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 In this research, a security architecture based on the feedback control theory has been 

proposed.  The first loop has been designed, developed and tested. The architecture proposes a 

feedback model with many controllers located at different stages of network. The controller at each 

stage gives feedback to the one at higher level and a decision about network security is taken.  

 The first loop implemented in this thesis detects one important anomaly of virus attack, rate of 

outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection 

is an important one to contain the spread. Based on the feedback model, this symptom is fed back and 

a state model using queuing theory is developed to delay the connections and slow down the rate of 

outgoing connections. Upon implementation of this model, whenever an infected machine tries to 

make connections at a speed not considered safe, the controller kicks in and sends those connections 

to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also 

because of delaying, many connections timeout and get dropped, reducing the spread. 

 PID controller is implemented to decide the number of connections going to safe or suspected 

queue. Multiple controllers can be implemented to control the parameters like delay and timeout. 

Control theory analysis is performed on the system to test for stability, controllability, observability. 

Sensitivity analysis is done to find out the sensitivity of the controller to the delay parameter.  

 The first loop implemented gives feedback to the architecture proposed about symptoms of an 

attack at the node level. A controller needs to be developed to receive information from different 

controllers and decision about quarantining needs to be made. This research gives the basic 

information needed for the controller about what is going on at individual nodes of the network. This 

information can also be used to increase sensitivity of other loops to increase the effectiveness of 

feedback architecture. 
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INTRODUCTION 

Computer virus is a software program, which harms a computer when infected [1]. 

General tendency observed over the period is that a person who writes such programs would like 

to harm as many systems as possible. In early days (before computer networks) virus 

programmers used disk media (ex: floppy) to spread the virus to as many systems as possible.   

 Computer virus is defined as “A parasitic program written intentionally to enter a 

computer without the user's permission or knowledge. The word parasitic is used because a virus 

attaches to files or boot sectors and replicates itself, thus continuing to spread. Though some 

viruses do little but replicate, others can cause serious damage or affect program and system 

performance. A virus should never be assumed harmless and left on a system." [31].  

Research has been going on to reduce the spread of viruses to minimize the destruction 

caused by them. Viruses can be broadly categorized into the following categories: 

• Viruses - A virus is a small piece of software that attaches to real programs. For 
example, a virus might attach itself to a program such as a spreadsheet program. Each 
time the spreadsheet program runs, the virus runs, too, and it has the chance to 
reproduce (by attaching to other programs) or wreak havoc [28]. 

• E-mail viruses - e-mail virus moves around in e-mail messages, and usually replicates 
itself by mailing itself to dozens of people in the victim's e-mail address book [28].  

• Worms - A worm is a small piece of software that uses computer networks and 
security holes to replicate itself. A copy of the worm scans the network for another 
machine that has a specific security hole. It copies itself to the new machine using the 
security hole, and then starts replicating from there, as well [28].  

• Trojan horses - A Trojan horse is simply a computer program. The program claims to 
do one thing (it may claim to be a game) but instead does damage when you run it (it 
may erase your hard disk). Trojan horses have no way to replicate automatically [28].  

In the past active worms have taken hours if not days to spread effectively. This gives 

sufficient time for humans to recognize the threat and limit the potential damage. This is not the 

case anymore. Modern viruses spread very quickly. Damage caused by modern computer viruses 
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(example - Code Red, Sapphire and Nimda) is greatly enhanced by the rate at which they spread. 

Most of these viruses have an exponential spreading pattern. Future worms will exploit 

vulnerabilities in software systems that are not known prior to the attack. Neither the worm nor 

the vulnerabilities they exploit will be known before the attack and thus spread of these viruses 

cannot be prevented by software patches or antiviral signatures [1]. 

Existing Defenses 

There are a variety of network components in the market today that protect machines 

from different kinds of worms. Network perimeter is primary concern for security managers. 

Security managers have focused on multiple security components to keep their networks safe. 

Examples are: Antivirus, Firewalls, Intrusion Detection Systems, and Honey Pots.  

Intrusion Detection Systems 

Network Intrusion Detection Systems examine the network traffic and host intrusion 

systems detect outsider infiltration as well as unauthorized access by users who are trusted 

insiders.  Intrusions are characterized into network traffic patterns that are suspicious and these 

are called signatures. These signatures are compared against the network traffic patterns and 

deviation generates security alerts. But these alerts can be false alarms. Due to nature of the 

signatures, these systems can be as accurate as the signatures themselves. Moreover, these 

systems are reactive and cannot prevent the attacks [5].   

Firewalls  

Firewalls often only have the packet filter rules applied or are used to protect just one 

server, such as external Web server. Hence most of these firewall rules are static and cannot 

respond to dynamic changes [5]. 
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Honey Pots 

Honey pots lure attackers by presenting a more visible and apparently vulnerable 

resource than the enterprise network itself. These are also useful for forensics. But these can be 

vulnerable themselves because they attract attackers’ special attention. Also if they are 

incorrectly configured, they make network more vulnerable [5].  

Thus, firewalls, routers, Intrusion Detection Systems, and Honey Pots can be very useful 

as elements for network defense but they can not protect the network by themselves. But by 

careful integration and engineering of these devices, security level can be increased [5]. 

Statement of the Problem 

It is difficult to control or stop the unknown computer worms that spread very fast. 

Modern day viruses spread in milliseconds. They cannot be controlled with existing technologies 

which are either signature based or too slow to control the spread and damage caused by 

unknown fast spreading worms, such as Slammer, Code Red, Nimda etc. 

Purpose of the Study 

Purpose of the study is to  

• Develop and simulate a state model to contain the rate of outgoing connections made 
by a compromised system. 

• Implement and test the state model using LabVIEW® (National Instrument 
Corporation, Austin, Texas, www.ni.com).and implement feedback control using PID 
(Proportional Integral Derivative) controller  

• Perform stability, controllability, observability and sensitivity analysis on the 
implemented control system. 

