
ADAPTIVE PLANNING AND PREDICTION IN AGENT-SUPPORTED

DISTRIBUTED COLLABORATION

Ken T. N. Hartness, M.S.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

December 2004

APPROVED:

Kathleen Swigger, Major Professor and
Associate Dean

Robert Brazile, Committee Member
Yan Huang, Committee Member
Krishna Kavi, Chair of the Department

of Computer Science & Engineering
Oscar N. Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the

Robert B. Toulouse School of
Graduate Studies

Hartness, Ken T. N., Adaptive planning and prediction in agent-supported distributed

collaboration. Doctor of Philosophy (Computer Science), December 2004, 113 pp., 1 table, 16

illustrations, references, 93 titles.

Agents that act as user assistants will become invaluable as the number of information

sources continue to proliferate. Such agents can support the work of users by learning to

automate time-consuming tasks and filter information to manageable levels. Although

considerable advances have been made in this area, it remains a fertile area for further

development. One application of agents under careful scrutiny is the automated negotiation of

conflicts between different user’s needs and desires. Many techniques require explicit user

models in order to function. This dissertation explores a technique for dynamically constructing

user models and the impact of using them to anticipate the need for negotiation. Negotiation is

reduced by including an advising aspect to the agent that can use this anticipation of conflict to

adjust user behavior.

 ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES.. v

CHAPTER 1 INTRODUCTION .. 1

Aims and Objectives... 1

Overview... 1

Problem Statement .. 3

Research Design ... 6

CHAPTER 2 LITERATURE REVIEW ... 10

Computer Supported Cooperative Work (CSCW) ... 11

Agents ... 17

Negotiation.. 20

Adaptive Learning .. 25

Summary... 31

CHAPTER 3 DESIGN.. 32

System Overview.. 33

User Interface.. 34

Low-Level Conflict Handling... 37

Intelligent Agent System .. 39

Agent-Training Tool ... 53

 iii

CHAPTER 4 DATA ANALYSIS AND RESULTS .. 57

Introduction... 57

Human Preference Studies.. 57

Experimental Procedures .. 63

CHAPTER 5 CONCLUSIONS .. 79

Findings .. 81

Conclusion .. 82

Future Research .. 85

Final Comments.. 88

APPENDIX A SCENARIO USED FOR JULY, 2000, GROUP TESTING AND DATA

COLLECTION FOR USER PREFERENCE MODELING.. 89

APPENDIX B EXPLICIT USER PREFERENCES ELICITED FROM VOLUNTEERS 92

APPENDIX C HIERARCHICAL VS. UNIFORM INDICATORS IN HUMAN DATA 94

APPENDIX D SAMPLE LOG AND AGENT RESPONSES ... 99

BIBLIOGRAPHY... 103

 iv

LIST OF FIGURES

Figure Page

 2-1 Q Learning (with decaying eligibility) ..30

 3-1 Collaborative Application Design Overview...33

 3-2 Main Calendar Window...35

 3-3 Message Window...35

 3-4 Day Schedule ...35

 3-5 Summary Window ...36

 3-6 Low-level Conflict Resolution...38

 3-7 Modules Supporting Intelligent Agent...42

 4-1 Percentage of Time that Behavior Contradicts Preferences
(total contradiction)... 60

 4-2 Percentage of Time that Behavior Contradicts Preferences
(partial contradiction)...60

 4-3 Relative Activity Levels within Ten Groups ...62

 4-4 Preference Accuracy with Change Halfway through Simulation71

 4-5 Agent vs. No Agent..73

 4-6 Comparison of Conflicts with Q Values from Different Starting Weights74

 4-7 Comparison of Response Models for Equally Active Users ...75

 4-8 Comparison of Response Models for Hierarchical Group...76

 v

LIST OF TABLES

Table Page

 2-1 Types of CSCW ...13

 1

CHAPTER 1

INTRODUCTION

Aims and Objectives

This chapter introduces a known but currently neglected problem – recognizing and

avoiding conflicts within a computer-supported collaborative environment. Furthermore, this

chapter discusses why this problem is important and timely and describes the approach chosen

for this dissertation research. After reading this chapter, the reader should be familiar with the

topic of conflict resolution within a computer-supported collaborative work session and

understand the scope and important contributions of this dissertation.

Overview

 “Collaboration awareness” (Procter et al., 1994), that is the awareness of other users and

their contributions toward a mutual goal, is relatively easy to maintain in face-to-face meetings.

When speaking face to face, people learn to respond to subtle visual and auditory cues that assist

them in maintaining a cohesive consensus of action. Being aware of others in a computer-

supported collaborative environment, however, is much more difficult (Johnson-Lenz et al.,

1991). Limitations of network bandwidth and the technology itself can drastically reduce the

number and type of subtle cues that can be exchanged among participants within a computer

supported collaborative environment. Without proper cues, conflicts tend to arise much more

frequently. To avoid such problems, techniques must be discovered that assist humans in

recovering from the loss of visual and auditory cues, without hindering the quality or the quantity

of the group communication.

 2

This research focuses specifically on the problem of group conflicts and, as a

consequence, on finding automated techniques for helping users avoid conflicts within a

computer-supported collaborative environment. This dissertation explores a specific machine

learning technique that was programmed to anticipate and react to conflicts that occur among

distributed groups. The proposed study suggests that conflicts can be avoided if an ‘agent’ can be

trained to learn user preferences and detect where and when conflicts will occur. For the

purposes of this paper, user interface agents are computer programs or components of a

computer program that operate with little or no direction from a user but work to serve a client

by offering advice or streamlining the interface. Such agents are designed to monitor user

preferences or typical user behavior in order to offer more personalized service. The proposed

study used the agent interface paradigm to try and help groups resolve conflicts with a computer-

supported cooperative work environment.

Computer-supported cooperative work (CSCW) technology has been shown to be useful

in many domains that require the accomplishment of complex tasks by a small group of people

(Huhns et al., 1994). Synchronous collaborative computer systems, however, have different user

interface requirements than traditional, single user systems.

Groups must interact with other members of their team in a more spontaneous manner.

Further, such multitasking systems require users to switch between concurrent or even

simultaneous tasks very rapidly. This particular style of intermittent interaction causes a dramatic

increase in the occurrence of conflicts, particularly when users are deprived of both voice and

visual contact information. When a group of users have limited access to both visual and

auditory communication cues, they are forced to infer other users’ intentions, often leading to

erroneous conclusions.

 3

Thus, the idea of helping users avoid conflicts, particularly within a computer supported

collaborative environment, is a complex topic and one for which we currently have very few

answers. Although the current literature recognized the complexity and importance of this

problem (Klein, 1994), no one has yet published design solutions for building user interfaces for

systems that help users avoid conflicts. This is particularly true of researchers within computer

supported collaborative environments that must deal with conflicts on a grand scale. This

dissertation makes a contribution by dealing with this important topic.

Problem Statement

The integration of computer networks and communication systems in the workplace has

led to the development of software that provides computer-based tools for communication,

coordination, and decision-making within an organization. However, collaborative systems and

the interfaces that support them are extremely complex (Greenberg et al., 1996) and limited in

the amount of visual and auditory cues available to users. Such complexity and sensory

deprivation often leads to cognitive overload, frustration, and conflicts. Awareness techniques

such as different identifying colors for each user (Hill and Gutwin, 2003), interface types

(Shiozawa et al., 1999), visual displays, etc., offer some degree of relief, but the need to resolve

conflicts among group members continues to be a problem within computer-supported

collaborative environments. For example, while the use of tools such as telepointers, radar views,

and sound help groups coordinate their activities (Greenberg et al., 1996), they also seem to add

to the complexity of the interface. Unfortunately, these types of interfaces have not brought

substantial relief for users of collaborative systems.

The introduction of agents, programs that act as personal assistants for their users, help

users perform work (Silverman, 1992), communicate with one another (Isbister et al., 2000), and

 4

avert problems. Interest in using agents to handle negotiations among work groups has grown

over the years (Woitass, 1990). Different negotiation strategies have been preprogrammed to

maximize a group member’s effectiveness and efficiencies. However, these negotiating agents

have usually emphasized individual rather than group interests (Isbister et al., 2000). While

machine learning techniques have been used to establish weights on different individual

preferences, there is little work on establishing weights for using this information to respond to

group conflicts. Thus, there seems to be a trade-off between when and how conflicts can be

eliminated within a collaborative environment, and whether a learning agent can respond to

group rather than individual preferences. This research investigated whether agents that learned

individual preferences of group members could also learn responses that eliminated conflicts

among group members.

Purpose of the Study

This study sought to determine whether an agent based system could help groups avoid

conflicts. An agent manager was developed that allowed groups to learn users’ preference and a

response model. The system was developed around a calendar application aimed at helping

groups schedule different types of events. As a result, the agent learning system was designed to

detect and respond to events such as scheduling a meeting according to the users’ preferences.

The specific learning technique that was selected to drive the agent training system was Q

Learning because of its ability to adjust to evolving user attitudes without having to retrain from

scratch. It was postulated that the agent system could monitor all communication between

members of a group in real-time, learning from the behavior of the group. At the same time, the

agent system would construct a response model that would be able to recognize and handle

conflict situations. Using what it had learned, the agent would then offer advice, interrupt an

 5

undesirable action with a warning, restrict users from taking undesirable actions, etc. The

combination of advice, warnings, and restrictions would guide the users to a greater

understanding of each other’s preferences so that, ultimately, the user himself would be able to

anticipate conflicts and work towards resolving problems before they arise. Thus, the agent

learning system would be able to detect users’ preferences and use this information to reduce the

number of conflicts.

After using the system with live subjects, it soon became apparent after that the agent

system was unable to learn all of the different possible conflict patterns in real time and a single

user session. As a result, the learning portion of the system was changed to an offline setting in

which the agent was ‘trained’ to learn user preferences and conflict patterns after being fed a

series of user events. For each experimental run, the system recorded the percentage of events

correctly classified as compared to a model of the user’s true preferences, as well as the number

of conflicts detected. Performance was then judged as to how well the system was able to learn

the preferences and avoid conflicts.

Significance of the Study

There is an increasing need for the development of software for improving the

productivity of groups in their daily work, particularly when large geographical distances

separate those individuals. Unfortunately, most tools that support computer collaboration are

extremely complex, and performance is often impeded rather than enhanced. Although

researchers are working hard to provide systems that provide a more virtual environment to make

collaboration easier, there are still many problems for users of this technology to know and

overcome. Conflict resolution is one of the most important problems that must be solved in this

area. The software developed for this research represents a carefully designed intelligent

 6

collaborative interface that supports the study of the use of an intelligent advisory system for

conflict resolution. Although significant progress has been made in the area of intelligent

advisors, most current research focuses on either user-independent awareness tools (DiMicco and

Bender, 2004) or application-support advisors (Long, 1998). This research represents one of the

first steps toward interfaces that customize themselves to the needs and preferences of the group.

This research also establishes the importance and timeliness of the problem of conflict

resolution during collaborative interactions. The problem is discussed from the perspective that a

system cannot resolve all conflicts, but it may be able to prevent major disagreements among

group members. For example, there is important research that has proposed a conflict resolution

method using coordination and argumentation agents (Kraus et al., 1998). This research tries to

improve upon previous agent-based studies by suggesting that machine learning techniques

might be used to both recognize and respond to conflicts. Humans seem to have several levels of

responses to conflict, ranging from passive acceptance to actively fighting the specific event or

proposed action. This research tries to address this problem by designing an agent management

system that learns individual preferences and how to respond to conflicts created by these

individual preferences.

Research Design

This study sought to determine whether an agent-based system could learn user

preferences and, as a consequence, use this knowledge to predict and avoid conflicts within a

computer-supported collaborative environment. In order to do this, an agent management system

was developed to operate in a group environment; specifically, the agent was embedded within a

shared calendar application designed to help groups schedule meetings. The agent portion of the

system consisted of three components: a learning program that constructed a user preference

 7

model, a learning program that learned a response model, and a planner that selected an

appropriate response and determined how it should be implemented. To measure the

effectiveness of the learning system, the system recorded the percentage of events correctly

classified as compared to the users’ true preferences, and the number of conflicts detected.

Research Questions

The main research questions for this study were whether the agent system could learn a

sufficient number of user preferences, and whether this model of user preferences could be used

to develop a response model that was designed to avoid conflicts. The answer to the first

question was obtained by looking at the number of events correctly classified as compared to the

users’ true preferences. The second question was answered by looking at the total number of

conflicts detected.

Limitations and Assumptions

Because of both the nature and size of the problem, the study was undertaken with the

following limitations:

1. Due to the length of time that it took for the models to converge, the learning

experiments were conducted offline.

2. The study was also limited in that initial user preferences were formulated from

models rather than real user populations.

Finally, the study assumed that the agent system had completed its training session when

the no major changes were observed.

 8

Approach

This research creates one of the first generalizable approaches for addressing the problem

of learning to avoid conflicts within computer supported collaborative environments. A broad

survey of current literature was conducted to analyze and identify issues related to some of the

theoretical constructs presented in the research. This set of identified constructs was used to

synthesize issues related to group conflicts and the reason for their occurrence within a computer

supported collaborative environment. The utility of these concepts was then validated, in part,

with the development of an agent learning system that was able to learn how to avoid conflicts

by learning user preferences.

An agent-training tool provided the agent with simulated experiences. Although the

simulated users may not have behaved identically to real users, the agent system was able to

learn reasonable responses as a starting point. In this way, the agent did not have to learn all

reasonable responses; it just had to customize itself to its particular user’s needs. The training

tool also had modes that allowed certain types of experiments to be run, allowing agent

performance to be examined in situations that might be difficult to guarantee in a human work

group.

The following chapter contains an extensive survey of the published research on

intelligent agents, computer-supported collaborative interfaces, and conflict resolution strategies.

This survey is structured in a way that facilitates the generalization of previous disparate work.

The survey provides support for the claim that it is useful to investigate agent intervention in the

context of collaborative systems. This knowledge is then used to guide the creation of a

hypothesis and its operationalization into a detailed study.

 9

This research shows that a user interface agent can learn to adapt its responses to its

user’s preferences and needs. Humans working together on the Internet will likely suffer from

limited sharing of information, or the system may try to correct the situation by providing too

much information. Software is needed that can remind users of the rules of group interactions

and summarize group activity without overloading the user.

The interface agent described here attempts to correct this problem by summarizing user

activities as preferences and learning to provide this knowledge as it becomes useful to the user.

Occasionally, it may act, itself, to protect the interests of its user.

 10

CHAPTER 2

LITERATURE REVIEW

The aim of this chapter is to identify a set of theoretical constructs about how to

“automatically” resolve conflicts within a computer supported collaborative system. A broad

analysis of relevant existing theory serves as a foundation for the experimental study that was

performed.

The current literature does not yet present a general and comprehensive theoretical model

of the factors that are most relevant in automatically resolving conflicts within real-time

collaborative systems; building such a model is beyond the scope of this dissertation. It is

postulated, however, that within the current literature there exists sufficient theoretical constructs

about collaborative software, intelligent agents, negotiation theory, and machine learning to form

a strong foundation from which to synthesize useful information. The object of this chapter is to

form such a foundation.

Authors of the current research literature have proposed useful theoretical constructs for

this particular study in each of four categories: Computer-supported collaborative work (CSCW),

agents, negotiation, and machine learning. The computer-supported collaborative work literature

indicates that increasing awareness (that is, knowing what each member of the group is doing at

any particular time) among group members may minimize conflicts. As a result, they have

developed a number of tools that are designed to help groups keep track of each other. Although

this seems to improve communication among group members, it is not really clear if such tools

actually decrease the amount or kind of conflicts that can occur within this environment.

 11

It has been suggested that intelligent agents may be another way to reduce the conflict

that can occur among group members. These “personal assistants” have been used effectively as

critics and facilitators (see Maes, 1994, for some examples). However, there is a high cost

associated with using intelligent agents that is generally translated into the time that it takes to

handle interruptions. This cost can be reduced somewhat if personal agents are given the

responsibility of handling the negotiations between other personal agents without having to

consult with users. Elaborate negotiation strategies have been proposed that might help resolve

both personal and machine conflicts. These negotiation strategies have been used in a number of

applications such as planning and scheduling programs (Sen et al., 1997).

However, a more powerful solution for agent negotiation strategies lies within the

machine learning community. What seems apparent is that problems such as negotiation (and

knowing when to interrupt users) might be learned in some systematic way, and that this method

may be more effective in reducing conflicts.

As a result, this survey examines literature in each of the four categories in such a way

that facilitates the generalization of various works and their applicability to this research. After

reading this chapter, readers should understand the several individual theoretical constructs

relevant to investigating automatic conflict resolution within collaborative systems. Furthermore,

readers should understand how this set of available theory could serve as a foundation for

studying different factors that might affect group performance.

Computer Supported Cooperative Work (CSCW)

The phrase "computer-supported cooperative work" refers to an area of study that

explores methods for designing, facilitating and evaluating computer-based tools for the support

of work groups. In Dix (1994), the components of the phrase are analyzed individually; the word

 12

cooperative suggests the need for some sort of communication between members of the group,

and the word work conveys the need to use or act upon various items, some of which are shared

and some of which are not. In some CSCW applications, the communication is explicit; in

others, the communication occurs indirectly through shared spaces that facilitate the work of the

group or represent the products of the work, itself.

The word "groupware" refers to software that supports and even enables the

accomplishment of group work (Greenberg, 1991); CSCW provides the research to enable and

augment groupware as well as scientific validation for its methods. CSCW applications tend to

support one or more of several types of working conditions that can be classified by spatial and

temporal parameters (Grudin, 1994). Groupware tools may provide electronic support for the

traditional face-to-face meeting (same-time, same-place) by disseminating information,

supporting voting or negotiations, or providing a shared workspace in the computer that can be

used to log the progress of the group (Valacich et al., 1991).

Some of these same tools can be configured to work over a distance (same-time, different

place); combined with some form of teleconferencing, they can significantly reduce the impact

of spatial distribution of the participants on the productivity of the meeting. Groupware, in this

context, generally refers to CSCW tools that attempt to recreate opportunities for interaction

which normally only occur in face-to-face meetings (Scrivener et al., 1994). Other CSCW tools

may offer an extended version of traditional e-mail and bulletin board systems that already

support a form of human interaction across both space and time. Appointment calendars, project

integration tools, and collaborative editors with support for side notes or annotations are all

examples of tasks that can take place independently of both time and space.

 13

One type of groupware tool briefly described in CSCW overview papers like Grudin

(1994) and Scrivener et al. (1994) supports groups meeting in the same place but at different

times. This type of tool is used to support work areas when all members of the group are unable

to meet together at the same time. A specialized work room has computer support much like the

support in the special meeting rooms described for synchronous, face-to-face meetings;

essentially, these tools combine same-time/same-place tools and asynchronous, distributed tools

(limited to a local-area network or even a single computer interface). Like the face-to-face

meeting support tools, the asynchronous work area is superior to conventional work areas

because of its ability to record and print intermediate stages of the work.

