∣ � jD1f n(b; hb(z))j

jD2f n(b; hb(z))j � 1
� 2

jD1f n(b; hb(z))j

jD2f n(b; hb(z))j
:

Let w denotes hb(z). Then using the equality f nb (w) = fb(f
n�1
b (w)) (which is equivalent to

f n(b; w) = f (b; f n�1b (w))) we can estimate D1 in terms of D2 as follows. First write

D1f
n(b; w) = D1

(
f (b; f n�1(b; w))

)
= D1f (b; f

n�1(b; w)) +D2f (b; f
n�1(b; w)) �D1f

n�1(b; w):

Therefore, repeating these computations for n; n � 1; � � � ; 1; 0, by induction and using the

chain rule we obtain

D1f
n(b; w) =

n�1∑
k=0

D2f
k(b; f n�k(b; w)) �D1f (b; f

n�k�1(w))

With @-notation, for w = hb(z); it looks like this.

D1f n(b; hb(z)) = @f n
@b (b; w)

= @f n
@b (b; f

n�1
b (w)) + f 0b(f

n�1
b (w))@f

n�1
@b (b; w)

=
∑n�1

k=0(f
k
b )

0(f n�kb (w))@F@b (b; f
n�k�1
b (w)):

Then

(16)
D1f n(b; hb(z))

D2f n(b; hb(z))
=

@f n
@b (b; w)

(f nb )
0(w)

=
n�1∑
k=0

@f
@b(b; f

n�k�1
b (w)) � (f kb )

0(f n�kb (w))

(f nb )
0(w)

=
n�1∑
k=0

@f
@b(b; f

n�k�1
b (w))

(f n�kb )0(w)
=

n�1∑
k=0

@f
@b(b; f

n�k�1
b (w))

(f 0b)(f
n�k�1
b (w))

�
1

(f n�k�1b )0(w)
:
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Next we would like to show that ∣∣∣∣∣ @f@b(b; f n�k�1b (w))

(f 0b)(f
n�k�1
b (w))

∣∣∣∣∣
is uniformly (with respect to b) bounded from above. It is worth reminding that f n�k�1b (w) 2

Jfb and both function @f
@b(b; �) and f

0
b are periodic with period 2�i . Therefore, it is enough to

prove that there exists a constant C such that

(17)
j@f@b(b; z)j

j(f 0b)(z)j
� C

for b su�ciently close to a and for z 2 Jfb \ fz 2 C : Im z 2 [0; 2�]g.

To do this we split the set Jfb \ fz 2 C : Im z 2 [0; 2�]g into two sets, a compact one

fz 2 Jfb : x 2 [�M3;M3]� [0; 2�]g and its complement. By Lemma 2.4

C 0 = sup
{ j@f@b(b; x)j
j(f 0b)(x)j

: b 2 B(a; "); x 2 Jfb ; x 2 [�M3;M3]� [0; 2�]
}
<1

for " small enough. Morover, by Lemma 2.4 (i) and (iii),

j@f@b(b; x)j

j(f 0b)(z)j
�
M2
M1

if jRe x j � M3. Therefore, (17) is proved with C = maxfC 0;M2=M1g.

Note that, it follows from Lemma 2.4 that we can assume that " > 0 satis�es the

condition
l∑
j=0

1

j(f jb )
0(w)j

�
1

c(1� (1=))

for all n and b 2 B(a; "). Then, putting (15), (16) and (17) together, we get

sup
z2Per;b2B(a;")

∣∣∣dhb
db

(z)
∣∣∣ <1:

Hence, since Per = Jfa and since b 7! hb(z) is analytic, the part (i) follows. Next we will

prove (ii). Obviously we want to use Mori's theorem and the result obtained before. The

point (i) shows, in particular, that for small "

(18) sup
z2Jfa ;b2B(a;")

jz � hb(z)j < 1:
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Let " > 0 be so small that for every b 2 B(a; ") the maps fb are su�ciently close to fa: Fix

x 2 Jfa and consider the open disk B(x; 1) of radius 1 with center at x: Then Gb = hb(B(x; 1))

is an open simply connected set for every b 2 B(a; "):

Let Rb : D(0; 1) ! Gb be the conformal representation(Riemann map) of Gb such that

R(0) = hb(x): Then the map

gb = R�1
b � hb : B(x; 1)! D(0; 1)

is a Q�quasiconformal homeomorphism between two disks of radius 1. Let now �x be a

path in JFa which joins x and in�nity. The existence of such a path is a consequence of the

fact that all Fatou components are simply conected (see [41, p.90] and section 1.4). Let

�!x � �x \ B(x; 1) be an arc inside B(x; 1) joining x with a point on the boundary @B(x; 1)

call it !: Then hb(�!x ) is an arc joining hb(x) and hb(!) 2 @Gb:

Note that there exists z 2 D(0; 1) with jz j = 1
2 and y 2 B(x; 1) \ JFa such that Rb(z) =

hb(y) 2 JFb (or equvalently gb(y) = z). From (18), for ja � bj < ", it follows that

jRb(z)� Rb(0)j = jhb(y)� hb(x)j

� jhb(y)� y j+ jy � x j+ jx � hb(x)j

= jhb(y)� ha(y)j+ jy � x j+ jx � hb(x)j

� 2" sup
{∣∣∣@hb@b ∣∣∣ : z 2 Jfa ; b 2 B(a; ")}+ 1

� 2"+ 1:

It follows that Rb(B(0; 1=2)) does not contain the ball B(hb(x); 2"+ 1) since Rb
(
B(0; 12)

)
does not contain any ball centered at hb(x) with radius greater than jRb(z)� hb(x)j. Then,

using Koebe's Distortion Theorem, we get jR0
b(0)j � 4(2"+ 1):

Applying Mori's Theorem to the quasiconformal mapping gb and to points z1; z2 2 B(x; 1)

we get

jgb(z1)� gb(z2)j < 16jz1 � z2j
1
Q :
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If additionaly z1; z2 2 B(x; 1=(32)Q), then, using Koebe's Theorem with K = K(1=2) for the

function Rb, we get

jhb(z1)� hb(z2)j = jRb(gb(z1)� Rb(gb(z2))j �

KjR0(0)jjgb(w)� gb(z)j � 4K(2"+ 1)jw � z j
1
Q :

From the above computations it follows that hb is 4K(2" + 1); 1Q-H�older continuous on

1=(32)Q-neighborhood of Jfa . But note, that there exists r , such that r=(32)Q-neighborhood

of Jfa contains the whole plane C. Therefore, considering the map grb(z) =
1
r gb insead of gb

(we have to increase the domain of gb to B(x; r)), we can repeat the computations to prove

that hb is 4rK(2"+ 1); 1Q-H�older continuous on C.

Finally we will prove (iii). Consider the map b 7! kz(b) = hb(z +2�i)� hb(z) 2 C. Since

b 7! hb(z) is continuous, the map kz is continuous as well. If b 2 B(a; ") for some small ",

as before, we get from the conjugacy relation that

(19) fb(hb(z + 2�i)) = hb(fb(z + 2�i)) = hb(fb(z)) = fb(hb(z)):

Then, for every b 2 B(a; "), the set of all possible values of kz is a discret subset of C

(in particular has a �nite intersection with the stripe fz : Im z 2 [0; 2�)g). If hb(z + 2�i)

and hb(z) are regular points of fb, then, for c su�ciently close to b, hc(z + 2�i) and hc(z)

are regular points of fc and, if kz(b) 6= 2�i , then kz(c) 6= 2�i , and if kz(b) = 2�i , then

kz(c) = 2�i . Since kz(a) = 2�i for z 2 C and since the set of critical points of fa is discrete,

kz is the constant function 2�i . This �nishes the proof. �
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CHAPTER 3

PERRON-FROBENIUS OPERATORS

3.1. Conformal Measures and Semi-Conformal Measures

The main goal of this section is to �nd a relation between the Hausdor� dimension of JrF

and the exponent of the unique conformal measure on JF . This relation (actually equality)

is stated in Corollary 3.1.

We give required de�nitions and then we prove this result going �rst through semiconfor-

mal measures. An observation of a general character is that all (semi)conformal measures in

our paper are probabilistic measures. Let, as before, a 2 Cn+1; f = fa; F = Fa = � � fa ���1;

and � = �a:

De�ne

J(M) =
⋂
n2N

F�n(D(M));

where

D(M) = fz 2 JF : jRe z j � Mg:

Similarly as in [11, Lemma 5.3] (see also [26]) it follows that for t > 0 there exists a

real number �M(t) � 0 (we will often denote �M(t) just by �M) and (t; �M)-semiconformal

measure mt;M (�M = �M(t)) supported on J(M), i.e. there exists a Borel probability measure

mt;M on J(M) such that for all Borel sets A � J(M) for which F jA is 1-1,

(20) mt;M(F (A)) � �M

∫
A
jF 0jtdmt;M

and, if additionally A \ @D(M) = ;, then

mt;M(F (A)) = �M

∫
A
jF 0jtdmt;M:
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The number �M(t) can be de�ned by the formula �M(t) = ecM(t), where

cM(t) = lim sup
n!1

1

n
log

∑
x2EM

∑
w2F j�nJM (x)

j(F n)0(w)j�t ;

EM is a �nite collection of points such that the set

ZM = fB(x; �1=2) : x 2 E
Mg

is an open cover of J(M), and �1 � � is chosen so that

J1(M) =
⋂
j2KM

Lj(R(M));

where

R(M) = fz 2 C : min
z02P (M)

jz � z0j < �1g:

Recall that J1(M) is a compact set and F-forward invariant as a limit set of a �nite conformal

iterated function system (see the proof of Proposition 2.3) and, by (9), �1 can chosen such

that, for z 2 R(M) and for j 2 KM,

jL0j(z)j <
1

a

for some a > 1. Moreover, functions Lj are inverse branches of F�1 and

(21) Lj(R(M)) � R(M):

Our objective is to prove that we can �nd tM > 1 such that �M(tM) = �M = 1 (cM(t) =

0).

Lemma

For every large M there exists tM > 1 with �M(tM) = 1. Moreover, for all p � �1,

1 < HD(J1(M)) � tM+p.
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Proof. Let

Bn := fLj1 � : : : � Ljn : jl 2 KM; l = 1; : : : ; ng:

Let p � �1 and let z 2 EM+p be such that z 2 R(M). We can always �nd such a point since

�1 can be as small as we want. Then, for B = B(z; �1=2) and for � 2 Bn, we have that

�(B) � R(M):

Therefore ∑
�2Bn

j�0(z)jt �
∑
x2EM

∑
w2F j�nJM+p (x)

j(F n)0(w)j�t :

Hence

Pz(t) � cM+p(t)

where Pz(t) is the pressure function for the �nite conformal iterated function system de�ned

in the proof of Proposition 2.3. Since the zero of Pz is equal to HD(J1(M)) > 1, the zero

point of cM+p exists and is greater or equal to HD(J1(M)) if the function cM+p is a continuous,

decreasing and

lim
t!1

cM+p(t) = �1:

But this can be done by a direct computation using the H�older inequality and the expanding

property. �

Therefore, we are able to �nd a tM-semiconformal measure on J(M) (i.e. (tM; 1)-

semiconformal) mtM ;M which we denote by mM. Note that for the measure mM it is true

that

(22) mt;M(F
n(A)) �

∫
A
j(F n)0jtdmt;M

for every Borel set A � J(M) for which F njA is 1-1, and, if additionally A\@D(M) = ;, then

(23) mt;M(F
n(A)) =

∫
A
j(F n)0jtdmt;M:

Next we will use the following proposition and for a proof we refer the reader to [17] or [26].
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Proposition

Let E � Rn be Borel set, let � be a �nite Borel measure on Rn.