  Objectives of this research are to design an architecture based on classical feedback 

control to: (1) detect worm-based threats; (2) dynamically quarantine infections to localized 

sectors to prevent propagation of infection; and (3) develop technologies to automatically and 
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dynamically quarantine these fast spreading worms to a peak infection portion of 1% of 

vulnerable machines that would otherwise infect approximately 100% of vulnerable machines.  
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REVIEW OF LITERATURE 

The model developed is based on the analysis of some popular worms that spread very 

fast and caused havoc in the recent history. Below is a brief description of these worms, their 

spreading pattern and some of the techniques these worm authors’ use to increase the spread rate. 

Recent Worms and Techniques Used to Spread Them 

Code Red 1 

 On July 12, 2001, this worm began to exploit the buffer-overflow vulnerability in 

Microsoft® IIS Web servers (Microsoft Corporation, www.microsoft.com). Upon infecting a 

machine, the worm checks to see if the date (as kept by the system clock) is between the first and 

the nineteenth of the month. If so, the worm generates a random list of IP addresses and probes 

each machine on the list in an attempt to infect as many computers as possible [3].  

Code Red II 

This worm also used the same Microsoft IIS Web server’s buffer overflow vulnerability 

as Code Red I. This worm had single stage scanning technique and used a localized scanning 

strategy, which made it successful in infecting addresses close to it [3]. 

Nimda 

This worm used multiple ways to spread through the network. This worm is believed to 

have used the following five different strategies to spread itself 

• Infecting Web servers from infected client machines via active probing for Microsoft 
IIS vulnerability. 

• Bulk emailing of itself as an attachment based on email addresses determined from 
the infected machine. 

• Copying itself across open network shares. 

• Adding exploit code to Web pages on compromised servers in order to infect clients 
that browse the page. 
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• Scanning for the backdoors left behind by Code Red II and also the “sadmind” worm” 
[3] 

Slammer/Sapphire 

Slammer's attack was hundreds of times faster than the Code Red virus or Nimda worm. 

It started with a single packet. The worm hit its first victim at 12:30 am (January 25 2003) 

Eastern standard time. The machine - a server running Microsoft SQL (Structured Query 

Language) - instantly sent out millions of Slammer clones, targeting computers at random. By 

12:33 am, the number of slave servers in Slammer's replicant army was doubling every 8.5 

seconds [28]. 

How Slammer Works 

Slammer owes its speed to UDP (Unreliable Datagram Protocol), an Internet protocol 

that's lighter and quicker than the TCP (Transmission Control Protocol used for Web sites, email, 

and file downloads). TCP requires sender and receiver to acknowledge each other in a handshake 

before exchanging information; UDP can carry a message in a single, one-way packet. Microsoft 

SQL Server 2000 software has a UDP-powered directory service that lets applications 

automatically find the right database. Moreover, SQL code comes built into other programs the 

company sells. Many Slammer victims didn't even realize they were running SQL [28].  

The worm takes advantage of a common software bug called a buffer overflow. Buffers 

overflow when a data string is written into memory without its length being checked by the 

program. If the string is too long, the tail end of the data overwrites the program's own code [28]. 

The unique intelligent feature of Slammer is how it uses an attack on just one type of 

software as leverage for a general attack on the Web itself. Machines infected by the worm 

swiftly spam the Network with randomly addressed traffic, hitting other vulnerable servers. As 

the number of computers spewing Slammer packets rises, the situation reaches critical mass, 
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potentially creating a denial of service attack on all 4 billion IP (Internet Protocol) addresses on 

the Net [28]. 

Below is a brief description of how Slammer worked and how it could achieve such high 

speed spreading, as described in an article from Wired [28]. 

Get inside: Slammer is a single UDP packet, one that would normally be a harmless 
request to find a specific database service. The first byte in the string - 04 - tells SQL 
Server that the data following it is the name of the online database being sought. 
Microsoft specifies that this name be at most 16 bytes long and end in 00. But in the 
Slammer packet, the bytes run on, so there is no 00 among them. As a result, the SQL 
software pastes the whole thing into memory. 

Reprogram the machine: The initial string of 01 character spills past the 128 bytes of 
memory reserved for the SQL Server request and into the computer's stack. The first 
thing the computer does after opening Slammer's UDP "request" is overwrite its own 
stack with new instructions that Slammer has disguised as a routine query. The computer 
reprograms itself without realizing it. 

Choose victims at random: Slammer generates a random IP address, targeting another 
computer that could be anywhere on the Internet. To randomize: It looks up the number 
of milliseconds that have elapsed on the CPU's system clock since it was booted and 
interprets the number as an IP address. 

Replicate: The envelope is addressed, now it just needs to be stuffed. Slammer points to 
its own code as the data to send. The infected computer writes out a new copy of the 
worm and sends the UDP packet. 

Repeat: After sending off the first packet, Slammer loops around immediately to send 
another to a different computer without wasting a single millisecond. Instead of making 
another call to the system clock to get the time, it just shuffles the bits of the IP address 
already in memory to create a new one. A home Personal Computer could send a couple 
hundred copies onto its broadband link every second. Corporate data centers started 
launching tens of thousands of worms per second. Because it replicated so fast, the worm 
was able to take down millions more, kicking them offline with a flood of meaningless 
traffic.  

Response to Sapphire’s Spread 

Most accurate data was obtained from the University of Wisconsin Advanced Internet 

Lab, where all packets into an otherwise unused network (a “tarpit” network) is logged. Many 

sites began filtering all the UDP packets with a destination port of 1434. Though filtering 

reduced the bandwidth consumed by the infected hosts, it did nothing to limit the spread of the 

worm. 
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Figure 1  Aggregate scans per second in first 5 minutes (Sapphire) [4]   

Note: Break in the graph above shows transient failure in the data collection 
approximately 2 minutes and 40 seconds after Sapphire began to spread. 