Although useful within a single-user computer environment, most CSCW tools designed

for spatially distributed workgroups rely on common computer input/output devices that often

require less natural modes of interaction. Traditional, face-to-face meetings are governed by

social and physical rules that are familiar to most people (Johnson-Levy et al., 1991). One of the

major challenges facing developers of CSCW applications is finding tools that can assist groups

without requiring them to learn new modes of interaction. Finding a style of communication that

helps rather than hinders groups remains a serious problem for researchers in CSCW (Gutwin et

al., 2004).

Table 2-1 Types of CSCW

 Same Time Different Time

Same Place Computer-supported meeting
room.

Computer-supported work area
with messages; “white board;”
version tracking; etc.

Different Place Online chat/conference;
Shared interactive tool.

Threaded discussion (newsgroup);
distributed, state-tracking support
tools.

 14

One of the reasons that communication is often difficult within a distributed CSCW

environment is because sensory feedback is greatly reduced. Unfortunately, humans rely on

subtle cues to resolve ambiguity and regulate behavior, which are often missing in a computer-

supported work environment. Spatially distributed CSCW tools, short of full immersion in a

virtual workplace, are limited in sensory feedback capability. The computer interface "attenuates

people's sense of social presence" (Procter et al., 1994). "Collaboration awareness," as described

in Procter et al. (1994), is the tendency for a group to be focused on a common topic, goal or

subtask, even if they are also working on separate subtasks. It includes an awareness of each

other's actions and how each participant is contributing to that focus. Collaboration awareness is

difficult to maintain in CSCW, in part because individuals are more accustomed to thinking of

computer work as an isolated activity, and systems providing limited sensory feedback do little

to alter this perception. Some researchers argue that conflict resolution becomes less of a

problem within computer-supported communications as group awareness is increased (Gutwin et

al., 2004). Group awareness tends to activate social and corporate training signals that are used to

resolve conflicts similar to what occurs in face-to-face situations (Rodden, 1996).

As a result, researchers have become increasingly concerned about how to increase

“awareness” among group members using their systems. As Greenberg, Gutwin and Cockburn

(1996), state: “Awareness is part of the glue that allows groups to be more effective than

individuals”. Awareness improves group members’ ability to make conscious decisions by

keeping them up-to-date on important events (Dourish and Bellotti, 1992). The need for

awareness is based on a person’s need to know past, current and future actions within a shared

environment for unstructured tasks (Schlichter et al., 1998). Although developing conflict

resolution strategies may be important within a computer supported collaborative environment,

 15

some researchers (Procter et al., 1994) argue that the use of feedback (and feed through)

techniques is more important, and that CSCW developers should concentrate on creating systems

that enable the use of conflict resolution techniques that are already part of a group’s social

makeup.

In order to increase awareness among groups who use collaborative software, researchers

have developed a number of specialized interface techniques. For example, Gutwin et al. (1996)

developed widgets such as telepointers, radar views, multi-user scrollbars, graphical activity

indicators, and auditory cues to enhance the group’s knowledge of different user inputs. Most of

these devices were found to help users better anticipate the actions of others. Awareness can also

be maintained through the sounds of background activities (Gaver, Smith and O’Shea, 1991). For

example, background sounds of a bottling factory floor were added to a CSCW team process

control system for a remote and distributed team (Gaver et al., 1991). The previously unavailable

factory sounds helped users maintain subconscious awareness of the various factor control

activities they had externally backgrounded to floor workers. Robertson et al. (Robertson et al.,

1993; Card and Robertson, 1996; Rao et al., 1995) have successfully used peripheral information

to help users maintain awareness of their location in information spaces.

Unfortunately, awareness techniques for CSCW environments have had mixed effects.

While the use of tools such as telepointers, radar views, and sound help groups coordinate their

activities (Greenberg, Gutwin and Cockburn, 1996), they also seem to add to the complexity of

the interface. Collaborative interfaces are already fairly complex and mentally challenging,

which has caused some researchers to suggest that collaborative systems can sometimes impede

group performance (Olson, Olson and Meader, 1995). Additional awareness tools may, in

themselves, distract users from the work to be accomplished, causing performance to decline.

 16

One way to increase awareness among group members without additional complexity is

to force participants to take turns performing different activities. For example, groups are able to

maintain a clear focus in face-to-face meetings primarily because only one person is allowed to

speak or act at a time. Social protocols help govern when one participant's turn is surrendered to

another. In the absence of cues that allow these types of protocols to function within a

collaborative environment, the computer may enforce its own set of rules that require or, at least,

permit one user to take the focus or "floor" from another. One simple type of turn management

protocol allows a user to interrupt another. Other protocols require users to engage in more

formal mechanisms such as requesting control or placing oneself in a queue (Dommel et al.,

1997).

At first glance, forcing group members to take turns speaking or acting seems counter

productive, since one of the reasons for using a CSCW system is to increase group productivity

through shared work spaces. However, if the “shared work” takes longer to complete or must be

redone because members lose track of group goals and potential conflict situations, then overall

group performance will suffer. Turn-taking is one way of maintaining a sense of collaborative

awareness without interfering with group productivity.

CSCW research will continue to explore methods for enabling users to work together in

spatially or temporally distributed groups even after total immersion technology becomes

commonplace. The recent growth of collaborative architectures or frameworks has enabled

programmers to create collaborative applications more quickly and easily (Winnett et al., 1994).

Answers to questions about how to share both the application and the users’ inputs have enabled

researchers to understand how to build more effective distributed applications. However, issues

concerning awareness continue to pose problems for developers of collaborative software. The

 17

literature on awareness within computer supported collaborative systems continues to show that

it is difficult to develop tools that facilitate both coordinated and individual tasks at the same

time (Gutwin and Greenberg, 1998). Although the use of multi-colored telepointers, radar views,

and sound are helpful, they do not alleviate all the problems related to coordinating group

activities. Conflicts continue to occur within CSCW environments, even when there are elaborate

awareness tools available to users.

Agents

Dynamic and complex environments, such as those that support group work, need "user

interfaces that are active and adaptive personal assistants." According to Huhns and Singh

(1998), "Agents are active, persistent (software) components that perceive, reason, act, and

communicate." One of the most important functions of intelligent agents seems to be their

ability to accept requests and perform certain laborious tasks on behalf of users (Selker, 1994).

For the purposes of this research, the word "agent" is used to indicate auxiliary software that

supports the user and adapts to user behavior. The agent gradually becomes more adept at

handling some set of chores for the user and keeps the user informed of important situations.

The potential of using agent software in combination with various network software

products for communicating and seeking information has been clearly demonstrated by a number

of studies (Maes, 1994). For example, there are agent systems that incorporate information from

different sources (Gruber, 1991) and that search for loosely specified articles from a range of

document repositories (Voorhees, 1994). Malone et al. (1997) built an agent system, called

InformationLens, to manage electronic messages (find, filter, sort and prioritize). The follow-on

system, called Oval, allows users to tailor their own systems for information management and

cooperative work through objects, views, agents and links that help groups organize and respond

 18

to knowledge. A number of advisory style agent systems show that software agents can enhance

cooperative learning by allowing documents to appear simpler and easier to use (Boy, 1997;

Selker, 1994).

In the last few years, researchers have introduced user interface agents or personal

assistants to help users deal with a complex computer environment. As the number of lay people

using computers increases, it is important for the user interface to take a more active role in the

dialog between the user and the computer, responding to and even anticipating user needs.

Agents that are programmed with user preferences or goals can handle simple situations or even

act as proxies for their human users. Some chat room 'bots and MUD characters are programmed

to interact with users in relatively sophisticated ways, providing them with the illusion of dealing

with an intelligent being within a limited domain (Foner, 1997).

Another type of agent is one that "critiques human-generated solutions" (Silverman,

1992). Ideally, a “critical” agent will force the user to make unambiguous design choices that can

be proven correct or incorrect (Silverman, 1992). The critic first generates its own solution using

an expert system or case-based reasoner, and then compares the user's solution with its own.

Differences beyond some maximum delta are recorded, and biases and missed opportunities are

recognized. Silverman tests a user’s design against a set of standards in four specific categories:

clarity, coherence, correspondence, and workability. The agent uses a dialog generator to

translate specific errors into human-presentable form. Silverman’s design critic can operate in

either an active or passive mode in order to assist both novice and experienced users.

A different type of critical agent can be designed to look at only the user’s

communication rather than his or her work (Isbister et al., 2000). Communication agents follow

the conversation and make suggestions to keep the communication moving. A helper agent

 19

detects contextual cues, provides help, and then fades back into the background. It is designed to

interact with users only when conversation lags. Isbister’s conversational critic operates within a

3-dimensional virtual world; this world reveals the group’s orientation to each other and shows

the agent’s presence. As different group members address each other or ask a question of one

another, their 3-D representation moves accordingly. The agent is able to intrude gradually on

users by moving its 3-D representation towards them.

Conversational agents have also been used to modify cultural differences among different

groups. For example, Isbister et al. (2000) designed a conversational agent that would suggest

culturally appropriate topics to be discussed between Japanese and American groups. Drawing

on previous studies, the article suggested that Japanese prefer concise and calm exchanges over

noisy and talkative ones, while Americans tend to prefer more emotional conversations. A

conversational agent was programmed to either suggest safe or unsafe topics. A mix of Japanese

and Americans were selected to participate in a discussion. Whenever the conversational agent

encouraged “safe” topics, the Japanese who were participating in the study ranked Americans

closer to their own culture, whereas when they were given “unsafe” topics, the Japanese ranked

Americans further from their culture. Through this technique, Isbister et al. were able to alter

user behavior without explicitly instructing them about different cultural biases.

Such unobtrusive agents engaging in gentle reinforcement of desired behavior may be

preferable to forcing humans to accept a computer-generated compromise in cases of conflict.

Humans can be encouraged to utilize social protocols they have already learned, or they can be

instructed in protocols appropriate to the new communication environment. If the agent can

predict conflict before it occurs, then an agent may be able to avert conflicts, eliminating the

need for compromise.

 20

Negotiation

Whenever several individuals work together, conflicts arise. Conflicts can arise over

incompatible goals or subgoals or even conflicting priorities. In the case of distributed CSCW

applications, conflicts can also arise because two or more individuals try to modify the same

object at the same time. In many cases, standard protocols for distributed computing can handle

these later types of conflicts. The more challenging area of study involves guiding or automating

the processes by which people, not systems, resolve conflicts in traditional work groups.

Users, in general, are unaccustomed to working in a distributed work environment with

limited bandwidth. Intensive communication within such an environment can significantly

impact the work effort, especially during busy periods of the day when the network's bandwidth

may be approaching or even exceeding the recommended maximum load. At the very least, an

intelligent interface agent within a CSCW environment should anticipate the need for additional

information or make suggestions about the current work situation so that users can focus on the

source of the conflict. Ideally, agents can be programmed to automatically handle conflicts for

their users.

Automated conflict resolution can cause certain types of problems to occur, as suggested

in Woitass (1990). For example, some implementations of meeting schedulers require users to

share their personal calendars, which can result in a violation of privacy. Also, users may be

forced to list phantom meetings on their calendars to prevent the automated meeting scheduler

from allocating all their time for meetings. In order to avoid some of these problems, Woitass

(1990) used a centralized arbiter to broadcast proposed meetings to users. The agent could be

programmed to accept or reject conflicting meeting times, but the final decision to accept a

meeting time was left to the human user.

 21

A great deal of work on different negotiation strategies has been done in the area of

distributed artificial intelligence (Laassri et al., 1990; Decker et al., 1995). These types of

systems tend to utilize a collection of agents to solve a problem. Negotiation is simplified

because the agents are designed to work together and are programmed with the same primary

goals. Thus, many agents within distributed artificial intelligence environments are benevolent

(Sen et al., 1994).

There is also interesting work concerning negotiation among adversarial entities in multi-

agent environments where the only common factor between agents is the protocol used to

communicate. In this system, an agent conveys data and accepts compromises only if it can

“improve” its position. As a result, the data transmitted to other agents may actually be

inaccurate (Rosenschein et al., 1994). A number of techniques have been proposed that

encourage honesty and cooperation by means of protocol selection or ensuring that the price of

dishonesty and selfishness exceeds the benefits of “unsocial” strategies. These systems tend to

rely on different “bidding” strategies to determine the benefits of a specific action. For example,

Rosenschein and Zlotkin (1994) propose a technique that encourages honesty in bid calculations.

They describe this method using the idea that long distance service selection can be based on

bidding rather than customer choice. A company only has to underbid its competition to win the

customer. However, competitive systems may be encouraged to provide inaccurate information

in order to win negotiations. An agent that remains aware of other bids can always set its bid

lower; alternatively, the agent may be able to offer a service at a much lower cost but try to

maximize its profit. Rosenschein and Zlotkin suggest a more sophisticated bidding policy called

“Vickrey’s mechanism” that awards the bid to the lowest bidder but uses the second lowest bid

to make the agreement. In the telephone company example, a company has no reason to overbid

 22

because it will be awarded the next highest bid if it wins and is more likely to lose. Underbidding

is only successful as long as all competitors bid more than the cost of offering the service. The

point of this research is that heterogeneous agents can be encouraged to honestly portray the

importance of winning a negotiation if some type of economy of resources constrains them.

All of these transactions, however, require a great deal of communication among agents.

Communication is very expensive compared to computation, so techniques are often explored to

minimize the need for explicitly sharing information among agents. Some believe that economic

techniques are ideal for reaching consensus while minimizing the need for additional

communication. For example, Wellman (1995) describes a negotiation strategy in which agents

bid on resources until there is a balance between supply and demand. The messages are compact

compared to detailed information about preferences. The assumption is that equilibrium is

reached eventually when resources are assigned and agent actions are determined in a way that is

acceptable to the other agents. Unfortunately, such a system is not guaranteed to achieve an

optimal allocation.

Agents can also be instructed to make "deals" in order to maximize profits. Rosenschein

et al. (1994) describe deals as joint plans that satisfy the goals of all involved agents. The utility

of a deal is defined as the amount the agent is willing to pay for the deal minus the cost of the

deal to the agent. The set of acceptable deals are those with a positive utility for all agents.

Conflict resolution is handled by proposing a trade or by factoring in the cost of doing nothing.

 The problem with systems that use utilities to negotiate conflicts is that the agents will

try to maximize utility, resulting in selfish behavior. Enforcing social protocols by levying stiff

penalties can help prevent some of the selfish behavior that can occur. For example, an agent that

agrees to share resources and then decides that another plan is more advantageous should have to

 23

pay a high price for abandoning the original plan unless the agent can convince other involved

agents that it is advantageous for them as well (Sandholm et al., 1995). Failure to offer up

flexibility or resources in exchange for betrayal is difficult to enforce without a centralized

arbiter, but other agents can refuse to share resources with an antisocial agent.

Bidding and deal-making strategies, however, still require some communication among

the agents. With enough knowledge, most if not all of the negotiation process can take place

internally with perhaps just a little communication to verify that everyone is in agreement.

Fenster et al. (1995) describes a coordination process known as "focal points." Focal

points are solutions that “tend to be picked.” For example, if asked to pick a number between

one and ten, people are less likely to pick numbers at the extreme ends of the range. Focal point

solutions tend to be unique, symmetrical where possible, and extreme in some sense. One

problem with focal points is that joint plans are selected based on the likelihood that other agents

will select them rather than on their worth or utility. If enough information exists to evaluate

plans from the perspective of other agents, then this information can be used to pick the optimal

plan.

Banerjee et al. (1999) try to eliminate communication costs by using a Bayesian network

to model agent responses to various situations. The topology of a network determines what

aspects of a situation help determine agent response. Prior and conditional probability values

capture the contribution of each characteristic of a situation that leads to a final decision.

Assuming that reasonable estimates of relative importance and likelihood of choices can be

produced, it should be possible to adjust the probabilities to create a better fit to actual agent

behavior.

 24

Sen et al. (1997) proposes a very complicated negotiation framework for planning

meetings. The framework depends on users explicitly stating their preferences and on agents

repeatedly broadcasting proposals and counter-proposals until a solution is found. This

negotiation framework involves setting preferences for each attribute of a meeting, represented

by a real number between 0 and 1. Values close to the threshold represent weak preferences, and

values closer to 0 or 1 represent strong preferences. Also, different attributes can be weighted

(e.g., afternoon meetings may be more important than on what day the meeting is held).

A user starts the process by requesting a meeting for a particular group, length, priority,

suggested time(s), deadline, etc. The user’s agent then goes around and tries to find the times that

are open for other group members, ranks these times according to preference, and transmits one

or more of the best times to the other agents. The agent determines which times are acceptable by

counting votes. If no time is acceptable, then the agent begins a new round of negotiation.

 This particular framework uses an elaborate ranking method that assigns weights to

different preferences and attributes. The system also tries to give more weight to times that were

previously selected. For the meeting scheduler application, this means that times will be selected

that meet the most requirements, or at least the more important requirements, for each agent.

Negotiation techniques range from methods involving the transmission of complete data

about a user’s preferences and the user’s offers or counteroffers to methods that, in a sense,

anticipate the negotiation process and arrive at an equitable compromise with little or no

communication. These techniques rely on knowledge of the other competitors, knowledge that is

provided explicitly, learned, or logically deduced. Some negotiation strategies rely on the

accurate sharing of information, while others require feedback concerning a plan’s or resource’s

 25

relative worth. In either case, the benefits of learning this knowledge indirectly rather than

relying on possibly inaccurate transmissions should be explored.

Adaptive Learning

A number of machine learning techniques have been used for prediction and control.

These techniques tend to be categorized as either symbolic or non-symbolic (Malcolm et al.,

1990). Symbolic learning techniques generate human-readable rules that are adjusted or replaced

over time (Luger, 2002), while non-symbolic systems tend to categorize the desirability of a

classification or event using numeric weights or probability values (Haykin, 1994). While useful

for capturing reflexive responses or categorizations, non-symbolic systems do not usually have

the ability to explain their reasoning.

Neural networks are a popular form of non-symbolic learning technique. Neural networks

are an attempt to emulate nature's efficient learning mechanisms (Haykin, 1994). Neurobiologists

may be interested in precisely modeling the biological neuron, but most practical

implementations of neural networks use a much coarser model based on different optimization

theories or statistics. Neural networks are usually implemented as a collection of nodes, called

neurons, which are connected to a set of inputs. A function is then used to convert these inputs

into an output. Most neural network implementations have some method for adjusting the

function based on a feedback mechanism that may be external or self-generated. Many

implementations of neural networks use an array of values to represent the inputs into the

network, an array of adaptable weights that help define each input's contribution to the function's

value, and an array of node outputs.

One of the most well-known neural network types is the back-propagation network.

Many practical solutions to problems of prediction or classification have been solved with this

 26

type of network (Wasserman, 1989). In general, the various nodes within a neural network are

assigned different weights based on their contribution to the eventual output. These weights

represent the parameters of the system that are adapted so that the network can learn proper

responses (outputs) to various situations (inputs). During the course of the learning process, the

weights are adjusted to minimize the difference between correct outputs and actual outputs. In

more complicated networks, such as two-layer networks, a back-propagation algorithm allows

the network to learn more complicated response patterns because it introduces a degree of non-

linearity in the output to ensure that each layer’s weights have their own unique contribution to

the final result. The sigmoid function nete
out

−+
=

1
1 is often used for this non-linearity function

because it forces all outputs to be between zero and one, eliminating the possibility of infinitely

growing output while at the same time providing adequate discrimination for values near zero. It

also solves the “credit assignment” problem for multiple layers (Wasserman, 1989) as it has a

simple derivative for determining the relative contribution of each node to any error in the

output.