(i) If lim supr!0 �(B(x; r))=r
t <1 for all x 2 E then HD(E) � t.

(ii) If lim supr!0 �(B(x; r))=r
t > 0 for all x 2 E then HD(E) � t.

Lemma

Let mM be the tM-semiconformal measure supported on J(M). Then

HD(J(M)) � tM:

Proof. By Proposition 3.1 it is enough to prove that there exists a constant C such that for

all z 2 J(M) and for all small r > 0

mM(B(z; r)) � Cr tM :

So let z 2 J(M) (M is large) and let r be a positive number such that

4r

�
< ( sup

x2J(M)
jF 0(x)j)�1 < 1

(see (9)) where � = �a: Since j(F n+1)0(z)j = jF 0(F n(z))jj(F n)0(z)j, we can �nd n � 1 such

that

(24) j(F n)0(z)j�1 �
4r

�
> (j(F n)0(z)j sup

x2J(M)
jF 0(x)j)�1:

Since Pfa \ B(z; 2�) = ;, we have a univalent function

F�n
z : B(F n(z); �)! P

which is the inverse branch of F n sending F n(z) to z . It follows from 1
4�Koebe Theorem

that

B(z; r) � B(z;
�

4
j(F n)0(z)j�1) � F�n

z (B(F n(z); �)):
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Then from (22) and (1) we obtain the inequalities

1 � mM(B(F
n(z); �)) = mM(F

n(F�n
z (B(F n(z); �))))

�

∫
F�nz (B(F n(z);�))

j(F n)0jtMdmM

� ( inf
x2B(F n(z);�)

j(F n)0(x)jtM)mM(F
�n
z (B(F n(z); �)))

�
1

KtM j(F
n)0(z)jtMmM(F

�n
z (B(F n(z); �)))

�
1

KtM j(F
n)0(z)jtMmM(B(z; r)):

Hence, by (24),

mM(B(z; r)) � KtM j(F n)0(z)j�tM

� ((4K=�) sup
x2J(M)

jF 0(x)j)tM r tM :

�

So we know that the sequence (tM)M2N is bounded from above by 2. Therefore we can

�nd a convergent subsequence (tMk ) to a �nite point h(see Theorem 3.1).

It is also worth noting that, if we �x t > 1, then the sequence (�M(t))M2N is bounded.

This follows from the fact that P z(t) is �nite, where P z(t) is de�ned in the section 3.3

(see Lemma 3.3). Then it follows from Lemma 3.1 that, for t > 1, we can always �nd a

convergent subsequence (�Mk (t)) to a �nite point �(t) di�erent from zero (see Remark 3.1).

More on cylinder P

Semiconformal measures introduced before will help us to construct conformal measures.

But before we do this, we would like to show how strong property is the existence of such

measures. So now we describe some subsets of the cylinder P , introduce some notation

for these special subsets and we make some remarks on the behavior of a map f 2 H;

far from its critical values, in a simply connected neighborhood of in�nity (outside of a ball
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of a su�ciently big radius). This allows us to prove the uniqueness property of conformal

measures. Therefore, we will be well prepared for the construction of such measures.

Consider for the beginning the following sets:

A1(M) = fz 2 JF : Re z > Mg;

A2(M) = fz 2 JF : Re z < �Mg;

A(M) = A1(M) [ A2(M):

The function f � ��1 : P ! C is well de�ned by the relation f � ��1(ẑ) = f (z), where

ẑ 2 P is the class of z 2 C via the equivalence relation de�ned in 2.2, and, if it does not

lead to misunderstanding, we will denote it sometimes by f and the class ẑ by z . Because

f (z) = fa(z) 2 H has the analytic expression

fa(z) =
( a0
ekz

+
a1

e(k�1)z
+ � � �+

ak�1
ez

)
+ ak +

(
ak+1e

z + � � �+ ane
(n�k)z)

for 0 < k < n; we observe that, forM large enough (see Lemma 2.1), the set �(f �1(A1(M)))

has n � k connected components which intersect A1(M) and k components which intersect

A2(M). We denote them respectively by B(M; j) (j = 1; : : : ; n � k) and by B(M; j) (j =

n�k+1; : : : ; n). Analogously we can enumerate n connected components of �(f �1(A2(M)))

by B(M; j) (j = n + 1; : : : ; 2n � k) and B(M; j) (j = 2n � k + 1; : : : ; 2n). Let

B(M; j; l) = fz 2 B(M; j) : Im f � ��1(z) 2 [(2l � 1)�; (2l + 1)�)g;

where l 2 Z. Note that

(25)
2n⋃
j=1
F (B(M; j)) � A(M):

Next, let

A1(M) = fz 2 C : jz j > M1e
M; Im z > 0;Re z 2 [�M;M]g;

A2(M) = fz 2 C : jz j > M1e
M; Im z < 0;Re z 2 [�M;M]g:
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Then, similarly, we can enumerate 2n = ((n� k)+ k)+((n� k)+ k) connected components

of �(f �1(A1(M) [ A2(M))) and denote them by C(M; j) (j = 1; : : : ; 2n). And, �nally,

C(M; j; l) = fz 2 C(M; j) : Im f � ��1(z) 2 [(2l � 1)�; (2l + 1)�)g;

where l 2 Z. But note that, if C(M; j) is a preimage of A1(M) (A2(M)), then C(M; j; l) is

empty for negative (res. positive) l . Moreover, using Lemma 2.1 (i) we can get that, for

z 2 C(M; j),

jIm f (z)j �
√
M2

1e
2M �M2:

Therefore, for large M, if jl j � eM=2, then C(M; j; l) = ; for every j .

Observe that B(M; j; l) and C(M; j; l) are subsets of P on which the function F is uni-

valent. Moreover, it follows from Lemma 2.1 (i) that, for z 2 A(M), jf (z)j � M1eM.

Then

(26) A(M) �
2n⋃
j=1

(B(M; j) [ C(M; j)):

So, the sets
⋃2n
j=1B(M; j)\A(M) and

⋃2n
j=1 C(M; j)\A(M) give us a partitions of A(M) into

two sets. The image of the �rst one (under F ) is contained in A(M), while the image of the

second one in contained in the complement of A(M).

A conformal measure on A(M)

Let � be (t; �)-conformal measure on JF with t > 1: Above we have described a partition

of A(M) into two sets. So there is a natural question, which one is bigger with the respect

to the measure �. First, we will give an answer to this question and then we will show that

there exists a constant c� such that for all M large enough

(27) �(A(M)) �
c�

eM(t�1) :
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If follows from (25) and from Lemma 2.1 (iii) that

(28)
�(A(M)) � �(F (B(M; j; l))) = �

∫
B(M;j;l) jF

0jtd�

� �M1
M2 (
√
(�l)2 +M2)t�(B(M; j; l)):

Therefore,

(29)
M2
�M1

(
2n

1∑
l=�1

1

(
√
(�jl j)2 +M2)t

)
�(A(M)) � �(

2n⋃
j=1
B(M; j)):

Then, since t > 1, there exists c 0� such that

�(
2n⋃
j=1
B(M; j)) <

c 0�
Mt�1�(A(M))

for large enough M. In particular, we can get that that more than half of A(M) (with respect

to the measure �) belongs to �(
⋃2n
j=1 C(M; j)) i.e.

2�(
2n⋃
j=1
C(M; j)) > �(A(M)):

So, to prove (27), �rst observe that, from Lemma 2.1 we have:

(30) 1 � �(F (C(M; j; l))) = �

∫
C(M;j;l)

jF 0jtd� � �
M1
M2

jl jt�(C(M; j; l)):

Therefore, since jl j � eM=2 implies C(C(M; j; l)) = ;,

(31) �(A(M)) � 2
M2
�M1

2n
∑

jl j�beM=2c

1

jl jt
�

c�
eM(t�1) ;

where c� is a constant which is, for large M, independent of M.

Uniqueness

The next lemma will be used especially for the proofs of Lemma 3.1 and Proposition 3.1.

Let again

JrF (M) = fz 2 JF : lim inf
n!1

jRe F n(z)j � Mg:
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Lemma

Let � be (t; �)-conformal measure on JF with t > 1: Then there exists M > 0 such that

for �-a.e. x

lim inf
n!1

jRe F n(x)j � M:

Proof. Fix M > 0. Let

X(M) = fz 2 JF : lim inf
n!1

jRe F n(z)j > Mg:

Then

X(M) =
⋃
n2N

fz 2 JF : F k(z) 2 A(M) for all k � ng:

Suppose �(X(M)) > 0. Then there exists n 2 N such that

fz 2 JF : F k(z) 2 A(M) for all k � ng

has a positive measure �. Moreover, since � is t-conformal, the measure � of the set

Y (M) = F n(fz 2 JF : F k(z) 2 A(M) for all k � ng)

is also positive. Using the fact that Y (M) is F -forward invariant, similarly as in (28) and

(30), we get

�(Y (M)) � �(F (B(M; j; k) \ Y (M)))

� �
M1
M2

(
√
(�k)2 +M2)t�(B(M; j; k) \ Y (M)):

Since Y (M) and F (Y (M)) are subsets of A(M), we have

2nM2
�M1

∑
k2Z

1

(
√
(�k)2 +M2)t

�(Y (M)) � �(Y (M)):

But, for M large, the left side of this inequality is smaller then the right. Hence, for M large,

the measure � of X(M) cannot be positive. �
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Next we are going to prove a lemma which is needed mainly in the proof of Proposition 3.1.

This proposition together with its corollaries will be used in the proof Theorem 3.1, the main

result of this section.

Lemma

Let � be a (t; �)-conformal measure on JF , where t > 1. Then there exists M > 0 and

b� > 0 such that �(JrF (M)) = 1 and for all x 2 JrF (M) there exist sequences rk > 0 and nk

such that

lim
k!1

rk = 0; lim
k!1

nk =1

and

1

b�
��nk r tk � �(B(x; rk)) � ��nkb�r

t
k :

Proof. By Lemma 3.1 there exists M > 0 such that for ��a.e. x 2 JF

(32) lim inf
n!1

jRe F n(x)j � M:

This is equivalent to the equality �(JrF (M)) = 1. Then choose any �nite cover V of fz 2

JF : jRe z j � Mg consisting of disks of radius �=32. De�ne

a1 = min
B2V

�(B) > 0:

By (32) there exist y 2 JF and a sequence nk such that B(y ; �=32) 2 V and F nk (x) 2 B(y ; �=

32) for k 2 N. Consider the disk B(x; �
4j(F nk )0(x)j): Then using Koebe's Theorem we get

B(z;
�

32
) � B

(
F nk (x);

�

16

)
�

F nk
(
B

(
x;

�

4j(F nk )0(x)j

))
� B(F nk (x); �) � B(y ; 2�);

where z is such a point that B(z; �32) 2 V. Since the measure � is conformal, it follows that

a1 � �(F nk (B(x;
�

4j(F nk )0(x)j
)))
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� �(B(x;
�

4j(F nk )0(x)j
))�nkKt j(F nk )0(x)jt ;

and

1 � �(F nk (B(x;
�

4j(F nk )0(x)j
)))

� �(B(x;
�

4j(F nk )0(x)j
))�nk

1

Kt j(F
nk )0(y)jt :

Hence

a1
Kt�

�nk (
1

j(F nk )0(z)j
)t � �(B(x;

�

4j(F nk )0(x)j
));

Kt��nk (
1

j(F nk )0(z)j
)t � �(B(x;

�

4j(F nk )0(x)j
)):

Since limk!1
�

4j(F nk )0(x)j = 0, we can take rk =
�

4j(F nk )0(x)j and the lemma is proved. �

Proposition

Let �1 be (t1; �)-conformal measure on JF and �2 be (t2; �)-conformal measure on JF ,

where t1; t2 > 1. Then t1 = t2 and there exist a constant b�1;�2 such that

1

b�1;�2
�1(E) � �2(E) � b�1;�2�1(E):

for every E a bounded Borel subset of JF :

