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Agents that act as user assistants will become invaluable as the number of information 

sources continue to proliferate. Such agents can support the work of users by learning to 

automate time-consuming tasks and filter information to manageable levels. Although 

considerable advances have been made in this area, it remains a fertile area for further 

development. One application of agents under careful scrutiny is the automated negotiation of 

conflicts between different user’s needs and desires. Many techniques require explicit user 

models in order to function. This dissertation explores a technique for dynamically constructing 

user models and the impact of using them to anticipate the need for negotiation. Negotiation is 

reduced by including an advising aspect to the agent that can use this anticipation of conflict to 

adjust user behavior. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

Aims and Objectives 

This chapter introduces a known but currently neglected problem – recognizing and 

avoiding conflicts within a computer-supported collaborative environment. Furthermore, this 

chapter discusses why this problem is important and timely and describes the approach chosen 

for this dissertation research. After reading this chapter, the reader should be familiar with the 

topic of conflict resolution within a computer-supported collaborative work session and 

understand the scope and important contributions of this dissertation. 

Overview 

 “Collaboration awareness” (Procter et al., 1994), that is the awareness of other users and 

their contributions toward a mutual goal, is relatively easy to maintain in face-to-face meetings. 

When speaking face to face, people learn to respond to subtle visual and auditory cues that assist 

them in maintaining a cohesive consensus of action. Being aware of others in a computer-

supported collaborative environment, however, is much more difficult (Johnson-Lenz et al., 

1991). Limitations of network bandwidth and the technology itself can drastically reduce the 

number and type of subtle cues that can be exchanged among participants within a computer 

supported collaborative environment. Without proper cues, conflicts tend to arise much more 

frequently. To avoid such problems, techniques must be discovered that assist humans in 

recovering from the loss of visual and auditory cues, without hindering the quality or the quantity 

of the group communication.  
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This research focuses specifically on the problem of group conflicts and, as a 

consequence, on finding automated techniques for helping users avoid conflicts within a 

computer-supported collaborative environment. This dissertation explores a specific machine 

learning technique that was programmed to anticipate and react to conflicts that occur among 

distributed groups. The proposed study suggests that conflicts can be avoided if an ‘agent’ can be 

trained to learn user preferences and detect where and when conflicts will occur. For the 

purposes of this paper, user interface agents are computer programs or components of a 

computer program that operate with little or no direction from a user but work to serve a client 

by offering advice or streamlining the interface. Such agents are designed to monitor user 

preferences or typical user behavior in order to offer more personalized service. The proposed 

study used the agent interface paradigm to try and help groups resolve conflicts with a computer-

supported cooperative work environment. 

Computer-supported cooperative work (CSCW) technology has been shown to be useful 

in many domains that require the accomplishment of complex tasks by a small group of people 

(Huhns et al., 1994). Synchronous collaborative computer systems, however, have different user 

interface requirements than traditional, single user systems. 

Groups must interact with other members of their team in a more spontaneous manner. 

Further, such multitasking systems require users to switch between concurrent or even 

simultaneous tasks very rapidly. This particular style of intermittent interaction causes a dramatic 

increase in the occurrence of conflicts, particularly when users are deprived of both voice and 

visual contact information. When a group of users have limited access to both visual and 

auditory communication cues, they are forced to infer other users’ intentions, often leading to 

erroneous conclusions.  
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Thus, the idea of helping users avoid conflicts, particularly within a computer supported 

collaborative environment, is a complex topic and one for which we currently have very few 

answers. Although the current literature recognized the complexity and importance of this 

problem (Klein, 1994), no one has yet published design solutions for building user interfaces for 

systems that help users avoid conflicts. This is particularly true of researchers within computer 

supported collaborative environments that must deal with conflicts on a grand scale. This 

dissertation makes a contribution by dealing with this important topic. 

Problem Statement 

The integration of computer networks and communication systems in the workplace has 

led to the development of software that provides computer-based tools for communication, 

coordination, and decision-making within an organization. However, collaborative systems and 

the interfaces that support them are extremely complex (Greenberg et al., 1996) and limited in 

the amount of visual and auditory cues available to users. Such complexity and sensory 

deprivation often leads to cognitive overload, frustration, and conflicts. Awareness techniques 

such as different identifying colors for each user (Hill and Gutwin, 2003), interface types 

(Shiozawa et al., 1999), visual displays, etc., offer some degree of relief, but the need to resolve 

conflicts among group members continues to be a problem within computer-supported 

collaborative environments. For example, while the use of tools such as telepointers, radar views, 

and sound help groups coordinate their activities (Greenberg et al., 1996), they also seem to add 

to the complexity of the interface. Unfortunately, these types of interfaces have not brought 

substantial relief for users of collaborative systems.  

The introduction of agents, programs that act as personal assistants for their users, help 

users perform work (Silverman, 1992), communicate with one another (Isbister et al., 2000), and 
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avert problems. Interest in using agents to handle negotiations among work groups has grown 

over the years (Woitass, 1990). Different negotiation strategies have been preprogrammed to 

maximize a group member’s effectiveness and efficiencies. However, these negotiating agents 

have usually emphasized individual rather than group interests (Isbister et al., 2000). While 

machine learning techniques have been used to establish weights on different individual 

preferences, there is little work on establishing weights for using this information to respond to 

group conflicts. Thus, there seems to be a trade-off between when and how conflicts can be 

eliminated within a collaborative environment, and whether a learning agent can respond to 

group rather than individual preferences. This research investigated whether agents that learned 

individual preferences of group members could also learn responses that eliminated conflicts 

among group members.  

Purpose of the Study 

This study sought to determine whether an agent based system could help groups avoid 

conflicts. An agent manager was developed that allowed groups to learn users’ preference and a 

response model. The system was developed around a calendar application aimed at helping 

groups schedule different types of events. As a result, the agent learning system was designed to 

detect and respond to events such as scheduling a meeting according to the users’ preferences. 

The specific learning technique that was selected to drive the agent training system was Q 

Learning because of its ability to adjust to evolving user attitudes without having to retrain from 

scratch. It was postulated that the agent system could monitor all communication between 

members of a group in real-time, learning from the behavior of the group. At the same time, the 

agent system would construct a response model that would be able to recognize and handle 

conflict situations. Using what it had learned, the agent would then offer advice, interrupt an 
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undesirable action with a warning, restrict users from taking undesirable actions, etc. The 

combination of advice, warnings, and restrictions would guide the users to a greater 

understanding of each other’s preferences so that, ultimately, the user himself would be able to 

anticipate conflicts and work towards resolving problems before they arise. Thus, the agent 

learning system would be able to detect users’ preferences and use this information to reduce the 

number of conflicts.  

After using the system with live subjects, it soon became apparent after that the agent 

system was unable to learn all of the different possible conflict patterns in real time and a single 

user session. As a result, the learning portion of the system was changed to an offline setting in 

which the agent was ‘trained’ to learn user preferences and conflict patterns after being fed a 

series of user events. For each experimental run, the system recorded the percentage of events 

correctly classified as compared to a model of the user’s true preferences, as well as the number 

of conflicts detected. Performance was then judged as to how well the system was able to learn 

the preferences and avoid conflicts. 

Significance of the Study 

There is an increasing need for the development of software for improving the 

productivity of groups in their daily work, particularly when large geographical distances 

separate those individuals. Unfortunately, most tools that support computer collaboration are 

extremely complex, and performance is often impeded rather than enhanced. Although 

researchers are working hard to provide systems that provide a more virtual environment to make 

collaboration easier, there are still many problems for users of this technology to know and 

overcome. Conflict resolution is one of the most important problems that must be solved in this 

area. The software developed for this research represents a carefully designed intelligent 
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collaborative interface that supports the study of the use of an intelligent advisory system for 

conflict resolution.  Although significant progress has been made in the area of intelligent 

advisors, most current research focuses on either user-independent awareness tools (DiMicco and 

Bender, 2004) or application-support advisors (Long, 1998).  This research represents one of the 

first steps toward interfaces that customize themselves to the needs and preferences of the group. 

This research also establishes the importance and timeliness of the problem of conflict 

resolution during collaborative interactions. The problem is discussed from the perspective that a 

system cannot resolve all conflicts, but it may be able to prevent major disagreements among 

group members. For example, there is important research that has proposed a conflict resolution 

method using coordination and argumentation agents (Kraus et al., 1998). This research tries to 

improve upon previous agent-based studies by suggesting that machine learning techniques 

might be used to both recognize and respond to conflicts. Humans seem to have several levels of 

responses to conflict, ranging from passive acceptance to actively fighting the specific event or 

proposed action. This research tries to address this problem by designing an agent management 

system that learns individual preferences and how to respond to conflicts created by these 

individual preferences. 

Research Design  

This study sought to determine whether an agent-based system could learn user 

preferences and, as a consequence, use this knowledge to predict and avoid conflicts within a 

computer-supported collaborative environment. In order to do this, an agent management system 

was developed to operate in a group environment; specifically, the agent was embedded within a 

shared calendar application designed to help groups schedule meetings. The agent portion of the 

system consisted of three components: a learning program that constructed a user preference 
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model, a learning program that learned a response model, and a planner that selected an 

appropriate response and determined how it should be implemented. To measure the 

effectiveness of the learning system, the system recorded the percentage of events correctly 

classified as compared to the users’ true preferences, and the number of conflicts detected.  

Research Questions 

The main research questions for this study were whether the agent system could learn a 

sufficient number of user preferences, and whether this model of user preferences could be used 

to develop a response model that was designed to avoid conflicts. The answer to the first 

question was obtained by looking at the number of events correctly classified as compared to the 

users’ true preferences. The second question was answered by looking at the total number of 

conflicts detected.   

Limitations and Assumptions 

Because of both the nature and size of the problem, the study was undertaken with the 

following limitations: 

1. Due to the length of time that it took for the models to converge, the learning 

experiments were conducted offline.  

2. The study was also limited in that initial user preferences were formulated from 

models rather than real user populations.  

Finally, the study assumed that the agent system had completed its training session when 

the no major changes were observed.  
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Approach 

This research creates one of the first generalizable approaches for addressing the problem 

of learning to avoid conflicts within computer supported collaborative environments. A broad 

survey of current literature was conducted to analyze and identify issues related to some of the 

theoretical constructs presented in the research. This set of identified constructs was used to 

synthesize issues related to group conflicts and the reason for their occurrence within a computer 

supported collaborative environment. The utility of these concepts was then validated, in part, 

with the development of an agent learning system that was able to learn how to avoid conflicts 

by learning user preferences.  

An agent-training tool provided the agent with simulated experiences. Although the 

simulated users may not have behaved identically to real users, the agent system was able to 

learn reasonable responses as a starting point. In this way, the agent did not have to learn all 

reasonable responses; it just had to customize itself to its particular user’s needs. The training 

tool also had modes that allowed certain types of experiments to be run, allowing agent 

performance to be examined in situations that might be difficult to guarantee in a human work 

group. 

The following chapter contains an extensive survey of the published research on 

intelligent agents, computer-supported collaborative interfaces, and conflict resolution strategies. 

This survey is structured in a way that facilitates the generalization of previous disparate work. 

The survey provides support for the claim that it is useful to investigate agent intervention in the 

context of collaborative systems. This knowledge is then used to guide the creation of a 

hypothesis and its operationalization into a detailed study. 
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This research shows that a user interface agent can learn to adapt its responses to its 

user’s preferences and needs. Humans working together on the Internet will likely suffer from 

limited sharing of information, or the system may try to correct the situation by providing too 

much information. Software is needed that can remind users of the rules of group interactions 

and summarize group activity without overloading the user. 

The interface agent described here attempts to correct this problem by summarizing user 

activities as preferences and learning to provide this knowledge as it becomes useful to the user. 

Occasionally, it may act, itself, to protect the interests of its user. 
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 

The aim of this chapter is to identify a set of theoretical constructs about how to 

“automatically” resolve conflicts within a computer supported collaborative system. A broad 

analysis of relevant existing theory serves as a foundation for the experimental study that was 

performed.  

The current literature does not yet present a general and comprehensive theoretical model 

of the factors that are most relevant in automatically resolving conflicts within real-time 

collaborative systems; building such a model is beyond the scope of this dissertation. It is 

postulated, however, that within the current literature there exists sufficient theoretical constructs 

about collaborative software, intelligent agents, negotiation theory, and machine learning to form 

a strong foundation from which to synthesize useful information. The object of this chapter is to 

form such a foundation. 

Authors of the current research literature have proposed useful theoretical constructs for 

this particular study in each of four categories: Computer-supported collaborative work (CSCW), 

agents, negotiation, and machine learning. The computer-supported collaborative work literature 

indicates that increasing awareness (that is, knowing what each member of the group is doing at 

any particular time) among group members may minimize conflicts. As a result, they have 

developed a number of tools that are designed to help groups keep track of each other. Although 

this seems to improve communication among group members, it is not really clear if such tools 

actually decrease the amount or kind of conflicts that can occur within this environment.       
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It has been suggested that intelligent agents may be another way to reduce the conflict 

that can occur among group members. These “personal assistants” have been used effectively as 

critics and facilitators (see Maes, 1994, for some examples). However, there is a high cost 

associated with using intelligent agents that is generally translated into the time that it takes to 

handle interruptions. This cost can be reduced somewhat if personal agents are given the 

responsibility of handling the negotiations between other personal agents without having to 

consult with users. Elaborate negotiation strategies have been proposed that might help resolve 

both personal and machine conflicts. These negotiation strategies have been used in a number of 

applications such as planning and scheduling programs (Sen et al., 1997).  

However, a more powerful solution for agent negotiation strategies lies within the 

machine learning community. What seems apparent is that problems such as negotiation (and 

knowing when to interrupt users) might be learned in some systematic way, and that this method 

may be more effective in reducing conflicts.  

As a result, this survey examines literature in each of the four categories in such a way 

that facilitates the generalization of various works and their applicability to this research. After 

reading this chapter, readers should understand the several individual theoretical constructs 

relevant to investigating automatic conflict resolution within collaborative systems. Furthermore, 

readers should understand how this set of available theory could serve as a foundation for 

studying different factors that might affect group performance. 

Computer Supported Cooperative Work (CSCW) 

The phrase "computer-supported cooperative work" refers to an area of study that 

explores methods for designing, facilitating and evaluating computer-based tools for the support 

of work groups. In Dix (1994), the components of the phrase are analyzed individually; the word 
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cooperative suggests the need for some sort of communication between members of the group, 

and the word work conveys the need to use or act upon various items, some of which are shared 

and some of which are not. In some CSCW applications, the communication is explicit; in 

others, the communication occurs indirectly through shared spaces that facilitate the work of the 

group or represent the products of the work, itself. 

The word "groupware" refers to software that supports and even enables the 

accomplishment of group work (Greenberg, 1991); CSCW provides the research to enable and 

augment groupware as well as scientific validation for its methods. CSCW applications tend to 

support one or more of several types of working conditions that can be classified by spatial and 

temporal parameters (Grudin, 1994). Groupware tools may provide electronic support for the 

traditional face-to-face meeting (same-time, same-place) by disseminating information, 

supporting voting or negotiations, or providing a shared workspace in the computer that can be 

used to log the progress of the group (Valacich et al., 1991). 

Some of these same tools can be configured to work over a distance (same-time, different 

place); combined with some form of teleconferencing, they can significantly reduce the impact 

of spatial distribution of the participants on the productivity of the meeting. Groupware, in this 

context, generally refers to CSCW tools that attempt to recreate opportunities for interaction 

which normally only occur in face-to-face meetings (Scrivener et al., 1994). Other CSCW tools 

may offer an extended version of traditional e-mail and bulletin board systems that already 

support a form of human interaction across both space and time. Appointment calendars, project 

integration tools, and collaborative editors with support for side notes or annotations are all 

examples of tasks that can take place independently of both time and space. 
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One type of groupware tool briefly described in CSCW overview papers like Grudin 

(1994) and Scrivener et al. (1994) supports groups meeting in the same place but at different 

times. This type of tool is used to support work areas when all members of the group are unable 

to meet together at the same time. A specialized work room has computer support much like the 

support in the special meeting rooms described for synchronous, face-to-face meetings; 

essentially, these tools combine same-time/same-place tools and asynchronous, distributed tools 

(limited to a local-area network or even a single computer interface). Like the face-to-face 

meeting support tools, the asynchronous work area is superior to conventional work areas 

because of its ability to record and print intermediate stages of the work. 

Although useful within a single-user computer environment, most CSCW tools designed 

for spatially distributed workgroups rely on common computer input/output devices that often 

require less natural modes of interaction. Traditional, face-to-face meetings are governed by 

social and physical rules that are familiar to most people (Johnson-Levy et al., 1991). One of the 

major challenges facing developers of CSCW applications is finding tools that can assist groups 

without requiring them to learn new modes of interaction. Finding a style of communication that 

helps rather than hinders groups remains a serious problem for researchers in CSCW (Gutwin et 

al., 2004). 

