

APPROVED:

Vijay Vaidyanathan, Major Advisor
Ram Dantu, Committee Member
Joao Cangussu, Committee Member
Kasturi Narayanan, Committee Member
Albert B Grubbs, Committee Member and Chair of

the Department of Engineering Technology
Oscar N. Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B. Toulouse

School of Graduate Studies

COMPUTER VIRUS SPREAD CONTAINMENT USING FEEDBACK CONTROL

Arun Yelimeli Guruprasad, B.E.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2004

Yelimeli Guruprasad, Arun. Computer virus spread containment using feedback control. Master

of Science (Engineering Technology), December 2004, 53 pp., 1 table, 25 figures, references, 31

titles.

 In this research, a security architecture based on the feedback control theory has been

proposed. The first loop has been designed, developed and tested. The architecture proposes a

feedback model with many controllers located at different stages of network. The controller at each

stage gives feedback to the one at higher level and a decision about network security is taken.

 The first loop implemented in this thesis detects one important anomaly of virus attack, rate of

outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection

is an important one to contain the spread. Based on the feedback model, this symptom is fed back and

a state model using queuing theory is developed to delay the connections and slow down the rate of

outgoing connections. Upon implementation of this model, whenever an infected machine tries to

make connections at a speed not considered safe, the controller kicks in and sends those connections

to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also

because of delaying, many connections timeout and get dropped, reducing the spread.

 PID controller is implemented to decide the number of connections going to safe or suspected

queue. Multiple controllers can be implemented to control the parameters like delay and timeout.

Control theory analysis is performed on the system to test for stability, controllability, observability.

Sensitivity analysis is done to find out the sensitivity of the controller to the delay parameter.

 The first loop implemented gives feedback to the architecture proposed about symptoms of an

attack at the node level. A controller needs to be developed to receive information from different

controllers and decision about quarantining needs to be made. This research gives the basic

information needed for the controller about what is going on at individual nodes of the network. This

information can also be used to increase sensitivity of other loops to increase the effectiveness of

feedback architecture.

ii

Copyright 2004

by

Arun Yelimeli Guruprasad

iii

ACKNOWLEDGMENTS

I express my gratitude and thanks to my advisor and major professor Dr. Vijay

Vaidyanathan for his support, confidence, encouragement and guidance throughout my graduate

program and in completing this thesis.

I thank my supervisor Dr. Ram Dantu for his ideas, encouragement, attention to detail,

and excellent guidance that have been necessary for this thesis.

I thank my committee member Dr. Joao Cangussu for his supply of knowledge, technical

support and friendly guidance.

I thank the Dr. Albert B. Grubbs, Chair of Engineering Technology Department,

University of North Texas, for his support and encouragement all along my graduate studies.

I express my gratitude to my Industrial representative Mr. Kasturi Narayanan for his time

and support.

I thank my parents Mr. Guruprasad Yelimeli and Mrs. Rathna Prasad for their love,

patience and support throughout my graduate studies and also like to thank my brother Mr. Kiran

Yelimeli and Sister-in-law Sindhu KiranKumar for their support and encouragement.

I would also like to thank my friends Sriteja Tarigopula, Anand Ale, Mehul Baxi and

Umashankar Baburajan for their help, suggestions and their valuable time.