Proof. Let �1 be (t1; �)-conformal measure and �2 be (t2; �)-conformal measure. It follows

from Lemma 3.1 that there exists M 2 N such that �1(JrF (M)) = �2(JrF (M)) = 1. Let

x 2 JrF (M): Then

(33) lim inf
n!1

Re jF n(x)j � M

Taking

rk(x) =
�

4j(F nk )0(x)j
;

where nk is chosen as in Lemma 3.1, we have that, for j = 1; 2,

1

b
��nk rk(x)

tj � �j(B(x; rk(x))) � b��nk rk(x)
tj ;
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where b := maxfb�1; b�2g and is independent of the choice of x . Suppose that t2 < t1 and

�x " > 0. Then, for rk(x) � ",

(34)

�1(B(x; rk(x))) � b��nk rk(x)t1�t2rk(x)t2

� b2rk(x)t1�t2�2(B(x; rk(x)))

� b2"t1�t2�2(B(x; rk(x))):

Let E be bounded Borel subset of JF and let E 0 be a subset of E which contains this points

of E satisfying the property (33). Since the measures are regular, for every x 2 E 0 there

exists r(x) = rk(x) (k depends on x) such that fB(x; r(x)) : x 2 E 0g is a cover of E and

�2(
⋃
x2E0

B(x; r(x)) n E) � ":

By Besicovic theorem we can choose a countable subcover

fB(xj ; r(xj)) : j 2 Ng

of bounded multiplicity C which is independent of ". Therefore

(35)

�1(E) �
∑

j2N �1(B(xj ; r(xj)))

� b2"t1�t2
∑

j2N �2(B(x; rk(x)))

� b2C"t1�t2�2(
⋃
k2NB(xk ; r(xk)))

� b2C"t1�t2("+ �2(E)):

Since t1 > t2, it follows that the measure �1 of the set E is as small as we want and, then,

�1(JF ) = 0. This is a contradiction. With the same argument, exchanging �1 with �2 we get

that the inequality t2 > t1 cannot holds. Hence t1 = t2 and then the inequality (35) �nishes

the proof. �

Remark

Similarly one can show that if �1 is a (t; �1)-conformal measure on JF and �2 is another

(t; �2)-conformal measure on JF , where t > 1 then �1 = �2 and there exist a constant b�1;�2
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such that

1

b�1;�2
�1(E) � �2(E) � b�1;�2�1(E):

for every bounded Borel subset E of JF :

Corollary

Every (t; �)-conformal measure � on JF with t > 1 is ergodic.

Proof. Suppose that � is not ergodic. Then we can �nd an invariant set A (i.e. F�1(A) = A)

such that 0 < �(A) < 1. Then two conditional measures �A and �JF nA, where

�X(Y ) =
�(Y \X)

�(Y )
;

are (t; �)-conformal. Moreover, they are mutually singular. This contradicts Proposition 3.1.

�

We are ready to state now the following important uniqueness property of a (t; �)�conformal

measure supported on JF :

Proposition(Uniqueness)

(i) Let �1 be (t1; �)-conformal measure on JF and �2 be (t2; �)-conformal measure on

JF with t1; t2 > 1. Then �1 = �2.

(ii) Let �1 be (t; �1)-conformal measure on JF and �2 be (t; �2)-conformal measure on

JF with t > 1. Then �1 = �2

Proof. (i) It follows from Proposition 3.1 that there exists h 2 L1(�1) such that

�1 = h � �2;

and, for z 2 JF , h(z) 2 [1=b�1;�2; b�1;�2]. Consider the sets H1 = fz 2 JF : h(z) � 1g and

H2 = fz 2 JF : h(z) � 1g. At least one of them has a positive measure �1. Say H1. Let us

show �rst that

�1(F
�1(H1) nH1) = 0:
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To prove this, let B be a Borel subset of F�1(H1) on which F is 1-1. Then

(36)

∫
B jF

0jtd�1 = �1(F (B)) =
∫
F (B) hd�2

� �2(F (B)) =
∫
B jF

0jtd�2:

Hence, h(z) � 1 �1-almost everywhere on F�1(H1) and, therefore,

�1(
⋃
n2N

F�n(H1) nH1) = 0:

Since �1 is ergodic and since �1(H1) > 0, �1(H1) = 1. From the fact that �2(JF ) = 1 we

get that h(z) = 1 for �1-almost every z . Hence, �1 = �2.

The point (ii) can be proved similarly as the proof of (i).

�

Existence

For the proof of the next result we use Prochorov's Theorem (see [28, ChapterIII]) about

convergence of measures on a non-compact space. For the sake of completness we include

this and the de�nition of tightness in the last section 3.4 of this Chapter.

Theorem

The sequence (mM)M>M0 is tight on JF for some positive M0, which in particular means

that for " > 0 there exists N 2 N such that for M > M0,

mM(fz 2 JF : jRe z j > Ng) < ":

Moreover, there exists a subsequence (mMk ) such that its weak limit m is an h-conformal

measure, where

h = lim
k!1

tMk = lim
M!1

HD(J(M)):

Note that h > 1 since HD(J(M)) > 1 for M large enough.
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Proof. The proof of tightness is similar to the proof of (27). In particular, we can get similar

formulas like (28) and (30), but two equalities in the computations we have to replace by

inequalities. Therefore,

(2n
∑
k2Z

1

(
√
(�k)2 +M2)t

+ 2n
∑

jkj�bM1eMc�1

1

k t
) � mM(A(M)):

Since tM > 1;, the left hand side can be as small as we want for large M. Hence we obtain

that the sequence is tight. The existence of weak limit follows from Prochorov's Theorem.

So we have to prove that any week limit of the sequence is h-conformal measure. Let A

be such a set that F jA is one-to-one. We can assume that there exists N 2 N such that

(37) A � fz : jRe z j � Ng:

If the set is unbounded, we can divide it into countable many subsets. For i = 1; 2; : : : denote

N + i by Ni . Since mNi is tNi -semi-conformal,

mNi (F (A \ J(Ni))) =

∫
A\J(Ni )

jF 0jtNi dmNi :

Then, if

(38) F (A) \ J(Ni) = F (A \ J(Ni))

and if m(@(A)) = 0

m(F (A)) = lim
i!1

mNi (F (A)) = lim
i!1

∫
A
jF 0jtNi dmNi

= lim
i!1

∫
A
jF 0jhdmNi + lim

i!1

∫
A
(jF 0jtNi � jF 0jh)dmNi =

∫
A
jF 0jhdm:

The last equality follows from (37), because from this we have that jF 0j is bounded on A

and then limi!1
∫
A(jF

0jtNi � jF 0jh)dmNi = 0. For an arbitrary Borel set A, such that F jA is

injective, since by Lemma 2.4 in [10] the boundary condition is resolved, it su�ces for us to

to prove (38). Observe that

F (A \ J(Ni)) � F (A) \ J(Ni):
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To get the opposite inclusion suppose, by contradiction, that there exists z 2 F (A) \ J(Ni)

but z is not an element of F (A \ J(Ni)). Then we can �nd y 2 A such that F (y) 2 J(Ni)

and y =2 J(Ni). It follows from the de�nition of J(Ni) (Section 3.1) that F n(y) 2 D(Ni) for

all natural n but zero. This is a contradiction because y 2 A � D(Ni). �

Remark

It can be shown as before that, if t > 1 and mt;M is a (t; �M)-semiconformal measure,

then (mt;M) is tight. Moreover, there exists a subsequence (mt;Mk ) such that its weak limit

mt is (t; �t)-conformal measure on JF where �t = limk!1 �Mk :

Now we are ready to state the theorem which is the main result of this section. The proof

of this theorem is obvious from the previous Remark 3.1, Proposition 3.1 and Theorem 3.1.
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Theorem

For every t > 1 there exist a unique �t > 0 and a unique (t; �t)-conformal measure mt

on JF . Moreover, there exists a unique h > 1 such that m = mh is an h-conformal measure.

The set of returning points

Observe once again that for a 2 Cn+1 and F = Fa as in 2.2 we have

JrF = fz 2 JF : lim inf
n!1

jRe F n(z)j <1g:

Recall that (see 2.3)

JrF = �
(
Jf n fz 2 Jf : lim

n!1
jf n(z)j =1g

)
:

Corollary

If F and JrF are as before then

HD(JrF ) = h:

Proof. Since J(M) � JrF and because HD(J(M)) � tM (see Lemma 3.1 and Theorem 3.1)

we have

HD(JrF ) � h:

Let

JrF (M) = fz 2 JF : lim inf
n!1

jRe F n(z)j � Mg:

It follows from the proof of Lemma 3.1, that, for h-conformal measure m and for all M large

enough, if z 2 JrF (M), then there exists a constant bM and a sequence rk ! 0 such that

1

bM
r hk � m(B(z; rk)):

Then, by Proposition 3.1 (ii), HD(JrF (M)) � h: Therefore, since JrF =
⋃
M J

r
F (M),

HD(JrF ) � h:

�
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3.2. Ionescu-Tulcea and Marinescu Theorem

In this section we �x a 2 H and we denote f = fa, F = Fa and � = �a. Let CB(JF ;C)

be the Banach space of all bounded continuous functions g : JF ! C with the norm jj � jj1.

For � 2 (0; 1] and for g 2 CB(JF ;C) we denote by v�(g) the �-variation of the function g

which is

inffL � 0 : jg(x)� g(y)j � Ljx � y j� for all x; y 2 JF with jx � y j � �g:

Let

jjgjj� = v�(g) + jjgjj1;

and de�ne

H� = H�(JF ) = fg 2 CB(JF ;C) : jjgjj� <1g:

Then the set H� with the norm jj�jj� is a Banach space and H� is a dense subset of CB(JF ;C).

Remark

Observe that it follows immediately from Proposition 2.2 that there exist L > 0 and

0 < � < 1 such that for every n � 0, every v 2 JF and every z 2 B(F n(v); �)

j(F�n
v )0(z)j � L�n:

De�nitions

We say a continuous function � : JF ! C is dynamically H�older with an exponent � > 0

if there exists c� > 0 such that

j�n(F
�n
v (y))� �n(F

�n
v (x))j � c�j�n(F

�n
v (x))jjy � x j�

for all n � 1, all x; y 2 JF with jx � y j � � and all v 2 F�n(x), where

(39) �n(z) = �(z)�(F (z)) � � ��(F n�1(z)):
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We say that a continuous function � : JF ! C is summable if

sup
z2JF

{ ∑
v2F�1(z)

jj� � F�1
v jj1

}
<1:

Next de�ne

Hs� = f� : JF ! C : � is a Hölder continuous summable functiong:

If the function � 2 Hs� then the formula

L�g(z) =
∑

x2F�1(z)
�(x)g(x)

de�nes a bounded operator L� : CB(JF ;C)! CB(JF ;C) called the Perron-Frobenius oper-

ator associated with the function( potential ) �:

Lemma (Ionescu-Tulcea and Marinescu inequality)

Let � : JF ! C be a summable dynamically H�older potential with an exponent � > 0.