 

 

Figure 2 Aggregate scans per second in first 12 hours (Sapphire) [4]. 
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The response was so slow that by the time filtering was implemented; the worm had 

infected almost all the susceptible hosts [4].  Figure 1 & 2 shows the scanning rate of this virus in 

the first five minutes and first twelve hours after the launch of the worm. 

Distributed Denial of Service Attacks 

This can be described as attempt by an attacker to prevent legitimate users from using 

resources. An attacker usually floods the network and steals the bandwidth available to the user. 

 Some well-known examples of denial of service attacks include 

• Attempts to “flood” a network, thereby preventing legitimate network traffic 

• Attempts to disrupt connections between two machines, thereby preventing access to 
a service. 

• Attempts to prevent a particular individual from accessing a service 

• Attempts to disrupt service to a specific system or person” [2] 

Some of the techniques which could be used by the worm authors to enhance the spread 

rate of worms are described below. 

“Better” Worms - Theory 

There are several ways a worm spreads through the network. Some of the common 

techniques employed by the worms are discovering more widespread security holes and 

increasing the scanning rate. Apart from these some of the strategies that a worm author could 

adopt are [3] 

• Hit list scanning 

• Permutation scanning 

• Topologically aware worms 

• Internet scale hit lists. 

The ultimate goal of all these strategies is to spread the worm as fast as possible.   
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Hit List Scanning 

Though most of the worms propagate exponentially, it is the initial take off time that is 

difficult. It takes more time to infect the first 1000 machines. The strategy to overcome this 

problem is called hit list scanning. In this strategy the worm author collects a list of 10,000 to 

50,000 potentially vulnerable machines. 

 Some of the ways the worm author collects these list of vulnerable machines are 

• Stealthy scans – it can be obtained by scanning the entire Internet. 

• Distributed scanning – Using this strategy the attacker can scan a few dozen to few 
thousand already-compromised “zombies”. 

• DNS (Domain Name Server) searches – A list of domain names can be obtained and 
then their IP addresses from domain names. 

• Spiders – Use of Web-crawling techniques similar to search engines to get a list of 
most interconnected Web sites. 

• Public surveys - there are surveys to a get a list of potential targets. 

• Just listen – Some applications like peer-to-peer networks advertise their servers, also 
previously effective worms broadcast the vulnerable machines [3]. 

Permutation Scanning 

One of the main problems faced by random scanning was that many infected machines 

were scanned many times wasting time. This problem was overcome in permutation scanning 

In permutation scan, all worms share a common pseudo random permutation of the IP 

address space. This is done by encrypting an index to get the corresponding address in the 

permutation, and decrypt an address to get its index [3]. 

Topological Scanning 

This is an alternative approach to obtain a set of vulnerable IP addresses. This method 

uses information contained in the victim’s machine [3]. 
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Flash Worms 

This is an alternative to hit-list scanning discussed. Using an OC12 connection all the 

Web servers can be scanned within 2 hours. The list is divided into ‘n’ blocks. After infecting a 

host, the worm hands over the list to a child worm, which goes on and infects that particular 

block. Thus parallel spreading can be achieved and hence faster worms [3]. 

Control Systems 

Control systems is based on the foundations of feedback theory and linear system 

analysis, it also integrates the concepts of network theory and communication theory. It is 

interconnection of various components forming a system configuration that will provide desired 

system response.  

 With the availability of digital computers, it is convenient to consider the time-domain 

formulation of the equations representing control systems. If one or more parameters of a system 

vary with time, then it is considered time-varying control system. A multivariable system is one 

in which many parameters vary with respect to time. 

 “The state of a system is a set of variables such that the knowledge of these variables and 

the input functions will, with the equations describing the dynamics, provide the future state and 

output of the system” [27].  The figure belowFigure 3  State Mmodel. 

 shows state model representation, all the inputs and outputs in the figure can be single or 

multivariable. 
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X(0) Initial
conditions

u(t) 
input 

 
Dynamic system 

State x(t) 
Y(t) 

Output 

 

Figure 3  State model. 

 The state model is described by  

• State differential equation 

x Ax Bu
•

= +  

• Output equation 

y Cx Du= +  

Where 

X is column matrix consisting of state variables. 

•

x  is derivative of the state vector with respect to time. 

A is system matrix of size n*n. 

B is input matrix of size n*m. 

C is output matrix of size n*m. 

D is feedforward matrix of size n*m. 

Y is the set of output signals expressed in column vector form. 

Open Loop Control System 

In control systems, each block represents a component or process. An open loop system 

utilizes an actuating device to achieve control. It has no feedback. It can be generally represented 

as shown in Figure 4 below [27]: 
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Figure 4 Open loop control system. 

Closed Loop Control System 

In contrast to an open loop control system, a closed-loop control system shown below in 

Figure 5 uses the actual output from the process to compare with the desired response and give 

out control signals [27].  

 

Desired 
output 
response 

Output 
Actuating 
device 

Process Comparis
on 

Measurement

 
Figure 5 Closed loop control system. 

Below is a brief description of proportional (P), the integral (I), and the derivative (D) 

controls, and how to use them to obtain a desired response.  

The Three-Term Controller 

The transfer function of the PID controller is as shown in equation 1:  

S
KsKsKsK

s
KK IPD

D
I

p
++

=++
2

     (1) 

• Kp = Proportional gain  

Desired 
output 
response 

Output 
Actuating 
device 

Process 
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• Ki = Integral gain  

• Kd = Derivative gain  

PID controller in the closed-loop system is as shown in Figure 6. Advantages of feedback 

control are: (i) System (e.g., group of security components in a network) output can be made to 

follow the specified function in an automatic fashion; (ii) System performance is less sensitive to 

variations of parameter values; and (iii) Use of feedback makes it easier to achieve the desired 

transient and steady-state response. 

y u 
e R 

_ + 

 
Controller 

 
Plant 

 

Figure 6  Feedback controller. 