Table 2-1 Types of CSCW 

 Same Time Different Time 

Same Place Computer-supported meeting 
room. 

Computer-supported work area 
with messages; “white board;” 
version tracking; etc. 

Different Place Online chat/conference; 
Shared interactive tool. 

Threaded discussion (newsgroup); 
distributed, state-tracking support 
tools. 
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One of the reasons that communication is often difficult within a distributed CSCW 

environment is because sensory feedback is greatly reduced. Unfortunately, humans rely on 

subtle cues to resolve ambiguity and regulate behavior, which are often missing in a computer-

supported work environment. Spatially distributed CSCW tools, short of full immersion in a 

virtual workplace, are limited in sensory feedback capability. The computer interface "attenuates 

people's sense of social presence" (Procter et al., 1994). "Collaboration awareness," as described 

in Procter et al. (1994), is the tendency for a group to be focused on a common topic, goal or 

subtask, even if they are also working on separate subtasks. It includes an awareness of each 

other's actions and how each participant is contributing to that focus. Collaboration awareness is 

difficult to maintain in CSCW, in part because individuals are more accustomed to thinking of 

computer work as an isolated activity, and systems providing limited sensory feedback do little 

to alter this perception. Some researchers argue that conflict resolution becomes less of a 

problem within computer-supported communications as group awareness is increased (Gutwin et 

al., 2004). Group awareness tends to activate social and corporate training signals that are used to 

resolve conflicts similar to what occurs in face-to-face situations (Rodden, 1996). 

As a result, researchers have become increasingly concerned about how to increase 

“awareness” among group members using their systems. As Greenberg, Gutwin and Cockburn 

(1996), state: “Awareness is part of the glue that allows groups to be more effective than 

individuals”. Awareness improves group members’ ability to make conscious decisions by 

keeping them up-to-date on important events (Dourish and Bellotti, 1992). The need for 

awareness is based on a person’s need to know past, current and future actions within a shared 

environment for unstructured tasks (Schlichter et al., 1998). Although developing conflict 

resolution strategies may be important within a computer supported collaborative environment, 
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some researchers (Procter et al., 1994) argue that the use of feedback (and feed through) 

techniques is more important, and that CSCW developers should concentrate on creating systems 

that enable the use of conflict resolution techniques that are already part of a group’s social 

makeup. 

In order to increase awareness among groups who use collaborative software, researchers 

have developed a number of specialized interface techniques. For example, Gutwin et al. (1996) 

developed widgets such as telepointers, radar views, multi-user scrollbars, graphical activity 

indicators, and auditory cues to enhance the group’s knowledge of different user inputs. Most of 

these devices were found to help users better anticipate the actions of others. Awareness can also 

be maintained through the sounds of background activities (Gaver, Smith and O’Shea, 1991). For 

example, background sounds of a bottling factory floor were added to a CSCW team process 

control system for a remote and distributed team (Gaver et al., 1991). The previously unavailable 

factory sounds helped users maintain subconscious awareness of the various factor control 

activities they had externally backgrounded to floor workers. Robertson et al. (Robertson et al., 

1993; Card and Robertson, 1996; Rao et al., 1995) have successfully used peripheral information 

to help users maintain awareness of their location in information spaces.  

Unfortunately, awareness techniques for CSCW environments have had mixed effects. 

While the use of tools such as telepointers, radar views, and sound help groups coordinate their 

activities (Greenberg, Gutwin and Cockburn, 1996), they also seem to add to the complexity of 

the interface. Collaborative interfaces are already fairly complex and mentally challenging, 

which has caused some researchers to suggest that collaborative systems can sometimes impede 

group performance (Olson, Olson and Meader, 1995). Additional awareness tools may, in 

themselves, distract users from the work to be accomplished, causing performance to decline. 
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One way to increase awareness among group members without additional complexity is 

to force participants to take turns performing different activities. For example, groups are able to 

maintain a clear focus in face-to-face meetings primarily because only one person is allowed to 

speak or act at a time. Social protocols help govern when one participant's turn is surrendered to 

another. In the absence of cues that allow these types of protocols to function within a 

collaborative environment, the computer may enforce its own set of rules that require or, at least, 

permit one user to take the focus or "floor" from another. One simple type of turn management 

protocol allows a user to interrupt another. Other protocols require users to engage in more 

formal mechanisms such as requesting control or placing oneself in a queue (Dommel et al., 

1997). 

At first glance, forcing group members to take turns speaking or acting seems counter 

productive, since one of the reasons for using a CSCW system is to increase group productivity 

through shared work spaces. However, if the “shared work” takes longer to complete or must be 

redone because members lose track of group goals and potential conflict situations, then overall 

group performance will suffer. Turn-taking is one way of maintaining a sense of collaborative 

awareness without interfering with group productivity. 

CSCW research will continue to explore methods for enabling users to work together in 

spatially or temporally distributed groups even after total immersion technology becomes 

commonplace. The recent growth of collaborative architectures or frameworks has enabled 

programmers to create collaborative applications more quickly and easily (Winnett et al., 1994). 

Answers to questions about how to share both the application and the users’ inputs have enabled 

researchers to understand how to build more effective distributed applications. However, issues 

concerning awareness continue to pose problems for developers of collaborative software. The 
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literature on awareness within computer supported collaborative systems continues to show that 

it is difficult to develop tools that facilitate both coordinated and individual tasks at the same 

time (Gutwin and Greenberg, 1998). Although the use of multi-colored telepointers, radar views, 

and sound are helpful, they do not alleviate all the problems related to coordinating group 

activities. Conflicts continue to occur within CSCW environments, even when there are elaborate 

awareness tools available to users. 

Agents 

Dynamic and complex environments, such as those that support group work, need "user 

interfaces that are active and adaptive personal assistants."  According to Huhns and Singh 

(1998), "Agents are active, persistent (software) components that perceive, reason, act, and 

communicate."  One of the most important functions of intelligent agents seems to be their 

ability to accept requests and perform certain laborious tasks on behalf of users (Selker, 1994). 

For the purposes of this research, the word "agent" is used to indicate auxiliary software that 

supports the user and adapts to user behavior. The agent gradually becomes more adept at 

handling some set of chores for the user and keeps the user informed of important situations. 

The potential of using agent software in combination with various network software 

products for communicating and seeking information has been clearly demonstrated by a number 

of studies (Maes, 1994). For example, there are agent systems that incorporate information from 

different sources (Gruber, 1991) and that search for loosely specified articles from a range of 

document repositories (Voorhees, 1994). Malone et al. (1997) built an agent system, called 

InformationLens, to manage electronic messages (find, filter, sort and prioritize). The follow-on 

system, called Oval, allows users to tailor their own systems for information management and 

cooperative work through objects, views, agents and links that help groups organize and respond 
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to knowledge. A number of advisory style agent systems show that software agents can enhance 

cooperative learning by allowing documents to appear simpler and easier to use (Boy, 1997; 

Selker, 1994). 

In the last few years, researchers have introduced user interface agents or personal 

assistants to help users deal with a complex computer environment. As the number of lay people 

using computers increases, it is important for the user interface to take a more active role in the 

dialog between the user and the computer, responding to and even anticipating user needs. 

Agents that are programmed with user preferences or goals can handle simple situations or even 

act as proxies for their human users. Some chat room 'bots and MUD characters are programmed 

to interact with users in relatively sophisticated ways, providing them with the illusion of dealing 

with an intelligent being within a limited domain (Foner, 1997). 

Another type of agent is one that "critiques human-generated solutions" (Silverman, 

1992). Ideally, a “critical” agent will force the user to make unambiguous design choices that can 

be proven correct or incorrect (Silverman, 1992). The critic first generates its own solution using 

an expert system or case-based reasoner, and then compares the user's solution with its own. 

Differences beyond some maximum delta are recorded, and biases and missed opportunities are 

recognized. Silverman tests a user’s design against a set of standards in four specific categories: 

clarity, coherence, correspondence, and workability. The agent uses a dialog generator to 

translate specific errors into human-presentable form. Silverman’s design critic can operate in 

either an active or passive mode in order to assist both novice and experienced users. 

A different type of critical agent can be designed to look at only the user’s 

communication rather than his or her work (Isbister et al., 2000). Communication agents follow 

the conversation and make suggestions to keep the communication moving. A helper agent 
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detects contextual cues, provides help, and then fades back into the background. It is designed to 

interact with users only when conversation lags. Isbister’s conversational critic operates within a 

3-dimensional virtual world; this world reveals the group’s orientation to each other and shows 

the agent’s presence. As different group members address each other or ask a question of one 

another, their 3-D representation moves accordingly. The agent is able to intrude gradually on 

users by moving its 3-D representation towards them. 

Conversational agents have also been used to modify cultural differences among different 

groups. For example, Isbister et al. (2000) designed a conversational agent that would suggest 

culturally appropriate topics to be discussed between Japanese and American groups. Drawing 

on previous studies, the article suggested that Japanese prefer concise and calm exchanges over 

noisy and talkative ones, while Americans tend to prefer more emotional conversations. A 

conversational agent was programmed to either suggest safe or unsafe topics. A mix of Japanese 

and Americans were selected to participate in a discussion. Whenever the conversational agent 

encouraged “safe” topics, the Japanese who were participating in the study ranked Americans 

closer to their own culture, whereas when they were given “unsafe” topics, the Japanese ranked 

Americans further from their culture. Through this technique, Isbister et al. were able to alter 

user behavior without explicitly instructing them about different cultural biases. 

Such unobtrusive agents engaging in gentle reinforcement of desired behavior may be 

preferable to forcing humans to accept a computer-generated compromise in cases of conflict. 

Humans can be encouraged to utilize social protocols they have already learned, or they can be 

instructed in protocols appropriate to the new communication environment. If the agent can 

predict conflict before it occurs, then an agent may be able to avert conflicts, eliminating the 

need for compromise. 
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Negotiation 

Whenever several individuals work together, conflicts arise. Conflicts can arise over 

incompatible goals or subgoals or even conflicting priorities. In the case of distributed CSCW 

applications, conflicts can also arise because two or more individuals try to modify the same 

object at the same time. In many cases, standard protocols for distributed computing can handle 

these later types of conflicts. The more challenging area of study involves guiding or automating 

the processes by which people, not systems, resolve conflicts in traditional work groups. 

Users, in general, are unaccustomed to working in a distributed work environment with 

limited bandwidth. Intensive communication within such an environment can significantly 

impact the work effort, especially during busy periods of the day when the network's bandwidth 

may be approaching or even exceeding the recommended maximum load. At the very least, an 

intelligent interface agent within a CSCW environment should anticipate the need for additional 

information or make suggestions about the current work situation so that users can focus on the 

source of the conflict. Ideally, agents can be programmed to automatically handle conflicts for 

their users. 

Automated conflict resolution can cause certain types of problems to occur, as suggested 

in Woitass (1990). For example, some implementations of meeting schedulers require users to 

share their personal calendars, which can result in a violation of privacy. Also, users may be 

forced to list phantom meetings on their calendars to prevent the automated meeting scheduler 

from allocating all their time for meetings. In order to avoid some of these problems, Woitass 

(1990) used a centralized arbiter to broadcast proposed meetings to users. The agent could be 

programmed to accept or reject conflicting meeting times, but the final decision to accept a 

meeting time was left to the human user.  
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A great deal of work on different negotiation strategies has been done in the area of 

distributed artificial intelligence (Laassri et al., 1990; Decker et al., 1995). These types of 

systems tend to utilize a collection of agents to solve a problem. Negotiation is simplified 

because the agents are designed to work together and are programmed with the same primary 

goals. Thus, many agents within distributed artificial intelligence environments are benevolent 

(Sen et al., 1994).  

There is also interesting work concerning negotiation among adversarial entities in multi-

agent environments where the only common factor between agents is the protocol used to 

communicate. In this system, an agent conveys data and accepts compromises only if it can 

“improve” its position. As a result, the data transmitted to other agents may actually be 

inaccurate (Rosenschein et al., 1994). A number of techniques have been proposed that 

encourage honesty and cooperation by means of protocol selection or ensuring that the price of 

dishonesty and selfishness exceeds the benefits of “unsocial” strategies. These systems tend to 

rely on different “bidding” strategies to determine the benefits of a specific action. For example, 

Rosenschein and Zlotkin (1994) propose a technique that encourages honesty in bid calculations. 

They describe this method using the idea that long distance service selection can be based on 

bidding rather than customer choice. A company only has to underbid its competition to win the 

customer. However, competitive systems may be encouraged to provide inaccurate information 

in order to win negotiations. An agent that remains aware of other bids can always set its bid 

lower; alternatively, the agent may be able to offer a service at a much lower cost but try to 

maximize its profit. Rosenschein and Zlotkin suggest a more sophisticated bidding policy called 

“Vickrey’s mechanism” that awards the bid to the lowest bidder but uses the second lowest bid 

to make the agreement. In the telephone company example, a company has no reason to overbid 
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because it will be awarded the next highest bid if it wins and is more likely to lose. Underbidding 

is only successful as long as all competitors bid more than the cost of offering the service. The 

point of this research is that heterogeneous agents can be encouraged to honestly portray the 

importance of winning a negotiation if some type of economy of resources constrains them. 

All of these transactions, however, require a great deal of communication among agents. 

Communication is very expensive compared to computation, so techniques are often explored to 

minimize the need for explicitly sharing information among agents. Some believe that economic 

techniques are ideal for reaching consensus while minimizing the need for additional 

communication. For example, Wellman (1995) describes a negotiation strategy in which agents 

bid on resources until there is a balance between supply and demand. The messages are compact 

compared to detailed information about preferences. The assumption is that equilibrium is 

reached eventually when resources are assigned and agent actions are determined in a way that is 

acceptable to the other agents. Unfortunately, such a system is not guaranteed to achieve an 

optimal allocation. 

Agents can also be instructed to make "deals" in order to maximize profits. Rosenschein 

et al. (1994) describe deals as joint plans that satisfy the goals of all involved agents. The utility 

of a deal is defined as the amount the agent is willing to pay for the deal minus the cost of the 

deal to the agent. The set of acceptable deals are those with a positive utility for all agents. 

Conflict resolution is handled by proposing a trade or by factoring in the cost of doing nothing. 

  The problem with systems that use utilities to negotiate conflicts is that the agents will 

try to maximize utility, resulting in selfish behavior. Enforcing social protocols by levying stiff 

penalties can help prevent some of the selfish behavior that can occur. For example, an agent that 

agrees to share resources and then decides that another plan is more advantageous should have to 
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pay a high price for abandoning the original plan unless the agent can convince other involved 

agents that it is advantageous for them as well (Sandholm et al., 1995). Failure to offer up 

flexibility or resources in exchange for betrayal is difficult to enforce without a centralized 

arbiter, but other agents can refuse to share resources with an antisocial agent. 

Bidding and deal-making strategies, however, still require some communication among 

the agents. With enough knowledge, most if not all of the negotiation process can take place 

internally with perhaps just a little communication to verify that everyone is in agreement. 

Fenster et al. (1995) describes a coordination process known as "focal points."  Focal 

points are solutions that “tend to be picked.”  For example, if asked to pick a number between 

one and ten, people are less likely to pick numbers at the extreme ends of the range. Focal point 

solutions tend to be unique, symmetrical where possible, and extreme in some sense. One 

problem with focal points is that joint plans are selected based on the likelihood that other agents 

will select them rather than on their worth or utility. If enough information exists to evaluate 

plans from the perspective of other agents, then this information can be used to pick the optimal 

plan.  

Banerjee et al. (1999) try to eliminate communication costs by using a Bayesian network 

to model agent responses to various situations. The topology of a network determines what 

aspects of a situation help determine agent response. Prior and conditional probability values 

capture the contribution of each characteristic of a situation that leads to a final decision. 

Assuming that reasonable estimates of relative importance and likelihood of choices can be 

produced, it should be possible to adjust the probabilities to create a better fit to actual agent 

behavior. 
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Sen et al. (1997) proposes a very complicated negotiation framework for planning 

meetings. The framework depends on users explicitly stating their preferences and on agents 

repeatedly broadcasting proposals and counter-proposals until a solution is found. This 

negotiation framework involves setting preferences for each attribute of a meeting, represented 

by a real number between 0 and 1. Values close to the threshold represent weak preferences, and 

values closer to 0 or 1 represent strong preferences. Also, different attributes can be weighted 

(e.g., afternoon meetings may be more important than on what day the meeting is held). 

A user starts the process by requesting a meeting for a particular group, length, priority, 

suggested time(s), deadline, etc. The user’s agent then goes around and tries to find the times that 

are open for other group members, ranks these times according to preference, and transmits one 

or more of the best times to the other agents. The agent determines which times are acceptable by 

counting votes. If no time is acceptable, then the agent begins a new round of negotiation. 