Traditional back propagation involves adjusting the weights of the neural network in

order to minimize the error of the network's response to a population of inputs. This type of

machine learning technique, unfortunately, can quickly forget older exemplars if repeatedly

presented with different ones; one way of dealing with this problem is to calculate the error on a

training set of exemplars, then back-propagate this overall error (called epoch training). The

training occurs off-line by repeatedly applying the network to the entire training set and

recalculating an overall measure of its accuracy.

 Probabilistic neural networks attempt to approximate Baye's method of classification

using a Bayes-Parzen classifier converted to resemble a traditional neural network architecture

 27

(Masters, 1995). Given a training set of exemplars that provides a full and representative

coverage of different classes, a PNN estimates class membership by approximating the Bayesian

probability that the input belongs in that class. The PNN is often designed to simply select the

class to which the input most likely belongs, but its ability to report its selection criteria in terms

of probabilities makes it attractive for use in hybrid systems where, for example, a more

symbolic A.I. technique like a fuzzy rule-based system can use these estimates in its reasoning

process (Luger, 2002).

Another feature of the PNN is that it can be retrained to incorporate new training

exemplars relatively quickly. Unfortunately, this feature is balanced by longer classification

times. The PNN must compare the input value against every exemplar in each class in the

training set in order to classify it (every training example is represented by a neuron). For this

type of dynamic system, many of the same questions that plagued training set selection for back

propagation neural networks also plague the PNN. One clear advantage that the PNN has over

the BPN is that new exemplars can be integrated into the training set more quickly.

In addition to simple classification techniques, there are a number of machine learning

approaches that attempt to predict appropriate responses to a sequence of actions, either by

predicting a user response or directly predicting when the negotiator should intervene. One

approach to this problem uses a spatial mapping of time to overcome this problem (Haykin,

1994). Finite sets of past inputs are saved in a sliding window; the order of inputs within the

window indicates the relative order of the events that caused them. The neural network is

provided with all past inputs simultaneously and learns to assign an appropriate significance to

more recent events versus older events. The implementation described in Haykin (1994) is

 28

identical to the traditional BPN except for this technique that maps all past inputs in the window

as if they were occurring at one moment.

Real-time recurrent networks support a less explicit method for determining the impact of

a past event on the current behavior of a network. Like the binary flip-flop used to implement

computer memories, this type of network uses feedback from the previous output to determine

the current value of the output. Both hidden units as well as explicit output units provide input to

the network. Supervised training of a recurrent network involves calculating the difference

between the desired and actual outputs and multiplying the result by an error gradient calculated

across each weight and adjusting the corresponding weight by the result (reduced by a learning

rate parameter). The error gradient is estimated over time to be the contribution of a weight to the

values of the visible outputs.

Induction is the process of creating generalizations from specific examples. Like

scientific theories, rules or classifications created by induction can be subjectively evaluated for

how well they explain or describe some object, process, etc., based on current evidence.

Inductive learning techniques produce symbolic output, as opposed to machine learning methods

that produce numeric values or weights.

A well-known induction method is the ID3 algorithm (Jackson, 1999). ID3 creates a

decision tree from a set of examples. Each node of the decision tree represents an attribute of the

object to be classified. The paths that lead from each node are labeled with values for that

attribute. The leaf nodes of the decision tree represent possible classifications of the object.

These decision trees can be mechanically translated into production rules for an expert system

(Luger, 2002).

 29

The previous learning methods are similar in that they learn from examples. That is, the

program is provided with a set of input/output pairs, and the task is to learn a function that covers

those pairs. However, there are other types of learning techniques that begin without training

examples. The adaptive-critic, and other related methods, represents a variation on reinforcement

learning. Reinforcement learning is supervised only in the sense that an occasional positive or

negative reinforcement is applied to situations where performance is acceptable or unacceptable.

Behavior is represented as a series of states or state transitions. Explicit reinforcement occurs

only for states where there is a clear positive or negative evaluation; the system may be exposed

to a number of states with no clear evaluation. Presumably, continuous reinforcement (traditional

supervised learning) is impractical for these intermediate states, so in cases where a sequence of

actions leads ultimately to a reinforcement signal, some method must be employed to distribute

the feedback to the appropriate states that led to correct behavior. While some systems, such as

drive reinforcement learning (Barto et al., 1983), distribute feedback by using techniques similar

to the temporal-to-spatial mapping mentioned in the previous section, others use a dynamic

programming approach to propagate the reinforcement values from the point of actual

reinforcement back to earlier states. This adaptive critic then provides a pseudo-reinforcement

signal to the actual reinforcement network, increasing the speed and degree of learning possible

for states earlier in the sequence.

Q Learning, a reinforcement learning technique, completely eliminates the distinction

between weights that indicate a state/action pair's worth and the estimate of future reinforcement.

Instead, it assigns a Q value to each state/action pair. These Q values, hopefully, converge to

some optimal level as actions are performed over time. Assuming that Q' represents the mapping

of state/action pairs to an ideal measure of expected reinforcement, the optimal plan would

 30

involve following the action with the highest Q' value for a given state; as a perfect measure of

future reinforcement, each action selected thereafter in the context of succeeding resulting states

would represent the same maximum Q' value.

In Q Learning, each state maps every action to a Q value that estimates the expected

reinforcement to be received by following an optimal policy after that action. A variation of Q

Learning also associates an eligibility value with each action. Whenever an action is selected, the

eligibility factors of all other actions for that state are set to zero while the eligibility factor for

the selected action is set to one. The eligibility value on unreinforced actions decays over time,

decreasing the likelihood that these actions are pivotal in achieving the current reinforcement

(Figure 2-1). When reinforcement is ultimately received, the Q values are adjusted for each

state/action pair based on the level of the reinforcement and the eligibility of the pair. Thus, a

sequence of states and action decisions made over time are rewarded or punished, with the

greatest change occurring to actions representing the most recent activities.

Q Learning has been successfully used in the creation of controllers that learn how to

manipulate a system over time. However, Q Learning is not as effective as a classifier system in

those cases that require the learning of classifications as opposed to policies. Considerably more

training is required in situations where a chain of events is not responsible for ultimate

Figure 2 - 1 Q Learning (with decaying eligibility)

 31

reinforcement. Where supervised training is possible, a more traditional classifier system can use

optimization techniques to increase learning.

Summary

This chapter presents an overview of the important ideas that were relevant for this

particular study. These ideas were synthesized from the significant theoretical constructs

identified in an extensive analysis of the current literature. The breadth and depth of this

analysis, and the resulting summaries, made the theoretical product of this chapter a powerful

tool for guiding this study. The importance of this study has been helped through the extensive

analysis of each of the following domains of current literature: artificial intelligence (i.e., agents

and machine learning), human-computer interaction (negotiation), and computer-supported

cooperative work.

The general question that was faced is how to make a computer-supported collaborative

environment in which conflicts are handled automatically, without constant human/human

negotiation. A related question asked whether it is possible to avoid the need for advanced

conflict resolution by increasing awareness of potential conflict without overburdening the user

with additional information. The four main examples of how to approach this problem were

discussed in great detail. These four areas have contributed in greater or lesser degrees to the

design of this study.

32

CHAPTER 3

DESIGN

The previous literature guided this study on the use of a hybrid artificial intelligence

approach to minimize conflict in a shared CSCW environment. After determining that group

conflict occurs in collaborative environments, a special computer-supported collaborative

application was developed to examine methods for reducing group conflict through the use of

interaction-support agents. Each user’s agent “learns” to predict potential conflict situations. The

agent then responds by directing the user’s attention to the problem, offering advice, or, in some

instances, interceding for the user. This software was then used in a special project. The project

was divided into two phases: data collection without the agent, and a simulation of long-term

interaction with the agent. The data collection phase used several small groups of humans to

create a realistic model of human interaction and to determine the nature of conflict in this type

of application. The agent phase verified the capacity of the agents to adapt to unique users over

time. Unfortunately, long-term trials with humans were not possible at this time, so a simulation

of user activity was used to verify the adaptability of the agents. The results of these two phases

of the project will be reported in Chapter 4.

Chapter 3 describes the collaborative application system in greater detail. It considers the

various intervention and learning components of an agent. After reading this chapter, the reader

should have some knowledge of the collaborative application used in this study. The reader

should also be familiar with the interaction support system used to detect and respond to

conflicts.

33

System Overview

The major objective of this research was to determine how to minimize conflict within a

computer supported collaborative application. In order to address this problem, a special

computer supported collaborative application was developed. The specific context of this

collaborative application was a shared calendar system that allows group members to schedule

events (i.e., meetings) for specific time periods and on certain days. The collaborative

application, therefore, consists of a graphical user interface, Internet communications support, a

database management system, and an interaction support agent (Figure 3-1). The graphical

interface contains a number of shared windows that allow groups to access each other’s

calendars and schedule meetings. Groups can schedule events by selecting a day and time on the

calendar as well as enter additional information about the event. A simple distributed database

maintains local copies of the events scheduled by each user. In addition, the collaborative

TCP/IP Network Layer

User Interface

Local Copy of
Database

Interaction
Support Agent

Incoming message thread Outgoing message thread

Figure 3 - 1 Collaborative Application Design Overview

34

application contains an agent system that monitors activities related to both local and

communicated user actions. The agents are designed to detect conflicts that occur while users are

trying to schedule events with one another and to respond to the recognized conflicts in an

appropriate manner. A more detailed description of the system components now follows.

User Interface

The first step in this research was to create a computer supported collaborative

application that could be used to study group conflicts within a CSCW setting. A group calendar

application, resembling an appointment book, was created to help members of a group schedule

events. The group calendar software differs from a single-user calendar system in that all events

are automatically broadcast to every member in the group, effectively creating a shared

workspace. An integrated message service (Figure 3-3) allows both private and group

communication among users. The main window takes the form of a monthly calendar (Figure 3-

2). The calendar contributes to each user’s awareness of group activity through a simple color-

coding scheme. The days of the month turn yellow whenever a change is occurring. Once a

change is reviewed, the day button for that date changes from yellow to white to continue to

remind users that an event has been scheduled on a specific day. Users may view, modify, and

add entries by selecting and clicking on a specific day in the calendar window. The interface

works similar to a daily appointment book (Figure 3-4) in that users can switch back-and-forth

between the month and day views. Every time an entry is added or altered, the change is

automatically broadcast to all active members in the group.

35

There are several features within the shared calendar application that are designed to help

users remain aware of one another’s activities. For example, a log window records any changes

that occur and appears automatically whenever someone in the group alters an existing event. A

button corresponding to a day changes color whenever another user modifies an event on that

day. Finally, there is a summary window (Figure 3-5) that provides users with an overview of all

of the events that have been scheduled by the group. These features were designed to improve

user awareness of group activities. Such features are considered important for successful

collaborative communication (Procter et al., 1994).

Figure 3 - 2 Main Calendar Window

Figure 3 - 3 Message Window

Figure 3 - 4 Day Schedule

36

Distributed problem-solving is assisted by a central server that stores the names and IP

addresses of every member in the group. Normally, all communication takes place directly

between the members of the group via peer-to-peer connections. Rather than hardwire each IP

address into the system, the application requires users to connect to a common name server at the

beginning of a session. Each user configures the software to connect to the server’s IP address

and enters their name and the name of their group. This information is sent to the server; the

server, in turn, responds with the names and IP addresses of the other active members of the

group. In addition, the server informs the other active members that a new member has joined the

group and provides them with the user’s IP address. The server plays no other role in group

communication or database management.

Once the group is connected, users communicate directly with the distributed application

over TCP sockets. Actions taken by different users are summarized into message packets that are

broadcast to other members of the group. The message types can be separated into three

categories: entry-related, informative, and negotiation messages. Entry-related messages are sent

whenever a user enters a new item or modifies an existing item. An entry can be modified by

removing it entirely or by performing any combination of modification acts such as changing the

description of the entry and changing the entry’s start and end times. Informative messages are

sent whenever a user opens and closes a day’s entry window; these informative messages are

Figure 3 - 5 Summary Window

37

intended to notify the group about the focus of each user, allowing the user or agent to anticipate

future entry-related messages concerning a particular date. Informative messages are also sent

whenever a user joins or leaves the active group. Negotiation messages are described in the next

two sections.

Low-Level Conflict Handling

In addition to the shared calendar interface, the application contains an agent system that

is designed to detect conflict and offer advice on how to resolve group conflicts. Initially, the

agents were designed to detect low-level conflicts such as those that occur whenever two users

schedule different events for the same time period. In the first version of the application, a simple

“agent” was developed to negotiate low-level, mutual exclusion conflicts caused by two or more

users’ making changes at the same time (Figure 3-6). The negotiation process uses a simple tie-

breaking scheme inspired by the work of Lamport (1978) and Rabin (1982). Each agent involved

in the conflict generates a pseudo-random number seeded by a user's identification number to

generate a ticket; tickets were exchanged in conflict situations, and the highest ticket won the

conflict. Initially, a conflict was said to occur whenever two users tried to add an event in the

same slot or change the same event simultaneously; the loser of the conflict was required to

rescind their changes.

The intelligent agent would try to improve its behavior by learning how to predict this

form of low-level conflict. However, after analyzing several interactions among users of the

application, it became apparent that too few conflicts occurred during the test sessions. Even

when users were restricted to scheduling events within a single month, they rarely encountered

conflicts. This was due, in part, to the large number of non-overlapping times that were available

during the month (that is, potentially 12 x 30 = 360 non-overlapping times, which assumes, on

38

average, one hour meetings with only about 12 useful hours a day for meetings). Further, since

the calendar application used a simple FIFO method to handle scheduled events, true conflicts

occurred only during the few milliseconds when a scheduled event was being transmitted to the

rest of the group. After considering other types of shared applications in which conflicts might

occur (such as a shared whiteboard with a single resource), the definition of conflict was

expanded to include other types of conflicting situations such as when one user schedules an

event at a time that is “undesirable” for another user.

The change in the definition of “conflict” suggested that an “intelligent agent” might be

used to learn a user’s preferences to aid in determining when a conflict had occurred or might

occur. Rather than force the user to enter their preferences directly, a method was sought to have

an agent “learn” preferences by observing the user’s actions. Since user’s actions were already

being shared whenever the calendar was updated, it seemed logical to assume that an agent could

be programmed to learn all users’ preferences with minimal effort or effect on the rest of the

communication system.

Figure 3 - 6 Low-Level Conflict Resolution

39

Intelligent Agent System

Therefore, a second version of the intelligent agent system was developed and was

programmed to “learn” user preferences in order to offer assistance to groups whenever different

types of scheduling conflicts occurred. In the current version of the shared calendar application, a

preference conflict is said to occur whenever one user schedules an event at a time that is

“unacceptable” to another member of the group. Possible responses to the different types of

conflict range from providing the user with advice about how to resolve a conflict to

automatically negotiating a resolution of the conflict with the other user’s agents.

Several different learning algorithms were investigated to determine if they could be used

to detect the different types of conflict and select appropriate responses. User preferences, in

particular, are unpredictable. In addition, appropriate responses may vary somewhat from one

user to another. Reinforcement learning algorithms were of particular interest, since they have

the ability to learn about unknown dynamic systems in real time (Littman et al., 1991, for

example).

In order to use the reinforcement-learning algorithm for the calendar application, the

event data had to be classified to fit the system’s learning component. For example, events were

represented as items with specific dates and times, covering a specific time period. To promote

more general learning, times were classified as morning, lunch, afternoon, supper, or evening

times. In addition, several user actions were characterized as being either constructive (such as

scheduling a new event) or destructive (such as removing an event or otherwise changing it so

that it no longer reflected the original user’s preferences). This type of classification made it

easier to recognize general trends in the practical preferences or actions of a user. Resources

were also conserved. Since there are, on average, 360 time slots per month in the calendar

40

application, a learning algorithm must try and contend with a minimum of 720 states. The

simplest implementation of Q learning uses a lookup table to track the estimate of future

reinforcement (Q value) for each possible state/action pair. Assuming five possible actions, the

table needs 3600 Q values. If the state is defined by the last two user actions, this number grows

to 2,592,000. In general, if each piece of data used to define a state has a different possible

values, the space requirements for a number of machine learning methods would be O(an) for n

data items. The more information used to recognize or predict conflict, the more space is

required, which also impacts learning time.

A hybrid learning system, on the other hand, is able to combine the strengths of several

different learning methods. One of the weaknesses of using a single machine learning method is

that most problems are too complex for a single approach (Goonatilake et al., 1995). Another

reason for rejecting a single learning system is that it is often resource intensive. Since Q

Learning methods tend to require a large amount of resources (Baird, 1995), it is important to

find ways to reduce the processing time required to compute the various Q values.

The particular hybrid learning system that was used in the Calendar application was

designed as a two-step hierarchical system in which simple inferences are passed to the next,

more general level. The classifications computed at each stage of the process provide input to the

next level. This was done, in large part, to minimize processing time and is similar to what

occurs in an expert system that uses rule sets and hierarchies to accelerate inferencing. Also, by

characterizing states as different layers of knowledge, going from specific to general, it is

possible to eliminate some of the thrashing that occurs in some learning algorithms because

conflicts tend to disappear as the more general layers are invoked. As a result, a hybrid learning

41

systems seemed to be uniquely suited for learning conflict situations that occur when scheduling

events.

One of the major issues that needed to be addressed for this particular hybrid learning

system was the makeup of the different layers. There are several different ways to define the

layers, and it is interesting to review the different approaches. For example, one layer might be

designed to learn user preferences, while the second is used to learn the user’s next most likely

action. A third layer could then reason about which actions lead to different types of conflict and

infer an appropriate response. An alternative solution is to have the agents classify the next

action from a chain of previous actions, bypassing explicit user preferences entirely. Yet a third

solution is to connect user preferences and recent actions directly to a learned anticipation of

conflict, bypassing the third layer described in the first example.

The latter solution has two benefits. Encoding specific user actions in terms of general

user preferences creates a noticeable reduction in the number of distinct states that have to be

processed in the second layer. On the other hand, the very nature of a dynamic learning system

requires that it is initially and occasionally wrong. Any layer that responds incorrectly to an

event will probably cause an incorrect response to occur in the inferencing that takes place in

some future layer. However, if the system can “anticipate” a conflict during one of the early

stages of learning, then the action prediction layer may be unnecessary, and fewer layers will be

required to get reasonable responses from the system. Thus, a learned “anticipated” layer

approach was designed and implemented for this particular calendar application.

The current agent system contains three modules: a preference learning module, an

action selector, and an action planner (Figure 3-7). The agent first learns preferences from the

actions of the users. Preference learning can be done independently of the other two layers

42

because it is really a separate learning problem. Preference learning is essentially a method of

summarizing past actions and recognizing more general patterns.

The action selection module examines the user’s preferences and the last action taken by

a user and translates these into an appropriate agent action. The agent actions at this layer are

encoded as a simple value representing a type of response. In addition to recognizing and

identifying a response to different conflicts, the action selector “learns” to recognize events

leading to conflict.