The variable (e) represents the tracking error, the difference between the desired input 

value (R) and the actual output (Y). This error signal (e) is sent to the PID controller, and the 

controller computes both the derivative and the integral of this error signal. The signal (u) past 

the controller is equal to the proportional gain (Kp) times the magnitude of the error plus the 

integral gain (Ki) times the integral of the error plus the derivative gain (Kd) times the derivative 

of the error.  

∫ ++=
dt
deKedtKeKu DIP      (2) 
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This signal (u) is sent to the plant, and the new output (Y) will be obtained. This new output (Y) 

is sent back to the sensor again to find the new error signal (e). The controller takes this new 

error signal and computes its derivative and integral again. The process continues.  

The Characteristics of P, I, and D Controllers 

A proportional controller (Kp) has the effect of reducing the rise time and reduces, but 

never eliminates, the steady-state error. An integral control (Ki) has the effect of eliminating the 

steady-state error, but it makes the transient response worse. A derivative control (Kd) has the 

effect of increasing the stability of the system, reduces the overshoot, and improves the transient 

response. Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are summarized 

in the table shown below.  

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR 

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small Change Decrease Decrease Small Change

 

Table 1 Relationship between different PID gains, rise time, overshoot, settling time and steady 
state error.  (Source: 1997, Regents of the University of Michigan, CTM tutorial, PID tutorial, 
reprinted with permission.) 

Previous Work 

Modern day viruses spread incredibly fast. One of the main difference between an 

infected system and an uninfected system is that an infected system tries to make connection to 

as many different machines as fast as possible. Uninfected machines make connections at a 

lower rate and are locally correlated (repeat connections to recently accessed machines are 

likely) [1]. 



16 

These computer viruses are so fast that automatic control is needed to contain their 

spread. One of the main drawbacks of automatic control of such viruses is false positive. If the 

system responds to every false positive, then the performance of such a system will be very low. 

Therefore one of the techniques is to use benign processes. This method uses slowing down the 

spread rather than stopping the virus. Slowing down an infection earns valuable time for human 

mediated response in case of fast spreading worms [1]. 

There is a need to control the spread of above mentioned, fast spreading viruses 

automatically. They spread very fast for human initiated control. Some of the automatic 

approaches like quarantining the systems and shutting them down reduce the performance of the 

network. False positives are one more area of concern [1] [15].  

This situation can be improved a lot by using “benign” responses, those that slow but do 

not stop the virus [1]. The main idea is to delay the virus by so long as to earn time for human 

mediated responses [1] [15]. Feedback control strategy is desirable in such systems because well-

established techniques exist to handle and control such a system [14].  

This technique is based on the fact that an infected machine tries to make connections at a 

faster rate than the machine that is not infected. The idea is to implement a filter, which restricts 

the rate at which a computer makes connection to other machines in the network. The delay 

introduced by such an approach for normal traffic is very low (0.5 –1 Hz). This rate can severely 

restrict the spread of high-speed worm spreading at rates of at least 200 Hz [1] [15]. 

In this research the idea of delaying the virus and not stopping it is used. The established 

concepts of control theory and queuing theory are applied for a better model. Instead of just 

comparisons, the idea of delaying the connections in separate dedicated queues in incorporated 

and a state model is developed to implement feedback control theory. The idea, model and 

implementation are explained in the next chapter. 
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EXPERIMENTAL SETUP AND PROCEDURE 

As a first step towards our design, feedback control should be applied at different levels 

in a network. The idea is to develop and implement an architecture, which gives feedback at 

different stages of the network. All the controllers in the network receive the feedback from other 

controllers and they make collective decision about network security. Figure 7 shows the 

architecture for achieving such a feedback mechanism for secure network [5][1]. A description 

of the architecture follows. 

System Architecture 

It is assumed that a secured network consists of firewalls, sensors, analyzers, Honey Pots, 

and various scanners and probes. These components are either separate elements or collocated 

with hosts, servers, routers and gateways.  

In this architecture, a (centralized or distributed) controller is responsible for collection 

and monitoring of all the events in the network. This controller is knowledgeable about the 

network topology, firewall configurations, security policies, intrusion detections and individual 

events in the network elements. This controller is logical function and can be deployed anywhere 

in the network.   
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Figure 7  Controller architecture for end-to-end security engineering. 
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Figure 7 shows the controller communicating with clients located in different network 

elements. Clients are responsible for detection and collection of the events in the node and 

communicate to the controller. Subsequently, controller will run through the algorithms, rules, 

policies and mathematical formulas (transfer functions) for next course of action. These actions 

are communicated to the clients. 

As described in Figure 7, the architecture evolves from a concept of closed loop control. 

Changes regarding the security behavior are captured and mixed with the incoming network 

signals. This piece of information is used to formulate the next course of action. The final result 

is an outcome from multiple loops and integration of multiple actions. The response times within 

each loop are indicated in Figure 7. Response time varies from few milliseconds to several tens 

of minutes.  For example, nodal events like buffer overflows, performance degradation can be 

detected in matter of milliseconds.  On the other hand, it may take several seconds to detect 

failed logins, changes to system privileges and improper file access.  

The architecture explained above is for any network consisting firewalls, routers, 

Intrusion Detection Systems etc. These are general elements used commonly in almost all 

computer networks today. At different stages in the network different anomalies are detected and 

decisions about required patches for the network are made. First step towards the development of 

this architecture is to develop the first loop of the architecture explained which is the objective of 

this thesis. At the first loop of the architecture nodal anomalies are detected. One of the 

important anomalies detected on the infection of a system is; the system tries to make many 

connections per second to spread the virus to as many systems as possible before any protection 

against the virus can be applied. The model described below was developed to detect such an 

anomaly, give the feedback and achieve control (reduce the rate of outgoing connections). 
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Model Description 

Figure 8 shows the model at the nodal level. At this stage, the anomaly being observed is the 

rate of outgoing connections. Connection requests block in Figure 8 represents any computer that 

is connected to the network. As any other computer on the internet, it generates connection 

requests. Connection requests generated are split into three categories.  