 This particular framework uses an elaborate ranking method that assigns weights to 

different preferences and attributes. The system also tries to give more weight to times that were 

previously selected. For the meeting scheduler application, this means that times will be selected 

that meet the most requirements, or at least the more important requirements, for each agent.  

Negotiation techniques range from methods involving the transmission of complete data 

about a user’s preferences and the user’s offers or counteroffers to methods that, in a sense, 

anticipate the negotiation process and arrive at an equitable compromise with little or no 

communication. These techniques rely on knowledge of the other competitors, knowledge that is 

provided explicitly, learned, or logically deduced. Some negotiation strategies rely on the 

accurate sharing of information, while others require feedback concerning a plan’s or resource’s 
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relative worth. In either case, the benefits of learning this knowledge indirectly rather than 

relying on possibly inaccurate transmissions should be explored. 

Adaptive Learning 

A number of machine learning techniques have been used for prediction and control. 

These techniques tend to be categorized as either symbolic or non-symbolic (Malcolm et al., 

1990). Symbolic learning techniques generate human-readable rules that are adjusted or replaced 

over time (Luger, 2002), while non-symbolic systems tend to categorize the desirability of a 

classification or event using numeric weights or probability values (Haykin, 1994). While useful 

for capturing reflexive responses or categorizations, non-symbolic systems do not usually have 

the ability to explain their reasoning. 

Neural networks are a popular form of non-symbolic learning technique. Neural networks 

are an attempt to emulate nature's efficient learning mechanisms (Haykin, 1994). Neurobiologists 

may be interested in precisely modeling the biological neuron, but most practical 

implementations of neural networks use a much coarser model based on different optimization 

theories or statistics. Neural networks are usually implemented as a collection of nodes, called 

neurons, which are connected to a set of inputs. A function is then used to convert these inputs 

into an output. Most neural network implementations have some method for adjusting the 

function based on a feedback mechanism that may be external or self-generated. Many 

implementations of neural networks use an array of values to represent the inputs into the 

network, an array of adaptable weights that help define each input's contribution to the function's 

value, and an array of node outputs. 

One of the most well-known neural network types is the back-propagation network. 

Many practical solutions to problems of prediction or classification have been solved with this 
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type of network (Wasserman, 1989). In general, the various nodes within a neural network are 

assigned different weights based on their contribution to the eventual output. These weights 

represent the parameters of the system that are adapted so that the network can learn proper 

responses (outputs) to various situations (inputs). During the course of the learning process, the 

weights are adjusted to minimize the difference between correct outputs and actual outputs. In 

more complicated networks, such as two-layer networks, a back-propagation algorithm allows 

the network to learn more complicated response patterns because it introduces a degree of non-

linearity in the output to ensure that each layer’s weights have their own unique contribution to 

the final result. The sigmoid function nete
out

−+
=

1
1  is often used for this non-linearity function 

because it forces all outputs to be between zero and one, eliminating the possibility of infinitely 

growing output while at the same time providing adequate discrimination for values near zero. It 

also solves the “credit assignment” problem for multiple layers (Wasserman, 1989) as it has a 

simple derivative for determining the relative contribution of each node to any error in the 

output. 

Traditional back propagation involves adjusting the weights of the neural network in 

order to minimize the error of the network's response to a population of inputs. This type of 

machine learning technique, unfortunately, can quickly forget older exemplars if repeatedly 

presented with different ones; one way of dealing with this problem is to calculate the error on a 

training set of exemplars, then back-propagate this overall error (called epoch training). The 

training occurs off-line by repeatedly applying the network to the entire training set and 

recalculating an overall measure of its accuracy. 

 Probabilistic neural networks attempt to approximate Baye's method of classification 

using a Bayes-Parzen classifier converted to resemble a traditional neural network architecture 
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(Masters, 1995). Given a training set of exemplars that provides a full and representative 

coverage of different classes, a PNN estimates class membership by approximating the Bayesian 

probability that the input belongs in that class. The PNN is often designed to simply select the 

class to which the input most likely belongs, but its ability to report its selection criteria in terms 

of probabilities makes it attractive for use in hybrid systems where, for example, a more 

symbolic A.I. technique like a fuzzy rule-based system can use these estimates in its reasoning 

process (Luger, 2002). 

Another feature of the PNN is that it can be retrained to incorporate new training 

exemplars relatively quickly. Unfortunately, this feature is balanced by longer classification 

times. The PNN must compare the input value against every exemplar in each class in the 

training set in order to classify it (every training example is represented by a neuron). For this 

type of dynamic system, many of the same questions that plagued training set selection for back 

propagation neural networks also plague the PNN. One clear advantage that the PNN has over 

the BPN is that new exemplars can be integrated into the training set more quickly. 

In addition to simple classification techniques, there are a number of machine learning 

approaches that attempt to predict appropriate responses to a sequence of actions, either by 

predicting a user response or directly predicting when the negotiator should intervene. One 

approach to this problem uses a spatial mapping of time to overcome this problem (Haykin, 

1994). Finite sets of past inputs are saved in a sliding window; the order of inputs within the 

window indicates the relative order of the events that caused them. The neural network is 

provided with all past inputs simultaneously and learns to assign an appropriate significance to 

more recent events versus older events. The implementation described in Haykin (1994) is 
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identical to the traditional BPN except for this technique that maps all past inputs in the window 

as if they were occurring at one moment. 

Real-time recurrent networks support a less explicit method for determining the impact of 

a past event on the current behavior of a network. Like the binary flip-flop used to implement 

computer memories, this type of network uses feedback from the previous output to determine 

the current value of the output. Both hidden units as well as explicit output units provide input to 

the network. Supervised training of a recurrent network involves calculating the difference 

between the desired and actual outputs and multiplying the result by an error gradient calculated 

across each weight and adjusting the corresponding weight by the result (reduced by a learning 

rate parameter). The error gradient is estimated over time to be the contribution of a weight to the 

values of the visible outputs. 

Induction is the process of creating generalizations from specific examples. Like 

scientific theories, rules or classifications created by induction can be subjectively evaluated for 

how well they explain or describe some object, process, etc., based on current evidence. 

Inductive learning techniques produce symbolic output, as opposed to machine learning methods 

that produce numeric values or weights. 

A well-known induction method is the ID3 algorithm (Jackson, 1999). ID3 creates a 

decision tree from a set of examples. Each node of the decision tree represents an attribute of the 

object to be classified. The paths that lead from each node are labeled with values for that 

attribute. The leaf nodes of the decision tree represent possible classifications of the object. 

These decision trees can be mechanically translated into production rules for an expert system 

(Luger, 2002). 
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The previous learning methods are similar in that they learn from examples. That is, the 

program is provided with a set of input/output pairs, and the task is to learn a function that covers 

those pairs. However, there are other types of learning techniques that begin without training 

examples. The adaptive-critic, and other related methods, represents a variation on reinforcement 

learning. Reinforcement learning is supervised only in the sense that an occasional positive or 

negative reinforcement is applied to situations where performance is acceptable or unacceptable. 

Behavior is represented as a series of states or state transitions. Explicit reinforcement occurs 

only for states where there is a clear positive or negative evaluation; the system may be exposed 

to a number of states with no clear evaluation. Presumably, continuous reinforcement (traditional 

supervised learning) is impractical for these intermediate states, so in cases where a sequence of 

actions leads ultimately to a reinforcement signal, some method must be employed to distribute 

the feedback to the appropriate states that led to correct behavior. While some systems, such as 

drive reinforcement learning (Barto et al., 1983), distribute feedback by using techniques similar 

to the temporal-to-spatial mapping mentioned in the previous section, others use a dynamic 

programming approach to propagate the reinforcement values from the point of actual 

reinforcement back to earlier states. This adaptive critic then provides a pseudo-reinforcement 

signal to the actual reinforcement network, increasing the speed and degree of learning possible 

for states earlier in the sequence. 

Q Learning, a reinforcement learning technique, completely eliminates the distinction 

between weights that indicate a state/action pair's worth and the estimate of future reinforcement. 

Instead, it assigns a Q value to each state/action pair. These Q values, hopefully, converge to 

some optimal level as actions are performed over time. Assuming that Q' represents the mapping 

of state/action pairs to an ideal measure of expected reinforcement, the optimal plan would 
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involve following the action with the highest Q' value for a given state; as a perfect measure of 

future reinforcement, each action selected thereafter in the context of succeeding resulting states 

would represent the same maximum Q' value. 

In Q Learning, each state maps every action to a Q value that estimates the expected 

reinforcement to be received by following an optimal policy after that action. A variation of Q 

Learning also associates an eligibility value with each action. Whenever an action is selected, the 

eligibility factors of all other actions for that state are set to zero while the eligibility factor for 

the selected action is set to one. The eligibility value on unreinforced actions decays over time, 

decreasing the likelihood that these actions are pivotal in achieving the current reinforcement 

(Figure 2-1). When reinforcement is ultimately received, the Q values are adjusted for each 

state/action pair based on the level of the reinforcement and the eligibility of the pair. Thus, a 

sequence of states and action decisions made over time are rewarded or punished, with the 

greatest change occurring to actions representing the most recent activities. 

Q Learning has been successfully used in the creation of controllers that learn how to 

manipulate a system over time. However, Q Learning is not as effective as a classifier system in 

those cases that require the learning of classifications as opposed to policies. Considerably more 

training is required in situations where a chain of events is not responsible for ultimate 

 

Figure 2 - 1  Q Learning (with decaying eligibility) 
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reinforcement. Where supervised training is possible, a more traditional classifier system can use 

optimization techniques to increase learning. 

Summary 

This chapter presents an overview of the important ideas that were relevant for this 

particular study. These ideas were synthesized from the significant theoretical constructs 

identified in an extensive analysis of the current literature. The breadth and depth of this 

analysis, and the resulting summaries, made the theoretical product of this chapter a powerful 

tool for guiding this study. The importance of this study has been helped through the extensive 

analysis of each of the following domains of current literature:  artificial intelligence (i.e., agents 

and machine learning), human-computer interaction (negotiation), and computer-supported 

cooperative work. 

The general question that was faced is how to make a computer-supported collaborative 

environment in which conflicts are handled automatically, without constant human/human 

negotiation. A related question asked whether it is possible to avoid the need for advanced 

conflict resolution by increasing awareness of potential conflict without overburdening the user 

with additional information. The four main examples of how to approach this problem were 

discussed in great detail. These four areas have contributed in greater or lesser degrees to the 

design of this study. 
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CHAPTER 3 
 
 

DESIGN 
 

The previous literature guided this study on the use of a hybrid artificial intelligence 

approach to minimize conflict in a shared CSCW environment. After determining that group 

conflict occurs in collaborative environments, a special computer-supported collaborative 

application was developed to examine methods for reducing group conflict through the use of 

interaction-support agents. Each user’s agent “learns” to predict potential conflict situations. The 

agent then responds by directing the user’s attention to the problem, offering advice, or, in some 

instances, interceding for the user. This software was then used in a special project. The project 

was divided into two phases:  data collection without the agent, and a simulation of long-term 

interaction with the agent. The data collection phase used several small groups of humans to 

create a realistic model of human interaction and to determine the nature of conflict in this type 

of application. The agent phase verified the capacity of the agents to adapt to unique users over 

time. Unfortunately, long-term trials with humans were not possible at this time, so a simulation 

of user activity was used to verify the adaptability of the agents. The results of these two phases 

of the project will be reported in Chapter 4. 

Chapter 3 describes the collaborative application system in greater detail. It considers the 

various intervention and learning components of an agent. After reading this chapter, the reader 

should have some knowledge of the collaborative application used in this study. The reader 

should also be familiar with the interaction support system used to detect and respond to 

conflicts. 
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System Overview 

The major objective of this research was to determine how to minimize conflict within a 

computer supported collaborative application. In order to address this problem, a special 

computer supported collaborative application was developed. The specific context of this 

collaborative application was a shared calendar system that allows group members to schedule 

events (i.e., meetings) for specific time periods and on certain days. The collaborative 

application, therefore, consists of a graphical user interface, Internet communications support, a 

database management system, and an interaction support agent (Figure 3-1). The graphical 

interface contains a number of shared windows that allow groups to access each other’s 

calendars and schedule meetings. Groups can schedule events by selecting a day and time on the 

calendar as well as enter additional information about the event. A simple distributed database 

maintains local copies of the events scheduled by each user. In addition, the collaborative 

TCP/IP Network Layer

User Interface

Local Copy of
Database

Interaction
Support Agent

Incoming message thread Outgoing message thread

 
Figure 3 - 1  Collaborative Application Design Overview 
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application contains an agent system that monitors activities related to both local and 

communicated user actions. The agents are designed to detect conflicts that occur while users are 

trying to schedule events with one another and to respond to the recognized conflicts in an 

appropriate manner. A more detailed description of the system components now follows. 

User Interface 

The first step in this research was to create a computer supported collaborative 

application that could be used to study group conflicts within a CSCW setting. A group calendar 

application, resembling an appointment book, was created to help members of a group schedule 

events. The group calendar software differs from a single-user calendar system in that all events 

are automatically broadcast to every member in the group, effectively creating a shared 

workspace. An integrated message service (Figure 3-3) allows both private and group 

communication among users. The main window takes the form of a monthly calendar (Figure 3-

2). The calendar contributes to each user’s awareness of group activity through a simple color-

coding scheme. The days of the month turn yellow whenever a change is occurring. Once a 

change is reviewed, the day button for that date changes from yellow to white to continue to 

remind users that an event has been scheduled on a specific day. Users may view, modify, and 

add entries by selecting and clicking on a specific day in the calendar window. The interface 

works similar to a daily appointment book (Figure 3-4) in that users can switch back-and-forth 

between the month and day views. Every time an entry is added or altered, the change is 

automatically broadcast to all active members in the group. 
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There are several features within the shared calendar application that are designed to help 

users remain aware of one another’s activities. For example, a log window records any changes 

that occur and appears automatically whenever someone in the group alters an existing event. A 

button corresponding to a day changes color whenever another user modifies an event on that 

day. Finally, there is a summary window (Figure 3-5) that provides users with an overview of all 

of the events that have been scheduled by the group. These features were designed to improve 

user awareness of group activities. Such features are considered important for successful 

collaborative communication (Procter et al., 1994). 

 
Figure 3 - 2  Main Calendar Window  

Figure 3 - 3  Message Window 

Figure 3 - 4  Day Schedule 
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Distributed problem-solving is assisted by a central server that stores the names and IP 

addresses of every member in the group. Normally, all communication takes place directly 

between the members of the group via peer-to-peer connections. Rather than hardwire each IP 

address into the system, the application requires users to connect to a common name server at the 

beginning of a session. Each user configures the software to connect to the server’s IP address 

and enters their name and the name of their group. This information is sent to the server; the 

server, in turn, responds with the names and IP addresses of the other active members of the 

group. In addition, the server informs the other active members that a new member has joined the 

group and provides them with the user’s IP address. The server plays no other role in group 

communication or database management.  

Once the group is connected, users communicate directly with the distributed application 

over TCP sockets. Actions taken by different users are summarized into message packets that are 

broadcast to other members of the group. The message types can be separated into three 

categories:  entry-related, informative, and negotiation messages. Entry-related messages are sent 

whenever a user enters a new item or modifies an existing item. An entry can be modified by 

removing it entirely or by performing any combination of modification acts such as changing the 

description of the entry and changing the entry’s start and end times. Informative messages are 

sent whenever a user opens and closes a day’s entry window; these informative messages are 

 

Figure 3 - 5  Summary Window
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intended to notify the group about the focus of each user, allowing the user or agent to anticipate 

future entry-related messages concerning a particular date. Informative messages are also sent 

whenever a user joins or leaves the active group. Negotiation messages are described in the next 

two sections. 

Low-Level Conflict Handling 

In addition to the shared calendar interface, the application contains an agent system that 

is designed to detect conflict and offer advice on how to resolve group conflicts. Initially, the 

agents were designed to detect low-level conflicts such as those that occur whenever two users 

schedule different events for the same time period. In the first version of the application, a simple 

“agent” was developed to negotiate low-level, mutual exclusion conflicts caused by two or more 

users’ making changes at the same time (Figure 3-6). The negotiation process uses a simple tie-

breaking scheme inspired by the work of Lamport (1978) and Rabin (1982). Each agent involved 

in the conflict generates a pseudo-random number seeded by a user's identification number to 

generate a ticket; tickets were exchanged in conflict situations, and the highest ticket won the 

conflict. Initially, a conflict was said to occur whenever two users tried to add an event in the 

same slot or change the same event simultaneously; the loser of the conflict was required to 

rescind their changes. 