The action planner module consists of a set of plans that are associated with the different

action types proposed by the action selection module. Once the action selection module has

chosen an action type, the action planner tries to prescribe a series of steps and actions that might

be appropriate to overcome the current or potential type of conflict. For example, one proposed

action of “INTERRUPT TO WARN USER” generates the following sequence of steps:

DETERMINE STRENGTH OF USER PREFERENCES, SELECT MESSAGE OF SIMILAR

Figure 3 - 7 Modules Supporting Intelligent Agent

43

STRENGTH, and IMPOSE MESSAGE BOX WITH MESSAGE ON USER'S DISPLAY. By

separating the agent’s responses into action type and action steps, other machine learning

algorithms can be used in this system with minimal modification. The action planner can be

replaced with other types of Artificial Intelligence tools such as case-based reasoners (Kolodner,

1993) that can customize responses to individual users. For the present, this layer is simply part

of an overall software design module. The software analyzes the situation that matches an action

type and infers a fixed sequence of steps.

User Preferences

As previously stated, the user preference module is designed to learn various

characteristics about the user. More specifically, this module tries to determine the days and

times a user prefers to schedule certain types of events. The intelligent agent makes these

decisions by examining the user’s repetitive selections for different dates and times within the

Calendar application. As previously stated, user preferences are defined as time elements such as

a day of the week, a time of the month (early or late), and a time of day (morning, afternoon,

evening, etc.). To classify user preferences, the intelligent agent matches the user’s specific

actions (e.g., adding a date with Joe for July 3 at 8 p.m.) with the user’s preference values (e.g.,

the user prefers Tuesday evening, early in the month). The user preference module is also able to

make certain generalizations about previously classified events such as UserA prefers to

schedule events in the evenings.

The agent currently uses a simple reinforcement technique along with a generalization

algorithm to learn user preferences. User actions are classified as neutral, constructive, or

destructive. An example of a neutral action is a user opening a window on a particular day. A

constructive action consists of an event such as adding a new item to the schedule. Destructive

44

actions include events such as removing an item from the schedule. Modification actions may be

broken up into both constructive and destructive actions that involve changing the time of an

event. Each time a user performs a constructive action, the user preferences module records this

as evidence of a positive user preference; likewise, a destructive action is recorded as evidence of

a negative user preference. Anomalous actions, such as unrepeated actions that contradict past

behavior, are handled by computing a weighted average of past and new evidence. A strong

preference requires as many as three consecutive observations that the preference has changed

before this is reflected in the new preference data.

The reinforcement algorithm used in the calendar application takes the weighted average

over time of a reinforcement signal determined by user actions. This is a common technique used

in other reinforcement learning systems (e.g., Watkins et al., 1992). Because this layer is

concerned with classification rather than prediction and assumes that user actions occur

independently of each other, only instantaneous reinforcement is considered. Reinforcement is

calculated entirely from the type of user action inferred: 0 for a neutral action, -1 for removing

another user’s event, +1 for adding a new event, between 0 and +1 for more ambiguous

constructive actions, and between 0 and –1 for more ambiguous destructive actions. Ambiguous

actions include modifying the time of an event so that it overlaps with the original scheduled

event. Such an adjustment may be less a reflection of preference than the need to make

adjustments to an already crowded schedule. The new preference is calculated by combining the

previous measure of preference with the reinforcement signal:

pi(w,d,t) = α pi-1(w,d,t) + (1-α) r

where r is the reinforcement signal and α is a forgetting factor. Values of α close to 1 indicate

past experience is more important than new experiences, and values close to 0 indicate that new

45

experiences are more important than past experience. Two types of α values are used, αe for

encouraging an existing preference or establishing a new one (pi-1(w,d,t) = 0 or has the same sign

as r), and αc for contradicting an existing preference.

Two “forgetting” factors are included in the calculation for user preferences to insure that

the confidence levels grow slowly and, at the same time, that any contradictory evidence is

accurately reflected by a change in preference. Three strong user actions (r=1.0) are required to

confirm a user preference with confidence 0.5 if αe is 0.7937; six confirming actions will achieve

a confidence of 0.75. A value of 0.756 for αc will not allow a single contradictory experience to

undo a strong preference measure, but three such contradictory actions will turn a preference

level of 1.0 into –0.136. Preference strengths below 0.75 will change if less evidence is present.

A user action, translated into a constructive or destructive action for a specific time of

month, day of the week, and time slot, provides direct evidence for a user’s preference for a

particular part of a month. A generalization algorithm is then used to try and capture preferences

of a broader nature. For example, a user action may indicate that a person prefers to meet on

Monday evenings and at the beginning of the month. However, this simple conclusion might

actually be part of a broader preference for meeting at night. Further evidence is needed to verify

these more general preferences; the generalization algorithm starts with a low-confidence

measure that such a preference might exist and increases the confidence measure as additional

evidence is found.

Since the system is concerned with learning user preferences for different dates and times

in a calendar application, the term “dimension” is used to refer to any single measure of a

particular action’s place in time, such as the day of the week, the week within the month, and the

general time of day (morning, afternoon, evening, etc.). A specific user action may indicate a

46

preference for an intersection of any subset of these dimensions. Instead of simply indicating a

preference for a specific day and time, a user may also indicate a preference for a day of the

week or a combination of time of day and time of month, etc.

Whenever a user action occurs, the system tries to generalize this event by adjusting the

weights of all neighboring times and days. The greatest adjustment occurs for those neighboring

entries that share the same values along one or more dimensions (e.g., yesterday at the same

time, or pi-1(w,d-1,t)). More specifically, the algorithm works in the following manner:

Let di represent the distance of a preference datum from the observed event, measured

along only one of n dimensions. The positive or negative impact of the observed event on the

preference datum degrades both with overall distance and the smallest distance to an item that

matches along one dimension.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=
=
∑

⋅=
i

n

i

n

i
i dd

11

2 min

05.02ι

The small decay factor of 0.05 causes the impact to fall off quickly towards zero as the distance

between dimensions increases. Combining overall distance with the minimum distance along a

single dimension causes the results to fall off far more quickly for data that do not share a

common set of attributes with the new event.

The combination of specific evidence with the generalization algorithm means that the

system delivers a response based on past behavior, regardless of whether the time of interest has

been referenced previously. Previous literature (see Chapter 2) discusses a number of different

negotiation methods that can be used to exchange user preferences among agents. This particular

problem was avoided in the Calendar application because every user action is transmitted to all

the members in the group. Since the user’s agent has access to group information at all times, it

47

can estimate another user’s preferences for a particular event without requesting additional

information from any other user.

Preference information for a specific time slot is obtained by looking at the preference

level, or weighted average, calculated for a specific week, day, and time, pi(w,d,t). The

preference levels can be classified as “highly desirable,” “moderately desirable,” “no opinion,”

“moderately undesirable,” or “highly undesirable.” Preference levels are maintained between –1

and 1. Because the generalization algorithm ensures that the entire set of preference levels will

be affected, if only slightly, by every constructive and destructive user action, the preference

category of “no opinion” is applied to all magnitudes of less than 10-6. Moderate preferences are

defined as those preference levels whose magnitudes are between 10-6 and 0.2, inclusive. Strong

preferences refer to any levels above 0.2. These preference classifications are the results of

calculations from the rules that reside in the user preferences layer of the system.

Action Selection

Once user preferences are determined, the system can respond to a user action if it

represents a conflict situation or a precursor of a conflict. System responses include doing

nothing, drawing attention to an activity that might be a possible source of conflict, warning or

advising the user concerning a potential conflict situation, automatically notifying other users of

undesirable behavior or otherwise acting on behalf of the user, and taking steps to prevent

undesirable actions. A Q learning algorithm is used to obtain the appropriate response that is

associated with a particular state, as represented by the user’s preferences, involvement, and

recent activity.

Recent activity includes items such as the type of activity that occurred and whether it

was constructive, destructive or informative.

48

Involvement is a weighted average that allows users to be ranked as very active,

somewhat active, or largely inactive; the average is calculated as the time between messages

generated by a user’s behavior divided into 30 seconds (an assumed “minimum” response time),

so involvement, or “activity level” as it is called in the algorithm, is a value between 0 and 1,

approaching 1 for users who are adding or changing scheduled events as quickly as possible. The

measure of involvement is reduced to “virtually inactive” (average participation every 30

minutes or more), “low activity” (participates every 10-30 minutes), and “high activity”

(participates more than once every 10 minutes).

Preferences are provided by the preference-learning system after being classified as one

of the five categories mentioned in the previous section. Thus, real-valued inputs like the

preference weights are combined with fine-grained inputs to create a finite number of discrete

states.

For example, UserA may use the Calendar application to schedule a meeting with UserB

without consulting UserB’s calendar. If UserA schedules a meeting on a Monday and UserB

does not like Monday meetings, then a conflict is said to have occurred. The action selection

system should eventually learn to respond to the scheduling of Monday meetings between UserA

and UserB. UserB’s agent may learn to notify UserB of the undesirable event, and UserA’s agent

should begin advising UserA to stop scheduling meetings on Mondays. Eventually, the Q

learning algorithm can associate UserA’s viewing of a Monday date with a negative response,

allowing both users’ agents to anticipate the creation of undesirable events before they happen.

In this way, an informative action, such as a notification of a user exploring a certain date,

becomes a signal for an undesirable constructive action that could lead to conflict.

49

In order to learn appropriate responses to situations, the Q learning algorithm requires

inputs from the system in the form of rewards and punishments. The action selection module

drives the Q learning software and also determines when to punish inappropriate system

responses and reward appropriate system responses. An example of an inappropriate system

response is the decision to do nothing at a point of recognizable conflict. The action selection

module defines a “hard” conflict as any modification to the time or existence of a scheduled

event by a user other than its creator. A conflict can also occur whenever a negative message

from a user causes the creator to modify an event, although this is more difficult to detect than

other types of conflicts. Potential conflicts are any actions that create or change events that cause

those events to be incompatible with user preferences; these markers of potential hard conflicts

are referred to as “preference conflicts”. Whenever a conflict is detected, the module sends out a

small negative reinforcement (r = -0.1) to the Q learning system. This negative reinforcement is

then propagated to the various state/response pairs, reducing the Q values that determine

response selection for responses leading to the conflict; the “eligible” state/response pairs are

reduced relative to their proximity to the conflict event in time. The negative reinforcement is

increased (r = -1.0) if the Q learning system responds to an obvious conflict by proposing that the

agent do nothing. If the Q learning system recommends an inappropriately strong response

whenever the user’s preferences do not significantly outweigh the preferences of others, such as

blocking a change to the schedule, then a negative reinforcement (r = -1.0) will be applied again.

In addition, positive and negative reinforcement may be directed toward a state/response

pair depending on the user’s settings. If the module determines that strong responses are

required, it will ask the user for permission to automatically intercede for the user. These types of

strong responses do not only inform or advise the user; they actually block or cause changes to

50

occur without user interaction. For example, a user with an inflexible schedule may choose to

accept a strong response from the agent to prevent any possibility that any other user will make a

change to the schedule. The user allows the system to make changes automatically or to restrict

the actions of an agent. These user-defined settings extend the definition of appropriate and

inappropriate responses to include more feedback from the user. Strong responses are only

rewarded (r = 1.0) when explicit user approval is given. They are punished as inappropriate (r = -

1.0) if the user explicitly rejects them.

The Q learning system ranks the four different types of responses to further determine

their appropriateness. Warnings or explicit advice, say via a pop-up window, are considered

stronger than the action of notifying the user of the activities of other users (subtly through the

interface or by unobtrusive messages). If the Q learning system advocates a strong response that

is inconsistent with the current state (e.g., warn the user about scheduling an event on a day that

is acceptable to everyone), then the state/response pair that is responsible is punished (r = -0.5)

and the response is weakened.

 The responses of other users’ agents can also be used to calculate reinforcement. If

another user’s agent automatically rejects a previously entered event, then a conflict occurs and

any response to the original user’s action, other than rejecting it, is inadequate. It should be noted

that punishment of inadequate responses allows the agent to avoid unnecessary communication

overhead by responding to the offending action immediately rather than waiting to be notified by

another agent.

The Q learning algorithm in the Calendar application updates states through a

combination of direct feedback and a variation of a dynamic programming technique. The

dynamic programming technique allows Q values to impact more recent states before a conflict

51

is recognized and direct reinforcement provided. If a user consistently moves through a state

before reaching a conflict situation, a response to the conflict will gradually precede the conflict

itself, as previous negative reinforcement propagates back to notify the system that doing nothing

during this earlier state is a bad thing. This can happen even in the absence of repeated

reinforcement because the Q values of the next anticipated state represent an estimate of future

reinforcement that is used in the training of previous Q values. Any response that is effective at

eliminating conflict will be selected as soon as the conflict can be unambiguously detected.

Action Implementation

There are several different types of responses that are generated by the action selection

module: notifications, warnings, automatic restriction of certain user behaviors, and automatic

response generation. Depending on the circumstances surrounding an event, the actual steps that

the agent takes may differ from one invocation to the next. A simple rule base system establishes

the appropriate plan or sequence of actions for a given situation. Once a plan is generated, the

system automatically performs those actions. A description of the different types of actions now

follows.

Notification actions are made in response to another user's actions or a response to an

action performed by the agent's user. The agent may respond to another user's actions by

displaying or flashing a window that shows the user’s current and past changes. A marker can be

placed on the calendar to indicate times of possible preference conflict.

A warning type of action requires the system to use a more forceful intervention strategy

such as the display of a pop-up window that interrupts normal user behavior. One of two buttons

is used to dismiss the window, one of which allows the user to indicate that the warnings are

52

annoying. A small negative reinforcement is sent to the action selection system if warnings are

not appreciated.

A restrictive action is designed to initiate negotiation between two or more agents. In rare

cases, two agents may add or modify an event, simultaneously. Whenever this occurs, a

restrictive action is used to force a negotiation. The same negotiation function that handles

conflicts between agents is used in this situation. The only difference between the two types of

restrictive behavior is that in cases of restrictive responses, the system takes action after

anticipating a possible user conflict as opposed to after a conflict has occurred. Users are given

the option of receiving notification of restrictive actions with or without being asked first. In

cases where the agent's own user triggers a restrictive response, the agent acts automatically but

gives the user the opportunity to override the responses.

Automatic responses are similar to restrictive actions except that they are done

automatically without any negotiation with other agents. Modification actions include adding

events removed by another user, removing events added by another, or restricting the user’s

actions that create conflict. The system responds to modification actions which involve its user

by sending a message back to the user that the item should not be changed and why. Since

modification actions are deemed extreme, the user must give permission to the agent to make

these types of actions. In cases where the system starts to anticipate restrictive or modification

actions, the action planner may elect to send a warning message to the suspected user indicating

the strength of an agent's determination to protect the time slot.

Conservative actions are designed to increase user awareness of the activities and

preferences of other users, particularly in those cases where there is limited bandwidth and/or the

complexity of the task reduces awareness. Active responses are designed to protect the agent's

53

user from actions that will cause a conflict. Active responses prevent a determined user from

scheduling intolerable events or changing mandatory events directly.

Agent-Training Tool

Research has shown that the slow, incremental learning that usually takes place with Q

learning systems can be improved with the aid of a simulation (Kuvayev, 1997). This particular

approach was used to decrease the amount of experience required by the Q Learning portion of

the system before it could be useful within the Calendar application. It was determined that a

significant period of time would be required for the system to acquire a reasonable response

model without the aid of a simulation. The simulator also enabled the creation of controlled

experiments for the evaluation of agent learning.

The simulator uses a variation of the shared calendar intelligent agent to train the three

modules used in the Intelligent Agent portion of the system. More specifically, it is designed as a

separate program that can be used to train the action selection module to adjust to different user

personalities. For example, the agent trainer can prepare two types of intervention style that can

be used to respond to conflict. In order to do this, different reinforcement patterns are used: one

representing a conservative approach and the second representing an aggressive approach. The

more conservative model is used in the initial stages of the simulation, while the more aggressive

model is used whenever a user’s activity level and rate of conflict exceed specified thresholds.

The conservative model is trained to intervene with minimal intrusion by using only two of the

four active responses. The aggressive model is trained to use the automatic responses in the

presence of extremely strong user preferences. A user can save time if he/she allows the agent to

automatically block events that are scheduled at undesirable times. A user is considered

54

aggressive if he or she alters the events of other users or re-schedules an event altered by another

user.

Each virtual user in the simulated system is represented by an activity level, a selfishness

factor, a response probability value, a response delay value, a set of explicit preferences, and a

list of warnings received from other users or agents. The activity level denotes how frequently

the user schedules events and is used to calculate other values such as the response probability

value. The selfishness factor represents the tendency of the user to ignore warnings and focus on

his/her own agenda. The response probability value defines a user’s aggressive behavior such as

the tendency to remove an undesirable event created by another. The response delay value

represents the user’s ability to recognize undesirable activities by other users. The simulation

draws on the user’s explicit preferences to determine when to schedule events and which events

are considered undesirable; this information is not available to the intelligent agent, which must

learn these items through observation. The agent’s advice is encoded as a list of warnings that

alter user behavior. For example, the lower the degree of a user’s selfishness, the more likely a

user will “remember” past advice about other users’ preferences. Warnings gradually reduce the

selfishness value of a user to simulate the user's growing awareness of other users' preferences.

The simulation uses an action queue, which is prioritized according to the time that the

actions are scheduled to occur. As each action is processed by the event-driven simulation, new

actions may be generated. Virtual users decide to schedule a new event based on their activity

level. An event is randomly scheduled based on the user’s explicit preferences; any warnings

received from other users are also considered, depending on the “selfishness” factor of the user.

Specifically, a time is rejected at a rate of (1 – preference_level) or, whenever the system

matches a warning from another user, at a rate of (1 – selfishness), where preference_level is in

55

the range [-1,+1] and selfishness is in the range [0,1]. Negative preferences are always rejected,

and perfect selfishness (1) ignores all warnings. A new event may be added to the shared

schedule every 30 seconds for a particular user. New events are generated at a rate of every 60

seconds for 75% of the events, 5 seconds for 20% of the events, and 10 minutes for 5% of the

events. However, the rate that events are generated depends on a user’s activity level. For

example, if a user’s activity level indicates that events should be added frequently to the shared

schedule, then such additions may be made every 30-60 seconds, extending to 10 minutes on rare

occasions. The action queue is a priority queue that delivers the events in the appropriate order

so that the simulated time never decreases.

The virtual users are given an opportunity to respond to these actions, which, in turn, can

lead to further actions, etc. If one virtual user generates an action by adding an event at an

undesirable time for another user, the system simulates the other user deciding whether to delete

the offensive event in direct proportion to the level of dislike recorded in the offended user’s

explicit preferences (- pw,d,t is between 0 and 1). Removal of the undesirable event is scheduled

to take place between 30 seconds and one hour after an event occurs, simulating the user’s

activity level, aggressiveness, and awareness of the actions of others. A base time of

36001 - 2 response_factor is added to a pseudo-random number in the range [0, response_delay). The

response probability value (i.e., response_factor) is used in the computation only if the virtual

user has a low level of aggressiveness, resulting in a significant delay in reaction time.