• Connections to machines that are considered safe (a queue is maintained for safe list 
connections). 

• Connections that are delayed (All the connection not present in the safe list but can go 
through). 

• Connections that are dropped for other reasons (naturally). 

Threshold 

α

α

 Suspect (Delay) queue 

Safe Queue Connections 
requests 

d
β

1- 2α

D

Connections 
not accepted

 

Figure 8  Model for connections accepted, delayed and rejected for parametric control. 

If the system is not infected, then the system will make fewer outgoing connections per 

second (less than 20 connections per second). All the connections generated should go out of the 

system without delay. Therefore all the connections enter the safe queue and establish outside 

connection. System makes more than 20 connections per second (set point) when infected. Set 

point was chosen based on observing different worms explained in the previous section. Though 

each worm has different value associated with it, average value is 20. This value can be tuned for 

individual implemented. At this stage the controller should send signal to push more connections 
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to the delay queue to slow down the rate of outgoing connections. Connections after getting 

processed by the delay queue are appended back to the safe queue and leave the system. Some 

connections after staying in the delay queue for time specified by the user get dropped on 

timeout. Timeout is application level timeout and not the protocol level timeout. Parameters 

related to the size of the delay queue and the number of dropped connections is used to control 

the total number of connections resulting in a slow down of spreading worm. 

Sapphire worm spreading is taken as an example to show the applicability of this 

approach. The goal of the example is to slow down the spreading velocity of a worm by 

controlling the rate of connections (C(t)) detected by the host. A model capturing the behavior of 

the system, i.e., how the number of total connections is changing is needed to achieve this goal 

[6][7]. 

The rate of change of the number of connections (dc/dt) is proportional to the number of 

dropped connections (-dc, where d is the specified drop rate) plus the number of connections 

removed from the delayed queue (βD, where β is delay parameter and D is the number of 

delayed connections on the queue) and the new successful connections (αu, where α is the 

percentage of not delayed connections). This result in equation (3) 

c dc D uβ α= − + +
o

  (3) 

Differentiating Equation. 3 gives 

[ ]c d c= −
oo o

  (4) 

Substituting for c
o

 gives 

2c d c d D d uβ α= − + − +
oo

  (5) 
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The rate of change in the size of the delayed queue (dD/dt) is proportional to the new incoming 

successful connections send to the queue (αu) minus the connections removed from the queue -

βd. This results in equation 6 below. 

D D uβ α= − +
o

  (6) 

Where D is the size of the delay queue; d is the drop rate; β is the delay parameter; u is the total 

connections arriving; and α is the success rate 

Combining equations for dC/dt and dD/dt in state variable format leads to Eqs. 7 and 8. 
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  (8) 

Equations 7 and 8 represent state of output equations of the state model. Using these equations 

the state model is simulated. Figure 9 shows the MATLAB® (MathWorks, Inc., Natick, MA) 

simulation results of the state model. 

As shown in the graph the system was tested to check the behavior by applying control at 

different stages on spreading. Next stage after obtaining simulation results from MATLAB was 

to implement the model in real computers, test the model and perform analysis on it. Below is 



23 

the description how the system was implemented using LabVIEW® (National Instrument 

Corporation, Austin, Texas, www.ni.com). 

Experimental Setup 

 Experimental setup consists of the first loop explained in the architecture of the previous 

section. Any network consists of computers (hosts) at the bottom level. Bridges, switches, 

firewall, Intrusion Detection Systems, routers etc form the higher layers of any computer 

network. The objective of this thesis is to build and test the model at the host level (between two 

computers). One important future works includes building similar controllers at different layers 

of network and make them communicates with each other to make accurate decisions about the 

network traffic patterns. The experimental setup of research consists of computers (hosts) 

communicating with other computers using LabVIEW clients and server running UDP.  

Implementing and testing the model require software which supports networking as well 

as control system technology. LabVIEW 7.0 was found to be best suited for testing the model. 

LabVIEW also has very useful tools for visual outputs. Data could be observed live and 

modifications done online.  

LabVIEW Model 

LabVIEW user interface screen for the model is shown in Figure 9 below. It consists of 

many numeric controls and indicators. It also has graphical interface to observe variations 

graphically. The interface can be used to make connection to any system by changing the IP 

address or a range of IP addresses can be given in a loop to make connection to many systems. 

User can also set some other important parameters like timeout, delay for suspected queue, PID 

gains and set point.  
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Figure 9  Front panel of LabVIEW client. 
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Connections are generated using LabVIEW’s graphical programming. Virus attack is 

simulated mathematical equation for S-curve [3]. Disturbance is given to the system using 

mathematical equation, simulating an attack. The user enters set point manually. Set point refers 

to the number of connections per second any computer is allowed to make and is considered 

safe. Acting by the mathematically simulated attack the computer increases its outgoing 

connection rate. PID controller takes this as feedback and switches the connections between safe 

and suspected queue (delay queue) to maintain a steady outgoing connection rate.  

 Timeout has been implemented at the application level. If the computer is infected and 

makes very high rate of outgoing connections, then suspected queue builds up and many 

connections timeout thereby avoiding many more infections. Below is description of some 

important loops used in LabVIEW to implement the model. 

Time to Synchronize Different Loops 

 

Figure 10  Timer Loop for synchronous operation of all the loops. 
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The above block of the LabVIEW program shows the while loop which synchronizes 

time between various blocks of the model. It runs at the speed of the processor. One of the clock 

records the time at the start of the run and the other increments at the speed of the processor. 