The intelligent agent would try to improve its behavior by learning how to predict this 

form of low-level conflict. However, after analyzing several interactions among users of the 

application, it became apparent that too few conflicts occurred during the test sessions. Even 

when users were restricted to scheduling events within a single month, they rarely encountered 

conflicts. This was due, in part, to the large number of non-overlapping times that were available 

during the month (that is, potentially 12 x 30 = 360 non-overlapping times, which assumes, on 
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average, one hour meetings with only about 12 useful hours a day for meetings). Further, since 

the calendar application used a simple FIFO method to handle scheduled events, true conflicts 

occurred only during the few milliseconds when a scheduled event was being transmitted to the 

rest of the group. After considering other types of shared applications in which conflicts might 

occur (such as a shared whiteboard with a single resource), the definition of conflict was 

expanded to include other types of conflicting situations such as when one user schedules an 

event at a time that is “undesirable” for another user. 

The change in the definition of “conflict” suggested that an “intelligent agent” might be 

used to learn a user’s preferences to aid in determining when a conflict had occurred or might 

occur. Rather than force the user to enter their preferences directly, a method was sought to have 

an agent “learn” preferences by observing the user’s actions. Since user’s actions were already 

being shared whenever the calendar was updated, it seemed logical to assume that an agent could 

be programmed to learn all users’ preferences with minimal effort or effect on the rest of the 

communication system. 

 

Figure 3 - 6  Low-Level Conflict Resolution 
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Intelligent Agent System 

Therefore, a second version of the intelligent agent system was developed and was 

programmed to “learn” user preferences in order to offer assistance to groups whenever different 

types of scheduling conflicts occurred. In the current version of the shared calendar application, a 

preference conflict is said to occur whenever one user schedules an event at a time that is 

“unacceptable” to another member of the group. Possible responses to the different types of 

conflict range from providing the user with advice about how to resolve a conflict to 

automatically negotiating a resolution of the conflict with the other user’s agents. 

Several different learning algorithms were investigated to determine if they could be used 

to detect the different types of conflict and select appropriate responses. User preferences, in 

particular, are unpredictable. In addition, appropriate responses may vary somewhat from one 

user to another. Reinforcement learning algorithms were of particular interest, since they have 

the ability to learn about unknown dynamic systems in real time (Littman et al., 1991, for 

example). 

In order to use the reinforcement-learning algorithm for the calendar application, the 

event data had to be classified to fit the system’s learning component. For example, events were 

represented as items with specific dates and times, covering a specific time period. To promote 

more general learning, times were classified as morning, lunch, afternoon, supper, or evening 

times. In addition, several user actions were characterized as being either constructive (such as 

scheduling a new event) or destructive (such as removing an event or otherwise changing it so 

that it no longer reflected the original user’s preferences). This type of classification made it 

easier to recognize general trends in the practical preferences or actions of a user. Resources 

were also conserved. Since there are, on average, 360 time slots per month in the calendar 
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application, a learning algorithm must try and contend with a minimum of 720 states. The 

simplest implementation of Q learning uses a lookup table to track the estimate of future 

reinforcement (Q value) for each possible state/action pair. Assuming five possible actions, the 

table needs 3600 Q values. If the state is defined by the last two user actions, this number grows 

to 2,592,000. In general, if each piece of data used to define a state has a different possible 

values, the space requirements for a number of machine learning methods would be O(an) for n 

data items. The more information used to recognize or predict conflict, the more space is 

required, which also impacts learning time. 

A hybrid learning system, on the other hand, is able to combine the strengths of several 

different learning methods. One of the weaknesses of using a single machine learning method is 

that most problems are too complex for a single approach (Goonatilake et al., 1995). Another 

reason for rejecting a single learning system is that it is often resource intensive. Since Q 

Learning methods tend to require a large amount of resources (Baird, 1995), it is important to 

find ways to reduce the processing time required to compute the various Q values.  

The particular hybrid learning system that was used in the Calendar application was 

designed as a two-step hierarchical system in which simple inferences are passed to the next, 

more general level. The classifications computed at each stage of the process provide input to the 

next level. This was done, in large part, to minimize processing time and is similar to what 

occurs in an expert system that uses rule sets and hierarchies to accelerate inferencing. Also, by 

characterizing states as different layers of knowledge, going from specific to general, it is 

possible to eliminate some of the thrashing that occurs in some learning algorithms because 

conflicts tend to disappear as the more general layers are invoked. As a result, a hybrid learning 
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systems seemed to be uniquely suited for learning conflict situations that occur when scheduling 

events. 

One of the major issues that needed to be addressed for this particular hybrid learning 

system was the makeup of the different layers. There are several different ways to define the 

layers, and it is interesting to review the different approaches. For example, one layer might be 

designed to learn user preferences, while the second is used to learn the user’s next most likely 

action. A third layer could then reason about which actions lead to different types of conflict and 

infer an appropriate response. An alternative solution is to have the agents classify the next 

action from a chain of previous actions, bypassing explicit user preferences entirely. Yet a third 

solution is to connect user preferences and recent actions directly to a learned anticipation of 

conflict, bypassing the third layer described in the first example. 

The latter solution has two benefits. Encoding specific user actions in terms of general 

user preferences creates a noticeable reduction in the number of distinct states that have to be 

processed in the second layer. On the other hand, the very nature of a dynamic learning system 

requires that it is initially and occasionally wrong. Any layer that responds incorrectly to an 

event will probably cause an incorrect response to occur in the inferencing that takes place in 

some future layer. However, if the system can “anticipate” a conflict during one of the early 

stages of learning, then the action prediction layer may be unnecessary, and fewer layers will be 

required to get reasonable responses from the system. Thus, a learned “anticipated” layer 

approach was designed and implemented for this particular calendar application.  

The current agent system contains three modules:  a preference learning module, an 

action selector, and an action planner (Figure 3-7). The agent first learns preferences from the 

actions of the users. Preference learning can be done independently of the other two layers 
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because it is really a separate learning problem. Preference learning is essentially a method of 

summarizing past actions and recognizing more general patterns. 

The action selection module examines the user’s preferences and the last action taken by 

a user and translates these into an appropriate agent action. The agent actions at this layer are 

encoded as a simple value representing a type of response. In addition to recognizing and 

identifying a response to different conflicts, the action selector “learns” to recognize events 

leading to conflict.  

The action planner module consists of a set of plans that are associated with the different 

action types proposed by the action selection module. Once the action selection module has 

chosen an action type, the action planner tries to prescribe a series of steps and actions that might 

be appropriate to overcome the current or potential type of conflict. For example, one proposed 

action of “INTERRUPT TO WARN USER” generates the following sequence of steps:  

DETERMINE STRENGTH OF USER PREFERENCES, SELECT MESSAGE OF SIMILAR 

 

 
Figure 3 - 7  Modules Supporting Intelligent Agent
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STRENGTH, and IMPOSE MESSAGE BOX WITH MESSAGE ON USER'S DISPLAY. By 

separating the agent’s responses into action type and action steps, other machine learning 

algorithms can be used in this system with minimal modification. The action planner can be 

replaced with other types of Artificial Intelligence tools such as case-based reasoners (Kolodner, 

1993) that can customize responses to individual users. For the present, this layer is simply part 

of an overall software design module. The software analyzes the situation that matches an action 

type and infers a fixed sequence of steps. 

User Preferences 

As previously stated, the user preference module is designed to learn various 

characteristics about the user. More specifically, this module tries to determine the days and 

times a user prefers to schedule certain types of events. The intelligent agent makes these 

decisions by examining the user’s repetitive selections for different dates and times within the 

Calendar application. As previously stated, user preferences are defined as time elements such as 

a day of the week, a time of the month (early or late ), and a time of day (morning, afternoon, 

evening, etc.). To classify user preferences, the intelligent agent matches the user’s specific 

actions (e.g., adding a date with Joe for July 3 at 8 p.m.) with the user’s preference values (e.g., 

the user prefers Tuesday evening, early in the month). The user preference module is also able to 

make certain generalizations about previously classified events such as UserA prefers to 

schedule events in the evenings. 

The agent currently uses a simple reinforcement technique along with a generalization 

algorithm to learn user preferences. User actions are classified as neutral, constructive, or 

destructive. An example of a neutral action is a user opening a window on a particular day. A 

constructive action consists of an event such as adding a new item to the schedule. Destructive 
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actions include events such as removing an item from the schedule. Modification actions may be 

broken up into both constructive and destructive actions that involve changing the time of an 

event. Each time a user performs a constructive action, the user preferences module records this 

as evidence of a positive user preference; likewise, a destructive action is recorded as evidence of 

a negative user preference. Anomalous actions, such as unrepeated actions that contradict past 

behavior, are handled by computing a weighted average of past and new evidence. A strong 

preference requires as many as three consecutive observations that the preference has changed 

before this is reflected in the new preference data. 

The reinforcement algorithm used in the calendar application takes the weighted average 

over time of a reinforcement signal determined by user actions. This is a common technique used 

in other reinforcement learning systems (e.g., Watkins et al., 1992). Because this layer is 

concerned with classification rather than prediction and assumes that user actions occur 

independently of each other, only instantaneous reinforcement is considered. Reinforcement is 

calculated entirely from the type of user action inferred:  0 for a neutral action, -1 for removing 

another user’s event, +1 for adding a new event, between 0 and +1 for more ambiguous 

constructive actions, and between 0 and –1 for more ambiguous destructive actions. Ambiguous 

actions include modifying the time of an event so that it overlaps with the original scheduled 

event. Such an adjustment may be less a reflection of preference than the need to make 

adjustments to an already crowded schedule. The new preference is calculated by combining the 

previous measure of preference with the reinforcement signal:  

pi(w,d,t) = α pi-1(w,d,t) + (1-α) r 

where r is the reinforcement signal and α is a forgetting factor. Values of α close to 1 indicate 

past experience is more important than new experiences, and values close to 0 indicate that new 



 
 

 
 

45

experiences are more important than past experience. Two types of α values are used, αe for 

encouraging an existing preference or establishing a new one (pi-1(w,d,t) = 0 or has the same sign 

as r), and αc for contradicting an existing preference. 

Two “forgetting” factors are included in the calculation for user preferences to insure that 

the confidence levels grow slowly and, at the same time, that any contradictory evidence is 

accurately reflected by a change in preference. Three strong user actions (r=1.0) are required to 

confirm a user preference with confidence 0.5 if αe is 0.7937; six confirming actions will achieve 

a confidence of 0.75. A value of 0.756 for αc will not allow a single contradictory experience to 

undo a strong preference measure, but three such contradictory actions will turn a preference 

level of 1.0 into –0.136. Preference strengths below 0.75 will change if less evidence is present. 

A user action, translated into a constructive or destructive action for a specific time of 

month, day of the week, and time slot, provides direct evidence for a user’s preference for a 

particular part of a month. A generalization algorithm is then used to try and capture preferences 

of a broader nature. For example, a user action may indicate that a person prefers to meet on 

Monday evenings and at the beginning of the month. However, this simple conclusion might 

actually be part of a broader preference for meeting at night. Further evidence is needed to verify 

these more general preferences; the generalization algorithm starts with a low-confidence 

measure that such a preference might exist and increases the confidence measure as additional 

evidence is found. 

Since the system is concerned with learning user preferences for different dates and times 

in a calendar application, the term “dimension” is used to refer to any single measure of a 

particular action’s place in time, such as the day of the week, the week within the month, and the 

general time of day (morning, afternoon, evening, etc.). A specific user action may indicate a 
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preference for an intersection of any subset of these dimensions. Instead of simply indicating a 

preference for a specific day and time, a user may also indicate a preference for a day of the 

week or a combination of time of day and time of month, etc. 

Whenever a user action occurs, the system tries to generalize this event by adjusting the 

weights of all neighboring times and days. The greatest adjustment occurs for those neighboring 

entries that share the same values along one or more dimensions (e.g., yesterday at the same 

time, or pi-1(w,d-1,t)). More specifically, the algorithm works in the following manner: 

Let di represent the distance of a preference datum from the observed event, measured 

along only one of n dimensions. The positive or negative impact of the observed event on the 

preference datum degrades both with overall distance and the smallest distance to an item that 

matches along one dimension. 
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The small decay factor of 0.05 causes the impact to fall off quickly towards zero as the distance 

between dimensions increases. Combining overall distance with the minimum distance along a 

single dimension causes the results to fall off far more quickly for data that do not share a 

common set of attributes with the new event. 

The combination of specific evidence with the generalization algorithm means that the 

system delivers a response based on past behavior, regardless of whether the time of interest has 

been referenced previously. Previous literature (see Chapter 2) discusses a number of different 

negotiation methods that can be used to exchange user preferences among agents. This particular 

problem was avoided in the Calendar application because every user action is transmitted to all 

the members in the group. Since the user’s agent has access to group information at all times, it 
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can estimate another user’s preferences for a particular event without requesting additional 

information from any other user. 

Preference information for a specific time slot is obtained by looking at the preference 

level, or weighted average, calculated for a specific week, day, and time, pi(w,d,t). The 

preference levels can be classified as “highly desirable,” “moderately desirable,” “no opinion,” 

“moderately undesirable,” or “highly undesirable.”  Preference levels are maintained between –1 

and 1. Because the generalization algorithm ensures that the entire set of preference levels will 

be affected, if only slightly, by every constructive and destructive user action, the preference 

category of “no opinion” is applied to all magnitudes of less than 10-6. Moderate preferences are 

defined as those preference levels whose magnitudes are between 10-6 and 0.2, inclusive. Strong 

preferences refer to any levels above 0.2. These preference classifications are the results of 

calculations from the rules that reside in the user preferences layer of the system. 

Action Selection 

Once user preferences are determined, the system can respond to a user action if it 

represents a conflict situation or a precursor of a conflict. System responses include doing 

nothing, drawing attention to an activity that might be a possible source of conflict, warning or 

advising the user concerning a potential conflict situation, automatically notifying other users of 

undesirable behavior or otherwise acting on behalf of the user, and taking steps to prevent 

undesirable actions. A Q learning algorithm is used to obtain the appropriate response that is 

associated with a particular state, as represented by the user’s preferences, involvement, and 

recent activity. 

Recent activity includes items such as the type of activity that occurred and whether it 

was constructive, destructive or informative. 
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Involvement is a weighted average that allows users to be ranked as very active, 

somewhat active, or largely inactive; the average is calculated as the time between messages 

generated by a user’s behavior divided into 30 seconds (an assumed “minimum” response time), 

so involvement, or “activity level” as it is called in the algorithm, is a value between 0 and 1, 

approaching 1 for users who are adding or changing scheduled events as quickly as possible. The 

measure of involvement is reduced to “virtually inactive” (average participation every 30 

minutes or more), “low activity” (participates every 10-30 minutes), and “high activity” 

(participates more than once every 10 minutes). 

Preferences are provided by the preference-learning system after being classified as one 

of the five categories mentioned in the previous section. Thus, real-valued inputs like the 

preference weights are combined with fine-grained inputs to create a finite number of discrete 

states. 

For example, UserA may use the Calendar application to schedule a meeting with UserB 

without consulting UserB’s calendar. If UserA schedules a meeting on a Monday and UserB 

does not like Monday meetings, then a conflict is said to have occurred. The action selection 

system should eventually learn to respond to the scheduling of Monday meetings between UserA 

and UserB. UserB’s agent may learn to notify UserB of the undesirable event, and UserA’s agent 

should begin advising UserA to stop scheduling meetings on Mondays. Eventually, the Q 

learning algorithm can associate UserA’s viewing of a Monday date with a negative response, 

allowing both users’ agents to anticipate the creation of undesirable events before they happen. 

In this way, an informative action, such as a notification of a user exploring a certain date, 

becomes a signal for an undesirable constructive action that could lead to conflict. 
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In order to learn appropriate responses to situations, the Q learning algorithm requires 

inputs from the system in the form of rewards and punishments. The action selection module 

drives the Q learning software and also determines when to punish inappropriate system 

responses and reward appropriate system responses. An example of an inappropriate system 

response is the decision to do nothing at a point of recognizable conflict. The action selection 

module defines a “hard” conflict as any modification to the time or existence of a scheduled 

event by a user other than its creator. A conflict can also occur whenever a negative message 

from a user causes the creator to modify an event, although this is more difficult to detect than 

other types of conflicts. Potential conflicts are any actions that create or change events that cause 

those events to be incompatible with user preferences; these markers of potential hard conflicts 

are referred to as “preference conflicts”. Whenever a conflict is detected, the module sends out a 

small negative reinforcement (r = -0.1) to the Q learning system. This negative reinforcement is 

then propagated to the various state/response pairs, reducing the Q values that determine 

response selection for responses leading to the conflict; the “eligible” state/response pairs are 

reduced relative to their proximity to the conflict event in time. The negative reinforcement is 

increased (r = -1.0) if the Q learning system responds to an obvious conflict by proposing that the 

agent do nothing. If the Q learning system recommends an inappropriately strong response 

whenever the user’s preferences do not significantly outweigh the preferences of others, such as 

blocking a change to the schedule, then a negative reinforcement (r = -1.0) will be applied again. 