Virtual users respond to the removal of an event that they created according to their

response probability values. If users choose to respond, they reply by recreating the event. The

response delay is calculated using a ratio between ½ to 1½ of the user’s response delay,

simulating a time lag between the actual removal of the event and the user’s awareness of and

56

response to that removal. This delay, like all other delays, assumes that a user needs a minimum

of 30 seconds to become aware of a situation, decide what to do, and use the user interface to

respond to the situation.

The simulation is designed to respond to the agents’ actions on behalf of their user.

Advice and subtle cues either reduce response time or are represented as warnings. Of course, a

“selfish” virtual user may ignore warnings, but the simulation assumes that the users are not

entirely self-absorbed. Each warning reduces the selfishness component of the virtual user,

forcing the user to gradually consider the interests of others.

One of the system’s responses to a conflict or potential conflict is to make the user aware

of the fact that the selected action or current situation could lead to conflicts. If this response is

the result of the agent’s user’s actions, it takes the form of a light warning. If the response is the

result of another user’s actions, then the offending user’s simulated response time is temporarily

reduced and its responsiveness is temporarily increased to reflect an increased awareness of the

activities of others.

Stronger warnings are handled in much the same way, except that the user who is warned

against an action by its own agent is given an opportunity to cancel the action. The system

simulates this behavior by adding to the user’s list of warnings, then reevaluating the

acceptability of the user’s action in light of the new information.

The simulation attempts to simulate human-like responses. The major reason for

developing the simulator was to exercise the learning agent and verify that it could respond to

events in a reasonable manner. Also, the simulator was used to pre-train the agents to increase

system performance.

57

CHAPTER 4

DATA ANALYSIS AND RESULTS

Introduction

The data collection and analysis was performed in two stages. During the first data

collection stage, groups of student volunteers were asked to engage in a scheduling task using the

collaborative calendar application. As students performed the task, the system recorded the

different patterns of behavior and captured individual scheduling preferences. This data was then

analyzed to determine the correlation between user preferences and scheduling behavior. The

system also captured the different behaviors that characterized conflict. Once this phase of the

project was complete, an agent-based system was designed to ‘learn’ user preferences and

respond to behaviors that might lead to conflict; the agent system was developed using

information gained from the human subjects’ study. A series of experiments were then developed

to test the accuracy and adequacy of the learning component of the agent system. Chapter 4

describes the data obtained from the human subjects as well as the experiments with the learning

system.

Human Preference Studies

A number of students were asked to use the group calendar application to help develop

different user models that could be used to initialize the intelligent agent system. A small group

of undergraduate students were recruited for the project. All student volunteers were enrolled in

computer science courses at Sam Houston State University between Spring semester 1997 and

Summer, 2000. It became obvious after Spring 2000 that a record of the user’s scheduling

preferences was necessary for the creation of the different user models. While a total of thirty-

58

two volunteers used the calendar application, only the last eight volunteers (i.e., those students

enrolled in Summer 2000) were asked to explicitly record their scheduling preferences. Of these

eight volunteers, four were relatively naïve users who were enrolled in a computer literacy

course; while four were enrolled in one or more advanced computer science courses and had

presumably more computer experience. All volunteers were told that they were participating in a

study of a shared calendar application, and that their responses were being recorded for analysis.

Unfortunately, one group of volunteers seemed to know significantly more than others, so only

the data collected from six volunteers were used to inform the development of the user models

for the agent system. In cases where preference data was not analyzed, data from up to thirty

volunteers is still available.

Each student who participated in the study received a copy of a scenario (see Appendix

A) in which students were asked to use the calendar software to arrange for a series of contrived

events. Groups were further instructed to use their real schedules in determining when a

particular event could be scheduled. One-hour sessions were then arranged in which groups of

two or three students were asked to use the software to complete the assignment. A log was kept

of computer sessions for later analysis.

Before each experimental session, subjects were asked to enter their preferences for

different days and times. The system tracked the number of constructive and destructive actions

that occurred during the experimental sessions for different types of days and times. Constructive

actions (such as scheduling an event) were seen as evidence of a positive user preference, and

destructive actions (such as deleting another’s event or changing it to a different day or time)

were seen as evidence of a negative user preference.

59

The initial plan was to use the preferences specified during the human preference studies

to direct the input into the agent system. However, an analysis of the data from the human

subjects’ sessions showed individual users ignored their initial scheduling preferences between

7% to 66% of the time, with an overall average of 56%; these statistics indicate that there was a

great deal of variation between a user's actions and their stated preferences. After talking with

subjects, it became clear that the system was not adequately identifying contradictory user

preferences. For example, a user might list a preference for afternoon meetings and, at the same

time, indicate an aversion to Monday meetings. If group members scheduled a meeting for

Monday afternoons, the user might reject the Monday meeting, even though it was scheduled at

an afternoon time. The discovery of this problem led to the development of a new user model

that captured user preferences for specific combinations of weeks, days, and times. Furthermore,

a generalization algorithm (described in Chapter 3) was developed to help ‘infer’ a user’s more

general preferences (e.g., a user who likes Monday, Tuesday, Thursday, and Saturday afternoons

can probably be said to like afternoons, in general). The preference learning algorithm, including

the generalization component, is called the “generalizer.”

Figures 4-1 and 4-2 show the number of actions that contradicted user preferences for the

six users who provided explicit preference data. As mentioned earlier, the preference data

collected was not sufficiently specific, so Figure 4-1 reports the number of actions that contradict

all applicable preferences, whereas Figure 4-2 reports the number of actions that contradict at

least one of the applicable preferences. Both figures compare stated user preferences with the

preferences learned by the generalizer from actual behavior data. The percentages reflect the

degree to which stated and learned preferences can predict user behavior. Note that the agent

60

learning system with the addition of the generalizer is competitive with a system that has

knowledge of the user’s true preferences.

The data gathered from the human user experiments also indicated that groups were

either dominated by a single, active user or were distributed in both their work and

communication. After observing this phenomenon in the preliminary studies, hard data was

collected from the last twelve groups that participated in the study, of which data from ten

groups was found useful (see Appendix C). For example, the most active user in one group

scheduled eight times more events than any other user in the group, and was 1.75 times more

0

10

20

30

40

Percent
Contradiction

1 2 3 4 5 6

User

generalizer
actual

Figure 4 - 1 Percentage of Time that Behavior Contradicts Preferences
Learned Preferences (Generalizer) vs. Actual Stated Preferences

1 2 3 4 5 6
0

20

40

60

80

100

Percent
Contradiction

User

generalizer
actual

Figure 4 - 2 Percentage of Time that Behavior Contradicts Preferences

(using more conservative preference matching algorithm)

61

active than the least active user in the group. Four of the groups had a single user who scheduled

twice as many events as other members. Each of the four groups showed a drop in activity level

similar to that described in Stasser and Taylor (1991). On the other hand, the most active users in

two of the groups were only 1.43 times more active than the least active user. Given this data, a

“hierarchical” group was defined as one in which a single user in the group was at least 1.75

times more active than other users in the group. All other groups were considered to have

uniform distributions of activity, although most observed groups had at least one member who

was noticeably less active than the others. Since all other members appeared to have similar

activity levels, they were said to exhibit “democratic” behavior.

Figure 4-3 compares the ‘activity levels’ of the various groups. Activity level was defined

as the percentage of schedule-changing events made by a user during a single session (the ratio

of a user's actions, both positive and negative, to the total number of actions taken by all

members in the group during a session). Figure 4-3 seems to indicate that all groups should be

characterized as being “hierarchical.” Upon further inspection, however, only two groups

showed differences in all three categories of actions (positive, negative, and message

communication), indicating that a single leader was responsible for most of the activities for that

group. Overall, the most active user in these two groups was almost twice as active as other

users in the group. On the other hand, five of the groups had less significant differences in their

activity levels, indicating that they demonstrated more “democratic” behavior. Messages were

assumed to mean that someone within the group was requesting or communicating information

(when the student subjects took them seriously).

62

A desire to support the different needs of these two types of groups led to the

development of two idealized response models for the different types of activities in the groups

and was used to guide some of the experiments conducted with the agent learning system at the

end of the study. These experiments are discussed at the end of this chapter.

Although the agent seemed to adapt quickly to user preferences, it soon became obvious

that testing the effectiveness of the agent’s ability to learn a conflict response model could not be

done using ‘real subjects.’ Thus, a series of off-line experiments were conducted to determine the

effectiveness of the agent system in learning preferences and avoiding conflicts. Another

question raised during the development of the agent system was whether the agent should learn

‘only’ from user interactions, or whether it should be provided an initial model that would be

adjusted during the learning sequence. Several experiments were conducted to determine the best

approach and are described below.

0

0.1

0.2

0.3

0.4

0.5

0.6

Activity
Level

1 2 3 4 5 6 7 8 9 10

Group ID

messages
removes
adds

Figure 4 - 3 Relative activity levels within ten groups

63

Experimental Procedures

An agent learning system was developed and tested with user models informed by the

data gathered in the previous study. The following experiments were performed to verify that the

agent program could anticipate user preferences, given a preference model, and could use this

model in combination with immediate state information to select an agent response that helps

reduce conflict among users. The user models within the agent-learning module were adjusted to

provide for a variety of interactions. The agent-learning program was set to run at either 80 or

160 simulated hours. A simulated hour consisted of between 150-200 responses to messages

(corresponding to the sharing of information between users in a group), a message being any

activity including the addition, deletion or modification of a scheduled event within the calendar

application. The reason for selecting 80 and 160 ‘hours’ as the two time periods for the learning

module was because initial observations indicated that most ‘learning’ took around 40 simulated

hours to stabilize, and twice that amount of time whenever an intervention was injected within

the middle of the experiment. Measures were then developed to determine the accuracy of the

agent-learning module to detect user preferences and provide appropriate intervention strategies.

The setups for the different agent-learning experiments are now discussed.

For each experimental run, the system recorded the percentage of events correctly

classified as compared to the user model’s true preferences, and the number of conflicts detected.

Conflict rates generally stabilized within forty hours; that is, whenever there were no changes in

the users’ behaviors. Whenever a change in user behavior was introduced, conflict rates tended

to double (because the system had to re-adapt).

64

Preference Learning

Preference learning was important in all experiments. Each experiment was provided

with a set of three different types of user models. Each user model represented the unique

preferences and attitudes of an individual user. Three user models were used in each preference

training experiment because this was the typical size of a group in the human experiments, and it

allowed for easier comparison among the different experiments. Each user preference model

consisted of a table of individual preferences, all of which were assigned a number between –1

and 1. For easier analysis, a series of three categories of preferences were created to represent the

different levels of user preferences; a positive number indicated a positive preference for that

category, and a negative number indicated a negative preference for that category. For example,

extreme preferences were encoded as either a +1 (i.e., highly desirable) or a –1 (i.e., highly

undesirable). Medium preferences were assigned either a +.75 (i.e., ‘strongly’ preferred but

somewhat flexible) or -.75 (i.e., ‘strongly’ undesirable but flexible). The preference levels of

0.01 or -.01 were used to represent insignificant preferences (i.e., slight preference for time but

‘didn’t care’).

Since the major objective of the agent-training program was designed to test the

effectiveness of the agent in learning to adjust to conflict, it was necessary to create user models

that contained preferences that would lead to conflicts among the users. As a result, the user

models were initially programmed with the following preferences:

• User 0 loves Wednesday afternoons (+1), likes Tuesday or Thursday afternoons

(+0.75), tolerates other times between Tuesday and Thursday (+0.01) more so than

Monday or Friday (0), is uncomfortable with weekends (-0.01),dislikes Friday after

lunch (-0.75), and hates Saturday, Sunday or Monday mornings (-1).

65

• User 1 loves Friday after lunch (+1), loves weekend meetings (+0.75), especially

before supper (+1), and hates evenings during the week from Monday through

Thursday (-1).

• User 2 loves (+1) mornings and Saturday afternoons and hates (-1) meetings during

lunch or supper.

In addition to the explicit user model, the agent-learning system was tested with a number

of different types of user models in which the preference values were randomly generated. The

first random model type was created by uniformly generating different preference levels for each

possible situation. The second model type also contained a uniform distribution of positive and

negative preferences, but 55% of all preferences were of medium (±0.75) strength, 35% were

maximum (±1) strength, and only 10% were weak; this preference pattern models individuals

with strong preferences, allowing for more conflict. Other model types were created with a set

number of positive, extreme preferences (+1). Each extreme preference set in one user’s model

caused the opposite preference (-1) to be set in the models for other users if no preference was

already assigned; this practice guarantees conflict. An algorithm for averaging neighborhoods of

preferences replaced unassigned preferences to create a smooth fading of preference (e.g., a user

who loves Monday afternoon meetings will like Monday lunches and Tuesday afternoon

meetings unless otherwise programmed).

Once the user preferences were defined, four sets of experiments were run to determine

the agent’s effectiveness at learning preferences from user actions. The first set of experiments

was run without any initial data (that is, no initial knowledge of users’ preferences). A second set

of experiments was run using the learned preferences from a previous session. A variation on this

set of experiments introduced a modified portion of preferences in the user model between runs

66

in order to test the agent’s ability to recover after receiving new data. For some of these

experiments, the preferences were automatically altered during the simulation run.

For each experiment, four different measures were used to analyze the quality of the

agent’s performance: (1) the percentage of correctly classified preferences for each of the three

user’s across all events over time, (2) the percentage of correctly classified negative or positive

preferences across all observed events over time, (3) the number (or percentage) of hard conflicts

per hour, and (4) the number (or percentage) of preference-related conflicts per hour. Each

measure was recorded for every ‘simulated’ hour.

 The first measure was designed to test the quality of the generalization algorithm (see

above) by comparing both experienced and anticipated preferences of the agent to actual user

model preferences. The second measure tried to capture the correctness of the agent-learning

program and determine its ability to adapt to new information (e.g., how long does it take the

system to approach 100% after a change in user preferences?). The third and fourth measures,

discussed in the next section, were developed to determine the effectiveness of the agent in

reducing conflict. A “hard conflict” was defined as an observed user action that contradicts a

previous action initiated by another user, whereas a ‘preference conflict’ referred to actions that

are in conflict with another user’s preferences. Preference conflicts were a common precursor to

hard conflicts. Because the system had a complete record of the targeted users’ preferences,

preference conflicts were easy to detect and use in the evaluation of the agent learning system.

The agent-learning program was run for at least 40 ‘simulated’ hours. Positive and

negative events were gradually introduced into the environment in a random fashion. As each

new event was introduced, the agent-learning program adjusted its preference weights in a

manner described in Chapter 3. The learned preferences represented weighted averages of

67

observed positive and negative events combined with the generalizing algorithm and some

probability of being selected. Analysis of several test runs with the preference-learning tool

indicated that weights of 0.0001 and 0.25 corresponded well with the actual preferences used to

drive the user models (again, described in Chapter 3). User model numbers of +1 usually

produced learned model weights of at least 0.25, and user model preference numbers of 0.75

usually produced learned weights above 0.0001. The relatively small values of the latter weights

were due to the limited number of events experienced by the ‘simulated users’ in a particular

category. Just as humans require several stimuli before a response is learned, the agent-learning

program assigns preference levels that increase as repeated events are encountered.

All the statistics described below assume that a period of stabilization has already

occurred. The period of stabilization varied depending upon the difficulty of the learning

environment, but was never less than five simulated hours.

Overall, the intelligent agent was able to learn user preferences. In each preference-

learning experiment, the agent system learned user preferences as a result of some user action

(the second measure) between 82% and 100% of the times, with an overall average of 97%.

Exact matches of medium preferences were made between 66% and 100% of the time,

with an overall average rate of 92.5%; fifty percent of all the measures taken during the

experiments were above 90%, and 28% reached the 100% accuracy levels. The minimum

accuracy level for all but the most random preference models was 80%.

Extreme preferences (that is, preferences with values of +1 or –1) were learned by the

agent learning system for all possible events between 49% and 100% of the time, with an overall

average of 72%. The extreme range for extreme preference learning is due to the variation in

performance among the different preference models rather than a variation in performance

68

during a single session. Although it took the agent longer to learn extreme preferences,

recognition accuracy always stabilized before the end of the 80 simulated hours. Only user

preference models that were initialized with random preferences required additional simulated

hours to stabilize. (They stabilized after 115, but the user model with the worst performance

maintained at least 60% accuracy after 116 simulated hours).

User preference models that were seeded with random preference values required

between 32 and 124 simulated hours to reach a point where the agent-learning module performed

consistently well. Training sessions that included some patterns in the preferences, reflecting

general preferences, stabilized within ten simulated hours. The generalization algorithm is

currently designed to anticipate user preferences that do not exist in the more randomly

generated set of preference values. The lower performance and longer training times may

indicate that the generalization algorithm is not an ideal algorithm for capturing preferences

created by artificial constraints (e.g., you hate afternoons but job requirements and work

schedule require that you schedule a meeting every Monday afternoon, as opposed to, you love

Wednesday afternoon meetings but other afternoons are okay).

As mentioned earlier, experiments were also run with examples of user preferences that

changed over time. One experiment involved changing the user’s preference table to a series of

random numbers in the middle of the experiment. Preferences were first initialized to the three

preference models described earlier. After the fortieth ‘simulated’ hour, one user's preferences

were set to uniformly random settings. To encourage conflict among the group participants,

strong user preferences were changed to reflect either an opposite preference (40% probability)

or an insignificant preference (60% probability). The other users' preferences that did not match

the first user’s strong preference were either set to an opposite or random number.

69

As expected, all performance levels dropped significantly following the fortieth

‘simulated’ hour and continued to be low until the forty-first ‘simulated’ hour (medium

preference, exact match: 100% to 59%; extreme preference, exact match: 75% to 47%;

observed events, general match: 93% to 66%). However, the preference-learning tool soon

recovered and then stabilized within three simulated hours. An exact match of extreme

preferences took around 18 simulated hours to stabilize. All other measures appeared to fluctuate

between the 58th and 79th hours.

The overall results for the ‘adaptive’ version of the agent-learning program were as

follows: Matching of general preferences averaged 80% (ranging between 67%-91%); Matching

of medium preferences averaged 86% (ranging between 77%-100%); Matching of extreme

preferences averaged 74% (ranging between 67%-81%). Matching of extreme preferences

actually improved for some agents after the preferences were changed in the middle of the

experiment. Although overall performance decreased, the system was able to demonstrate its

ability to adapt to behavioral changes.

Figure 4-4 provides a view of how the agent discovers the users’ preferences over the

course of an experiment. This figure shows how the system learns the initial preference models

(previously described) and then adapts to the randomized preferences introduced midway

through the experiment. In Figure 4-4, the ‘Seen’ label refers to the second performance

measure; that is, the general preference assignment based on actual observed actions. The

Moderate and Extreme labels indicate how well generalization algorithm predicts "user"

preferences of medium and extreme. The data for Figure 4-4 was obtained from an experiment in

which the user models were initialized with explicit preferences consistent with those of different

human users.

70

As Figure 4-4 indicates, the agent learning program’s performance in matching extreme

preferences appears to be less effective than matching medium preferences. This is due, in part,

to the fact that the generalization algorithm does not assume strong preference levels for times it

has never experienced. Therefore, any times that lie outside the agent's experience (no one has

scheduled events at that point in time, yet) will be assigned medium preference weights at best.