Difference between the two gives the time to synchronize all the loops. 
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Generation and Queuing 

 

Figure 11  Simulation of attack and queuing. 

The block shown above generates 5000 connections. This while loop uses UDP open connections to open ports from 60000 to 

65000. The port number range was selected randomly to avoid conflicts with the already used ones. Random number block is used to 

generate random numbers between 0 and 1. A numeric control is used to compare with the generated random 
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number and based on its output “safe” or “suspected” queue is selected. The program 

implements a timeout independent of protocol timeout. To achieve this, the present time from the 

clock loop is inserted into the queue along with the connections after converting both of them 

into string data type as queue structure supports conversion of anything to string and back. The 

connections are generated in S-shape to simulate an attack. The equation used to generate S-

function is given by  

y = 200 - ((165*0.007)/((0.007+(165-0.007)*exp(-0.09*t)))+5); 

The above mentioned exponential equation determines the delay between generating each 

connection. Initially connections are generated at a rate of 5 connections per second, which is 

considered safe. At the end of execution of the loop the number of connections per second will 

increase to 33. LabVIEW takes 30 milliseconds to make a UDP connection. Therefore limitation 

on the upper limit for the number of connections exists in LabVIEW. 
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Safe Connections 

 

Figure 12  Makes outgoing connections from safe queue. 

This loop makes connections, which are considered safe. At this stage in this research, 

there is not enough intelligence in the system to decide which connections should be send to safe 

queue and which ones should go to suspected queue. As mentioned before in the present 

implementation random number or controller decides which queue the connections should go to. 

Whatever connections go to safe queue are considered harmless and they need to be serviced 

immediately without delay. This loop performs the required action and makes connections to the 

client or server based on the IP address and port number specified as shown in the diagram. This 

loop just de-queues the safe queue and makes the connection. 
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Delaying Suspected Connections 

 

Figure 13  Delaying suspected connections and adding them back to safe queue; also dropping timed out connections.
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Suspected connections are connections, which are considered harmful, which spreads 

worm. These connections are sent to the suspected queue when queuing. These connections are 

sent back to the safe queue after delaying, if they have not timed out. This loop processes 

suspected queue at the specified rate. It separates the time string and connection string from the 

element. Checks the time with the present time, if the difference is greater than the timeout 

specified then drop the connection. If the connection is not timed out, the connection is pushed 

into safe queue.   

 If the connection is timed out, then timed out connections should not be processes with 

delay. Here the program logic resets the loop processing speed and timed out connections get 

dropped without any delay.  

 

PID Controller 

 

Figure 14  Feedback loop with PID controller. 

 

This loop performs feedback action using shift register. It shifts the old values of the 

outgoing connection rate (dc/dt). PID gains (Kp, Ti and Td), set point and output range for the 
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controller can be modified. It gives output to the “ratio for each queue” (α). Ratio for each queue 

determines the number of connections going to safe or suspected queue. As the number of 

connections per second increases more than the set point controller increases/decreases the value 

for “ratio for each queue” and sends more connections to the delay queue, thus reducing the 

actual number of outgoing connections. Number of connections in the delay queue increases as 

time progresses and also due to the slow processing speed of the delay loop. 

At this stage in the research model for containment has been developed and tested real 

time using LabVIEW. There are some differences in the MATLAB simulation of the model and 

the LabVIEW implementation. Percentage values of the MATLAB model have been 

implemented as time factors in LabVIEW. There fore the next step is to develop a relation 

between them. This is done empirically. LabVIEW implementation is run many times and for the 

time values set by the user, percentage of connections going to safe queue, suspected queue, 

percentage of connections getting timed out and going back to safe queue from suspected queue 

are calculated. To validate the system, values are used in Simulink® (MathWorks, Inc., Natick, 

MA) model and validated. Simulink model is described below 
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Simulink Validation 

 

Figure 15  Simulink model with a PID controller and the state variable model. 

In Figure 15, the system represents the complete state space model.  Constant (20) 

represents the set point for the system (the maximum desired outgoing connections per second). 

The PID controller controls the values for parameter α. A constant outgoing rate of 20 

connections per seconds is achieved by the control system in Figure 15. 



34 

RESULTS AND DISCUSSIONS 

First step in the implementation of this thesis is to implement the state model represented 

by equations 7 and 8.  Figures 16, 17, 18 and 19 shows the simulation result for feedback applied 

to total number of connections, acceleration of outgoing connections and effect of applying to 

different parts of the network.  

Total Connections 

 

Figure 16  Behavior of the state model for the control of the number of connections on the 
presence of a worm spreading according to an S-shape function. (a) Shows the total number of 

connections with and without feedback.
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The input in Eq. (8) represents the number of requested new connections per time unit. In 

the case of a normal traffic the average number of requests can be considered constant over a 

period of time. However, an S-shape form is expected for the spread function of a worm and 

dU/dt=U (1-U) is used to generate the input. The solid line in Figure 16 represents the behavior 

of the system with drop rate and delay parameters under “regular” conditions. The dashed lines 

in Figure 16 represent the results for different detection times of the application of feedback 

control for the scenario described above. As shown in the figure, control can be achieved at 

different stages of attack and total number of connections being made still remains the same. As 

expected, the sooner the infection is detected the faster the reduction of the spreading velocity. 

Acceleration

 

Figure 17  Acceleration of outgoing connections for better detection times. 

The acceleration of outgoing connections is used here as a detection mechanism to achieve 

earlier detection because of second derivative. That is, when the acceleration reaches a certain 
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threshold the drop rate and the delayed parameters on the model in Equation (6) are adjusted to 

slow down the spreading of the worm. 

Total Input Connections 

 

Figure 18  Number of connections on the delayed queue. 