Then

L�(H�) � H�:

Moreover, if �(JF )) � [0;1) and supn�1fjjL
n
�(11)jj1g < 1 then there exists a constant

c1 > 0 such that

jjLn�gjj� �
1

2
jjgjj� + c1jjgjj1

for all n large enough and every g 2 H�:
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Proof. Fix n � 1; g 2 H� and x; y 2 JF with jx � y j � �: Then we can write

jLn�g(y)� Ln�g(x)j

= j
∑

v2F�n(x) �n(F
�n
v (y))g(F�n

v (y))�
∑

v2F�n(x) �n(F
�n
v (x))g(F�n

v (x))j

= j
∑

v2F�n(x) �n(F
�n
v (x))(g(F�n

v (y))� g(F�n
v (x)))

+
∑

v2F�n(x) g(F
�n
v (y))(�n(F�n

v (y))� �n(F�n
v )(x)))j

�
∑

v2F�n(x) j�n(F
�n
v (x))jjg(F�n

v (y))� g(F�n
v (x))j

+
∑

v2F�n(x) jg(F
�n
v )(y)jj�n(F�n

v )(y)� �n(F�n
v (x))j

�
∑

v2F�n(x) j�n(F
�n
v (x))jjv�(g)jjF�n

v (y)� F�n
v (x)j�

+
∑

v2F�n(x) kgk1c�
∑

v2F�n(x) j�n(F
�n
v (x))jjx � y j�

� c�kgk1Lnj�j(11)(x)jy � x j
� + v�(g)(L�n)�jy � x j�

∑
v2F�n(x) j�n(F

�n
v )(x)j

� (Lnj�j(11))(c�kgk1 + L��n�v�(g))jy � x j�:

This shows that

v�(L
n
�g) � (Lnj�j(11))(c�kgk1 + L���nkgk1) <1

i.e. Ln�g 2 H� or equivalently L�(H�) � H�:

If �(JF ) � [0;1) and Q� = supn�1fkL
n
�(11)k1g <1 then

kLn�gk� = v�(L
n
�g) + kLn�gk1 � Q�L

���nkgk� + (Q�c� +Q�)kgk1:

Taking now n � 1 large enough so that Q�L���n �
1
2 , with c1 = Q�c�+Q� we are done. �

De�nition( Urba�nski, Zdunik)

We say (see also [30]) that a summable dynamically H�older potential � : JF ! (0;1)

satis�es the Q� condition if

Q� = sup
n�1

fjjLn�(11)jj1g <1:

We say that � is rapidly decreasing if

lim
jRe z j!1

L(11)(z) = 0:
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Lemma

Let � : JF ! (0;1) be a rapidly decreasing summable dynamically H�older potential

satisfying the Q�condition. If B is a bounded subset of (H�; jj � jj�) then L�(B) is a pre-

compact subset of the space

(CB(JF ;C); jj � jj1):

Proof. Fix an arbitrary sequence fgng1n=1 � B. By Ionescu-Tulcea and Marinescu inequality

the family L�(B) is equicontinuous. Since the operator L� is bounded, the family L�(B)

is bounded. So, from Ascoli's theorem it follows that we can choose from fL�(gn)gn�1

an in�nite subsequence fL�(gnk )gk�1 converging uniformly on compact subsets of JF to a

function  2 CB(JF ;C): Fix " > 0. Since B is a bounded subset of CB(JF ;C) it follows

(because � is rapidly decreasing) that there exists M > 0 such that

jL�g(z)j �
"

2

for all g 2 B and z 2 JF with jRe z j � M: Hence j (z)j � "
2 for every z 2 JF with

jRe z j � M: As a consequence we get

jL�(gnj )(z)�  (z)j � "

for every j � 1 and every z 2 JF with jRe z j � M: In addition, by uniform convergence on

compact sets, there exists p � 1 such that

jL�(gnj )(z)�  (z)j � "

for every j � p and every z 2 JF such that jRe z j � M: Therefore

jL�(gnj )�  j � "

for every j � p and every z 2 JF i.e. kL�(gnj )� k1 � " for every j � p: Letting now "& 0

we conclude that L�(gnj ) converges uniformly on JF to  2 CB(JF ;C): �
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Ionescu-Tulcea and Marinescu theorem

If the assumptions of the previous lemma are satis�ed then there exist �nite numbers

1; 2; � � � ; p 2 S1 = fz 2 C : jz j = 1g, �nitely many bounded �nitely dimensional operators

Q1; Q2; � � � ; Qp : H� ! H� and an operator S : H� ! H� such that

Ln� =
p∑
i=1

ni Qi + S
n

for all n � 1 ,

Q2
i = Qi ; Qi �Qj = 0; (i = j); Qi � S = S �Qi = 0

and

jjSnjj� � C�n

for some constant C > 0 , some constant � 2 (0; 1) and all n � 1: In particular all numbers

1; � � � ; p are isolated eigenvalues of the operator L� : H� ! H� and this operator is

quasicompact.

Proof. Combining Ionescu-Tulcea and Marinescu inequality with the results from the previous

lemma we observe that the assumptions of [21, Theorem 1.5], are satis�ed with Banach

spaces H� and the bounded operator L� : CB ! CB: Also compare [30, Theorem 4.3]. �

3.3. Bowen's Formula for the Family H

In this last section we de�ne the topological pressure and we study Perron-Frobenius

operators for our type of potentials. We establish more properties and we prove Corollary 3.3,

the main result of this chapter.

Topological Pressure

Fix a 2 H and denote f = fa; F = Fa: For every t � 0 and for every z 2 JF de�ne the

lower and the upper topological pressure respectively by

P z(t) = lim inf
n!1

1

n
log

∑
x2F�n(z)

j(F n)0(x)j�t = lim inf
n!1

1

n
logPz(n; t);
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P z(t) = lim sup
n!1

1

n
log

∑
x2F�n(z)

j(F n)0(x)j�t = lim sup
n!1

1

n
logPz(n; t);

where Pz(n; t) =
∑

x2F�n(z) j(F
n)0(x)j�t :

Lemma

P z(t) and P z(t) do not depend on the choice of z 2 JF .

Proof. Let r > 0 and z 2 JF such that

(40) B(z; 2r) \ �(Pf ) 6= 0:

First we will prove that for y 2 B(z; r)

(41) P z(t) = P y(t) and P z(t) = P y(t):

For every x 2 F�n(z) denote by F�n
z;x the branch of F�n such that F�n

z;x (z) = x . Note

(compare (1)) that

1

Kt

∑
x2F�n(z)

j(F�n
z;x )

0(z)jt �
∑

x2F�n(z)
j(F�n

z;x )
0(y)jt

� Kt
∑

x2F�n(z)
j(F�n

z;x )
0(z)jt :

Hence

1

Kt Pz(n; t) � Py(n; t) � KtPz(n; t):

Thus (41) follows. Since the set
⋃
n2N f

n(Cr itf ) has only �nite number of accumulation

points, any two points from JF can be joined by a chain of balls satisfying (40). Therefore,

the lemma follows. �

From the previous lemma it follows that we can denote P (t) = P z(t) and P (t) = P z(t):
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Lemma

Let as before a 2 Cn+1; f = fa 2 H; F = Fa and let t > 1: Then :

(i) jjPz(1; t)jj1 = supz2JF jPz(1; t)j <1

(ii) jPz(1; t)j ! 0 as jRe z j ! 1

(iii) jPz(n; t)j � jPz(1; t)jn

(iv) P (t) � log jjP (1; t)jj1:

Proof. Observe �rst that there exists M4 > nM2 such that, for M � M4, if jf (z)j > M, then

jRe z j > NM > M3. Moreover,

NM � log
M

nM2
:

It follows that

NM !1 as M !1:

Then from Lemma 2.1 if jRe z j > M � M4;

(42) Pz(1; t) � n
M2
M1

∑
j2Z

(
1√

M2 + (Im (z) + 2�j)2

)t
:

Since t > 1, there exists a constant C1(F ) > 0 such that

Pz(1; t) � C1(F )
1

Mt�1 :

In particular (ii) follows from this inequality.

So, in order to �nish the proof of (i) it is enough to consider points z 2 JF with jRe z j �

M4. First note that there exists a constant C(F ) > 0 such that for all z 2 JF∑
x2F�1(z)\A0(M)

jF 0(x)j�t � C(F )

where A0(M) is the set of points z such that f (z) belongs to the square with the center at 0

and the length of the side equal to 2M4. Hence using also the argument leading to (42) we

can write

Pz(1; t) � C(F ) + C2(F )
1

Mt�1
4

:
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with a constant C2(F ) independent of z and this �nishes the proof of (i).

By a straight forward inductive argument the proof of (iii) is a consequence of the follow-

ing:

Pz(n; t) =
∑

x2F�n(z) j(F
n)0(x)j�t

=
∑

y2F�(n�1)(z) j(F
n�1)0(y)j

∑
x2F�1(y) jF

0(x)j�t

� jjP (1; t)jj1Pz(n � 1; t):

Now (iv) follows directly from (iii). �

Lemma

For t > 1 both functions t 7! P (t); P (t) are convex, continuous, strictly decreasing and

limt!1 P (t) = �1.

Proof. We prove convexity. Let � 2 (0; 1). From H�older inequality it follows that

∑
x2F�n(z)

j(F n)0(x)j��t1 j(F n)0(x)j�(1��)t2

� (
∑

x2F�n(z)
j(F n)0(x)j�t1)�(

∑
x2F�n(z)

j(F n)0(x)j�t2)1��:

Therefore,

Pz(n; �t1 + (1� �)t2) � (Pz(n; t1))
�(Pz(n; t2))

1��;

logPz(n; �t1 + (1� �)t2) � � logPz(n; t1) + (1� �) logPz(n; t2):

Hence, P (t); P (t) are convex. Since continuity is a consequence of convexity, the other

properties follow from the de�nition of the pressure and from the property that f is expanding

on its Julia set, fact proved in Proposition 2.2. The proof is �nished.

�

As in section 3.2 we let CB = CB(JF ;C) be the Banach space of all bounded continuous

complex-valued functions on JF : We observed that the Perron-Frobenius operator L : CB !
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CB; given by the formula

Ltg(z) =
∑

x2F�1(z)
jF 0(x)j�tg(x)

is well de�ned. Its dual operator L�t : CB
� ! CB� is given by the formula

L�t�(g) = �(Ltg):

Note that

Lnt (11)(z) = Pz(n; t);

where 11(z) = 1 for all z . De�ne also

L̂t = ��1t Lt

and denote its dual operator by L̂�t . In the thermodynamic formalism of compact repellers,

the conformal measure is a �xed point of L̂�t . This is also true for our operator (see also

[10]).