Random preference models were also tested to ensure that the learning agent’s

performance was consistent for different situations. Preference models consisting of random but

recognizable patterns of behavior performed at least as well as those reported in the previous

experiments. However, uniformly random preferences with no relationship among preferences

for similar events did not perform as well. The average performance of the learning agents in

these cases was above 70% for medium preferences and above 85% for extreme preferences.

However, the experiment performance varied substantially more than what occurred in non-

random preference experiments. The last ten simulated hours were all above average, so one can

conclude that learning is simply slower when preferences are seeded with random values as

opposed to more real-world values.

Many of the experiments, including the one represented by Figure 4-4, involved a change

of preferences after forty simulated hours. Small changes were captured almost immediately;

large numbers of changed preferences took a number of simulated hours to fully explore and

unlearn old preferences. In Figure 4-4, the preference learning system was tested with a radical

alteration of all preferences. This radical change produces a preference pattern not unlike the

uniformly random pattern described earlier. The more random preferences lead to the lower level

of accuracy noted in the graph.

Figure 4 - 4 Preference accuracy w

ith change halfw
ay through sim

ulation

71

72

Learning Conflict Avoidance

Learning user preferences is only part of the agent’s learning activities. The second part

involves learning the user preferences that are associated with responses that anticipate or avoid

conflict. The agent’s effectiveness in reducing conflict was measured by examining the total

number of conflicts that occurred per hour (TC), and the total number of actions that violated

users' preferences (TPC). Figure 4-5 compares the conflict measures for two different

experiments. The first experiment, labeled NA, shows the number of conflicting events that

occurred ‘without’ agent intervention, whereas the second experiment shows the same

information ‘with’ agent intervention (ANI). Since our ‘simulated’ users are incapable of

adapting to conflicts without some feedback, the results may be misleading. Nevertheless, the

data clearly shows that agent intervention can reduce conflict.

As previously mentioned, the Q Learning algorithm learns by adjusting weights, called Q

values, assigned to situation-response pairs. The Q values also represent an estimate of long-term

reinforcement (both reward and punishment) likely to result from choosing a specific type of

response to a situation. Several experiments were conducted, which were designed to test the

agent’s ability to avoid conflict given different initial conditions. In one experiment, the Q value

weights were initialized to zero (TC none), causing all actions to be equal until they received

some type of reinforcement (either positively or negatively). In a second experiment, the Q

values were adjusted using information from the best performer in the group (TC Best). Finally,

a fabricated “ideal” response model was used to initialize the weights (TC Ideal). The ideal

response model was developed with weights designed to respond with reasonable, albeit

uninspired, actions to various situations. For example, the agent does nothing whenever user

preferences are insignificant (with weight 0.1), a user sends a message (0.5), a user views a date

73

on the calendar (0.01), or users’ activity levels are low (0.05). The agent is programmed to issue

a warning message if the user tries to schedule an event at a time when others object, or delete an

event at a time strongly preferred by another user. Users are also given a warning when other

users try to add or delete events at times that are not preferred (0.1). In addition to these

notification activities, agents can select a more extreme response where they either automatically

anticipate user responses and generate those for the user or block undesirable user actions. The

action planner automatically filters inappropriate extreme responses suggested by the Q Learning

system and provides negative reinforcement to discourage future selection of such responses.

These inappropriate responses are blocking users from sending a message or viewing a date

 (–0.5), blocking its own user where the user’s preferences are stronger than others (–0.1 to –0.5,

depending on difference in preference), and taking action against other users where its user does

not possess a strong preference (–0.5) or other users have equally strong objections (–0.1).

Agent vs. No Agent (equal users)

0

50

100

150

200

250

1:0 5:2 9:0 13
:0

17
:0

21
:0

25
:0

29
:0

33
:0

37
:0

41
:0

45
:0

49
:0

53
:0

57
:1

61
:0

65
:0

69
:0

73
:0

Time

C
on

fli
ct

s/
ho

ur TC NA
TPC NA
TC ANI
TPC ANI

Figure 4 - 5 Agent vs. No Agent

74

Figure 4-6 shows how the agent performs when given the three different initial Q value

states. Interestingly, the “ideal” condition appears to be less effective at reducing conflicts than

the other two conditions. The ideal response model was designed to give ‘reasonable’ responses

to different activities. If these responses are inappropriate, then additional time is required to

‘unlearn’ and adjust the weights to reflect the correct stimulus-response patterns.

However, all three initialized conditions seemed to perform well and unwell at different

times. The agent experiment in which all weights were initialized to zero (TC none) learned how

to eliminate 43% of the hard conflicts and 28% of the preference conflicts that occurred among

users who had default preferences. When User 0’s preferences were changed in the middle of the

experiment, conflicts were introduced, but the agent was still able to eliminate 78% of the hard

conflicts and 70% of the preference conflicts. The agent experiment in which the weights were

seeded with a prefabricated response model (TPC Ideal) eliminated 30% of the hard conflicts and

26% of the preference conflicts before the fortieth hour; 67% and 62%, respectively, after the

Preference Conflicts

0

20

40

60

80

100

120

140

160
1:

00
:0

0

4:
00

:0
0

7:
00

:0
0

10
:0

0:
00

13
:0

0:
00

16
:0

0:
00

19
:0

0:
00

22
:0

0:
00

25
:0

0:
00

28
:0

1:
00

31
:0

0:
00

34
:0

0:
00

37
:0

0:
00

40
:0

0:
00

43
:0

1:
00

46
:0

0:
00

49
:0

0:
00

52
:0

0:
00

55
:0

0:
00

58
:0

0:
00

61
:0

0:
00

64
:0

0:
00

67
:0

0:
00

70
:0

0:
00

73
:0

0:
00

76
:0

0:
00

79
:0

0:
00

82
:0

0:
00

85
:0

0:
00

88
:0

0:
00

Time

C
on

fli
ct

s/
ho

ur

TPC none
TPC Ideal
TPC Best

Figure 4 - 6 Comparison of Conflicts with Q values from Different Starting Weights

75

fortieth hour. The agent experiment in which the weights were seeded with values from the agent

who had the fewest conflicts (TPC Best) eliminated 55% of the hard conflicts (64% after hour

40) and 58% of the preference conflicts (59% after hour 40). The TPC Best experiments seemed

to show that the agent learned how to avoid conflicts better than in other experiments.

Experiments were also conducted to determine if prior knowledge of a group’s style or

group dynamics might affect the agent’s ability to reduce conflict. As mentioned previously,

groups tend to operate as either a collection of equal individuals or as a single entity, dominated

by an active leader. If a single person dominates the group, then the less active members tend to

react slower. The learning program allows the researcher to set activity levels for the scheduling

of events by different users. Therefore, the single-active group dynamic condition was modeled

by setting one user's activity level (user 0) at 90% and the others at 30%(UnEq). The more

democratic dynamic condition was modeled by setting activity levels at 80% for all users (EQ).

Figures 4-7 and 4-8 illustrate conflict rates for experiments in which the user models were

seeded with weights from the ‘best’ response model. The figures show the impact of mixing the

response models of different groups. Unfortunately, the results did not indicate that users

encounter fewer conflicts when the system tries to adjust for the different types of group activity

levels. The experiments in which all the users were equally active (Figure 4.7) seemed to have

fewer conflicts. One interpretation of this result is that the uniformly active individuals have

more interactions, which produces more opportunities for the system to learn how to adjust to

conflicts.

A more interesting part of the experiment involved examining the actual agent’s

recommendations for the different behaviors that were simulated in the different experiments.

Some of the responses seemed reasonable while others did not. A partial listing of these

76

responses from a sample experiment can be found in Appendix D. The most common oddity in

agent responses takes the form of an inappropriately extreme response. For example, in 3.1 of

Appendix D, the Q learning system advocates preventing its user from viewing or changing

Improperly Initialized (Equally Active Users)

0

20

40

60

80

100

120

140

160

180

200

1:0
0:0

0

4:0
0:0

0

7:0
0:0

0

10
:00

:00

13
:00

:00

16
:00

:00

19
:00

:00

22
:00

:00

25
:00

:00

28
:00

:00

31
:00

:00

34
:00

:00

37
:00

:00

40
:00

:00

43
:00

:00

46
:00

:00

49
:03

:00

52
:00

:00

55
:00

:00

58
:00

:00

61
:00

:00

64
:00

:00

67
:00

:00

70
:00

:00

73
:00

:00

76
:00

:00

Time

C
on

fli
ct

s/
ho

ur EQ TP
EQ TPC
U0Eq TP
U0Eq TPC

Figure 4 - 7 Comparison of Response Models for Equally Active Users

Improperly Initialized (Single Active User)

0

20

40

60

80

100

120

1:0
0:0

0

5:0
0:0

0

9:0
0:0

0

13
:00

:00

17
:00

:00

21
:00

:00

25
:00

:00

29
:00

:00

33
:00

:00

37
:00

:00

41
:00

:00

45
:01

:00

49
:03

:00

53
:00

:00

57
:00

:00

61
:00

:00

65
:00

:00

69
:00

:00

73
:00

:00

77
:00

:00

81
:00

:00

85
:00

:00

89
:00

:00

93
:00

:00

Time

C
on

fli
ct

s/
ho

ur U0 TC
U0 TPC
EqU0 TP
EqU0 TPC

Figure 4 - 8 Comparison of Response Models for Hierarchical Group

77

events for a particular date. The agent is pre-programmed to consider this behavior to be

unreasonable, so the response is converted into a warning. If the response was simply punished

and ignored, the Q learning system would eventually learn not to select that response. By

converting the response into an informative warning about potential conflicts about a particular

date, the agent reduced the possibility of future conflict and, thus, future punishment.

An agent's list of possible responses included some examples that did not make sense for

every situation. The current implementation translates these inappropriate responses into more

appropriate responses, which allows the agent to take some suitable action. This research

considered the alternative of negatively reinforcing inappropriate actions, which would have had

the effect of making the system gradually learn the appropriate action. However, this was

rejected for the following reason. Q learning spreads its negative reinforcement to those choices

leading up to the point of inappropriate response or conflict. While such a strategy might work

for a conflict situation, it may not be correct to punish prior choices for a poorly learned and

probably unrelated response.

The agents for the individual users produced reasonable responses most of the time, once

some of the responses suggested by the Q learning system were altered to reflect more generic

messages. For example, if a user selects a date for viewing or adding a new entry, the user's

agent may display a message warning him/her of potential problems. Thus, the user is

encouraged to think about avoiding conflict before scheduling any new event. In Appendix D,

after message 20, response 20.1 warns its user that removing an event that was scheduled by

another user at a preferred time is inappropriate. In response 20.3, the agent for the user who

scheduled the event is warned that the event is being deleted. The likelihood of a response from

78

the original scheduler of the event should increase users' sensitivity to each other's desires over

time.

Overall, the agent seemed to perform well, developing a reasonably accurate model of

different user’s preferences. It was also able to reduce conflict-related behavior. The agent-

learning program tended to need more training time in those experiments where it had no prior

knowledge of user preferences. Furthermore, the agent appeared to be able to recover from

sudden changes in the middle of an experiment and adapt to the new data.

79

CHAPTER 5

CONCLUSIONS

The major goal of this research was to examine whether a software agent could ‘learn’ a

group’s preferences well enough to assist members in avoiding conflict. The agent was defined

as a software component embedded within a collaborative interface. Although previous research

found that advisory style agents were able to learn individual preferences (Mitchell et al., 1994),

little work has been done in developing specialized agents that are capable of recognizing

conflicting preferences that arise within group work. As a result, this researcher developed a

preference-learning program that was designed to learn user preferences specifically for the

purpose of overcoming group conflict. The agent learning tools were designed around a group

calendar application that allowed users to schedule meetings at preferred times. The system's

ability to learn a conflict response policy and preference model was implemented using a Q

Learning technique and a related reinforcement-based learning algorithm. Q Learning was

selected because it does not require a prior model of either learning or action selection. After

developing the software, students were asked to use the system to schedule meetings for different

types of events.

The initial plan was to embed the learning system within the calendar application and

have the agents detect and resolve conflicts in real-time. However, it soon became apparent that

this strategy was not going to work. Since the initial volunteer groups used the software without

stating their preferences, the agent system was forced to learn both user preferences as well as

the responses to conflicts that arose because of the differences among users’ preferences. Since

80

the response module used the users’ preferences as input, it had to unlearn any inappropriate

responses before it learned new responses. In all cases, the learning system had an insufficient

number of events and time to build the appropriate response model in real time.

To accelerate the learning process, a program was created to expose the agents to group-

like events in a training environment. The goal was not to duplicate every aspect of human

interaction but to provide the agent system with a sufficient number of training examples that

would allow it to learn a “standard” set of responses. Because the trainer uses an explicit

preference model to generate simulated user responses, it can compare this model to the agent’s

learned preference model to verify system performance. The trainer generates user activities

faster than human users, allowing the trainer to model the use of the application over extended

periods. The trainer was used to run a series of experiments and collect conflict rates over a

period of simulated time (typically, from 80-160 hours, or 2-4 weeks of continuous use).

The trainer was also used to validate the agent’s preference model. In later versions of the

human subject sessions, users were asked to list their stated preferences. In these cases, the

agent’s preference model did not always match the user’s stated preference; however, the user's

stated preferences did not always serve as an adequate predictor of user behavior. The discovery

that explicitly stated preferences were often erroneous or changed during actual practice

suggested that preferences learned from observation were more useful than explicitly stated

preferences.

The agent training system was used in this research to conduct a series of off-line

experiments to determine the effectiveness of the agent system in learning user preferences and

developing a response policy for avoiding conflicts. Three different user models were created as

the ‘target’ group, each reflecting moderate degrees of conflict. Later, other models were created

81

with randomly generated preference values representing different levels of conflict. As the

system produced different messages, similar to what occurred in the original calendar

application, the three user agents processed the messages and gradually adapted their user

preference model to whatever was observed. The agents also adapted their response policies so

that they could ‘better’ reply to the various conflicts that were encountered during the

experiment. For each experimental run, the system recorded the percentage of events correctly

classified as compared to the users’ true preferences, and the number of conflicts detected.

Conflict rates usually stabilized within forty hours; that is, whenever there were no changes in

the users’ preferences.

Findings

As previously mentioned, the data from the human subjects’ experiments indicated that

users often ignored their initial scheduling preferences about 35% of the time. Moreover, there

was a great deal of variation among different users concerning how often they deviated from

their preferences. Some did it often (56% of the time), while others rarely took actions that were

different from their stated preferences. Because of the results of these data, offline experiments

were run to determine the effectiveness of the learning component of the system.

In general, the offline experiments showed that the agents were able to learn user

preferences, averaging 97% accuracy rates. The agents were less successful at classifying the

strength of preferences, averaging only an 82% accuracy rate. However, trying to correctly

classify the different strengths of a preference is much more difficult than classifying something

as being either positive or negative because the agent needs to experience all combinations of the

different categories of ‘strengths’ (i.e., strong, moderate, and weak). The agents also tended to

have difficulty recognizing random preferences, averaging only 72% classification accuracy.

82

The agent-learning system was able to eliminate a significant amount of conflicts

compared to user models whose agents were disabled. The average conflict rates that occurred

while experienced agents were active were 59% less than when they were disabled.

The conflict rates for a well-trained response model were approximately 41% lower than

response models that learned from no previous model. Improvements were noticed even in cases

where an agent was initialized with different user response models. One experiment indicated

that an agent trained with data that was meant to simulate a democratic group of active

individuals was better at eliminating conflict, even when configured with a different group of

user styles. This latter experiment was intended to test the hypothesis that different response

models should be selected based on group type. The hypothesis assumed that a democratic group

of users who were characterized as being equally engaged would require a different set of

responses than a hierarchical group who was dominated by a single user. The hypothesis was

rejected when agents that were originally trained with “democratic” group data performed even

better when used to advise a hierarchical group; in one case, agents trained for “democratic”

groups had 42% of the conflicts encountered by agents actually trained for the hierarchical

group. This seems to indicate that new agents should use response models from experienced

agents involved with active groups to reduce training time.

Conclusion

In previous research, it was found that groups often encounter conflict, particularly in a

computer supported collaborative environment. More conflicts occur within this environment

because there is an absence of familiar cues that can cause users to become confused about the

expectations of others (Johnson-Lenz et al., 1991). These problems prompted this researcher to

develop a calendar application system that could detect or predict conflict and then use this

83

information to help groups overcome conflict. The system does this by observing how each user

schedules events and then detects whether attempts at scheduling new events conflict with a

user’s preference model. The agent-learning system that was built as a component within the

calendar application appears to accomplish its goal. The system is able to learn user preferences

and is able to respond to conflicts or potential conflicts in a way that reduces overall conflict.

The agent was effective at reducing conflicts compared to when no agent was present.

The agent was also effective in learning users’ preferences, particularly when the users’

preferences did not contradict anticipated patterns. Even when this occurred, the generalization

algorithm performed poorly only when it anticipated preferences outside the agent's experience.

Although this research failed to show that different types of groups require different

response models, the research did indicate that an agent experienced at adapting to conflict can

benefit users whose preferences and working style are different from the original user. This

phenomenon suggests that learning can be greatly enhanced by providing new users with an

experienced user’s agent. The lack of a consistent pattern in the response models of different

agents suggests that either a variety of responses may be helpful or appropriate responses vary

from user to user.

 In any case, the evidence indicated that Q learning was effective at creating response

models that reduced conflict. Although somewhat slow, the learning system was able to learn

user preferences and response policies that reduced conflict.

There were also several other conclusions obtained that were peripherally related to the

above findings. For example, many of the volunteers who assisted in the data collection phase of

the project seemed to encounter difficulty working with each other exclusively by computer. The

volunteers often found it problematic to maintain aware of the actions of others; even when their

84

preferences were shared among the group. Presumably, some of this behavior arose from the

students being unaccustomed to using a computer for group work, as opposed to individual work.

Someone inexperienced with collaborative software can certainly benefit from tools that track

the activities of other members. One of the sub-goals of this work was to develop a system that

could ‘learn’ to provide this type of assistance and, at the same time, remain unobtrusive.

The agent- learning module tracks user preferences sufficiently well to aid the user in

maintaining awareness of the other group members and in avoiding unnecessary conflicts due to

inattention or forgetfulness. The question of whether it provides the appropriate level of

unobtrusiveness, enough to maintain awareness without distracting the user, is a question that

remains unanswered. Since the software was designed originally to be part of a calendar

application tool, further studies with actual human users should be performed. However, the data

obtained from this study clearly shows that the agent software was successful in reducing

conflicts.

Some means of tracking user preferences is absolutely essential for any intelligent system

that is intended to help users avoid conflict. Furthermore, a system that can learn user

preferences dynamically is superior to a system that requires users to explicitly enter their

preferences. Ideally, users can avoid listing preferences by having a system that can

automatically adjust to changes in users’ preferences as they are working with their group.

Unfortunately, the user studies performed during phase one of this study indicated that group

members often contradicted their own stated preferences. However, the experiments in this study

also indicate that a preference learning system can learn preferences for users even when that

behavior is inconsistent, but it may require additional time.