In addition, positive and negative reinforcement may be directed toward a state/response 

pair depending on the user’s settings. If the module determines that strong responses are 

required, it will ask the user for permission to automatically intercede for the user. These types of 

strong responses do not only inform or advise the user; they actually block or cause changes to 
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occur without user interaction. For example, a user with an inflexible schedule may choose to 

accept a strong response from the agent to prevent any possibility that any other user will make a 

change to the schedule. The user allows the system to make changes automatically or to restrict 

the actions of an agent. These user-defined settings extend the definition of appropriate and 

inappropriate responses to include more feedback from the user. Strong responses are only 

rewarded (r = 1.0) when explicit user approval is given. They are punished as inappropriate (r = -

1.0) if the user explicitly rejects them. 

The Q learning system ranks the four different types of responses to further determine 

their appropriateness. Warnings or explicit advice, say via a pop-up window, are considered 

stronger than the action of notifying the user of the activities of other users (subtly through the 

interface or by unobtrusive messages). If the Q learning system advocates a strong response that 

is inconsistent with the current state (e.g., warn the user about scheduling an event on a day that 

is acceptable to everyone), then the state/response pair that is responsible is punished (r = -0.5) 

and the response is weakened. 

 The responses of other users’ agents can also be used to calculate reinforcement. If 

another user’s agent automatically rejects a previously entered event, then a conflict occurs and 

any response to the original user’s action, other than rejecting it, is inadequate. It should be noted 

that punishment of inadequate responses allows the agent to avoid unnecessary communication 

overhead by responding to the offending action immediately rather than waiting to be notified by 

another agent.  

The Q learning algorithm in the Calendar application updates states through a 

combination of direct feedback and a variation of a dynamic programming technique. The 

dynamic programming technique allows Q values to impact more recent states before a conflict 
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is recognized and direct reinforcement provided. If a user consistently moves through a state 

before reaching a conflict situation, a response to the conflict will gradually precede the conflict 

itself, as previous negative reinforcement propagates back to notify the system that doing nothing 

during this earlier state is a bad thing. This can happen even in the absence of repeated 

reinforcement because the Q values of the next anticipated state represent an estimate of future 

reinforcement that is used in the training of previous Q values. Any response that is effective at 

eliminating conflict will be selected as soon as the conflict can be unambiguously detected. 

Action Implementation 

There are several different types of responses that are generated by the action selection 

module:  notifications, warnings, automatic restriction of certain user behaviors, and automatic 

response generation. Depending on the circumstances surrounding an event, the actual steps that 

the agent takes may differ from one invocation to the next. A simple rule base system establishes 

the appropriate plan or sequence of actions for a given situation. Once a plan is generated, the 

system automatically performs those actions. A description of the different types of actions now 

follows.   

Notification actions are made in response to another user's actions or a response to an 

action performed by the agent's user. The agent may respond to another user's actions by 

displaying or flashing a window that shows the user’s current and past changes. A marker can be 

placed on the calendar to indicate times of possible preference conflict.  

A warning type of action requires the system to use a more forceful intervention strategy 

such as the display of a pop-up window that interrupts normal user behavior. One of two buttons 

is used to dismiss the window, one of which allows the user to indicate that the warnings are 
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annoying. A small negative reinforcement is sent to the action selection system if warnings are 

not appreciated. 

A restrictive action is designed to initiate negotiation between two or more agents. In rare 

cases, two agents may add or modify an event, simultaneously. Whenever this occurs, a 

restrictive action is used to force a negotiation. The same negotiation function that handles 

conflicts between agents is used in this situation. The only difference between the two types of 

restrictive behavior is that in cases of restrictive responses, the system takes action after 

anticipating a possible user conflict as opposed to after a conflict has occurred. Users are given 

the option of receiving notification of restrictive actions with or without being asked first. In 

cases where the agent's own user triggers a restrictive response, the agent acts automatically but 

gives the user the opportunity to override the responses. 

Automatic responses are similar to restrictive actions except that they are done 

automatically without any negotiation with other agents. Modification actions include adding 

events removed by another user, removing events added by another, or restricting the user’s 

actions that create conflict. The system responds to modification actions which involve its user 

by sending a message back to the user that the item should not be changed and why. Since 

modification actions are deemed extreme, the user must give permission to the agent to make 

these types of actions. In cases where the system starts to anticipate restrictive or modification 

actions, the action planner may elect to send a warning message to the suspected user indicating 

the strength of an agent's determination to protect the time slot.  

Conservative actions are designed to increase user awareness of the activities and 

preferences of other users, particularly in those cases where there is limited bandwidth and/or the 

complexity of the task reduces awareness. Active responses are designed to protect the agent's 



 
 

 
 

53

user from actions that will cause a conflict. Active responses prevent a determined user from 

scheduling intolerable events or changing mandatory events directly. 

Agent-Training Tool 

Research has shown that the slow, incremental learning that usually takes place with Q 

learning systems can be improved with the aid of a simulation (Kuvayev, 1997). This particular 

approach was used to decrease the amount of experience required by the Q Learning portion of 

the system before it could be useful within the Calendar application. It was determined that a 

significant period of time would be required for the system to acquire a reasonable response 

model without the aid of a simulation. The simulator also enabled the creation of controlled 

experiments for the evaluation of agent learning. 

The simulator uses a variation of the shared calendar intelligent agent to train the three 

modules used in the Intelligent Agent portion of the system. More specifically, it is designed as a 

separate program that can be used to train the action selection module to adjust to different user 

personalities. For example, the agent trainer can prepare two types of intervention style that can 

be used to respond to conflict. In order to do this, different reinforcement patterns are used:  one 

representing a conservative approach and the second representing an aggressive approach. The 

more conservative model is used in the initial stages of the simulation, while the more aggressive 

model is used whenever a user’s activity level and rate of conflict exceed specified thresholds. 

The conservative model is trained to intervene with minimal intrusion by using only two of the 

four active responses. The aggressive model is trained to use the automatic responses in the 

presence of extremely strong user preferences. A user can save time if he/she allows the agent to 

automatically block events that are scheduled at undesirable times. A user is considered 
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aggressive if he or she alters the events of other users or re-schedules an event altered by another 

user. 

Each virtual user in the simulated system is represented by an activity level, a selfishness 

factor, a response probability value, a response delay value, a set of explicit preferences, and a 

list of warnings received from other users or agents. The activity level denotes how frequently 

the user schedules events and is used to calculate other values such as the response probability 

value. The selfishness factor represents the tendency of the user to ignore warnings and focus on 

his/her own agenda. The response probability value defines a user’s aggressive behavior such as 

the tendency to remove an undesirable event created by another. The response delay value 

represents the user’s ability to recognize undesirable activities by other users. The simulation 

draws on the user’s explicit preferences to determine when to schedule events and which events 

are considered undesirable; this information is not available to the intelligent agent, which must 

learn these items through observation. The agent’s advice is encoded as a list of warnings that 

alter user behavior. For example, the lower the degree of a user’s selfishness, the more likely a 

user will “remember” past advice about other users’ preferences. Warnings gradually reduce the 

selfishness value of a user to simulate the user's growing awareness of other users' preferences. 

The simulation uses an action queue, which is prioritized according to the time that the 

actions are scheduled to occur. As each action is processed by the event-driven simulation, new 

actions may be generated. Virtual users decide to schedule a new event based on their activity 

level. An event is randomly scheduled based on the user’s explicit preferences; any warnings 

received from other users are also considered, depending on the “selfishness” factor of the user. 

Specifically, a time is rejected at a rate of (1 – preference_level) or, whenever the system 

matches a warning from another user, at a rate of (1 – selfishness), where preference_level is in 
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the range [-1,+1] and selfishness is in the range [0,1]. Negative preferences are always rejected, 

and perfect selfishness (1) ignores all warnings. A new event may be added to the shared 

schedule every 30 seconds for a particular user. New events are generated at a rate of every 60 

seconds for 75% of the events, 5 seconds for 20% of the events, and 10 minutes for 5% of the 

events. However, the rate that events are generated depends on a user’s activity level. For 

example, if a user’s activity level indicates that events should be added frequently to the shared 

schedule, then such additions may be made every 30-60 seconds, extending to 10 minutes on rare 

occasions. The action queue is a priority queue that delivers the events in the appropriate order 

so that the simulated time never decreases. 

The virtual users are given an opportunity to respond to these actions, which, in turn, can 

lead to further actions, etc. If one virtual user generates an action by adding an event at an 

undesirable time for another user, the system simulates the other user deciding whether to delete 

the offensive event in direct proportion to the level of dislike recorded in the offended user’s 

explicit preferences (- pw,d,t is between 0 and 1). Removal of the undesirable event is scheduled 

to take place between 30 seconds and one hour after an event occurs, simulating the user’s 

activity level, aggressiveness, and awareness of the actions of others. A base time of 

36001 - 2 response_factor is added to a pseudo-random number in the range [0, response_delay). The 

response probability value (i.e., response_factor) is used in the computation only if the virtual 

user has a low level of aggressiveness, resulting in a significant delay in reaction time. 

Virtual users respond to the removal of an event that they created according to their 

response probability values. If users choose to respond, they reply by recreating the event. The 

response delay is calculated using a ratio between ½ to 1½ of the user’s response delay, 

simulating a time lag between the actual removal of the event and the user’s awareness of and 
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response to that removal. This delay, like all other delays, assumes that a user needs a minimum 

of 30 seconds to become aware of a situation, decide what to do, and use the user interface to 

respond to the situation. 

The simulation is designed to respond to the agents’ actions on behalf of their user. 

Advice and subtle cues either reduce response time or are represented as warnings. Of course, a 

“selfish” virtual user may ignore warnings, but the simulation assumes that the users are not 

entirely self-absorbed. Each warning reduces the selfishness component of the virtual user, 

forcing the user to gradually consider the interests of others. 

One of the system’s responses to a conflict or potential conflict is to make the user aware 

of the fact that the selected action or current situation could lead to conflicts. If this response is 

the result of the agent’s user’s actions, it takes the form of a light warning. If the response is the 

result of another user’s actions, then the offending user’s simulated response time is temporarily 

reduced and its responsiveness is temporarily increased to reflect an increased awareness of the 

activities of others. 

Stronger warnings are handled in much the same way, except that the user who is warned 

against an action by its own agent is given an opportunity to cancel the action. The system 

simulates this behavior by adding to the user’s list of warnings, then reevaluating the 

acceptability of the user’s action in light of the new information. 

The simulation attempts to simulate human-like responses. The major reason for 

developing the simulator was to exercise the learning agent and verify that it could respond to 

events in a reasonable manner. Also, the simulator was used to pre-train the agents to increase 

system performance.  
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CHAPTER 4 
 
 

DATA ANALYSIS AND RESULTS 
 

Introduction 

The data collection and analysis was performed in two stages. During the first data 

collection stage, groups of student volunteers were asked to engage in a scheduling task using the 

collaborative calendar application. As students performed the task, the system recorded the 

different patterns of behavior and captured individual scheduling preferences. This data was then 

analyzed to determine the correlation between user preferences and scheduling behavior. The 

system also captured the different behaviors that characterized conflict. Once this phase of the 

project was complete, an agent-based system was designed to ‘learn’ user preferences and 

respond to behaviors that might lead to conflict; the agent system was developed using 

information gained from the human subjects’ study. A series of experiments were then developed 

to test the accuracy and adequacy of the learning component of the agent system. Chapter 4 

describes the data obtained from the human subjects as well as the experiments with the learning 

system.  

Human Preference Studies 

A number of students were asked to use the group calendar application to help develop 

different user models that could be used to initialize the intelligent agent system. A small group 

of undergraduate students were recruited for the project. All student volunteers were enrolled in 

computer science courses at Sam Houston State University between Spring semester 1997 and 

Summer, 2000. It became obvious after Spring 2000 that a record of the user’s scheduling 

preferences was necessary for the creation of the different user models. While a total of thirty-
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two volunteers used the calendar application, only the last eight volunteers (i.e., those students 

enrolled in Summer 2000) were asked to explicitly record their scheduling preferences. Of these 

eight volunteers, four were relatively naïve users who were enrolled in a computer literacy 

course; while four were enrolled in one or more advanced computer science courses and had 

presumably more computer experience. All volunteers were told that they were participating in a 

study of a shared calendar application, and that their responses were being recorded for analysis. 

Unfortunately, one group of volunteers seemed to know significantly more than others, so only 

the data collected from six volunteers were used to inform the development of the user models 

for the agent system. In cases where preference data was not analyzed, data from up to thirty 

volunteers is still available. 

Each student who participated in the study received a copy of a scenario (see Appendix 

A) in which students were asked to use the calendar software to arrange for a series of contrived 

events. Groups were further instructed to use their real schedules in determining when a 

particular event could be scheduled. One-hour sessions were then arranged in which groups of 

two or three students were asked to use the software to complete the assignment. A log was kept 

of computer sessions for later analysis. 

Before each experimental session, subjects were asked to enter their preferences for 

different days and times. The system tracked the number of constructive and destructive actions 

that occurred during the experimental sessions for different types of days and times. Constructive 

actions (such as scheduling an event) were seen as evidence of a positive user preference, and 

destructive actions (such as deleting another’s event or changing it to a different day or time) 

were seen as evidence of a negative user preference.   
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The initial plan was to use the preferences specified during the human preference studies 

to direct the input into the agent system. However, an analysis of the data from the human 

subjects’ sessions showed individual users ignored their initial scheduling preferences between 

7% to 66% of the time, with an overall average of 56%; these statistics indicate that there was a 

great deal of variation between a user's actions and their stated preferences. After talking with 

subjects, it became clear that the system was not adequately identifying contradictory user 

preferences. For example, a user might list a preference for afternoon meetings and, at the same 

time, indicate an aversion to Monday meetings. If group members scheduled a meeting for 

Monday afternoons, the user might reject the Monday meeting, even though it was scheduled at 

an afternoon time. The discovery of this problem led to the development of a new user model 

that captured user preferences for specific combinations of weeks, days, and times. Furthermore, 

a generalization algorithm (described in Chapter 3) was developed to help ‘infer’ a user’s more 

general preferences (e.g., a user who likes Monday, Tuesday, Thursday, and Saturday afternoons 

can probably be said to like afternoons, in general). The preference learning algorithm, including 

the generalization component, is called the “generalizer.”  

Figures 4-1 and 4-2 show the number of actions that contradicted user preferences for the 

six users who provided explicit preference data. As mentioned earlier, the preference data 

collected was not sufficiently specific, so Figure 4-1 reports the number of actions that contradict 

all applicable preferences, whereas Figure 4-2 reports the number of actions that contradict at 

least one of the applicable preferences. Both figures compare stated user preferences with the 

preferences learned by the generalizer from actual behavior data. The percentages reflect the 

degree to which stated and learned preferences can predict user behavior. Note that the agent 
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learning system with the addition of the generalizer is competitive with a system that has 

knowledge of the user’s true preferences.  

The data gathered from the human user experiments also indicated that groups were 

either dominated by a single, active user or were distributed in both their work and 

communication. After observing this phenomenon in the preliminary studies, hard data was 

collected from the last twelve groups that participated in the study, of which data from ten 

groups was found useful (see Appendix C). For example, the most active user in one group 

scheduled eight times more events than any other user in the group, and was 1.75 times more 
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active than the least active user in the group. Four of the groups had a single user who scheduled 

twice as many events as other members. Each of the four groups showed a drop in activity level 

similar to that described in Stasser and Taylor (1991). On the other hand, the most active users in 

two of the groups were only 1.43 times more active than the least active user. Given this data, a 

“hierarchical” group was defined as one in which a single user in the group was at least 1.75 

times more active than other users in the group.  All other groups were considered to have 

uniform distributions of activity, although most observed groups had at least one member who 

was noticeably less active than the others. Since all other members appeared to have similar 

activity levels, they were said to exhibit “democratic” behavior. 

Figure 4-3 compares the ‘activity levels’ of the various groups. Activity level was defined 

as the percentage of schedule-changing events made by a user during a single session (the ratio 

of a user's actions, both positive and negative, to the total number of actions taken by all 

members in the group during a session). Figure 4-3 seems to indicate that all groups should be 

characterized as being “hierarchical.” Upon further inspection, however, only two groups 

showed differences in all three categories of actions (positive, negative, and message 

communication), indicating that a single leader was responsible for most of the activities for that 

group.  Overall, the most active user in these two groups was almost twice as active as other 

users in the group.  On the other hand, five of the groups had less significant differences in their 

activity levels, indicating that they demonstrated more “democratic” behavior.  Messages were 

assumed to mean that someone within the group was requesting or communicating information 

(when the student subjects took them seriously). 
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A desire to support the different needs of these two types of groups led to the 

development of two idealized response models for the different types of activities in the groups 

and was used to guide some of the experiments conducted with the agent learning system at the 

end of the study. These experiments are discussed at the end of this chapter. 