Proposition

For every t > 1,

L�tmt = �tmt ;

or equivalently

L̂�tmt = mt :

Proof. First let fXigi2I be a countable measurable partition of JF such that F jXi is measurable

homeomorphism. Then, for measurable B � Xi ,

m(F (B)) =

∫
B
�t jF

0jtdmt :

Therefore, for measurable B � F (Xi),∫
F (Xi )

11Bdmt = mt(F ((F jXi )
�1(B))) =

∫
(F jXi )�1(B)

�t jF
0jtdmt =
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∫
Xi
11(F jXi )�1(B)�t jF

0jtdmt = �t

∫
Xi
(11B � F ) � jF

0jtdmt :

Hence, for any g 2 L1(mt),∫
F (Xi )

gdmt = �t

∫
Xi
(g � F )jF 0jtdmt :

Since jF 0j is bounded away from zero, it follows that, for h 2 L1(mt),

(h � ((F jXi )
�1)) � jF 0 � (F jXi )

�1j�t 2 L1(mt):

Then ∫
F (Xi )

(h � ((F jXi )
�1)) � jF 0 � (F jXi )

�1j�tdmt = �t

∫
Xi
hdmt :

Therehore,

∫
JF
Lt(h)dmt =

∫
JF

∑
x2F�1(z)

jF 0(x)j�th(x)dmt(z) =

∫
JF

∑
i2I

11F (Xi )(z)jF
0((F jXi )

�1(z))j�th((F jXi )
�1(z))dmt(z) =

∑
i2I

∫
F (Xi )

jF 0((F jXi )
�1)j�th((F jXi )

�1)dmt =

�t
∑
i2I

∫
Xi
hdmt = �t

∫
JF
hdmt :

Hence,

L�tmt = �tmt :

�

Observe now that if we �x any two points x; y 2 JF then there exists a chain (simply

connected) of balls of radius less than �, joining x and y in Pn�(Pf ): Moreover, there

exists a constant such that, if Re x;Re y � M, then the numbers of balls are less than the

constant. Then there exists a constant KM such that for x; y 2 JF with the property that
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Re x;Re y � M and for a branch F�n
� of F�n de�ned on the union of the balls in the chain

joining x and y

(43)
j(F�n

� )0(x)j

j(F�n
� )0(y)j

� KM:

Then, using the fact that

Lnt (11)(x) = Px(n; t) =
∑

u2F�n(x)
j(F n)0(u)j�t ;

we get

(44) K�t
M �

L̂nt (11)(x)

L̂nt (11)(y)
� Kt

M:

Lemma

sup
n�0

fjjL̂nt (11)jj1g <1:

Proof. We proceed by induction. From Lemma 3.3 (ii) it follows that, there exists M > 0

such that

(45) supfL̂t(11)(z) : jRe z j > Mg < 1:

Let D(M) = fz 2 JF : jRe z j � Mg. Then, by (5.5), for z 2 D(M),

L̂t(11)(z) � Kt
M �

Kt
M

mt(D(M))
:

Since Kt
M � 1, it follows from (45) that this inequality is also true for every z 2 JF . Now,

suppose that

(46) jjL̂nt (11)jj1 �
Kt
M

mt(D(M))
:

We will now prove this inequality for n + 1. Using Lemma 3.3 (iii) we get that

L̂nt (11)(z) � ��nt jPz(1; t)j
n;
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and, then, we can �nd, for n 2 N, such a point z 2 JF that

jjL̂n+1t (11)jj1 = L̂n+1t (11)(z):

If z =2 D(M), then by (46) and (45)

jjL̂n+1t (11)jj1 = L̂n+1t (11)(z)

= L̂t(L̂nt (11))(z)

= ��1t
∑

x2F�1(z) jF
0(x)j�tL̂nt (11)(x)

� ��1t
∑

x2F�1(z) jF
0(x)j�t jjL̂nt (11)jj1

� L̂t(11)(z)
KtM

mt(D(M))

�
KtM

mt(D(M)) :

Otherwise, if z 2 D(M),

1 =

∫
L̂n+1t (11)dmt �

∫
D(M)

L̂n+1t (11)dmt �
mt(D(M))

Kt
M

jjL̂n+1t (11)jj1:

Hence, by induction, the inequality (46) is true for n � 1 and the lemma follows. �

Lemma

For every " > 0 there exists M > 0 such that

inf
n�0

supfL̂nt (11)(z) : jRe z j � Mg � 1� ":

Therefore, there exists M such that

inf
n�0

inffL̂nt (11)(z) : jRe z j � Mg �
1

4Kt
M
:

Proof. Suppose that there exists " > 0 such that for every M > 0,

inf
n�0

supfL̂nt (11)(n) : jRe z j � Mg < 1� ":
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Let Q = supn�1 jjL̂
n
t (11)jj1. From Lemma 3.3 Q <1. Let M be so large that

mt(JF nD(M)) �
"

2Q

Then

1 =
∫
L̂nt (11)dmt

=
∫
D(M) L̂

n
t (11)dmt +

∫
JF nD(M) L̂

n
t (11)dmt

� (1� ")mt(D(M)) +Qmt(JF nD(M))

� 1� "+Q "
2Q = 1� "

2 :

This is a contradiction. The second inequality follows directly from (44). �

Proposition

For every t > 1,

P (t) = P (t) = P (t) = log�t :

Proof. LetQ = supn�0fjjL̂
n
t (11)jj1g. By Lemma 3.3 we have thatQ is �nite and consequently

Pz(n; t) = Lnt (11)(z) � Q�nt :

Therefore,

P (t) = lim sup
n!1

1

n
logPz(n; t) � log�t :

It follows from Lemma 3.3 that, if z 2 D(M), then

Pz(n; t) = Lnt (11)(z) �
�nt
4Kt

M
:

Hence,

P (t) = lim inf
n!1

1

n
logPz(n; t) � log�t :

�
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Corollary

HD(Jrf ) = h < 2 is the unique zero of the function t 7! P (t), t > 1:

Proof. The fact that HD(Jrf ) = h is the unique zero of the function t 7! P (t) (t > 1) follows

from the equality

HD(Jrf ) = HD(JrF )

and from Theorem 3.1, Corollary 3.1 and Proposition 3.3. So, it remains to prove that h < 2.

By way of contradiction assume that there exists a (2; 1)-conformal measure m. Then, as in

the proof of Proposition 3.1, we obtain that m is absolutely continuous with respect to the

Lebesgue measure leb. Therefore, by Lemma 3.1, leb(JrF (M)) > 0. But this is impossible

since almost every point in JF escape to in�nity (see for example [6]). �

For the last part of this section our objective is to show Theorem 3.3. We establish �rst

two lemmas and then we state and prove this theorem.

Lemma

(i) The function � = �t log jF 0
aj is 1-H�older (Lipshitz).

(ii) The function �t(z) = jF 0
a(z)j

�t is 1-H�older.

Proof. Observe that �t(z) = e�: To prove (i) we use Koebe's distortion theorem. Let

jz � w j < � and jz � w j = �2�. Then

(1� �)3

(1 + �)3
�
jF 0
a(z)j

jF 0
a(w)j

�
(1 + �)3

(1� �)3
:

Therefore

∣∣� t log jF 0
a(z)j+ t log jF

0
a(w)j

∣∣ = jtj � j log
jF 0
a(z)j

jF 0
a(w)j

j �

jtj(3 log(1 + �)� 3 log(1� �)) � jtj
9

2�
jz � w j

since, for � 2 (0; 1=2), log(1 + �) � � and log(1� �) < 2�. This �nishes the proof of part

(i).
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To get (ii), �rst observe that if Re t � 0∣∣∣jF 0
a(z)j

�t
∣∣∣ � 1

�Re t
a

;

where �a = min(1=2; inffjf 0a(z)j : dist(z; Cr it(fa)) > �g). There exists Mt > 0 such that, if

jx j � log 1
�Re ta , then

jex � 1j � Mt jx j:

Therefore

∣∣jF 0
a(z)j

�t � jF 0
a(w)j

�t∣∣ = je�t log jF
0a(z)j � e�t log jF

0a(w)jj =∣∣e�t log jF 0a(w)jj � je�t log jF
0a(z)j+t log jF 0a(w)j � 1

∣∣� 1

�Re t
a

Mt
9

2�
jz � w j:

�

Next, consider again the operator

L�tg(z) =
∑

x2F�1(z)
jF 0(z)j�tg(z)

and recall that by L̂t we denoted the operator L̂t = ��1t L�t ; where �t is the function from

the previous Lemma. We proved before that �t = eP (t):

Lemma

If Re t > 1 then � := e�P (t)�t(z) = e�P (t)j(Fa)0(z)j�t is a rapidly decreasing summable

dynamically H�older function satisfying the Q�condition. Observe that L� = L̂t :

Proof. Since j(F na )
0(z)j = jF 0

a(z)j � jF
0
a(Fa(z))j � � � j(F

n�1
a )0(z))j then �n(z) for the potential

j(Fa)0(z)j�t is equal to j(F na )
0(z)j�t . Therefore

�n(F
�n
v (y)) = j(F�n

a )0(F�n
v (y))j�t = j(F�n

v )0(y)jt :

Using the same argument as in the proof of Lemma 3.3 we have

j � t log j(F�n
v )0(x)j+ t log j(F�n

v )0(y)jj � jtj
9

2�
jy � x j:
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Then

jj(F�n
v )0(x)jt � j(F�n

v )0(y)jt j

= jet log j(F
�nv )0(y)jj � jet log j(F

�nv )0(x)j�t log j(F�nv )0(y)j � 1j

� j(F�n
v )0(y)jRe tM 0

t jx � y j

for some constant M 0
t . Observe that from the estimation above and the proof of the

Lemma 3.3, �t(z) is rapidly decreasing summable dynamically H�older potential satisfying

the Q�condition. This means that all the assumptions of Ionescu-Tulcea and Marinescu

theorem are satis�ed. �

We obtain then the following important result.

Theorem

If t > 1 then 1 is an isolated simpe eigenvalue of L̂t : H� ! H� and the eigenspace of

the eigenvalue 1 is generated by the nowhere vanishing function  t 2 H� such that

∫
 tdmt = 1

and

lim
jRe z j!1

 t(z) = 0:

Moreover, if t > 1 then the measure � = �t =  tmt is F -invariant, ergodic and equivalent

to mt : In particular �(JrF ) = 1:

Proof. We have �rst that

kL̂nt (11)k� � C1

for some C1 > 0 and every n � 0: Therefore

(47)
∥∥∥1
n

n∑
k=1

L̂kt (11)
∥∥∥
�
=
∥∥∥L̂t(1n

n�1∑
k=1

L̂kt (11))
∥∥∥
�
� C1

65



for every n � 1: Then it follows from section 3.3 that there exists a strictly increasing

sequence of positive integers fnjgj�1 such that the sequence{
1

nj

nj∑
k=1

L̂kt (11)

}
j�1

converges in CB(JF ;C) to a function  t : JF ! R: Then, since by (47) k tk� � C1, we

get that  t 2 H�: Moreover, by Remark 3.3 mt is a �xed point of the dual operator L̂�t .

Therefore, for every j � 0, ∫
L̂jt(11)dmt = 1;

and consequently ∫
1

n

n�1∑
j=0

L̂jt(11)dmt = 1:

Applying Lebesgue's dominated convergence theorem together with the fact that the function

� from the previous lemma has the Q� property, we obtain the equality∫
 tdmt = 1:

Moreover, it follows then from Lemma 3.3 that  t > 0 throughout JF : Since  t = L̂t t and

since Ltg(z) � kLt11k1kgk1 and limjRe z j!1 Lt11(z) = 0 it follows that

lim
jRe z j!1

 t(z) = 0:

The fact that 1 is isolated eigenvalue of L̂t follows from Ionescu-Tulcea and Marinescu

theorem and the last statement of the Theorem follows immediately from above.

Therefore it remains to prove that the isolated eigenvalue 1 is simple i.e. the eigenspace

of 1 is one dimensional. Let g = g1 + ig2 2 H�, where g1; g2 2 H� are real-valued be such

that

L̂t(g) = g:

Since

g1 + ig2 = g = L̂t(g1 + ig2) = L̂t(g1) + iL̂t(g2);
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L̂t(gl) = gl

for l = 1; 2. We shall prove that both gl are equal to �l t for some �l 2 R. So let us assume

that gl 6= � t for all � 2 R. Since

0 � 11�
gl

jjgl jj1
;

0 �
1

nj

nj∑
k=1

L̂kt

(
11�

gl
jjgl jj1

)
=

1

nj

nj∑
k=1

L̂kt (11)�
gl

jjgl jj1
:

Therefore the function

h =
 t �

g
jjgjj1∫

( t �
g

jjgjj1 )dmt

is a well-de�ned non-vanishing non-negative function which is a �xed point of L̂t and∫
hdmt = 1:

But this gives us that h =  t since we know that mt is ergodic. Then the required contra-

diction follows.

�

3.4. Prochorov's Theorem and the Concept of Tightness

In this section we recall some basic properties regarding the concept of tightness and

Prochrov's theorem and we refer the reader to the book of Billingsley, [5], for more detalies.