85

Future Research

Preference Learning

A number of different types of learning methods were considered for the preference

learning system before selecting a system based on weighted evidence averaging combined with

an explicit generalization algorithm. These other methods were ultimately rejected because they

had problems recognizing preferences that changed over time. Using a static associative

technique such as a traditional back-propagation neural network to learn user preferences

between sessions might be effective, however, if an appropriate method for “forgetting” and

generalizing could be used to prevent the training set from growing too large. A Bayesian

network might also be used to learn appropriate weights for preferences, with each weight

corresponding to the strength of the user's preferences. The strength of a preference would

represent the network’s estimate of the probability that the user possesses a particular preference.

A probabilistic neural network might approach these same values if it is trained with a

representative set of examples. However, probabilistic neural networks have some of the same

problems that other classification systems have in that they assume that everything is classifiable,

and the goal is to learn that classification. Human preferences require a more dynamic mapping

of objects to items; so instead of simply learning a mapping, the classification system must also

track changes to the mappings.

One technique for handling a dynamic system is to add a new exemplar to the training set

whenever a misclassified event occurs. Whenever an exemplar is misclassified, the exemplar’s

class can be changed. However, one misclassified event can have major effects on the system. As

a result, the program needs to be able to be trained to recognize and forget obsolete exemplars

after it has seen repeated evidence that an action or event is obsolete.

86

Many popular machine-learning techniques use a long training period to create a set of

static associations. Further research is needed to incorporate these methods into a dynamic

learning environment.

Improvements to the Response Model

Presently, the response model for the agent-based learning system developed for this

project uses a technique that is similar to that used to train automated control systems. Control

systems learn from experience and can, over time, unlearn old responses as new responses

become more appropriate. The need to adapt to new stimuli made Q Learning and related

reinforcement-based systems a very attractive choice for tracking dynamic human attitudes and

needs. However, this type of reinforcement learning represents a type of control system that has

a definite and recognizable impact on the environment. Some of the actions taken by the agent

described in this work, such as warning the user of another user’s preferences, require more

subtle responses. Thus, one of the problems that need to be examined is how to make the system

more responsive to subtle changes or actions.

The system currently learns from experience. At the very least, the system is effective at

discouraging agents from doing nothing while conflicts exit. The system is very good at training

itself not to take extreme actions in areas of questionable user preference. Some fine-tuning of

response selection does take place. For example, the user can explicitly discourage the system

from issuing intrusive warnings too often. However, additional work needs to be done on

personalizing the response selection process and encouraging subtle hints or stronger warnings at

the appropriate times.

Also, learning a response model that is effective in reducing conflict appears to take some

time. The performance data indicated that it took between 10 and 20 simulated hours for the

87

system’s conflict rates to stabilize at relatively low levels. Some combination of off-line and

real-time training may be necessary to get more reasonable response rates.

The Q learning algorithm is designed to learn a weighted average estimate of future

reinforcement by being exposed to a variety of experiences. If users experience few conflicts,

then the system may never learn an adequate number of responses to conflict, since conflict is

not part of its immediate experience. Of course, since the agent’s job is to reduce conflict, then

this is an acceptable problem as long as the group remains relatively conflict-free. However, as

more data is collected from real-live groups, it may be more desirable to develop user models for

the learning system that reflect both low- and high-conflict-level groups and use these models to

initialize the agent. Later, user models based on the preferences and activity levels of actual

members of the group can be used to train the system off-line.

The response model might also be improved by using some type of genetic algorithm.

Genetic algorithms do not necessarily require training examples. A set of response weights could

be created, and a measure of conflict and “user satisfaction” could be used as the evaluation

function. If parallel processors were added, the genetic algorithm could experiment with

numerous response models simultaneously, keeping only the ones that worked best. When a new

active session begins, the best response model would be used and validated with the real users.

Other Areas of Activity

Another possible future activity is to require students to use the scheduler to coordinate

meetings for a group project. Currently, the system only functions with a group of

simultaneously active users. The system could be modified so that changes can be made to a

schedule, even when the user was off-line. In addition to making it more useful, this modification

88

would make computer assistance even more important, since users would need to know about the

events that occurred while they were away from the system.

Finally, the system could be extended to include additional collaborative tools such as

document sharing to enhance the ability of users to work together on-line. A more powerful

system may be the only way to justify requiring extended use of the software so that it can have a

chance to adapt to the needs of the users in the group.

Final Comments

The idea for this study began with a question about mutual exclusion in distributed

software for support of groups. The work evolved into automated support for user preferences

and using this information to reduce conflicts. Along the way, the research uncovered an

interesting problem for any application that supports cooperative group work: maintaining the

impression that a user is part of a group that is working together. This goal can be achieved by

helping the user remain aware of others while, at the same time, facilitating the user’s own work.

Although it can be argued that technology will eventually make this concern obsolete because

users will be able to interact with each other through virtual environments that simulate face-to-

face meetings, users will continue to benefit from intelligent advisors that augment their

understanding of the group’s work. The foundation laid by this work has the potential to evolve

into a new type of intelligent assistant that adapts to best facilitate the work of the group as a

whole rather than that of a single individual.

89

APPENDIX A

SCENARIO USED FOR JULY, 2000, GROUP TESTING AND DATA COLLECTION

FOR USER PREFERENCE MODELING

90

You are planning a conference of computer science lectures (perhaps on computer gaming or
something similar which may attract a relatively large number of students) with the other
members of your group. The conference will be held during the last full week of the month at
the time which best suits the members of the group and their opinion of when the most students
will be able to attend. Naturally, you consider your own attendance a priority.

Assume that scheduling can be done on-line (what we’re doing now), but most other activities
require meeting together at times which fit the majority, if not all, of the personal schedules of
the members of the group. Consider the following a set of minimum requirements:

Description

Min. number of
meetings

Order

Major topics of conference 2 at start

Securing presenters 2 near start, early

Advertising 2 early, after schedule

Acceptance and scheduling 2 as soon as presenters known

Conference administration 2 prefer at least week before event

Last minute stuff 1 day before event

Conference event, itself 4 day of event

The “number of meetings” corresponds to roughly a measure in hours. Thus, 2 meetings could
be 4 half-hour meetings, 2 one-hour meetings, or 1 two-hour meeting. Of course, in some cases,
time will be needed for members to think about matters before continuing the discussion. For
example, it might be better to make sure “Acceptance and scheduling” consists of at least two
separate meetings: discussion of whether a presentation is appropriate, reconvene to make sure
everyone is in agreement still and to discuss how to schedule resources (rooms, computers,
times, etc.), then let everyone think about it and return for a short meeting to vote it official. Or,
you could just do it all at once without letting people put much thought into it at all. Note that
this is a minimum set of requirements. If you think of other things or want more time, feel free
to allocate more meeting times.

91

The ultimate purpose of this exercise is to gather information about your preferences, so use the
calendar itself to express your preferences by adding events at times which are convenient for
you. Feel free to change the events created by others if you cannot attend or prefer to hold the
meeting at another time. Some coordination and discussion can be held using the message
facility. Please do not speak to each other even if you wind up in the same room as I need a
record of these discussions. The content of what you type will not be used in my research, but if
user preferences are not obvious from your actions with the calendar, I may have to use the
messages for additional clues. In other words, “Dr. Burris is evil incarnate” will not be used, but
a message to the effect “I’d rather not meet on Monday evenings” may.

Major topics of conference: Meeting to prepare a list of general subject areas related to the

point of the conference. This list will be given to possible presenters as a guide of
acceptable presentation material.

Securing presenters: Discussion of ways to advertise for presentations or who to contact directly
as an invited presenter. Delegate tasks, then meet again to verify that everything is going
smoothly and a response is being generated.

Advertising: Determine who is invited and the best ways of informing these people of the
conference. Delegate tasks such as contacting radio or newspaper or posting flyers with
initial data about conference. Meet again after schedule of presentations has been fixed to
discuss creation and dissemination of more detailed information about conference;
delegate appropriate tasks to accomplish this dissemination.

Acceptance and scheduling: Discuss acceptability of presentations and any changes which need
to be made. Meet again when final list of presentations are finalized to plan resource
allocation: which rooms, do they need to be computer labs, and what times. Additional
meetings/hours may be required to leave time to verify availability of presenters and
resources.

Conference administration: Discuss and delegate the tasks necessary to make the conference
operate smoothly. Make sure someone provides refreshments, determine who is going to
work the registration desk, what does “registration” entail, etc.

Last minute stuff: signs, registration materials, guest packets, etc. May want to allocate several
hours for group to work together to bringing all the pieces together in preparation for the
conference on the following day.

92

APPENDIX B

EXPLICIT USER PREFERENCES ELICITED FROM VOLUNTEERS

93

1 = strong dislike for meetings, 2 = prefer not to meet, 3 = don't care,
4 = prefer to meet, 5 = strong preference for meetings

The left column represents preferences regarding short meetings (one hour or less) and the
right column represents preferences regarding longer meetings.

Group 1

User 1:
Early in month: 3 3
Late in month: 3 3
Early in week: 4 4
Late in week: 2 2
Morning: 3 3
Lunch: 2 2
Afternoon: 3 3
Supper: 2 2
Evening: 1 1

User 2:
Early in month: 3 4
Late in month: 4 2
Early in week: 2 2
Late in week: 5 4
Morning: 3 3
Lunch: 2 2
Afternoon: 4 4
Supper: 2 2
Evening: 1 1

User 3:
Early in month: 4 2
Late in month: 2 4
Early in week: 3 3
Late in week: 3 3
Morning: 1 1
Lunch: 1 1
Afternoon: 3 3
Supper: 3 3
Evening: 3 3

Group 2

User 1:
Early in month: 4 3
Late in month: 2 2
Early in week: 3 1
Late in week: 3 2
Morning: 5 3
Lunch: 1 3
Afternoon: 2 4
Supper: 4 5
Evening: 5 1

User 2:
Early in month: 4 3
Late in month: 2 3
Early in week: 4 4
Late in week: 2 2
Morning: 2 1
Lunch: 3 3
Afternoon: 2 1
Supper: 4 3
Evening: 3 4

User 3:
Early in month: 2 5
Late in month: 4 2
Early in week: 1 3
Late in week: 5 5
Morning: 1 2
Lunch: 3 2
Afternoon: 2 5
Supper: 1 1
Evening: 1 1

94

APPENDIX C

HIERARCHICAL VS. UNIFORM INDICATORS IN HUMAN DATA

95

The following table is a reproduction of a spreadsheet used to analyze and

compare the relative activity of users in different groups. This data was collected by

logging all user activity during a 1-2 hour group session.

The columns on the left contain action counts. User actions are categorized as

ADD, user schedules new event, MOD, user changes or removes an event, and MSG,

user sends a message to another user. The columns in the middle represent relative

participation by each user. Each percentage represents the responsibility of each user for

the actions of a particular type during that group session. Because actions that affect the

shared schedule were considered separately from message passing activity, a column

marked “Events” summarizes both actions that add to the schedule and that modify

scheduled events. Users within a group are listed from the most active user to the least

active user. The right two columns indicate the differences in activity levels.

The final page of the table contains columns of fractions that are related to the

percentages described above with one significant difference. The fractions indicate the

ratio of one user’s performance of a type of action compared to the total actions taken by

all users in the group. This data was used to create fig. 4-3.

96

97

98

99

APPENDIX D

SAMPLE LOG AND AGENT RESPONSES

100

Following is an annotated log of the user actions and agent reactions during a typical

session with the agent-training system. Each log entry consists of at least a timestamp and a

message type. The timestamp's last three digits describe the user ID of the user whose actions

created the message. In the calendar application, SEND MSG refers to an attempt by one user to

explicitly communicate with another. In the agent-training tool, SEND MSG is used to introduce

comments into the log. The comments listed here were used to track agent responses to different

user actions. Agent's each have an ID identical to the user it serves, so Agent 2 serves User 2,

and so on. On the first line describing an agent's response, the numbers in parentheses represent

the activity level and preference level of an agent's user, followed by these same measurements

for the acting user; if an agent's user is the cause of a message, then the second pair of values

typically represents the data of the user's most extreme opponent (minimum preference if adding,

maximum preference if deleting, etc.). The number after the colon is the code for the Q-learning

system's advocated response (0=do nothing, 1=subtly indicate problem, 2=warn user of problem,

3=immediately reject action as insupportable, 4=automatically generate a response to a user's

action). The number in parentheses indicates the reinforcement value associated with this

response. Responses with a value of –1 are automatically rejected and converted into a milder

response.

The user models of the agent-training system assume that a message from the agent

regarding the behavior of other users will affect a user's ability and desire to respond to such

behavior. This information is encoded as a probability of response and an average time to

respond; a change in responsiveness is noted below as (0.90, 28) -> (1.0, 13), indicating that the

user will now respond to 100% of undesirable actions in 13 seconds instead of 90% in 28

seconds. Responsiveness fades over time until it reaches the "normal" responsiveness of the

101

user. (An agent warning a user against its own action creates an entry that remembers the

warning, for a time; a list of such entries are used to reduce the likelihood of a user model

scheduling events at that time in the future. No changes are recorded in the log, although a value

representing "selfishness" is reduced by repeated warnings; this value helps to determine the

likelihood that a user model will pay attention to its list of warnings.)

193874002 SEND MSG Agent 2 (0.401024, -0.135874, 0.104266, 0.121618): 2 (-1)
193874002 SEND MSG Agent 0 (-0.0158003, 0.401024, 0.101291, 0.104266): 4 (-0.1)
193874002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness
 (0.904164,28.1852)->(1,12.9034)
193874002 SEND MSG Agent 1 (0.264214, 0.401024, 0.121618, 0.104266): 3 (-0.273621)
193874002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness
 (0.899962,256.36)->(1,105.519)
193874002 START VIEW 11/10/100

• Agent 2 advocates warning user, but user complains of too many warnings.
• Agents 0 and 1 advocate inappropriate responses that are translated into warnings.

193892000 SEND MSG Agent 0 (0.501072, -0.262394, 0.0967818, 0.121618): 4 (-0.1)
193892000 SEND MSG Agent 0 WARN against adding during 0 time period on 11/5 (95)
193892000 SEND MSG Agent 0 WARN against adding during 1 time period on 11/5 (93)
193892000 SEND MSG Agent 1 (-0.181191, 0.501072, 0.121618, 0.0967818): 4 (-0.1)
193892000 SEND MSG Agent 1 WARN of other user 0 affects responsiveness
 (0.958751,162.628)->(1,88.5476)
193892000 SEND MSG Agent 2 (0.390963, 0.501072, 0.104266, 0.0967818): 0 (0.1)
193892000 START VIEW 11/5/100

• Agent 0 warns user against adding before afternoon.
• Agent 1 warns user that 0 may be about to add undesirable events.

193902002 SEND MSG Agent 2 (0.207759, -0.304294, 0.100838, 0.121618): 3 (-1)
193902002 SEND MSG Agent 0 (-0.304294, 0.207759, 0.0967818, 0.100838): 4 (1)
193902002 SEND MSG Agent 0 AUTO DELETE
193902002 SEND MSG Agent 1 (0.598275, 0.207759, 0.121618, 0.100838): 0 (0.1)
193902002 ADD ENTRY 11/10/100 11:00 - 11:30

• Agent 2 advocates restricting own user; program rejects restricting own actions without
strong cause.

• Agent 0 automatically deletes (user rewards).
193902000 SEND MSG Agent 0 (-0.304294, 0.598275, 0.0969427, 0.121618): 2 (-1)
193902000 SEND MSG Agent 1 (0.598275, -0.304294, 0.121618, 0.0969427): 1 (-0.1)
193902000 SEND MSG Agent 1 NOTIFY of other user 0 affects responsiveness
 (0.925987,197.282)->(0.928919,50.2549)
193902000 SEND MSG Agent 2 (0.576542, -0.304294, 0.100838, 0.0969427): 1 (-0.1)
193902000 SEND MSG Agent 2 NOTIFY of other user 0 affects responsiveness
 (0.75257,26.574)->(0.755152,20.4106)
193902000 MOD ENTRY 11/10/100 0 11:00

• Agent 0 advocates warning user, but this is automatically rejected by software.
• Agents 1 and 2 notify their users of agent 0's act.
• Mild punishment intended to impact all recent policy since conflict has occurred.

193910002 END VIEW 11/10/100
193915002 SEND MSG Agent 2 (0.450122, -0.212943, 0.106944, 0.121618): 2 (-1)
193915002 SEND MSG Agent 0 (-0.0615601, 0.450122, 0.0969427, 0.106944): 4 (-0.1)
193915002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness
 (0.838259,39.2595)->(0.977991,18.2537)
193915002 SEND MSG Agent 1 (0.346413, 0.450122, 0.121618, 0.106944): 3 (-0.207418)
193915002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness
 (0.881141,173.123)->(1,80.5357)

102

193915002 START VIEW 9/8/100

• Agent 2 advocates warning against own user viewing, rejected by software
• Agents 0 and 1 advocate extreme responses that are converted to warning their users.

193925001 SEND MSG Agent 1 (-0.927169, 0.861065, 0.116344, 0.106944): 3 (-1)
193925001 SEND MSG Agent 0 (0.569199, -0.927169, 0.0969427, 0.116344): 3 (-0.715939)
193925001 SEND MSG Agent 0 RESTRICT 2 by 1 for 11/5, 11:0
193925001 SEND MSG Agent 2 (0, 0, 0.106944, 0.116344): 0 (0.1)
193925001 SEND MSG 11/5/100 11

• Agent 1 auto restrict on own user's remove is rejected.
• Agent 0 auto restricts user 1's DELETE action.

193932002 SEND MSG Agent 2 (0.924159, 3.79502e-005, 0.104538, 0.116344): 0 (0.1)
193932002 SEND MSG Agent 0 (3.79502e-005, 0.924159, 0.0969427, 0.104538): 1 (0)
193932002 SEND MSG Agent 0 NOTIFY of other user 2 affects responsiveness
 (0.898816,30.5044)->(0.925933,19.9567)
193932002 SEND MSG Agent 1 (0.395681, 0.924159, 0.116344, 0.104538): 1 (0)
193932002 SEND MSG Agent 1 NOTIFY of other user 2 affects responsiveness
 (0.925987,192.227)->(0.927444,79.4392)
193932002 ADD ENTRY 9/8/100 17:00 - 17:30

• Agents 0 and 1 notify their users of agent 2's action.
193938001 END VIEW 11/5/100
193943001 SEND MSG Agent 1 (0.459892, -0.315945, 0.118654, 0.104538): 4 (-0.1)
193943001 SEND MSG Agent 1 WARN against adding on 10/27 (152)
193943001 SEND MSG Agent 0 (-0.315945, 0.459892, 0.0969427, 0.118654): 4 (-0.1)
193943001 SEND MSG Agent 0 WARN of other user 1 affects responsiveness
 (0.865972,31.5788)->(1,17.4402)
193943001 SEND MSG Agent 2 (0.461899, 0.459892, 0.104538, 0.118654): 0 (0.1)
193943001 START VIEW 10/27/100

• Agent 1 inappropriate extreme response changed to warning against adding any events.
• Agent 0 inappropriate extreme response changed to warning of user 1's presence.