Although the agent seemed to adapt quickly to user preferences, it soon became obvious 

that testing the effectiveness of the agent’s ability to learn a conflict response model could not be 

done using ‘real subjects.’ Thus, a series of off-line experiments were conducted to determine the 

effectiveness of the agent system in learning preferences and avoiding conflicts. Another 

question raised during the development of the agent system was whether the agent should learn 

‘only’ from user interactions, or whether it should be provided an initial model that would be 

adjusted during the learning sequence. Several experiments were conducted to determine the best 

approach and are described below. 
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Figure 4 - 3 Relative activity levels within ten groups 
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Experimental Procedures  

An agent learning system was developed and tested with user models informed by the 

data gathered in the previous study. The following experiments were performed to verify that the 

agent program could anticipate user preferences, given a preference model, and could use this 

model in combination with immediate state information to select an agent response that helps 

reduce conflict among users. The user models within the agent-learning module were adjusted to 

provide for a variety of interactions. The agent-learning program was set to run at either 80 or 

160 simulated hours. A simulated hour consisted of between 150-200 responses to messages 

(corresponding to the sharing of information between users in a group), a message being any 

activity including the addition, deletion or modification of a scheduled event within the calendar 

application. The reason for selecting 80 and 160 ‘hours’ as the two time periods for the learning 

module was because initial observations indicated that most ‘learning’ took around 40 simulated 

hours to stabilize, and twice that amount of time whenever an intervention was injected within 

the middle of the experiment. Measures were then developed to determine the accuracy of the 

agent-learning module to detect user preferences and provide appropriate intervention strategies. 

The setups for the different agent-learning experiments are now discussed. 

For each experimental run, the system recorded the percentage of events correctly 

classified as compared to the user model’s true preferences, and the number of conflicts detected. 

Conflict rates generally stabilized within forty hours; that is, whenever there were no changes in 

the users’ behaviors. Whenever a change in user behavior was introduced, conflict rates tended 

to double (because the system had to re-adapt). 
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Preference Learning   

Preference learning was important in all experiments. Each experiment was provided 

with a set of three different types of user models. Each user model represented the unique 

preferences and attitudes of an individual user. Three user models were used in each preference 

training experiment because this was the typical size of a group in the human experiments, and it 

allowed for easier comparison among the different experiments. Each user preference model 

consisted of a table of individual preferences, all of which were assigned a number between –1 

and 1. For easier analysis, a series of three categories of preferences were created to represent the 

different levels of user preferences; a positive number indicated a positive preference for that 

category, and a negative number indicated a negative preference for that category. For example, 

extreme preferences were encoded as either a +1 (i.e., highly desirable) or a –1 (i.e., highly 

undesirable). Medium preferences were assigned either a +.75 (i.e., ‘strongly’ preferred but 

somewhat flexible) or -.75 (i.e., ‘strongly’ undesirable but flexible). The preference levels of 

0.01 or -.01 were used to represent insignificant preferences (i.e., slight preference for time but 

‘didn’t care’).  

Since the major objective of the agent-training program was designed to test the 

effectiveness of the agent in learning to adjust to conflict, it was necessary to create user models 

that contained preferences that would lead to conflicts among the users. As a result, the user 

models were initially programmed with the following preferences:   

• User 0 loves Wednesday afternoons (+1), likes Tuesday or Thursday afternoons 

(+0.75), tolerates other times between Tuesday and Thursday (+0.01) more so than 

Monday or Friday (0), is uncomfortable with weekends (-0.01),dislikes Friday after 

lunch (-0.75), and hates Saturday, Sunday or Monday mornings (-1). 
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• User 1 loves Friday after lunch (+1), loves weekend meetings (+0.75), especially 

before supper (+1), and hates evenings during the week from Monday through 

Thursday (-1). 

• User 2 loves (+1) mornings and Saturday afternoons and hates (-1) meetings during 

lunch or supper. 

In addition to the explicit user model, the agent-learning system was tested with a number 

of different types of user models in which the preference values were randomly generated. The 

first random model type was created by uniformly generating different preference levels for each 

possible situation. The second model type also contained a uniform distribution of positive and 

negative preferences, but 55% of all preferences were of medium (±0.75) strength, 35% were 

maximum (±1) strength, and only 10% were weak; this preference pattern models individuals 

with strong preferences, allowing for more conflict. Other model types were created with a set 

number of positive, extreme preferences (+1). Each extreme preference set in one user’s model 

caused the opposite preference (-1) to be set in the models for other users if no preference was 

already assigned; this practice guarantees conflict. An algorithm for averaging neighborhoods of 

preferences replaced unassigned preferences to create a smooth fading of preference (e.g., a user 

who loves Monday afternoon meetings will like Monday lunches and Tuesday afternoon 

meetings unless otherwise programmed). 

Once the user preferences were defined, four sets of experiments were run to determine 

the agent’s effectiveness at learning preferences from user actions. The first set of experiments 

was run without any initial data (that is, no initial knowledge of users’ preferences). A second set 

of experiments was run using the learned preferences from a previous session. A variation on this 

set of experiments introduced a modified portion of preferences in the user model between runs 
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in order to test the agent’s ability to recover after receiving new data. For some of these 

experiments, the preferences were automatically altered during the simulation run. 

For each experiment, four different measures were used to analyze the quality of the 

agent’s performance:  (1) the percentage of correctly classified preferences for each of the three 

user’s across all events over time, (2) the percentage of correctly classified negative or positive 

preferences across all observed events over time, (3) the number (or percentage) of hard conflicts 

per hour, and (4) the number (or percentage) of preference-related conflicts per hour. Each 

measure was recorded for every ‘simulated’ hour.  

 The first measure was designed to test the quality of the generalization algorithm (see 

above) by comparing both experienced and anticipated preferences of the agent to actual user 

model preferences. The second measure tried to capture the correctness of the agent-learning 

program and determine its ability to adapt to new information (e.g., how long does it take the 

system to approach 100% after a change in user preferences?). The third and fourth measures, 

discussed in the next section, were developed to determine the effectiveness of the agent in 

reducing conflict. A “hard conflict” was defined as an observed user action that contradicts a 

previous action initiated by another user, whereas a ‘preference conflict’ referred to actions that 

are in conflict with another user’s preferences. Preference conflicts were a common precursor to 

hard conflicts. Because the system had a complete record of the targeted users’ preferences, 

preference conflicts were easy to detect and use in the evaluation of the agent learning system. 

The agent-learning program was run for at least 40 ‘simulated’ hours. Positive and 

negative events were gradually introduced into the environment in a random fashion. As each 

new event was introduced, the agent-learning program adjusted its preference weights in a 

manner described in Chapter 3. The learned preferences represented weighted averages of 
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observed positive and negative events combined with the generalizing algorithm and some 

probability of being selected. Analysis of several test runs with the preference-learning tool 

indicated that weights of 0.0001 and 0.25 corresponded well with the actual preferences used to 

drive the user models (again, described in Chapter 3). User model numbers of +1 usually 

produced learned model weights of at least 0.25, and user model preference numbers of 0.75 

usually produced learned weights above 0.0001. The relatively small values of the latter weights 

were due to the limited number of events experienced by the ‘simulated users’ in a particular 

category. Just as humans require several stimuli before a response is learned, the agent-learning 

program assigns preference levels that increase as repeated events are encountered. 

All the statistics described below assume that a period of stabilization has already 

occurred. The period of stabilization varied depending upon the difficulty of the learning 

environment, but was never less than five simulated hours. 

Overall, the intelligent agent was able to learn user preferences. In each preference-

learning experiment, the agent system learned user preferences as a result of some user action 

(the second measure) between 82% and 100% of the times, with an overall average of 97%. 

Exact matches of medium preferences were made between 66% and 100% of the time, 

with an overall average rate of 92.5%; fifty percent of all the measures taken during the 

experiments were above 90%, and 28% reached the 100% accuracy levels. The minimum 

accuracy level for all but the most random preference models was 80%.  

Extreme preferences (that is, preferences with values of +1 or –1) were learned by the 

agent learning system for all possible events between 49% and 100% of the time, with an overall 

average of 72%. The extreme range for extreme preference learning is due to the variation in 

performance among the different preference models rather than a variation in performance 
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during a single session. Although it took the agent longer to learn extreme preferences, 

recognition accuracy always stabilized before the end of the 80 simulated hours. Only user 

preference models that were initialized with random preferences required additional simulated 

hours to stabilize. (They stabilized after 115, but the user model with the worst performance 

maintained at least 60% accuracy after 116 simulated hours). 

User preference models that were seeded with random preference values required 

between 32 and 124 simulated hours to reach a point where the agent-learning module performed 

consistently well. Training sessions that included some patterns in the preferences, reflecting 

general preferences, stabilized within ten simulated hours. The generalization algorithm is 

currently designed to anticipate user preferences that do not exist in the more randomly 

generated set of preference values. The lower performance and longer training times may 

indicate that the generalization algorithm is not an ideal algorithm for capturing preferences 

created by artificial constraints (e.g., you hate afternoons but job requirements and work 

schedule require that you schedule a meeting every Monday afternoon, as opposed to, you love 

Wednesday afternoon meetings but other afternoons are okay). 

As mentioned earlier, experiments were also run with examples of user preferences that 

changed over time. One experiment involved changing the user’s preference table to a series of 

random numbers in the middle of the experiment. Preferences were first initialized to the three 

preference models described earlier. After the fortieth ‘simulated’ hour, one user's preferences 

were set to uniformly random settings. To encourage conflict among the group participants, 

strong user preferences were changed to reflect either an opposite preference (40% probability) 

or an insignificant preference (60% probability). The other users' preferences that did not match 

the first user’s strong preference were either set to an opposite or random number. 
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As expected, all performance levels dropped significantly following the fortieth 

‘simulated’ hour and continued to be low until the forty-first ‘simulated’ hour (medium 

preference, exact match:  100% to 59%; extreme preference, exact match:  75% to 47%; 

observed events, general match:  93% to 66%). However, the preference-learning tool soon 

recovered and then stabilized within three simulated hours. An exact match of extreme 

preferences took around 18 simulated hours to stabilize. All other measures appeared to fluctuate 

between the 58th and 79th hours.  

The overall results for the ‘adaptive’ version of the agent-learning program were as 

follows:  Matching of general preferences averaged 80% (ranging between 67%-91%); Matching 

of medium preferences averaged 86% (ranging between 77%-100%); Matching of extreme 

preferences averaged 74% (ranging between 67%-81%). Matching of extreme preferences 

actually improved for some agents after the preferences were changed in the middle of the 

experiment. Although overall performance decreased, the system was able to demonstrate its 

ability to adapt to behavioral changes. 

Figure 4-4 provides a view of how the agent discovers the users’ preferences over the 

course of an experiment. This figure shows how the system learns the initial preference models 

(previously described) and then adapts to the randomized preferences introduced midway 

through the experiment. In Figure 4-4, the ‘Seen’ label refers to the second performance 

measure; that is, the general preference assignment based on actual observed actions. The 

Moderate and Extreme labels indicate how well generalization algorithm predicts "user" 

preferences of medium and extreme. The data for Figure 4-4 was obtained from an experiment in 

which the user models were initialized with explicit preferences consistent with those of different 

human users.  
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As Figure 4-4 indicates, the agent learning program’s performance in matching extreme 

preferences appears to be less effective than matching medium preferences. This is due, in part, 

to the fact that the generalization algorithm does not assume strong preference levels for times it 

has never experienced. Therefore, any times that lie outside the agent's experience (no one has 

scheduled events at that point in time, yet) will be assigned medium preference weights at best.  

Random preference models were also tested to ensure that the learning agent’s 

performance was consistent for different situations. Preference models consisting of random but 

recognizable patterns of behavior performed at least as well as those reported in the previous 

experiments. However, uniformly random preferences with no relationship among preferences 

for similar events did not perform as well. The average performance of the learning agents in 

these cases was above 70% for medium preferences and above 85% for extreme preferences. 

However, the experiment performance varied substantially more than what occurred in non-

random preference experiments. The last ten simulated hours were all above average, so one can 

conclude that learning is simply slower when preferences are seeded with random values as 

opposed to more real-world values. 

Many of the experiments, including the one represented by Figure 4-4, involved a change 

of preferences after forty simulated hours. Small changes were captured almost immediately; 

large numbers of changed preferences took a number of simulated hours to fully explore and 

unlearn old preferences. In Figure 4-4, the preference learning system was tested with a radical 

alteration of all preferences. This radical change produces a preference pattern not unlike the 

uniformly random pattern described earlier. The more random preferences lead to the lower level 

of accuracy noted in the graph. 
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Learning Conflict Avoidance 

Learning user preferences is only part of the agent’s learning activities. The second part 

involves learning the user preferences that are associated with responses that anticipate or avoid 

conflict. The agent’s effectiveness in reducing conflict was measured by examining the total 

number of conflicts that occurred per hour (TC), and the total number of actions that violated 

users' preferences (TPC). Figure 4-5 compares the conflict measures for two different 

experiments. The first experiment, labeled NA, shows the number of conflicting events that 

occurred ‘without’ agent intervention, whereas the second experiment shows the same 

information ‘with’ agent intervention (ANI). Since our ‘simulated’ users are incapable of 

adapting to conflicts without some feedback, the results may be misleading. Nevertheless, the 

data clearly shows that agent intervention can reduce conflict.  

As previously mentioned, the Q Learning algorithm learns by adjusting weights, called Q 

values, assigned to situation-response pairs. The Q values also represent an estimate of long-term 

reinforcement (both reward and punishment) likely to result from choosing a specific type of 

response to a situation. Several experiments were conducted, which were designed to test the 

agent’s ability to avoid conflict given different initial conditions. In one experiment, the Q value 

weights were initialized to zero (TC none), causing all actions to be equal until they received 

some type of reinforcement (either positively or negatively). In a second experiment, the Q 

values were adjusted using information from the best performer in the group (TC Best). Finally, 

a fabricated “ideal” response model was used to initialize the weights (TC Ideal). The ideal 

response model was developed with weights designed to respond with reasonable, albeit 

uninspired, actions to various situations. For example, the agent does nothing whenever user 

preferences are insignificant (with weight 0.1), a user sends a message (0.5), a user views a date 
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on the calendar (0.01), or users’ activity levels are low (0.05). The agent is programmed to issue 

a warning message if the user tries to schedule an event at a time when others object, or delete an 

event at a time strongly preferred by another user. Users are also given a warning when other 

users try to add or delete events at times that are not preferred (0.1). In addition to these 

notification activities, agents can select a more extreme response where they either automatically 

anticipate user responses and generate those for the user or block undesirable user actions. The 

action planner automatically filters inappropriate extreme responses suggested by the Q Learning 

system and provides negative reinforcement to discourage future selection of such responses.  

These inappropriate responses are blocking users from sending a message or viewing a date 

 (–0.5), blocking its own user where the user’s preferences are stronger than others (–0.1 to –0.5, 

depending on difference in preference), and taking action against other users where its user does 

not possess a strong preference (–0.5) or other users have equally strong objections (–0.1).  

Agent vs. No Agent (equal users)
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Figure 4-6 shows how the agent performs when given the three different initial Q value 

states. Interestingly, the “ideal” condition appears to be less effective at reducing conflicts than 

the other two conditions. The ideal response model was designed to give ‘reasonable’ responses 

to different activities. If these responses are inappropriate, then additional time is required to 

‘unlearn’ and adjust the weights to reflect the correct stimulus-response patterns.  

However, all three initialized conditions seemed to perform well and unwell at different 

times. The agent experiment in which all weights were initialized to zero (TC none) learned how 

to eliminate 43% of the hard conflicts and 28% of the preference conflicts that occurred among 

users who had default preferences. When User 0’s preferences were changed in the middle of the 

experiment, conflicts were introduced, but the agent was still able to eliminate 78% of the hard 

conflicts and 70% of the preference conflicts. The agent experiment in which the weights were 

seeded with a prefabricated response model (TPC Ideal) eliminated 30% of the hard conflicts and 

26% of the preference conflicts before the fortieth hour; 67% and 62%, respectively, after the 
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fortieth hour. The agent experiment in which the weights were seeded with values from the agent 

who had the fewest conflicts (TPC Best) eliminated 55% of the hard conflicts (64% after hour 

40) and 58% of the preference conflicts (59% after hour 40). The TPC Best experiments seemed 

to show that the agent learned how to avoid conflicts better than in other experiments. 