We recall that if S is an arbitrary metric space, B the class of Borel sets (i.e. the ���eld

generated by the open sets) and if we consider probability measures Pn and P de�ned on B;

then we say that Pn converge weakly to P if

Pn(A)! P (A)

for every A 2 B such that P (@A) = 0:
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Theorem

Pn converges weakly to P if and only if

∫
B
f dPn !

∫
B
f dP

for every function f bounded, continuous real-valued de�ned on S.

Now, observe that every probability measure P on (S;B) is regular i.e. has the property

that for every A 2 B and for every � > 0 there exists F = F and G open set such that

F � A � G and P (G � F ) < �:

This implies that P is completely determined by the values of P (F ) for closed sets F:

Also observe that two probability measures P and Q on B coincide if

∫
f dP =

∫
f dQ

for all f : S ! R bounded and uniformly continuous.

This last observation shows that P is also determined by the values of
∫
f dP for bounded,

continuous functions f :

De�nition

A probability measure P on (S;B) is tight if for every � > 0 there exists a compact set

K in S such that P (K) > 1� �:

An observation with a more general character says that if S is a separable and complete

metric space then each probability measure on (S;B) is tight.

De�nition

Let � be a family of probability measures on (S;B). We call � relatively compact if every

sequence of elements of � contains a weakly convergent subsequence.

We are concerned with the relative compactness of sequences but we formulate bellow

the Prochrov's theorem in general.
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De�nition

The family � of probability measures on (S;B) is tight if for every � > 0 there exists K

compact set in S such that

P (K) > 1� �

for every P 2 �:

Prochorov's Theorem

If � is tight then it is relatively compact.

The proof of this important theorem can be found in [5]. We mention that this is only

the direct part of Prochorov's theorem but it is exactly what we needed for our sequence of

semi-conformal measures. Both the direct and the converse theorems have hard proofs.

69



CHAPTER 4

HOLOMORPHIC PROPERTIES

4.1. Hartogs's Theorem and its Applications

In this section we prove Theorem 4.1, our main tool that we need in section 4.3 to prove

the main result of this chapter. We show that (under some special conditions on the family

f�bgb2G of potentials) the function b 7! L�b is holomorphic. In the proof we use the very

well known result of Hartogs(see [39]). But �rst let us give several lemmas and de�nitions

to make the proof more readable.

Lemma

Let G be a domain in C and f�b : JFa ! Cgb2G be a family of continous summable

potentials such that for every z 2 JFa the function G 3 b 7! �b(z) 2 C is holomorphic and

such that the map G 3 b 7! L�b 2 L(H�) is continous on G: Then the map b 7! L�b 2 L(H�)

is holomorphic on G:

Proof. Let  � G be a simple closed curve homotopic to zero. Fix g 2 H� and z 2 JF : Let

W � G be a bounded open set such that  � W � W � G: Since for each x 2 F�1(z) the

function b 7! g(x)�b(x) is holomorphic on G and since for each b 2 W we have

∣∣∣ ∑
x2F�1(z)

g(x)�b(x)
∣∣∣ � kL�bgk1:

Then, since kL�bgk1 � kL�bgk� � kgk� supfkL��k� : � 2 Wg <1,

∣∣∣ ∑
x2F�1(z)

g(x)�b(x)
∣∣∣ <1:

70



and then by the compactness of W and continuity of the mapping b 7! L�b we conclude that

the function

W 3 b 7! L�bg(z) =
∑

x2F�1(z)
�b(x)g(x) 2 C

is holomorphic. Hence, by Cauchy's theorem,
∫
 L�bg(z)db = 0: Since the function b 7!

L�bg 2 H� is continous, the integral
∫
 L�bgdb exists, and for every z 2 JF we have

∫

L�bgdb(z) =

∫

L�bg(z)db = 0:

Hence
∫
 L�bgdb = 0:Now, since the function b 7! L�b 2 L(H�) is continous, the integral∫

 L�bdb exists and for every g 2 H�; we have

∫

L�bdb(g) =

∫

L�bgdb = 0:

Thus,
∫
 L�bdb = 0 and then by Morera's theorem, the function

b 7! L�b 2 L(H�)

is holomorphic in G: �

De�nition

Given w 2 JF we de�ne :

H�;w = fg : B(w; �)! C : g bounded for which there exists C � 0

such that if x; y 2 B(w; �) and jy � x j � � then jg(y)� g(x)j � Cjy � x j�g:

The � � variation v�(g) is the least C with the property above and we de�ne kgk� =

v�(g) + kgk1: Observe that (H�;w ; k:k�) is a Banach space.
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Lemma

(i) If v 2 JF and � 2 H� then the operator Av;� : H� ! H�;F (v) given by the formula

Av;�g(z) = �(F�1
v (z))g(F�1

v (z)); z 2 B(F (v); �)

is continuous and

kAv;�k� � (2 + (L�)�)k� � F�1
v k�:

(ii) If � : JF ! C is dynamically H�older then for every v 2 JF we have

k� � F�1
v k� � (c� + 1)k� � F�1

v k1:

(iii) If � 2 H� then for every n � 1 and every v 2 JF

k� � F�n
v k� � (1 + L���n)k�k�

where g 7! g � F�n
v : B(F n(v); �)! C is an operator from H� to H�;F n(v):

(iv) Let X be a metric space. If � : X ! H� is a continuous mapping, then for every

v 2 JF the function

X 3 x 7! Av;�(x) 2 L(H�; H�;F n(v))

is continuous.

Proof. We start with (i). For every g 2 H� and z 2 B(F (v); �) we have

(48) jAv;�g(z)j = j�(F�1
v (z))j:jg(F�1

v (z))j � k� � F�1
v k�:kgk�:
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If in addition w 2 B(F (v); �) and jw�z j � �, then similarly as in the proof of Ionescu-Tulcea

and Marinescu inequality we get

jAv;�g(w)� Av;�g(z)j � jg(F�1
v (w))jj� � F�1

v (w)�� � F�1
v (z)j

+j� � F�1
v (z)jjg(F�1

v (w))� g(F�1
v (z))j

� kgk1k� � F�1
v k�jw � z j� + k� � F�1

v k1jjgjj�L���jw � z j�

� kgk�(1 + (L�)�)k� � F�1
v k�jw � z j�:

Hence v�(Av;�g) � (1 + (L�)�)k� � F�1
v k�kgk� and combining this with (48) we obtain

kAv;�gk� � (2 + (L�)�)k� � F�1
v k�kgk�:

Thus Av;�(H�) � H�;F (v), the operator Av;� : H� ! H�;F (v) is continuous and kAv;�k� �

(2 + (L�)�)k� � F�1
v k�:

Next (ii). We have that for x; y 2 B(F (v); �) with jx � y j � �

j� � F�1
v (y)�� � F�1

v (x)j � c�j�(F
�1
v (x))j:jy � x j� � c�k� � F�1

v k1jy � x j
�

and therefore v�(� � F�1
v ) � c�k� � F�1

v k1: Thus we are done with (ii) and (iii) follows

immediately.

To prove (iv) �x x0 2 X , " > 0 and take � > 0 small such that for every x 2 B(x0; �)and

every v 2 JF

k�(x)� �(x0)k� � (2 + (L�)�)�2"

Then applying Ionescu-Tulcea and Marinescu inequality and (iii) above we see that for every

x 2 B(x0; �) and every v 2 JF we have

kAv;�(x) � Av;�(x0)k� = kAv;�(x)��(x0)k�

� (2 + (L�)�)k(�(x)� �(x0)) � F
�1
v k�

� (2 + (L�)�)(1 + (L�)�)k�(x)� �(x0)k� � ":

The proof is complete. �
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Theorem

Suppose that G is an open connected subset of Cn, n � 1, and �b : JFa ! C, b 2 G, is

a family of mappings such that

(i) for every b 2 G, �b 2 Hs�,

(ii) for every b 2 G, �b is dynamically H�older,

(iii) G 3 b 7! �b 2 H� is continuous,

(iv) family fc�bgb2G is bounded,

(v) the function b 7! �b(z) 2 C, b 2 G is holomorphic for every z 2 JFa ,

(vi) for every d 2 G there exists r > 0 and there exists c 2 G such that

sup

{∣∣∣∣�b�c (z)
∣∣∣∣ : b 2 B(d; r); z 2 C} <1:

Then the function b 7! L�b 2 L(H�), b 2 G, is holomorphic.

Proof. Due to Hartogs's theorem it is enough to prove the theorem for 1-dimensional case.

So let's consider n = 1 and G � C: Due to Lemma 4.1 it su�ces to prove that the function

G 3 b 7! L�b 2 L(H�) is continuous. Observe that in view of Lemma 4.1(i),(ii) and our

assumption (iv) we have for every v 2 JF and every b 2 B(d; r) that

kAv;�bk� � (2 + (L�)�)k�b � F
�1
v k� � Mk�b � F

�1
v k1

where M = (2 + (L�)�) supfc�b ; d 2 Gg <1: It follows that

kAv;�bk� � Mk�b � F
�1
v k1 = M

∥∥∥∥�c � F�1
v :

�b � F�1
v

�c � F�1
v

∥∥∥∥
1

� Mk�c � F
�1
v k1:

∥∥∥∥�b � F�1
v

�c � F�1
v

∥∥∥∥
1

� M

∥∥∥∥�b�c
∥∥∥∥
1
:k�c � F

�1
v k1 � MNk�c � F

�1
v k1;

where N is the supremum taken from (vi). Then for every z 2 JF we can de�ne the operator

L�b;z : H� ! H�;z
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by the formula

L�b;z =
∑

v2F�1(z)
(�b � F

�1
v ):(g � F�1

v ) =
∑

v2F�1(z)
Av;�b :

Observe that, L�b;z(g) = L�b(g)jB(z;�) for every g 2 H�: Fix now " > 0 and two elements

b; t 2 B(d; r): Then there exist g" 2 BH�(0; 1) and two points x; y 2 JF such that

kL�b � L�tk� = sup
{
kL�b(g)� L�t(g)k� : g 2 BH�(0; 1)

}
� kL�b(g")� L�t(g")k� +

"
5

= v�
(
L�b(g")� L�t(g")

)
+ "

5 + kL�b(g")� L�t(g")k1

� v�
(
L�b;x(g")� L�t ;x(g")

)
+ "

5 + kL�b;y(g")� L�t ;y(g")k1 + "
5 +

"
5

� kL�b;x(g")� L�t ;x(g")k� + kL�b;y(g")� L�t ;y(g")k� +
3"
5

� 2maxw2fx;yg kL�b;w(g")� L�t ;w(g")k� +
3"
5 � 2kL�b;w � L�b;wk� +

3"
5 ;

where w = x or w = y as before. Since �c is a summable function, there exists a �nite set

V � F�1(w) such that

∑
v2F�1(w)nV

k�c � F
�1
v k1 �

"

10MN
:

But the function a 7! �a 2 H� is continuous and therefore the function

a 7! Av;�a 2 L(H�; H�;F (v))

is also continuous. Thus there exists r1 � r such that kAv;�b � Av;�tk� �
"

10card(V ) for all

b; t 2 B(d; r1) and all v 2 V: Splitting now the summation over the two sets V and F�1(w)nV

we get from the above computations that

kL�b � L�tk� �
3"

5
+
"

5
+
"

5
= ":

�
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4.2. Continuity of the Topological Pressure

In section 4.3 we shall prove the main result of this thesis. For a parameter b 2 Cn+1

and a map f = fb 2 H we shall show that the function b 7! HD(Jrfb) is real-analytic. This

ultimate goal is established in Theorem 4.3. But �rst we need to prove that, for t > 1, the

function a 7! Pa(t) is continuous on H and to obtain this result we need the following lemma.