Figure 18 shows input curve applied to the model. The curve follows the S-curve pattern 

to simulate an attack. Analysis is carried out at various stages of this attack. This is analogous to 

step input disturbance of control theory.  
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Delay 

 
Figure 19  Result of application of the feedback loop approach at the host and at the firewall 

level. 

Now, consider a scenario where hosts are connected to the firewall and a controller is 

available at the hosts and at the firewall. The control can be done at the host level, at the firewall 

level, or at both levels.  

Figure 19 shows the results of applying or firewall converges to the same results though a 

larger overshoot is observed at the firewall level. Regarding detection time, the acceleration at 

the firewall level increases faster than at the host level and consequently an earlier detection time 

is expected at the firewall level. As observed from  

Figure 19, a double feedback loop has the advantage of the early detection time at the 

firewall level and a more effective result in slowing down the infection. 
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LabVIEW Implementation 

Next step after simulation of state model is to implement it in real time with feedback 

PID controller. LabVIEW® (National Instrument Corporation, Austin, Texas, www.ni.com) 

provides convenient toolsets to implement, test and observe the results.  

After running the experiment more than twenty five times and finding the percentage of 

connections going to each queue (α) and number of connections removed from suspected queue 

and appended to safe queue was found to be 

α = 0.5, β = 0.2 and Time out (θ) = 0.21 

In the final model, outgoing rate of connections was taken for feedback and another 

parameter timeout was introduced into the model. Therefore the model can be modified to 

include timeout as shown in Figure 20 below 

 

Safe QueueSafe Queue

Suspected Queue

Threshold β 

θ 

1-α 

α 

Delay queue 

Accepted connections 

D  

Figure 20  State model implemented. 
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Important difference between the previous model is the introduction of timout. As can be 

seen in equation (9) system matix A changes in the model implemented. 

0
0 ( ) 1

C C
N

DD

β α
β θ α

•

•
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The final state model matrices were found to be 
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So the state equations for the system are 
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  (10) 

Where  

N is the number of new connections 

And the output equation is  

[ ] [ ]0 0.2 0.2C C N
• •⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (11) 

Transfer function of the system was found to be  (sys = ss(a,b,c,d);) 

x = tf(sys) 

Transfer function: 
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0.2 0.242
0.41

sTF
s
+

=
+

  (12) 

Therefore, characteristics equation of the system is  

S + 0.41 = 0  (13) 

Finding poles of the system [y = eig(x)] 

y  =   -0.4100 

The system has a zero and a pole. The pole is located on the left side of y-axis. So the system is 

stable. 

 Some of the experimental data appears in Figures 8 and 9. The red line in the plots shows 

the rate of input connections to the system and the black line shows the outgoing rate. Where,  

Ti is the reset time which is the inverse of reset rate, or how often the controller resets it output. 

Td is the derivative time that defines the rate at which derivative action is taken. 

 

Figure 21  Experimental result for Kp= 1, Ti = 0.01, Td = 0 & set point = 20, where time is in 
seconds and y-axis is number of connections per second. 

 The set point for the controller was set to 20. This means that no more than 

approximately 20 connections should go through a host at any instant of time. Application and 
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protocol timeout is checked before en-queuing the delayed connections to the safe queue.  In 

Figure 21 a large overshoot and settling time is observed. This can be reduced by varying Ti 

(Integration constant) as shown in Figure 22. The controller was set to Kp = 1.5, Ti = 0 & Td = 5 

for the graph of the experiment below. 

 

Figure 22  Experimental result for Kp = 1.5, Ti = 0 & Td = 5 

Controllability & Observability 

In state space model, one of the important concerns is whether we can steer the state via 

the control input to certain locations in the state space. This property is called controllability or 

reachability [10].  

“The issue of controllability concerns whether a given initial state x0 can be steered to the 

origin in finite time using input u(t)” [10]. 

If one can say something about the state of the system by observing the output, this 

property is called observabiltity[10]. 

“Observability is concerned with the issue of what can be said about the state when one is 

given measurements of the plant output” [10]. 

 



42 

MATLAB® (MathWorks, Inc., Natick, MA) simulations showed that the system is 

completely controllable. A rank of 3 was obtained. The system was also tested for observability 

and rank of 3 was found. 

Sample Results obtained for drop rate of five percent and delay of 1ms is shown below. The 

controllability matrix is given by: 

 
 
    1.0000         0   -0.0500    0.0010    0.0025   -0.0001 
   -0.0500         0    0.0025    0.0005   -0.0001    0.0000 
             0 1.0000             0   -0.0010             0    0.0000 

 

Observability matrix is given by: 

 
     
             0    1.0000            0 
    1.0000             0            0 
    0.0025             0   0.0005 
             0             0   1.0000 
    0.0025             0   0.0005 
   -0.0500            0    0.0010 
   -0.0001            0    0.0000 
              0            0  -0.0010 
   -0.0001            0    0.0000 
    0.0025             0  -0.0001 
    0.0000             0  -0.0000 
         0                 0   0.0000 

 

    Rank for both controllability and observability were found to be 3. The results proves that the 

system is both controllable as wells as observable.  

Settling Time 

Settling time is a very important parameter for the control system described above. It 

signifies the time in which a worm can be controlled in our discussion. Figure 23 shows the 

relation between settling time and period of integration. Smaller periods of integration are better 

but it increases the steady state error as shown in Figure 24. 



43 

Integral (Ti) vs Settling time
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Figure 23  Relation between integral time constant and settling time. 
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Figure 24  Graph showing relation between proportional constant and settling time. 
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Figure 23 shows the relation between proportional constant and settling time. It can be 

observed that the optimal value for the proportional gain is around 1.5. With the values obtained 

from the analysis, controller can be tuned and containment can be achieved in very short span of 

time. 