Experiments were also conducted to determine if prior knowledge of a group’s style or 

group dynamics might affect the agent’s ability to reduce conflict. As mentioned previously, 

groups tend to operate as either a collection of equal individuals or as a single entity, dominated 

by an active leader. If a single person dominates the group, then the less active members tend to 

react slower. The learning program allows the researcher to set activity levels for the scheduling 

of events by different users.  Therefore, the single-active group dynamic condition was modeled 

by setting one user's activity level (user 0) at 90% and the others at 30%(UnEq). The more 

democratic dynamic condition was modeled by setting activity levels at 80% for all users (EQ).  

Figures 4-7 and 4-8 illustrate conflict rates for experiments in which the user models were 

seeded with weights from the ‘best’ response model. The figures show the impact of mixing the 

response models of different groups. Unfortunately, the results did not indicate that users 

encounter fewer conflicts when the system tries to adjust for the different types of group activity 

levels. The experiments in which all the users were equally active (Figure 4.7) seemed to have 

fewer conflicts. One interpretation of this result is that the uniformly active individuals have 

more interactions, which produces more opportunities for the system to learn how to adjust to 

conflicts. 

A more interesting part of the experiment involved examining the actual agent’s 

recommendations for the different behaviors that were simulated in the different experiments. 

Some of the responses seemed reasonable while others did not. A partial listing of these 
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responses from a sample experiment can be found in Appendix D. The most common oddity in 

agent responses takes the form of an inappropriately extreme response. For example, in 3.1 of 

Appendix D, the Q learning system advocates preventing its user from viewing or changing 
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Figure 4 - 7  Comparison of Response Models for Equally Active Users 
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Figure 4 - 8  Comparison of Response Models for Hierarchical Group 
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events for a particular date. The agent is pre-programmed to consider this behavior to be 

unreasonable, so the response is converted into a warning. If the response was simply punished 

and ignored, the Q learning system would eventually learn not to select that response. By 

converting the response into an informative warning about potential conflicts about a particular 

date, the agent reduced the possibility of future conflict and, thus, future punishment. 

An agent's list of possible responses included some examples that did not make sense for 

every situation. The current implementation translates these inappropriate responses into more 

appropriate responses, which allows the agent to take some suitable action. This research 

considered the alternative of negatively reinforcing inappropriate actions, which would have had 

the effect of making the system gradually learn the appropriate action. However, this was 

rejected for the following reason. Q learning spreads its negative reinforcement to those choices 

leading up to the point of inappropriate response or conflict. While such a strategy might work 

for a conflict situation, it may not be correct to punish prior choices for a poorly learned and 

probably unrelated response. 

The agents for the individual users produced reasonable responses most of the time, once 

some of the responses suggested by the Q learning system were altered to reflect more generic 

messages. For example, if a user selects a date for viewing or adding a new entry, the user's 

agent may display a message warning him/her of potential problems. Thus, the user is 

encouraged to think about avoiding conflict before scheduling any new event. In Appendix D, 

after message 20, response 20.1 warns its user that removing an event that was scheduled by 

another user at a preferred time is inappropriate. In response 20.3, the agent for the user who 

scheduled the event is warned that the event is being deleted. The likelihood of a response from 
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the original scheduler of the event should increase users' sensitivity to each other's desires over 

time. 

Overall, the agent seemed to perform well, developing a reasonably accurate model of 

different user’s preferences. It was also able to reduce conflict-related behavior. The agent-

learning program tended to need more training time in those experiments where it had no prior 

knowledge of user preferences. Furthermore, the agent appeared to be able to recover from 

sudden changes in the middle of an experiment and adapt to the new data.  
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CHAPTER 5 
 
 

CONCLUSIONS 
 

The major goal of this research was to examine whether a software agent could ‘learn’ a 

group’s preferences well enough to assist members in avoiding conflict. The agent was defined 

as a software component embedded within a collaborative interface.  Although previous research 

found that advisory style agents were able to learn individual preferences (Mitchell et al., 1994), 

little work has been done in developing specialized agents that are capable of recognizing 

conflicting preferences that arise within group work. As a result, this researcher developed a 

preference-learning program that was designed to learn user preferences specifically for the 

purpose of overcoming group conflict. The agent learning tools were designed around a group 

calendar application that allowed users to schedule meetings at preferred times. The system's 

ability to learn a conflict response policy and preference model was implemented using a Q 

Learning technique and a related reinforcement-based learning algorithm. Q Learning was 

selected because it does not require a prior model of either learning or action selection. After 

developing the software, students were asked to use the system to schedule meetings for different 

types of events. 

The initial plan was to embed the learning system within the calendar application and 

have the agents detect and resolve conflicts in real-time.  However, it soon became apparent that 

this strategy was not going to work. Since the initial volunteer groups used the software without 

stating their preferences, the agent system was forced to learn both user preferences as well as 

the responses to conflicts that arose because of the differences among users’ preferences. Since 
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the response module used the users’ preferences as input, it had to unlearn any inappropriate 

responses before it learned new responses. In all cases, the learning system had an insufficient 

number of events and time to build the appropriate response model in real time. 

To accelerate the learning process, a program was created to expose the agents to group-

like events in a training environment. The goal was not to duplicate every aspect of human 

interaction but to provide the agent system with a sufficient number of training examples that 

would allow it to learn a “standard” set of responses. Because the trainer uses an explicit 

preference model to generate simulated user responses, it can compare this model to the agent’s 

learned preference model to verify system performance. The trainer generates user activities 

faster than human users, allowing the trainer to model the use of the application over extended 

periods. The trainer was used to run a series of experiments and collect conflict rates over a 

period of simulated time (typically, from 80-160 hours, or 2-4 weeks of continuous use).  

The trainer was also used to validate the agent’s preference model. In later versions of the 

human subject sessions, users were asked to list their stated preferences. In these cases, the 

agent’s preference model did not always match the user’s stated preference; however, the user's 

stated preferences did not always serve as an adequate predictor of user behavior. The discovery 

that explicitly stated preferences were often erroneous or changed during actual practice 

suggested that preferences learned from observation were more useful than explicitly stated 

preferences.  

The agent training system was used in this research to conduct a series of off-line 

experiments to determine the effectiveness of the agent system in learning user preferences and 

developing a response policy for avoiding conflicts. Three different user models were created as 

the ‘target’ group, each reflecting moderate degrees of conflict. Later, other models were created 



 
 

 
 

81

with randomly generated preference values representing different levels of conflict. As the 

system produced different messages, similar to what occurred in the original calendar 

application, the three user agents processed the messages and gradually adapted their user 

preference model to whatever was observed. The agents also adapted their response policies so 

that they could ‘better’ reply to the various conflicts that were encountered during the 

experiment. For each experimental run, the system recorded the percentage of events correctly 

classified as compared to the users’ true preferences, and the number of conflicts detected. 

Conflict rates usually stabilized within forty hours; that is, whenever there were no changes in 

the users’ preferences.  

Findings 

As previously mentioned, the data from the human subjects’ experiments indicated that 

users often ignored their initial scheduling preferences about 35% of the time. Moreover, there 

was a great deal of variation among different users concerning how often they deviated from 

their preferences. Some did it often (56% of the time), while others rarely took actions that were 

different from their stated preferences. Because of the results of these data, offline experiments 

were run to determine the effectiveness of the learning component of the system. 

In general, the offline experiments showed that the agents were able to learn user 

preferences, averaging 97% accuracy rates. The agents were less successful at classifying the 

strength of preferences, averaging only an 82% accuracy rate. However, trying to correctly 

classify the different strengths of a preference is much more difficult than classifying something 

as being either positive or negative because the agent needs to experience all combinations of the 

different categories of ‘strengths’ (i.e., strong, moderate, and weak). The agents also tended to 

have difficulty recognizing random preferences, averaging only 72% classification accuracy.  
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The agent-learning system was able to eliminate a significant amount of conflicts 

compared to user models whose agents were disabled. The average conflict rates that occurred 

while experienced agents were active were 59% less than when they were disabled. 

The conflict rates for a well-trained response model were approximately 41% lower than 

response models that learned from no previous model. Improvements were noticed even in cases 

where an agent was initialized with different user response models. One experiment indicated 

that an agent trained with data that was meant to simulate a democratic group of active 

individuals was better at eliminating conflict, even when configured with a different group of 

user styles. This latter experiment was intended to test the hypothesis that different response 

models should be selected based on group type. The hypothesis assumed that a democratic group 

of users who were characterized as being equally engaged would require a different set of 

responses than a hierarchical group who was dominated by a single user. The hypothesis was 

rejected when agents that were originally trained with “democratic” group data performed even 

better when used to advise a hierarchical group; in one case, agents trained for “democratic” 

groups had 42% of the conflicts encountered by agents actually trained for the hierarchical 

group. This seems to indicate that new agents should use response models from experienced 

agents involved with active groups to reduce training time. 

Conclusion 

In previous research, it was found that groups often encounter conflict, particularly in a 

computer supported collaborative environment. More conflicts occur within this environment 

because there is an absence of familiar cues that can cause users to become confused about the 

expectations of others (Johnson-Lenz et al., 1991). These problems prompted this researcher to 

develop a calendar application system that could detect or predict conflict and then use this 
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information to help groups overcome conflict. The system does this by observing how each user 

schedules events and then detects whether attempts at scheduling new events conflict with a 

user’s preference model. The agent-learning system that was built as a component within the 

calendar application appears to accomplish its goal. The system is able to learn user preferences 

and is able to respond to conflicts or potential conflicts in a way that reduces overall conflict. 

The agent was effective at reducing conflicts compared to when no agent was present. 

The agent was also effective in learning users’ preferences, particularly when the users’ 

preferences did not contradict anticipated patterns. Even when this occurred, the generalization 

algorithm performed poorly only when it anticipated preferences outside the agent's experience.  

Although this research failed to show that different types of groups require different 

response models, the research did indicate that an agent experienced at adapting to conflict can 

benefit users whose preferences and working style are different from the original user. This 

phenomenon suggests that learning can be greatly enhanced by providing new users with an 

experienced user’s agent. The lack of a consistent pattern in the response models of different 

agents suggests that either a variety of responses may be helpful or appropriate responses vary 

from user to user. 

 In any case, the evidence indicated that Q learning was effective at creating response 

models that reduced conflict. Although somewhat slow, the learning system was able to learn 

user preferences and response policies that reduced conflict.  

There were also several other conclusions obtained that were peripherally related to the 

above findings. For example, many of the volunteers who assisted in the data collection phase of 

the project seemed to encounter difficulty working with each other exclusively by computer. The 

volunteers often found it problematic to maintain aware of the actions of others; even when their 
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preferences were shared among the group. Presumably, some of this behavior arose from the 

students being unaccustomed to using a computer for group work, as opposed to individual work. 

Someone inexperienced with collaborative software can certainly benefit from tools that track 

the activities of other members. One of the sub-goals of this work was to develop a system that 

could ‘learn’ to provide this type of assistance and, at the same time, remain unobtrusive.  

The agent- learning module tracks user preferences sufficiently well to aid the user in 

maintaining awareness of the other group members and in avoiding unnecessary conflicts due to 

inattention or forgetfulness. The question of whether it provides the appropriate level of 

unobtrusiveness, enough to maintain awareness without distracting the user, is a question that 

remains unanswered. Since the software was designed originally to be part of a calendar 

application tool, further studies with actual human users should be performed. However, the data 

obtained from this study clearly shows that the agent software was successful in reducing 

conflicts. 

Some means of tracking user preferences is absolutely essential for any intelligent system 

that is intended to help users avoid conflict. Furthermore, a system that can learn user 

preferences dynamically is superior to a system that requires users to explicitly enter their 

preferences. Ideally, users can avoid listing preferences by having a system that can 

automatically adjust to changes in users’ preferences as they are working with their group. 

Unfortunately, the user studies performed during phase one of this study indicated that group 

members often contradicted their own stated preferences. However, the experiments in this study 

also indicate that a preference learning system can learn preferences for users even when that 

behavior is inconsistent, but it may require additional time.  
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Future Research 

Preference Learning 

A number of different types of learning methods were considered for the preference 

learning system before selecting a system based on weighted evidence averaging combined with 

an explicit generalization algorithm. These other methods were ultimately rejected because they 

had problems recognizing preferences that changed over time. Using a static associative 

technique such as a traditional back-propagation neural network to learn user preferences 

between sessions might be effective, however, if an appropriate method for “forgetting” and 

generalizing could be used to prevent the training set from growing too large. A Bayesian 

network might also be used to learn appropriate weights for preferences, with each weight 

corresponding to the strength of the user's preferences. The strength of a preference would 

represent the network’s estimate of the probability that the user possesses a particular preference.  

A probabilistic neural network might approach these same values if it is trained with a 

representative set of examples. However, probabilistic neural networks have some of the same 

problems that other classification systems have in that they assume that everything is classifiable, 

and the goal is to learn that classification. Human preferences require a more dynamic mapping 

of objects to items; so instead of simply learning a mapping, the classification system must also 

track changes to the mappings. 

One technique for handling a dynamic system is to add a new exemplar to the training set 

whenever a misclassified event occurs. Whenever an exemplar is misclassified, the exemplar’s 

class can be changed. However, one misclassified event can have major effects on the system. As 

a result, the program needs to be able to be trained to recognize and forget obsolete exemplars 

after it has seen repeated evidence that an action or event is obsolete. 
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Many popular machine-learning techniques use a long training period to create a set of 

static associations. Further research is needed to incorporate these methods into a dynamic 

learning environment. 

Improvements to the Response Model 

Presently, the response model for the agent-based learning system developed for this 

project uses a technique that is similar to that used to train automated control systems. Control 

systems learn from experience and can, over time, unlearn old responses as new responses 

become more appropriate. The need to adapt to new stimuli made Q Learning and related 

reinforcement-based systems a very attractive choice for tracking dynamic human attitudes and 

needs. However, this type of reinforcement learning represents a type of control system that has 

a definite and recognizable impact on the environment. Some of the actions taken by the agent 

described in this work, such as warning the user of another user’s preferences, require more 

subtle responses. Thus, one of the problems that need to be examined is how to make the system 

more responsive to subtle changes or actions. 

The system currently learns from experience. At the very least, the system is effective at 

discouraging agents from doing nothing while conflicts exit. The system is very good at training 

itself not to take extreme actions in areas of questionable user preference. Some fine-tuning of 

response selection does take place. For example, the user can explicitly discourage the system 

from issuing intrusive warnings too often. However, additional work needs to be done on 

personalizing the response selection process and encouraging subtle hints or stronger warnings at 

the appropriate times. 

Also, learning a response model that is effective in reducing conflict appears to take some 

time. The performance data indicated that it took between 10 and 20 simulated hours for the 
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system’s conflict rates to stabilize at relatively low levels. Some combination of off-line and 

real-time training may be necessary to get more reasonable response rates.  

The Q learning algorithm is designed to learn a weighted average estimate of future 

reinforcement by being exposed to a variety of experiences. If users experience few conflicts, 

then the system may never learn an adequate number of responses to conflict, since conflict is 

not part of its immediate experience. Of course, since the agent’s job is to reduce conflict, then 

this is an acceptable problem as long as the group remains relatively conflict-free. However, as 

more data is collected from real-live groups, it may be more desirable to develop user models for 

the learning system that reflect both low- and high-conflict-level groups and use these models to 

initialize the agent. Later, user models based on the preferences and activity levels of actual 

members of the group can be used to train the system off-line. 

The response model might also be improved by using some type of genetic algorithm. 

Genetic algorithms do not necessarily require training examples. A set of response weights could 

be created, and a measure of conflict and “user satisfaction” could be used as the evaluation 

function. If parallel processors were added, the genetic algorithm could experiment with 

numerous response models simultaneously, keeping only the ones that worked best. When a new 

active session begins, the best response model would be used and validated with the real users. 

Other Areas of Activity 

Another possible future activity is to require students to use the scheduler to coordinate 

meetings for a group project. Currently, the system only functions with a group of 

simultaneously active users. The system could be modified so that changes can be made to a 

schedule, even when the user was off-line. In addition to making it more useful, this modification 
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would make computer assistance even more important, since users would need to know about the 

events that occurred while they were away from the system.  

Finally, the system could be extended to include additional collaborative tools such as 

document sharing to enhance the ability of users to work together on-line. A more powerful 

system may be the only way to justify requiring extended use of the software so that it can have a 

chance to adapt to the needs of the users in the group. 

Final Comments 

The idea for this study began with a question about mutual exclusion in distributed 

software for support of groups. The work evolved into automated support for user preferences 

and using this information to reduce conflicts. Along the way, the research uncovered an 

interesting problem for any application that supports cooperative group work: maintaining the 

impression that a user is part of a group that is working together. This goal can be achieved by 

helping the user remain aware of others while, at the same time, facilitating the user’s own work. 