Lemma

For every a 2 H and for every � > 1, there exists r > 0 such that, for b 2 B(a; r) and

for z 2 Jfa , ∣∣∣∣ f 0b(hb(z))f 0a(z)
� 1

∣∣∣∣ < �:

Proof. Write

(49)

∣∣∣ f 0b(hb(z))f 0a(z) � 1
∣∣∣ =

∣∣∣ f 0b(hb(z))�f 0a(z)f 0a(z)

∣∣∣
�

∣∣∣ f 0b(hb(z))�f 0a(hb(z))f 0a(z)

∣∣∣+ ∣∣∣ f 0a(hb(z))�f 0a(z)f 0a(z)

∣∣∣ :
We split the proof in two cases.

Case 1 Assume that jRe z j � M3 + 1, where M3 is the constant from Lemmas 2.4 and

2.4. Observe that there exists M5 <1 such that

sup
{ n∑
j=0

(j � k)2e2(j�k)Re z : jRe z j � M3 + 2
}
� M2

5 :

If b is close to a, then jRe hb(z)j � M3 + 2. Therefore, by (6), we get∣∣∣ f 0b(hb(z))�f 0a(hb(z))f 0a(z)

∣∣∣ � 1
�a supfjj

@f 0b
@b (z)jj : ja � bj < rgjb � aj

� M5
�a jb � aj:

Observe also that there exists M6 <1 such that

supfjf 00a (z)j : jRe z j � M3 + 2g � M6:

Then ∣∣∣∣ f 0a(hb(z))� f 0a(z)f 0a(z)

∣∣∣∣ � M6
�a
jhb(z)� z j �

M6
�a

∣∣∣∣@hb@b (z)
∣∣∣∣ jb � aj:
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Since, by Proposition 2.4, j@hb@b (z)j is bounded in a small neighborhood of a, we have that

(49) can be as small as we want for b su�ciently close to a.

Case 2 Assume that jRe z j > M3+1. Then, similary like in Case 1 but using Lemma 2.4

instead of estimations by M5, M6 and �a, we get∣∣∣∣ f 0b(hb(z))� f 0a(hb(z))f 0a(z)

∣∣∣∣ � M2
M1

jb � aj; and∣∣∣∣ f 0a(hb(z))� f 0a(z)f 0a(z)

∣∣∣∣ � M2
M1

∣∣∣∣@hb@b (z)
∣∣∣∣ jb � aj:

And again, if b is close to a, then (49) can be as small as we want for b su�ciently close to

a. �

Lemma

For all t > 1 the function a 7! Pa(t), a 2 H, is continuous.

Proof. Fix a 2 H and, for this a, r > 0 from Lemma 4.2. Next, take any z 2 JFa and n � 1

and x 2 F�n
a (z): Note �rst, by Proposition 2.4 (iii), hb, which conjugates fb and fa, conjugates

also Fb and Fa: Moreover, we have hb(F�n
a (z)) = F�n

b (z) and for every i 2 f0; 1; � � � ; ng and

every x 2 F�n
a (z) we have hb � f ia (x) = f ib � hb(x): Now we can write

j(F nb )
0(hb(x))j

j(F na )
0(x)j

=
j(f nb )

0(hb(x))j

j(f na )
0(x)j

=
n�1∏
i=0

jf 0b(f
i
b(hb(x)))j

jf 0a(f
i
a (x))j

=
n�1∏
i=0

jf 0b(hb(f
i
a (x)))j

jf 0a(f
i
a (x))j

:

Hence, by Lemma 4.2, for every  > 1, there exists 0 < r1 < r such that

1

n
<
j(F nb )

0(hb(x))j

j(F na )
0(x)j

< n:

Since hb : F�n
a (z)! F�n

b (hb(z)) is a bijection we obtain

1

tn
<

∑
x2F�n

b (hb(z)) j(F
n
b )

0(x)j�t∑
x2F�na (z) j(F

n
a )

0(x)j�t
< tn:

From this last relation, taking log and dividing by n we get

�t log  < Pb(t)� Pa(t) < t log 

for all b 2 B(a; r1): We are done. �
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4.3. Real Analyticity of the Hausdor� Dimension

Let a 2 H. Let r1 > 0 be such a real number that for every b 2 B(a; r1) there exists

quasiconformal map hb conjugating fa and fb and let

(50) � = inf
{ 1

Q(b)
: b 2 B(a; r1)

}
> 0:

The existence of such r1 follows from Lemma 2.4 and Proposition 2.4. Moreover, from

now on by hb we dentote the quasiconforomal map from Proposition 2.4. Therefore, for

b 2 B(a; r1) and t > 1, we can de�ne a potential �(�)(b; t) : JFa ! R by the formula

�z(b; t) = jF 0
b(hb(z))j

�t :

Lemma

If Re t > 1 then the functions

� = �t log jF 0
b(hb(z))j and �z(b; t) = jF 0

b(hb(z))j
�t

are � H�older continuous, where � is the constant from (5.1).

Proof. Since hb is as described in Lemma 2.4 the proof follows immediately from Lemma 3.3

because from Proposition 3.8(ii) we know that hb is (K(Q);
1
Q)-H�older and � is given by the

formula (50). �

Perron-Frobenius operator

Then by L0
b;t we denote the Perron-Frobenius operator associated with �z(b; t), i.e.

L0
b;tg(z) =

∑
x2F�1a (z)

�z(b; t)g(x)

for g 2 CB(JFa).
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Embedding of Cn+1 into C2n+2

We would like to apply Theorem 4.1, but the function �z is not holomorphic as a function

of b and t. For this reason we embed Cn+1 into C2n+2, we extend �z and then we are able

to use the results of Theorem 4.1.

Let b = (b0; b1; : : : bn) 2 Cn+1. Write bj = b1j + ib2j for j = 0; 1; : : : n where i is the

imaginary unit. Then e1 : Cn+1 ,! C2n+2 is the embedding de�ned by the following formula

e1(b) = (b10; b
2
0; b

1
1; b

2
1; : : : b

1
n; b

2
n);

and e : Cn+1 � R ,! C2n+3 is the embedding de�ned as e(b; t) = (e1(b); t):

An extension of �z � e�1 : e(B(a; r1)� (1;1))! R

Fix z 2 JFa(here e
�1 is the left inverse of e). Observe that

�z(b; t) = jF 0
b(hb(z))j

�t = exp f�t (log j z(b)j+ log jF 0
a(z)j)g ;

where

 z(b) =
F 0
b(hb(z))

F 0
a(z)

:

We want to extend the function �z � e�1 in a neighborhood of (e1(a); t) 2 C2n+3 determined

by the fact that b is su�ciently close to a so that jb � aj < r1. Observe that, if we can well

de�ne Log that is a branch of exp�1 for  z(b), then

Re Log z(b) = log j z(b)j:

But it follows from Lemma 4.2 that there exists r2 > 0 such that, for b 2 B(a; r2) and every

z 2 JFa ,

(51) j z(b)� 1j <
1

2
:

Therefore, the holomorphic function

Log z : B(a; r2)! C
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is well de�ned, where Log is that branch of exp�1 satisfying the condition Log1 = 0. Another

consequence of (51) is the existence of M7 <1 such that

jLog z(b)j � M7

for all b 2 B(a; r2) and z 2 JFa .

Extension of Re Log z � e
�1
1

Fix z 2 JFa . The function Log z is an analytic function de�ned on BCn+1(a; r2). Then

(52) Log z(b) =
∑

(i0;:::;in)2Nn+1
ci0;:::;in(z)(a0 � b0)

i0 : : : (an � bn)
in :

From the Cauchy's estimates it follows that

jci0;:::;in(z)j �
M7

r i0+:::+in2
:

Recall that bj = b1j + ib
2
j , aj = a1j + ia

2
j where j = 0; : : : ; n and i is the imaginary unit. Note

that

e1(b) = (b10; b
2
0; b

1
1; b

2
1; : : : ; b

1
n; b

2
n):

Since (52) can be written as

∑
(i0;:::;in)2Nn+1

ci0;:::;in(z)
n∏
j=0

((a1j � b
1
j ) + i(a

2
j � b

2
j ))

ij ;

it follows that

Re Log z(b
0) =

∑
(k0;:::;k2n+1)2N2n+1

c 0k0;:::;k2n+1(z)
2n+1∏
l=0

(a0l � b
0
l)
ij ;

where

(53)
c 0k0;:::;k2n+1(z) = Re (ck0+k1;:::;k2n+k2n+1(z)i

k1+k3+:::+k2n+1)

�
(k0+k1

k0
)(k2+k3

k2
)
: : :
(k2n+k2n+1

k2n
)
;
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and a0l = amj , b
0
l = amj , where l = 2j + (m � 1). Note that

jc 0k0;:::;k2n+1(z)j � jck0+k1;:::;2n+2n+1(z)j2
k0+k1+:::+k2n+1

� M7

(
2
r2

)k0+k1+:::+k2n+1
:

Take r3 = r2=4. Then

(54) jc 0k0;:::;k2n+1(z)j � M7

(
1

2

)k0+k1+:::+k2n+1
:

Hence

(55) jRe Log z(b
0)j � M7

∑
(k0;:::;k2n+1)2N2n+2

(
1

2

)k0+k1+:::+k2n+1
� M72

2n+2:

Finally we de�ne the extension of �z(b; t) by the formula

(56) ~�z(b; t) = expf�t(Re Log z(b)) + log jF 0
a(z)jg

where (b; t) 2 DC2n+2(a; r3)� BC(t0; �) and � = t0 � 1:

Proposition

Fix a 2 H and t0 > 1: Then there exist r3 and % such that, for

(b; t) 2 G3 = DC2n+2(e1(a); r3)� B(t0; %);

Perron-Frobenius operator L�(b;t) for the potential �(�)(b; t) is well de�ned. Moreover, denote

by L the function G3 3 (b; t) 7! L�(b;t) 2 L(H�). Then L is holomorphic ( � comes from

(50) with r1 replaced by r3.)

To prove the proposition it is enough to check the conditions from Theorem 4.1

Condition (v)

It is satis�ed from the construction 4.3-4.3.
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Condition (i)

First, we prove that the function '(b;t)(z) is summable. From (55) if follows that

j'(b;t)(z)j = expfRe (�tRe Log z(b))gjF
0
a(z)j

�Re t

� eM722n+2jtjjF 0
a(z)j

�Re t :

In Lemma 3.3 we proved that jF 0
a(z)j

�Re t is summable. Therefore '(b;t) is summable. Next,

we show that the potential '(b;t)(z) is H�older. Note that, by Lemma 3.3(i) and Proposition

3.8(ii)

jRe Log z(b)� Re Log w(b)j � Cjz � w j�:

From Koebe's estimation of the Arg it follows that

jArg z(b)� Arg w(b)j =

∣∣∣∣Arg z(b) w(b)

∣∣∣∣
�

∣∣∣∣Arg F 0
b(hb(z))

F 0
b(hb(w))

∣∣∣∣+ ∣∣∣∣Arg F 0
a(z)

F 0
a(w)

∣∣∣∣
�

6

2�
jz � w j+

6

2�
jhb(z)� hb(w)j

� CArgjz � w j
�

Then we have that

jLog z(b)� Log w(b)j

� jRe Log z(b)� Re Log w(b)j+ jArg z(b)� Arg w(b)j

� (C + CArg)jz � w j
�

To prove that the extension is H�older �rst we show that the coe�cients of the extension of

Re Log z are H�older. This follows from Cauchy's estimates and the fact that the function

is H�older.

jci0;:::;in(z)� ci0;:::;in(w)j �
M7

r i0+���+in2
jz � w j�:
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Therefore, by (52),

(57) jc 0k0;:::;k2n+1(z)� c
0
k0;:::;k2n+1(w)j � M7

(
2

r2

)i0+���+in
jz � w j�:

Recall that r3 =
r2
4 . Then

jRe  z(b)� Re  w(b)j � M8jz � w j
�:

Next observe that there exists C such that, if

jx j � (2n+1M7 + C)jtj;

then

jex � 1j � M jtj
9 jx j:

Therefore

j�z(b; t)��w(b; t)j

= je�t(Re Log	z (b))+log jF 0a(z)jjM9(M8jz � w j
� +M10jz � w j)

� e jtjM6+CM9(M8jz � w j
� +M10jz � w j) = M11 � jz � w j

�:

Conditions (ii) and (iv)

We check now conditions (ii) and (iv) i.e we show that �b is dynamically H�older , with

exponent �, for b in some region G (as before)in C2n+3 and with uniformly bounded constants

c�b;t : So let

� = �z(b; t) = e�t(Re Log z (b)+log jF 0a(z)j) = e'z (b;t)

where (b; t) 2 G = DC2n+2(a; r3)� ft : Re t > 1g:

We �rst show that

j�n(F
�n
v (y))� �n(F

�n
v (x))j � c�j�n(F

�n
v (x))jjy � x j�
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for all n � 1 , for any x; y 2 JFa , jx � y j � � , v 2 F�n(x) and

�n(z) = �(z)�(F (z)) � � ��(F n�1(z)

i.e.