193943002 END VIEW 9/8/100
193948002 SEND MSG Agent 2 (0.396492, -0.256921, 0.108664, 0.118654): 4 (-0.1)
193948002 SEND MSG Agent 2 WARN against adding on 11/25 (125)
193948002 SEND MSG Agent 0 (-0.256921, 0.396492, 0.0969427, 0.108664): 4 (-0.1)
193948002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness
 (0.912702,29.9911)->(1,10.3982)
193948002 SEND MSG Agent 1 (0.514955, 0.396492, 0.118654, 0.108664): 3 (-0.1)
193948002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness
 (0.85041,262.258)->(0.957571,146.852)
193948002 START VIEW 11/25/100

• Agent 2 inappropriate extreme response changed to warning against adding any events.
• Agents 0 and 1 in appropriate extreme responses changed to warnings of user 2's

presence.
193955001 SEND MSG Agent 1 (0.36407, -0.558226, 0.116888, 0.108664): 2 (-0.00728141)
193955001 SEND MSG Agent 1 WARN that ADD is in conflict (35)
193955001 SEND MSG Agent 0 (-0.558226, 0.36407, 0.0969427, 0.116888): 3 (1)
193955001 SEND MSG Agent 0 RESTRICT 0 by 1 for 10/27, 12:0
193955001 SEND MSG Agent 2 (0, 0, 0.108664, 0.116888): 0 (0.1)
193955001 SEND MSG 10/27/100 12

• Agent 1 warns user that ADD creates conflict.
• Agent 0 auto restricts unacceptable ADD by user 1.

193965001 END VIEW 10/27/100

103

BIBLIOGRAPHY

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.

Machine learning: Proceedings of the twelfth international conference, A. Prieditis and

S. Russell, eds., 9-12 July 1995.

Banerjee, B., S. Debnath, and S. Sen (1999). Using Bayesian network to aid negotiations among

agents. Working notes of the AAAI-99 workshop on negotiation: Settling conflicts and

identifying opportunities (AAAI technical report WS-99-12). pp. 44-49.

Barto, A., S. Sutton, and C. Anderson (1983). Neuronlike adaptive elements that can solve

difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics

SMC-13 (5). pp. 834-846.

Boy, G. (1997). Active design documents. Symposium on designing interactive systems:

Proceedings of the conference on designing interactive systems: Processes, practices,

methods, and techniques, 18-20 Aug. 1997, Amsterdam, The Netherlands. pp. 31-36.

Card, S., G. Robertson, and W. York (1996). The WebBook and the Web Forager: An

information workspace for the world-wide web. ACM conference on human factors in

software (CHI '96). pp. 111-117.

Chin, D. (1991). Intelligent interfaces as agents. Intelligent user interfaces. J. Sullivan and S.

Tyler, eds. pp. 127-206 (Ch. 9). Reading, MA: Addison-Wesley.

Chu-Carroll, J., and S. Carberry (1994). A plan-based model for response generation in

collaborative task-oriented dialogues. Proceedings of the twelfth national conference on

artificial intelligence, 1-4 Aug. 1994, Seattle, WA. pp. 799-805.

104

Dean, T., K. Basye, and J. Shewchuk (1993). Reinforcement learning for planning and control.

Machine learning methods for planning. S. Minton, ed. pp. 67-92. San Mateo, CA:

Morgan Kaufmann Publishers, Inc.

Decker, K., and V. Lesser (1995). Designing a family of coordination algorithms. Proceedings of

the 13th international workshop on distributed artificial intelligence, Lake Quinalt, WA.

pp. 65-84.

DiMicco, J., and W. Bender (2004). Second Messenger: Increasing the visibility of minority

viewpoints with a face-to-face collaborative tool. ACM conference on intelligent user

interfaces, Jan. 2004, Madeira, Portugal.

Dix, A. (1994). Computer supported cooperative work: A framework. Design issues in CSCW.

D. Rosenberg and C. Hutchison, eds. pp. 9-26. London: Springer-Verlag.

Dommel, H., and J. Aceves (1997). Floor control for multimedia conferencing and collaboration.

ACM Multimedia Systems 5 (1). pp. 23-38.

Dourish, P., and V. Bellotti (1992). Awareness and coordination in shared workspaces.

Proceedings of ACM CSCW ’92 conference on computer supported cooperative work,

November 1992, Toronto, Canada. pp. 23-38.

Durfee, E., V. Lesser, and D. Corkill (1989). Trends in cooperative distributed problem solving.

IEEE Transactions on Knowledge and Data Engineering 1 (1). pp. 63-83.

Fenster, M., S. Kraus, and J. Rosenschein (1995). Coordination without communication:

Experimental validation of focal point techniques. Proceeding of the international

conference on multiagent systems, 12-14 June 1995, San Francisco, CA. pp. 102-108.

Foner, L. (1997). Entertaining agents: A sociological case study. Proceedings of the first

international conference on autonomous agents, Marina del Rey, CA. pp. 122-129.

105

Garrido, L., R. Brena, and K. Sycara (1996). Cognitive modeling and group adaptation in

intelligent multi-agent meeting scheduling. First Iberoamerican workshop on distributed

artificial intelligence and multi-agent systems. C. Lemaître, ed. LANIA, UV. pp. 55-72.

Gaver, W., R. Smith, and T. O'Shea (1991). Effective sounds in complex systems: the ARKola

simulation. Proceedings of CHI `91 conference. pp 85-90.

Goonatilake, S., and S. Khebbal (1995). Intelligent hybrid systems: Issues, classes and future

trends. Intelligent hybrid systems. S. Goonatilake and S. Khebbal, eds. London, UK:

Wiley.

Greenberg, S. (1991). Personalizable groupware: Accomodating individual roles and group

differences. Proceedings of the European conference of computer supported cooperative

work (ECSCW '91), 24-27 Sept. 1991 Amsterdam. pp. 17-32.

Greenberg, S., C. Gutwin, and A. Cockburn (1996). Awareness through fisheye views in relaxed-

WYSIWIS groupware. Proceedings of graphics interface, 21-24 May 1996, Toronto,

Canada. pp. 28-38.

Gruber, T. (1991). The role of common ontology in achieving sharable, reusable knowledge

bases. Principles of knowledge representation and reasoning: Proceedings of the second

international conference. pp. 601-602.

Grudin, J. (1994). Groupware and social dynamics: eight challenges for developers.

Communications of the ACM, 37 (1). pp. 92-105.

Gutwin, C., and S. Greenberg (1998). Effects of awareness support on groupware usability.

Proceedings of the CHI ’98 conference on human factors in computing systems. pp. 511-

518.

106

Gutwin, C., and S. Greenberg (2004). The importance of awareness for team cognition in

distributed collaboration. Team cognition: Understanding the factors that drive process

and performance. E. Salas and S. Fiore, eds. pp. 177-201. Washington: APA Press.

Gutwin, C., S. Greenberg, and M. Roseman (1996). Supporting awareness of others in

groupware. Conference on human factors in computing systems, Vancouver, Canada. p.

205.

Haykin, S. (1994). Neural networks: A comprehensive foundation. Englewood Cliffs, NJ:

Macmillan College Publishing Company, Inc.

Hill, J., and C. Gutwin (2003). Awareness support in a groupware widget toolkit. Conference on

supporting group work: Proceedings of the 2003 international ACM SIGGROUP

conference on supporting group work, Sanibel Island, Florida. pp. 258-267.

Huhns, M., and M. Singh (1998). Agents and multiagent systems: Themes, approaches, and

challenges. Readings in agents. pp. 1-23. San Francisco: Morgan Kaufmann Publishers.

Huhns, M., M. Singh, and T. Ksiezyk (1994). Global information management via local

autonomous agents. Proceedings of the ICOT international symposium on fifth

generation computer systems: Workshop on heterogeneous cooperative knowledge bases.

pp. 1-15.

Humphrys, M. (1996). Action selection methods using reinforcement learning. Animals to

animats 4: 4th international conference on simulation of adaptive behavior, 9-13 Sept.

1996, Cape Cod, MA.

107

Isbister, K., H. Nakanishi, T. Ishida, and C. Nass (2000). Helper agent: Designing an assistant for

human-human interaction in a virtual meeting space. CHI 2000 conference proceedings:

Conference on human factors in computing systems, 1-6 April 2000, The Hague,

Netherlands. pp. 57-64.

Jackson, P. (1999). Introduction to expert systems, 3rd ed. London: Addison Wesley Longman

Limited.

Johnson-Lenz, P., and T. Johnson-Lenz (1991). Post-mechanistic groupware primitives:

Rhythms, boundaries and containers. Computer-supported cooperative work and

groupware. S. Greenberg, ed. pp. 277-285. San Diego: Academic Press, Ltd.

Jourdan, J., L. Dent, J. McDermott, T. Mitchell, and D. Zabowski (1993). Interfaces that learn: A

learning apprentice for calendar management. Machine learning methods for planning. S.

Minton, ed. pp. 31-66. San Mateo, CA: Morgan Kaufmann Publishers.

Klein, M. (1994). Computer supported conflict management in design teams. Design issues in

CSCW. D. Rosenberg and C. Hutchison, eds. London: Springer-Verlag.

Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.

Kraus, S., K. Sycara, and A. Evenchik (1998). Reaching agreements through argumentation: A

logical model and implementation. Artificial Intelligence 104 (1-2). pp. 1-69.

Krogsæter, M., and C. Thomas (1994). Adaptivity: System-initiated individualization. Adaptive

user support: Ergonomic design of manually and automatically adaptable software, R.

Oppermann, ed. pp. 69-88. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Kuvayev, L., and R. Sutton (1997). Approximation in model-based learning. ICML ’97 workshop

on modeling in reinforcement learning, July 1997, Vanderbilt University, Nashville,

Tennessee.

108

Lâassri, B., H. Lâassri, and V. Lesser (1990). Negotiation and its role in cooperative distributed

problem solving. Proceedings of the tenth international workshop on distributed artificial

intelligence.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21 (7). pp. 558-565.

Lee, C.-H., and C.-C. Teng (2000). Identification and control of dynamic systems using recurrent

fuzzy neural networks. IEEE Transactions on Fuzzy Systems 8 (4). pp. 49-366.

Lenzmann, B., and I. Wachsmuth (1997). Contract-net-based learning in a user-adaptive

interface agency. Distributed artificial intelligence meets machine learning: Learning in

multi-agent environments. pp. 202-222. Berlin: Springer.

Littman, M., and D. Ackley (1991). Adaptation in constant utility non-stationary environments.

Proceedings of the fourth international conference on genetic algorithms, July 1991, San

Diego, CA. pp. 136-142.

Long, T. (1998). The optimization assistant – helping engineers explore designs through

collaboration. Proceedings of the fourth international conference on intelligent user

interfaces, Dec. 1998.

Luger, G. (2002). Artificial intelligence: Structures and strategies for complex problem solving.

Edinburgh Gate, Harlow, Essex: Pearson Education Limited.

Lutz, E., H. Kleist-Retzow, and K. Hoernig (1990). MAFIA – An active mail-filter agent for an

intelligent document processing support. Multi-user interfaces and applications. S. Gibbs

and A. Verrijn-Stuart, eds. pp. 235-251. Amsterdam: Elsevier North Holland.

Maes, P. (1994). Agents that reduce work and information overload. Communications of the

ACM 37(7). pp. 31-40.

109

Malcolm, C., and T. Smithers (1990). Symbol grounding via a hybrid architecture in an

autonomous assembly system. Designing autonomous agents. P. Maes, ed. pp. 123-144.

Cambridge: MIT Press.

Malone, T., K. Grant, and K. Lai (1997). Agents for information sharing and coordination: A

history and some reflections. Software agents. J. Bradshaw, ed. pp. 109-144. Cambridge:

AAAI Press / MIT Press.

Maren, A., C. Harston, and R. Pap (1990). Handbook of neural computing applications. San

Diego: Academic Press, Inc.

Maresh, J., and D. Wastell (1990). Process modeling and CSCW: An application of IPSE

technology to medical office work. Human-computer interaction – INTERACT ’90. pp.

849-852. Amsterdam: Elsevier Science Publishers.

Masters, T. (1995). Advanced algorithms for neural networks: A C++ sourcebook. New York:

John Wiley & Sons, Inc.

Minton, S., and M. Zweben (1993). Learning, planning, and scheduling: An overview. Machine

learning methods for planning. S. Minton, ed. pp. 1-30. San Mateo, CA: Morgan

Kaufmann Publishers, Inc.

Mitchell, T., R. Caruana, J. McDermott, and D. Zabowski (1994). Experience with a learning

personal assistant. Communications of the ACM 37 (7), July 1994. pp. 81-91.

Nardi, B., J. Miller, and D. Wright (1998). Collaborative, programmable, intelligent agents.

Communications of the ACM 41 (3), March 1998. pp. 96-104.

Olson, J., G. Olson, and D. Meader (1995). What mix of video and audio is useful for small

groups doing remote real-time design work? Proceedings of ACM CHI’95 conference on

human factors in computing systems. pp. 362-368.

110

Paetau, M. (1994). Configurative technology: Adaptation to social systems dynamism. Adaptive

user support: Ergonomic design of manually and automatically adaptable software.

R. Oppermann, ed. pp. 197-202. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Peng, Y., Z. Zhou, and S. Cho (1999). Constructing belief networks from realistic data.

International Journal of Intelligent Systems 14 (7). pp. 671-695.

Pham, L., and H. Pham (2000). Software reliability models with time-dependent hazard function

based on Bayesian approach. IEEE Transactions on Systems, Man, and Cybernetics, Part

A: Systems and Humans 30 (1). pp. 25-35.

Pierguido, V., and M. Dorigo (1994). Training and delayed reinforcements in Q-learning agents.

Technical report IRIDIA/1994-14, Université Libre de Bruxelles, Belgium.

Pierreval, H., and J.-L. Paris (2000). Distributed evolutionary algorithms for simulation

optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and

Humans 30 (1). pp. 15-24.

Procter, R., A. McKinlay, R. Woodburn, and O. Masting (1994). Coordination issues in tools for

CSCW. Design issues in CSCW, D. Rosenberg and C. Hutchison, eds. pp. 119-138.

London: Springer-Verlag.

Rabin, M. (1982). N-process mutual exclusion with bounded waiting by 4 log2 n-valued shared

variable. JCSS 25 (1). pp. 66-75.

Rao, R., and S. Card (1995). Exploring large tables with the table lens. Proceedings of ACM

CHI'95 conference on human factors in computing systems, Videos, Vol. 2, pp. 403-404.

Robertson, G., S. Card, and J. Mackinlay (1993). Information visualization using 3D interactive

animation. Communications of the ACM 36 (4). pp. 56-71.

111

Rodden, T. (1996). Populating the application: A model of awareness for cooperative

applications. CSCW ’96: Proceedings of the ACM 1996 conference on computer

supported cooperative work, M. Ackerman, ed., 16-20 Nov. 1996, Boston, MA. pp. 87-

96.

Rosenschein, J., and G. Zlotkin (1994). Designing conventions for automated negotiation. AI

Magazine 15 (3). pp. 29-46.

Ruvini, J., C. Fagot (1998). IBHYS: a new approach to learn users’ habits. Proceedings of ICTAI

’98. pp. 200-207.

Sandholm, T., and V. Lesser (1995). Issues in automated negotiations and electronic commerce:

Extending the contract net framework. Proceedings of the international conference on

multiagent systems. 12-14 June 1995, San Francisco, CA. pp. 328-335.

Schlichter, J., M. Koch, and M. Buerger (1998). Workspace awareness for distributed teams.

Coordination technology for collaborative applications: Organizations, processes, and

agents (Lecture notes in computer science 1364). W. Conen and G. Neumann, eds. pp.

199-218. New York: Springer-Verlag.

Scrivener, S., S. Clark, and N. Keen (1994). The role of replication in the development of remote

CSCW systems. Design issues in CSCW. D. Rosenberg and C. Hutchison, eds. London:

Springer-Verlag London Limited.

Seel, N., G. Gilbert, and M. Morris (1990). A project-orientated view of CSCW. Human-

computer interaction – INTERACT ’90. pp. 903-908.

Selker, T. (1994). Coach: A teaching agent that learns. Communications of the ACM 37(7).

pp. 92-99.

112

Sen, S., T. Haynes, and N. Arora (1997). Satisfying user preferences while negotiating meetings.

International Journal of Human-Computer Studies 47. pp. 407-427.

Sen, S., and M. Sekaran (1998). Individual learning of coordination knowledge. Journal of

Experimental & Theoretical Artificial Intelligence 10. pp. 333-356.

Sen, S., M. Sekaran, and J. Hale (1994). Learning to coordinate without sharing information.

Proceedings of the twelfth national conference on artificial intelligence, Seattle, WA.

pp. 426-431.

Shiozawa, H., J. Noda, K. Okada, and Y. Matsushita (1999). Perspective layered workspace for

collaborative work. 1999 international workshops on parallel processing, 21-24 Sept.

1999, Keio University, Wakamatsu, Japan. p. 80.

Silverman, B. (1992). Survey of expert critiquing systems: Practical and theoretical frontiers.

Communications of the ACM 35 (4). pp. 106-127.

Singh, S. (1992). The efficient learning of multiple task sequences. Advances in neural

information processing systems 4. B. Spatz, ed. pp. 251-258. San Mateo, CA: Morgan

Kaufmann.

Stasser, G., and L. Taylor (1991). Speaking turns in face-to-face discussions. Journal of

Personality and Social Psychology 60 (5). pp. 675-684.

Sutton, R. (1995). TD models: Modeling the world at a mixture of time scales. Proceedings of

the 12th international conference on machine learning.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse

coarse coding. Advances in neural information systems 8. Cambridge: MIT Press.

113

Totterdell, P., P. Rautenbach, A. Wilkinson, and S. Anderson (1990). Adaptive interface

techniques. Adaptive user interfaces. D. Browne, P. Totterdell, and M. Norman, eds.

pp. 139-157. London: Academic Press Ltd.

Valacich, J., A. Dennis, and J. Nunamaker (1991). Electronic meeting support: The

GroupSystems concept. International Journal of Man-Machine Studies 34. pp. 261-282.

Voorhees, E. (1994). Software agents for information retrieval. Software agents – Papers from

the 1994 spring symposium (Technical report SS-94-03), O. Etzioni, ed., March 1994.

pp. 126-129.

Wasserman, P. (1993). Advanced methods in neural computing. New York: Van Nostrand

Reinhold.

Watkins, C., and P. Dayan (1992). Q-learning. Machine Learning 8. pp. 279-292.

Wellman, M. (1995). A computational market model for distributed configuration design. AI

EDAM 9. pp. 125-133.

White, G. (1990). A formal method for specifying temporal properties of the multi-user

interface. Multi-user interfaces and applications. S. Gibbs and A. Verrijn-Stuart, eds.

pp. 49-59. Amsterdam: Elsevier Science Publishers.

Winnett, M., R. Malyan, and P. Barnwell (1994). ShareLib: A toolkit for CSCW applications

programming using X Windows. Design Issues in CSCW. D. Rosenberg and C.

Hutchison, eds. London: Springer-Verlag London Limited.

Woitass, M. (1990). Coordination of intelligent office agents – Applied to meeting scheduling.

Multi-user interfaces and applications. S. Gibbs and A. Verrijn-Stuart, eds. pp. 371-386.

Amsterdam: Elsevier Science Publishers.