Although it can be argued that technology will eventually make this concern obsolete because 

users will be able to interact with each other through virtual environments that simulate face-to-

face meetings, users will continue to benefit from intelligent advisors that augment their 

understanding of the group’s work. The foundation laid by this work has the potential to evolve 

into a new type of intelligent assistant that adapts to best facilitate the work of the group as a 

whole rather than that of a single individual. 
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APPENDIX A 
 

SCENARIO USED FOR JULY, 2000, GROUP TESTING AND DATA COLLECTION 
 

FOR USER PREFERENCE MODELING 
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You are planning a conference of computer science lectures (perhaps on computer gaming or 
something similar which may attract a relatively large number of students) with the other 
members of your group.  The conference will be held during the last full week of the month at 
the time which best suits the members of the group and their opinion of when the most students 
will be able to attend.  Naturally, you consider your own attendance a priority. 
 
Assume that scheduling can be done on-line (what we’re doing now), but most other activities 
require meeting together at times which fit the majority, if not all, of the personal schedules of 
the members of the group.  Consider the following a set of minimum requirements: 

 
Description 

Min. number of 
meetings 

 
Order 

Major topics of conference 2 at start 

Securing presenters 2 near start, early 

Advertising 2 early, after schedule 

Acceptance and scheduling 2 as soon as presenters known 

Conference administration 2 prefer at least week before event 

Last minute stuff 1 day before event 

Conference event, itself 4 day of event 
 
The “number of meetings” corresponds to roughly a measure in hours.  Thus, 2 meetings could 
be 4 half-hour meetings, 2 one-hour meetings, or 1 two-hour meeting.  Of course, in some cases, 
time will be needed for members to think about matters before continuing the discussion.  For 
example, it might be better to make sure “Acceptance and scheduling” consists of at least two 
separate meetings:  discussion of whether a presentation is appropriate, reconvene to make sure 
everyone is in agreement still and to discuss how to schedule resources (rooms, computers, 
times, etc.), then let everyone think about it and return for a short meeting to vote it official.  Or, 
you could just do it all at once without letting people put much thought into it at all.  Note that 
this is a minimum set of requirements.  If you think of other things or want more time, feel free 
to allocate more meeting times. 
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The ultimate purpose of this exercise is to gather information about your preferences, so use the 
calendar itself to express your preferences by adding events at times which are convenient for 
you.  Feel free to change the events created by others if you cannot attend or prefer to hold the 
meeting at another time.  Some coordination and discussion can be held using the message 
facility.  Please do not speak to each other even if you wind up in the same room as I need a 
record of these discussions.  The content of what you type will not be used in my research, but if 
user preferences are not obvious from your actions with the calendar, I may have to use the 
messages for additional clues.  In other words, “Dr. Burris is evil incarnate” will not be used, but 
a message to the effect “I’d rather not meet on Monday evenings” may. 
 
Major topics of conference:  Meeting to prepare a list of  general subject areas related to the 

point of the conference.  This list will be given to possible presenters as a guide of 
acceptable presentation material. 

Securing presenters:  Discussion of ways to advertise for presentations or who to contact directly 
as an invited presenter.  Delegate tasks, then meet again to verify that everything is going 
smoothly and a response is being generated. 

Advertising:  Determine who is invited and the best ways of informing these people of the 
conference.  Delegate tasks such as contacting radio or newspaper or posting flyers with 
initial data about conference.  Meet again after schedule of presentations has been fixed to 
discuss creation and dissemination of more detailed information about conference; 
delegate appropriate tasks to accomplish this dissemination. 

Acceptance and scheduling:  Discuss acceptability of presentations and any changes which need 
to be made.  Meet again when final list of presentations are finalized to plan resource 
allocation:  which rooms, do they need to be computer labs, and what times.  Additional 
meetings/hours may be required to leave time to verify availability of presenters and 
resources. 

Conference administration:  Discuss and delegate the tasks necessary to make the conference 
operate smoothly.  Make sure someone provides refreshments, determine who is going to 
work the registration desk, what does “registration” entail, etc. 

Last minute stuff:  signs, registration materials, guest packets, etc.  May want to allocate several 
hours for group to work together to bringing all the pieces together in preparation for the 
conference on the following day. 
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APPENDIX B 
 

EXPLICIT USER PREFERENCES ELICITED FROM VOLUNTEERS 
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1 = strong dislike for meetings, 2 = prefer not to meet, 3 = don't care, 
4 = prefer to meet, 5 = strong preference for meetings 
 
The left column represents preferences regarding short meetings (one hour or less) and the 
right column represents preferences regarding longer meetings. 
 

Group 1 
 
User 1:   
Early in month: 3 3 
Late in month:    3   3 
Early in week:    4   4 
Late in week:     2   2 
Morning:          3   3 
Lunch:            2   2 
Afternoon:        3   3 
Supper:           2   2 
Evening:          1   1 
 
User 2: 
Early in month:   3   4 
Late in month:    4   2 
Early in week:    2   2 
Late in week:     5   4 
Morning:          3   3 
Lunch:            2   2 
Afternoon:        4   4 
Supper:           2   2 
Evening:          1   1 
 
User 3: 
Early in month:   4   2 
Late in month:    2   4 
Early in week:    3   3 
Late in week:     3   3 
Morning:          1   1 
Lunch:            1   1 
Afternoon:        3   3 
Supper:           3   3 
Evening:          3   3 

Group 2 
 
User 1: 
Early in month:   4   3 
Late in month:    2   2 
Early in week:    3   1 
Late in week:     3   2 
Morning:          5   3 
Lunch:            1   3 
Afternoon:        2   4 
Supper:          4   5 
Evening:         5   1 
 
User 2: 
Early in month:   4   3 
Late in month:    2   3 
Early in week:    4   4 
Late in week:     2   2 
Morning:          2   1 
Lunch:            3   3 
Afternoon:        2   1 
Supper:          4   3 
Evening:         3   4 
 
User 3: 
Early in month:   2   5 
Late in month:    4   2 
Early in week:    1   3 
Late in week:     5   5 
Morning:          1   2 
Lunch:            3   2 
Afternoon:        2   5 
Supper:          1   1 
Evening:         1   1
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APPENDIX C 
 

HIERARCHICAL VS. UNIFORM INDICATORS IN HUMAN DATA 
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The following table is a reproduction of a spreadsheet used to analyze and 

compare the relative activity of users in different groups. This data was collected by 

logging all user activity during a 1-2 hour group session. 

The columns on the left contain action counts. User actions are categorized as 

ADD, user schedules new event, MOD, user changes or removes an event, and MSG, 

user sends a message to another user. The columns in the middle represent relative 

participation by each user. Each percentage represents the responsibility of each user for 

the actions of a particular type during that group session. Because actions that affect the 

shared schedule were considered separately from message passing activity, a column 

marked “Events” summarizes both actions that add to the schedule and that modify 

scheduled events. Users within a group are listed from the most active user to the least 

active user. The right two columns indicate the differences in activity levels. 

The final page of the table contains columns of fractions that are related to the 

percentages described above with one significant difference.  The fractions indicate the 

ratio of one user’s performance of a type of action compared to the total actions taken by 

all users in the group. This data was used to create fig. 4-3. 
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APPENDIX D 
 

SAMPLE LOG AND AGENT RESPONSES 
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Following is an annotated log of the user actions and agent reactions during a typical 

session with the agent-training system.  Each log entry consists of at least a timestamp and a 

message type.  The timestamp's last three digits describe the user ID of the user whose actions 

created the message.  In the calendar application, SEND MSG refers to an attempt by one user to 

explicitly communicate with another.  In the agent-training tool, SEND MSG is used to introduce 

comments into the log.  The comments listed here were used to track agent responses to different 

user actions.  Agent's each have an ID identical to the user it serves, so Agent 2 serves User 2, 

and so on.  On the first line describing an agent's response, the numbers in parentheses represent 

the activity level and preference level of an agent's user, followed by these same measurements 

for the acting user; if an agent's user is the cause of a message, then the second pair of values 

typically represents the data of the user's most extreme opponent (minimum preference if adding, 

maximum preference if deleting, etc.).  The number after the colon is the code for the Q-learning 

system's advocated response (0=do nothing, 1=subtly indicate problem, 2=warn user of problem, 

3=immediately reject action as insupportable, 4=automatically generate a response to a user's 

action).  The number in parentheses indicates the reinforcement value associated with this 

response.  Responses with a value of –1 are automatically rejected and converted into a milder 

response. 

The user models of the agent-training system assume that a message from the agent 

regarding the behavior of other users will affect a user's ability and desire to respond to such 

behavior.  This information is encoded as a probability of response and an average time to 

respond; a change in responsiveness is noted below as (0.90, 28) -> (1.0, 13), indicating that the 

user will now respond to 100% of undesirable actions in 13 seconds instead of 90% in 28 

seconds.  Responsiveness fades over time until it reaches the "normal" responsiveness of the 
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user.  (An agent warning a user against its own action creates an entry that remembers the 

warning, for a time; a list of such entries are used to reduce the likelihood of a user model 

scheduling events at that time in the future.  No changes are recorded in the log, although a value 

representing "selfishness" is reduced by repeated warnings; this value helps to determine the 

likelihood that a user model will pay attention to its list of warnings.) 

193874002 SEND MSG Agent 2 (0.401024, -0.135874, 0.104266, 0.121618): 2 (-1) 
193874002 SEND MSG Agent 0 (-0.0158003, 0.401024, 0.101291, 0.104266): 4 (-0.1) 
193874002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness 
                   (0.904164,28.1852)->(1,12.9034) 
193874002 SEND MSG Agent 1 (0.264214, 0.401024, 0.121618, 0.104266): 3 (-0.273621) 
193874002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness 
                   (0.899962,256.36)->(1,105.519) 
193874002 START VIEW 11/10/100 

• Agent 2 advocates warning user, but user complains of too many warnings. 
• Agents 0 and 1 advocate inappropriate responses that are translated into warnings.  

193892000 SEND MSG Agent 0 (0.501072, -0.262394, 0.0967818, 0.121618): 4 (-0.1) 
193892000 SEND MSG Agent 0 WARN against adding during 0 time period on 11/5 (95) 
193892000 SEND MSG Agent 0 WARN against adding during 1 time period on 11/5 (93) 
193892000 SEND MSG Agent 1 (-0.181191, 0.501072, 0.121618, 0.0967818): 4 (-0.1) 
193892000 SEND MSG Agent 1 WARN of other user 0 affects responsiveness 
                   (0.958751,162.628)->(1,88.5476) 
193892000 SEND MSG Agent 2 (0.390963, 0.501072, 0.104266, 0.0967818): 0 (0.1) 
193892000 START VIEW 11/5/100 

• Agent 0 warns user against adding before afternoon. 
• Agent 1 warns user that 0 may be about to add undesirable events. 

193902002 SEND MSG Agent 2 (0.207759, -0.304294, 0.100838, 0.121618): 3 (-1) 
193902002 SEND MSG Agent 0 (-0.304294, 0.207759, 0.0967818, 0.100838): 4 (1) 
193902002 SEND MSG Agent 0 AUTO DELETE 
193902002 SEND MSG Agent 1 (0.598275, 0.207759, 0.121618, 0.100838): 0 (0.1) 
193902002 ADD ENTRY 11/10/100 11:00 - 11:30 

• Agent 2 advocates restricting own user; program rejects restricting own actions without 
strong cause. 

• Agent 0 automatically deletes (user rewards). 
193902000 SEND MSG Agent 0 (-0.304294, 0.598275, 0.0969427, 0.121618): 2 (-1) 
193902000 SEND MSG Agent 1 (0.598275, -0.304294, 0.121618, 0.0969427): 1 (-0.1) 
193902000 SEND MSG Agent 1 NOTIFY of other user 0 affects responsiveness 
                   (0.925987,197.282)->(0.928919,50.2549) 
193902000 SEND MSG Agent 2 (0.576542, -0.304294, 0.100838, 0.0969427): 1 (-0.1) 
193902000 SEND MSG Agent 2 NOTIFY of other user 0 affects responsiveness 
                   (0.75257,26.574)->(0.755152,20.4106) 
193902000 MOD ENTRY 11/10/100 0 11:00 

• Agent 0 advocates warning user, but this is automatically rejected by software. 
• Agents 1 and 2 notify their users of agent 0's act. 
• Mild punishment intended to impact all recent policy since conflict has occurred. 

193910002 END VIEW 11/10/100 
193915002 SEND MSG Agent 2 (0.450122, -0.212943, 0.106944, 0.121618): 2 (-1) 
193915002 SEND MSG Agent 0 (-0.0615601, 0.450122, 0.0969427, 0.106944): 4 (-0.1) 
193915002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness 
                   (0.838259,39.2595)->(0.977991,18.2537) 
193915002 SEND MSG Agent 1 (0.346413, 0.450122, 0.121618, 0.106944): 3 (-0.207418) 
193915002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness 
                   (0.881141,173.123)->(1,80.5357) 
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193915002 START VIEW 9/8/100 

• Agent 2 advocates warning against own user viewing, rejected by software 
• Agents 0 and 1 advocate extreme responses that are converted to warning their users. 

193925001 SEND MSG Agent 1 (-0.927169, 0.861065, 0.116344, 0.106944): 3 (-1) 
193925001 SEND MSG Agent 0 (0.569199, -0.927169, 0.0969427, 0.116344): 3 (-0.715939) 
193925001 SEND MSG Agent 0 RESTRICT 2 by 1 for 11/5, 11:0 
193925001 SEND MSG Agent 2 (0, 0, 0.106944, 0.116344): 0 (0.1) 
193925001 SEND MSG      11/5/100 11 

• Agent 1 auto restrict on own user's remove is rejected. 
• Agent 0 auto restricts user 1's DELETE action. 

193932002 SEND MSG Agent 2 (0.924159, 3.79502e-005, 0.104538, 0.116344): 0 (0.1) 
193932002 SEND MSG Agent 0 (3.79502e-005, 0.924159, 0.0969427, 0.104538): 1 (0) 
193932002 SEND MSG Agent 0 NOTIFY of other user 2 affects responsiveness 
                   (0.898816,30.5044)->(0.925933,19.9567) 
193932002 SEND MSG Agent 1 (0.395681, 0.924159, 0.116344, 0.104538): 1 (0) 
193932002 SEND MSG Agent 1 NOTIFY of other user 2 affects responsiveness 
                   (0.925987,192.227)->(0.927444,79.4392) 
193932002 ADD ENTRY 9/8/100 17:00 - 17:30 

• Agents 0 and 1 notify their users of agent 2's action. 
193938001 END VIEW 11/5/100 
193943001 SEND MSG Agent 1 (0.459892, -0.315945, 0.118654, 0.104538): 4 (-0.1) 
193943001 SEND MSG Agent 1 WARN against adding on 10/27 (152) 
193943001 SEND MSG Agent 0 (-0.315945, 0.459892, 0.0969427, 0.118654): 4 (-0.1) 
193943001 SEND MSG Agent 0 WARN of other user 1 affects responsiveness 
                   (0.865972,31.5788)->(1,17.4402) 
193943001 SEND MSG Agent 2 (0.461899, 0.459892, 0.104538, 0.118654): 0 (0.1) 
193943001 START VIEW 10/27/100 

• Agent 1 inappropriate extreme response changed to warning against adding any events. 
• Agent 0 inappropriate extreme response changed to warning of user 1's presence. 

193943002 END VIEW 9/8/100 
193948002 SEND MSG Agent 2 (0.396492, -0.256921, 0.108664, 0.118654): 4 (-0.1) 
193948002 SEND MSG Agent 2 WARN against adding on 11/25 (125) 
193948002 SEND MSG Agent 0 (-0.256921, 0.396492, 0.0969427, 0.108664): 4 (-0.1) 
193948002 SEND MSG Agent 0 WARN of other user 2 affects responsiveness 
                   (0.912702,29.9911)->(1,10.3982) 
193948002 SEND MSG Agent 1 (0.514955, 0.396492, 0.118654, 0.108664): 3 (-0.1) 
193948002 SEND MSG Agent 1 WARN of other user 2 affects responsiveness 
                   (0.85041,262.258)->(0.957571,146.852) 
193948002 START VIEW 11/25/100 

• Agent 2 inappropriate extreme response changed to warning against adding any events. 
• Agents 0 and 1 in appropriate extreme responses changed to warnings of user 2's 

presence. 
193955001 SEND MSG Agent 1 (0.36407, -0.558226, 0.116888, 0.108664): 2 (-0.00728141) 
193955001 SEND MSG Agent 1 WARN that ADD is in conflict (35) 
193955001 SEND MSG Agent 0 (-0.558226, 0.36407, 0.0969427, 0.116888): 3 (1) 
193955001 SEND MSG Agent 0 RESTRICT 0 by 1 for 10/27, 12:0 
193955001 SEND MSG Agent 2 (0, 0, 0.108664, 0.116888): 0 (0.1) 
193955001 SEND MSG      10/27/100 12 

• Agent 1 warns user that ADD creates conflict. 
• Agent 0 auto restricts unacceptable ADD by user 1. 

193965001 END VIEW 10/27/100 
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