�n(z) =
n�1∏
k=0

�(F k(F�n
v (z)) = e

∑n�1
k=0 'Fk (F�nv (z))(b;t)

where here for convenience recall that we denoted �(z) = �z(b; t) and

'(z) := 'z(b; t) = �t(Re Log z(b) + log jF 0
a(z)j)

for �xed (b; t) 2 G: Fix now t0 with Re t0 > 1 and let t 2 BC(t0; �) where � := t0� 1: Then

we have

(58) j'(z)� '(w)j

� (jt0j+ �)(jRe Log z(b)� Re Log w(b)j+ j log jF 0
a(z)j � log jF 0

a(w)jj)

� (jt0j+ �)(M12jz � w j
� +

9

2�
jz � w j) � M15(t0 + �)jz � w j

�:

From Remark 3.2 and (58) we easily obtain, by the use of triangle inequality and the mean

value theorem that∣∣∣∣∣
n�1∑
k=0

'F k(F�nv (z))(b; t)�
n�1∑
k=0

'F k(F�nv (w))(b; t)

∣∣∣∣∣
�
M12(jt0j+ �)L�

1� ��
jz � w j� = M13jz � w j

�

Therefore putting

(59) M14 = sup

{∣∣∣∣ez � 1

z

∣∣∣∣ : jz j � M13

}
<1;

we get ∣∣�n(F�n
v )(z)� �n(F

�n
v (w))

∣∣ � M13M14j�n(F
�n
v (z))jjz � w j�

Consequently the potential � is dynamically H�older and we can see that c�b is uniformly

bounded. So the assumptions(ii) and (iv) of the Main Tool are veri�ed.
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Condition (iii)

Let G = DC2n+2(a; r3)� B(t0; �) � C2n+3 We show that

G 3 (b; t) 7! ~�z(b; t) 2 H�(JFa)

is a continuous function.

Now observe that

~�z(b; t) = e�tRe Log z (b)jF 0
a(z)j

�t :

We show continuity by proving that the following two functions are continuous in each of the

variables b and t

(b; t) 7! e�tRe Log z (b);

(b; t) 7! jF 0
a(z)j

�t :

We already know that both functions

z 7! e�tRe Log z (b)

and

z 7! jF 0
a(z)j

�t

are in H�:The function (b; t) 7! e�tRe Log z (b) is continuous in the variable t as a function

R 7! H�, for a �xed b as we can see

jj � t1Re Log z(b) + t2Re Log � z(b)jj� = jt1 � t2jjjRe Log z(b)jj� < Mjt1 � t2j

for some constant M because jjtgjj� = jtjjjg�jj: For continuity with respect with the variable

b we recall that

jjRe Log z(b)� Re Log z(c)jj� = v�(Re Log z(b)� Re Log z(c))

+jjRe Log z(b)� Re Log z(c)jj1
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Then we evaluate by using (55)

j(Re Log w(b)� Re Log w(c))� (Re Log z(b)� Re Log z(c))j

= j
∑

k0;k1;��� ;k2n+1(c
0
k0���k2n+1(w)� c

0
k0;���k2n+1(z))

∏2n+1
l=0 (b0l � a

0
l)
kl

�
∑

k0;��� ;k2n+1(c
0
k0;��� ;k2n+1(w)� c

0
k0;��� ;k2n+1(z))

∏2n+1
l=0 (c 0l � a

0
l)
kl j

= j
∑

k0;��� ;k2n+1(c
0
k0;��� ;k2n+1(w)� c

0
k0;��� ;k2n+1(z))

(
∏2n+1
l=0 (b0l � a

0
l)
kl �

∏2n+1
l=0 (c 0l � a

0
l)
kl )j

� M6

(
2
r2

)k0;��� ;k2n+1
jz � w j�

∣∣∣∏2n+1
l=0 (b0l � a

0
l)
kl �

∏2n+1
l=0 (c 0l � a

0
l)
kl
∣∣∣ :

But a simple computation will give us that

j
∏2n+1
l=0 (b0l � a

0
l)
kl �

∏2n+1
l=0 (c 0l � a

0
l)
kl j

� 4
r2 (k0 + � � �+ k2n+1)

( r2
4
)k0+���+k2n+1 jjb � c jj

(we know that jjb � c jj � r2
4 ). So,this will show that

v�(Re Log z(b)� Re Log z(c)) � M15jjb � c jj

for some constant M15 > 0 which is obvious from the above computations, and similarly

jjRe Log z(b)� Re Log z(c)jj1 � M16jja � bjj

for some M16 > 0. As a consequence

jjRe Log z(b)� Re Log z(c)jj� � M17jja � bjj

and the continuity is proven because now we can write

je�tRe Log z (b) � e�tRe Log z (c)j

= je�tRe Log z (b)+tRe Log z (c) � 1jje�tRe Log z (c)j

� e2
n+1M6(t0+�)(t0 + �)M17jjb � c jj

Using the same arguments as before, when we checked conditions (ii) and (iv), we are done.
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To prove continuity of

(b; t) 7! jF 0
a(z)j

�t 2 H�

we �rst observe that continuity in the variable b is clear simply because the function is constant

as a function of b: For continuity in the variable t we �rst write

jjjF 0
a(z)j

�t2 � jF 0
a(z)j

�t1 jj� = v�(:) + jj:jj1

and repeating the computations we did before together with the argument used when we

checked condition (iii) we are done.

Note that the quality of H� of being a Banach algebra, in particular having the property

that if f ; g 2 H� then jjf gjj� � jjf jj�jjgjj� played an essential role in our above computations.

Condition (vi)

Let (d; td) 2 BC2n+3((a; t0);minfr3=4; �g). Let  be such a real number that

BC2n+3((d; td); 2) � BC2n+3((a; t0);minfr3=4; �g)

This real number is the number r in Condition (vi)from Theorem 4.1 and for the point c

of the same condition we choose (a; tc) where tc is an arbitrary point from the real interval

(1;Re (tb � )). Now, let (b; tb) 2 BC2n+3((d; td); ). Then we get that

jetc(Re Log z (a)�Re Log z (b))j � etc2
2n+3M7;

je(tc�tb)Re Log z (b)j � e�M722n+2:

Therefore

∣∣∣∣�b;tb(z)�c;tc (z)

∣∣∣∣ � e�tbRe Log z (b)

e�tcRe Log z (c) jF
0
c(z)j

�(tb�tc)

� jetc(Re Log z (a)�Re Log z (d))jje(tc�td )Re Log z (d)jjF 0
a(z)j

Re (tc�td )

� etc2
2n+3(M7+�)M722n+2���

a :

87



Important Remark

For b = (b0; : : : ; bn) 2 BCn+1(a; r3) and t 2 (t0 � %; t0 + %),

L0
b;t = L(e1(b); t):

We will use now, directly, the following important perturbation theorem and we refer to

[43] for a proof and to [32] for other applications.

Kato, Rellich Theorem

Let H be a complex Banach space and L(H) the Banach space of bounded linear operators

on H. If L0 2 L(H) has a simple eigenvalue �0 which is an isolated point of the spectrum of

L0 with the associated eigenvector g0 then for every " > 0 small enough there exists � > 0

such that, if jjL�L0jj < �, then the operator L has a simple eigenvalue �(L) and eigenvector

g(L) with the properties

(i) the functions L 7! �(L) and L 7! g(L) are holomorphic.

(ii) if jjL � L0jj < �, then spectrum(L) \ B(�0; ") = f�(L)g:

Kato-Rellich Theorem works

From Theorem 3.3 and the fact that

Lt = L0
a;t0 = L(a; t)

for t0 > 1 it follows that ePa(t0) is simple isolated eigenvalue. From Theorem 3.3 and Theorem

4.3 it follows that, for every " > 0 small enough, there exist �1 > 0 and �2 > 0 such that,

if jb � e1(a)j < �1 and jt � t0j < �2, then L(b; t) has a simple eigenvalue �(b;t) with the

properties

(i) the function (b; t) 7! �(b;t) is holomorphic on

BC2n+2(e1(a); �1)� BC(t0; �2),
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(ii) if jb � e1(a)j < �1 and jt � t0j < �2, then

spectrum(L(b; t)) \ B(ePa(t0); ") = f�(b;t)g:

Diagram

We claim that the following diagram is commutative

H1(JFb)
Lb;t
��! H1(JFb)

Tb # # Tb

H�(JFa)
L(e1(b);t)
�����! H�(JFa):

where Tb = g � hb. Since Tb is linear and continuous, Tb is bounded. Moreover, since hb is

H�older, Tb(H1(JFb)) � H�(JFa). To prove the claim observe

(L(e1(b); t) � Tb)(z) =
∑

x2F�1a (z)

j(F 0
b � hb)(x)j

�tg(hb(z));

(Tb � Lb;t)(z) = Lb;t(hb(z)) =
∑

x2F�1
b (hb(z))

j(Fb)
0(x)j�tg(x):

Since Fa and Fb are conjugated by the homeomorphism hb,

F�1
b (hb(z)) = fhb(y) : y 2 F

�1
a (z)g;

It �nishes the proof of the claim.

We prove that �(b; t) = ePb(t)

Let gb;t 2 H1(JFb) be an eigenvector that is associated to the eigenvalue ePb(t) of the

operator Lb;t . (see Theorem 3.3). From the commutativity of the previous diagram it

follows that

L(e1(b); t)(gb;t � hb) = ePb(t)(gb;t � hb):

Therefore, �(b;t) and ePb(t) are eigenvalues L(e1(b); t). Since we have

�(e1(a); t0) = ePa(t0) and since epb(t) is continuous, for (b; t) close to (a; t0)we have that

ePb(t) 2 B(ePa(t0); "):
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Then we are done, since we get �(b;t) = ePb(t).

Corollary

The function (b; t) 7! Pb(t) is real-analytic in some neighborhood of (a; t0) in Cn+1 �

(1;1).

Theorem( Real analiticity)

The Hausdor� dimension of HD(Jrfb) is real-analytitic.

Proof. To proof real-analyticity of the Hausdor� dimension observe that it is enough to prove

that the function

b 7! HD(JrFb)

with b 2 Cn+1 is real analytic. Therefore we need to show that the solution of the equation

Pb(t) = 0;

(which as we know from Chapter 3 is the function b 7! HD(JrFb)) exists and is real-analytic

in a neighborhood of a.

This follows from the Implicit Function Theorem because

@Pb(t)

@t
6= 0:

The last relation is true since the function Pb : (1;1) ! R is real-analytic, convex and

strictly decreasing( as we proved in Chapter 3). �
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