Sensitivity Analysis 

It is important to understand how changes in the parameters of the system affect its 

results.  For example, the effect of the delay parameter with respect to the steady state error and 

the number of connections sent directly to the safe queue are of interest. The number of 

connections sent directly to the safe queue is used here to exemplify the results of the analysis. A 

simulation based sensitivity analysis, as shown in Eq. 14 is used to achieve these goals [18].  

)(
)()(

xV
xVxxVS

ρ
ρ −+

=    (14) 

The value of V(x+ρx) represents the output of the system when parameter x is increased by a 

certain value ρ. V(x) is the output of the system with no changes in the specified parameter. 



45 

Sensitivity Analysis
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Figure 25 Sensitivity of the number of connections sent directly to the safe queue as the delay 
parameter changes. 

As seen in Figure 25, the sensitivity of the system with respect to the number of 

connections that are directly sent to the save queue decreases as the value of the delay parameter 

increases. It is expected that higher the value of the delay parameter, higher the number of 

connections that will time out. If the delay is too large, all the connections in the delayed queue 

will be eventually dropped. Therefore, as the delay increases the number of connections to be 

sent to the safe queue converges to the set point (20 in this case). Consequently the sensitivity of 

the referred parameter decreases as can be observed in Figure 25.  This analysis is an indication 

of the proper functioning of the system. 

Limitations 

This study is limited to communication between two computers. The experiment was 

limited to two computers because at the node level any computer tries to communicate with 

another machine one at a time and the scope can be extrapolated to bigger networks.  
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 The implementation has been done using LabVIEW 7.0. LabVIEW is an excellent tool 

for designing and analysis of such models where as its performance needs to be tested with 

performance when same code is executed using other languages. Since time is such an important 

issue in this study, it is a very important concern. Also LabVIEW can generate only 33 

connections per second because it takes a minimum of 30 ms to generate each connection. The 

model has been tested for set points of 10 or 20 connections per second. 

 The study is also limited by the protocol (UDP) used, the model and the system needs to 

be tested for other protocols as TCP/IP. It also needs to take into consideration other anomalies 

of virus attack such as CPU usage and memory overflow. 

 This research has been completely done on windows operating systems. Though other 

operating systems such as UNIX, Linux and Java are also vulnerable, they have been built for 

networking. Windows on the other hand is not built for networking from the onset. 

Implementation, if done at the perimeter just by considering protocol connections then the kind 

of operating system should not be a major concern [30]. 

 

 

 

 

 

 

 

 

 



47 

CONCLUSIONS 

  In this research, a security architecture based on the feedback control theory has been 

proposed.  The first loop has been designed, developed and tested. The architecture proposes a 

feedback model with many controllers located at different stages of network. The controller at 

each stage gives feedback to the one at higher level and a decision about network security is 

taken.   

  The first loop implemented in this thesis detects one important anomaly of virus attack, 

rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing 

connection is an important one to contain the spread. Based on the feedback model, this 

symptom is fed back and a state model using queuing theory is developed to delay the 

connections and slow down the rate of outgoing connections. Upon implementation of this 

model, whenever an infected machine tries to make connections at a speed not considered safe, 

the controller kicks in and sends those connections to a delay queue. Because of delaying 

connections, rate of outgoing connections decrease. Also because of delaying, many connections 

timeout and get dropped, reducing the spread. 

  PID controller has been implemented to decide the number of connections going to safe 

or suspected queue. Multiple controllers can be implemented to control the parameters like delay 

and timeout. Control theory analysis is performed on the system to test for stability, 

controllability, observability. Sensitivity analysis is done to find out the sensitivity of the 

controller to the delay parameter.  

  The first loop implemented gives feedback to the architecture proposed about symptoms 

of an attack at the node level. A controller needs to be developed to receive information from 

different controllers and decision about quarantining needs to be made. This research gives the 



48 

basic information needed for the controller about what is going on at individual nodes of the 

network. This information can also be used to increase sensitivity of other loops to increase the 

effectiveness of feedback architecture. 
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FUTURE WORK 

 LabVIEW® 7.0 (National Instrument Corporation, Austin, Texas, www.ni.com) has been 

used as a tool to develop and test the model on Microsoft® Windows® operating systems 

(www.microsoft.com). LabVIEW provides toolkits needed to develop and test the model. Visual 

controllers and indicators provided by LabVIEW are suitable for developing and testing a model 

because of the excellent user interface and real time monitoring capabilities, but they might 

degrade the performance at the time of implementation. Alternative implementation technologies 

needs to be explored and developed (for example developing the model in hardware or 

implementing more efficient hardware oriented or less memory consuming software). 

  A major issue in the proposed model is how to identify if the new connection is a safe or 

a suspect one. The solution depends on the domain knowledge and learning from the traffic 

patterns.  Also, currently there is limited number of hosts (i.e., 2) and it can be extended to large 

number of hosts for large-scale analysis. 

  The model should be implemented at various stages of the network architecture. Each 

controller should be able to interact with other controllers in the architecture and make decisions 

based on the kind of traffic pattern. The whole architecture should be self-learning. Over a period 

of time it should have a blacklist and white list patterns of the network traffic. This study has 

been done on UDP traffic; future work would involve testing this architecture on different 

networks and different protocols.  

  The entire architecture needs to be tested for false positives and performance. Delaying 

traffic can be a major bottleneck in high-speed networks of today.  Quarantining the infected 

systems is one more area where more work can be done. Single system or part of a network can 
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be quarantined in case of infection. Architecture for performing such an action needs to be 

developed. 

      To satisfy the feedback control loop, a specification and requirements for expected output 

need to be specified. Also, certain measurements, benchmarks, and metrics are specified for 

satisfying these requirements.  Likewise, certain buffer size, CPU utilizations can also be 

specified. Further work involves specification of requirements, and benchmarks, and deriving 

transfer functions for each module in the feedback loop. 
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