iv

TABLE OF CONTENTS
Page

ACKNOWLEDGMENTS ... iii

LIST OF TABLES AND FIGURES.. vi

INTRODUCTION .. 1

Existing Defenses.. 2

Intrusion Detection Systems ... 2

Firewalls.. 2

Honey Pots .. 3

Statement of the Problem.. 3

Purpose of the Study ... 3

REVIEW OF LITERATURE ... 5

Recent Worms and Techniques Used to Spread Them... 5

Code Red 1.. 5

Code Red II ... 5

Nimda.. 5

Slammer/Sapphire... 6

How Slammer Works.. 6

Response to Sapphire’s Spread... 7

Distributed Denial of Service Attacks .. 9

“Better” Worms - Theory.. 9

Hit List Scanning .. 10

Permutation Scanning ... 10

Topological Scanning ... 10

Flash Worms ... 11

Control Systems .. 11

Open Loop Control System .. 12

Closed Loop Control System.. 13

The Three-Term Controller... 13

The Characteristics of P, I, and D Controllers .. 15

Previous Work .. 15

v

EXPERIMENTAL SETUP AND PROCEDURE .. 17

System Architecture.. 17

Model Description .. 20

Experimental Setup... 23

LabVIEW Model .. 23

Time to Synchronize Different Loops .. 25

Generation and Queuing ... 27

Safe Connections .. 29

Delaying Suspected Connections.. 30

PID Controller... 31

Simulink Validation.. 33

RESULTS AND DISCUSSIONS... 34

Total Connections ... 34

Acceleration .. 35

Total Input Connections.. 36

Delay ... 37

LabVIEW Implementation.. 38

Controllability & Observability .. 41

Settling Time... 42

Sensitivity Analysis .. 44

Limitations .. 45

CONCLUSIONS... 47

FUTURE WORK.. 49

REFERENCES ... 51

vi

LIST OF TABLES AND FIGURES

Table 1 Relationship between different PID gains, rise time, overshoot, settling time and
steady state error. (Source: 1997, Regents of the University of Michigan, CTM
tutorial, PID tutorial, reprinted with permission.) ... 15

Figure 1 Aggregate scans per second in first 5 minutes (Sapphire) [4] 8

Figure 2 Aggregate scans per second in first 12 hours (Sapphire) [4]....................................... 8

Figure 3 State Model.. 12

Figure 4 Open loop control system .. 13

Figure 5 Closed loop control system.. 13

Figure 6 Feedback controller ... 14

Figure 7 Controller architecture for end-to-end security engineering 18

Figure 8 Model for connections accepted, delayed and rejected for parametric control 20

Figure 9 Front panel of LabVIEW client ... 24

Figure 10 Timer Loop for synchronous operation of all the loops .. 25

Figure 11 Simulation of attack and queuing .. 27

Figure 12 Makes outgoing connections from safe queue... 29

Figure 13 Delaying suspected connections and adding them back to safe queue; also dropping
timed out connections .. 30

Figure 14 Feedback loop with PID controller.. 31

Figure 15 Simulink model with a PID controller and the State Variable model 33

Figure 16 Behavior of the state model for the control of the number of connections on the
presence of a worm spreading according to an S-shape function. (a) Shows the total
number of connections with and without feedback ... 34

Figure 17 Acceleration of outgoing connections for better detection times 35

Figure 18 Number of connections on the delayed queue... 36

Figure 19 Result of application of the feedback loop approach at the host and at the firewall
level.. 37

Figure 20 State model implemented .. 38

Figure 21 Experimental result for Kp= 1, Ti = 0.01, Td = 0 & set point = 20, where time is in
seconds and y-axis is number of connections per second.. 40

Figure 22 Experimental result for Kp = 1.5, Ti = 0 & Td = 5 ... 41

Figure 23 Relation between Integral time constant and settling time.. 43

Figure 24 Graph showing relation between proportional constant and settling time 43

Figure 25 Sensitivity of the number of connections sent directly to the safe queue as the delay
parameter changes ... 45

1

INTRODUCTION

Computer virus is a software program, which harms a computer when infected [1].

General tendency observed over the period is that a person who writes such programs would like

to harm as many systems as possible. In early days (before computer networks) virus

programmers used disk media (ex: floppy) to spread the virus to as many systems as possible.

 Computer virus is defined as “A parasitic program written intentionally to enter a

computer without the user's permission or knowledge. The word parasitic is used because a virus

attaches to files or boot sectors and replicates itself, thus continuing to spread. Though some

viruses do little but replicate, others can cause serious damage or affect program and system

performance. A virus should never be assumed harmless and left on a system." [31].

Research has been going on to reduce the spread of viruses to minimize the destruction

caused by them. Viruses can be broadly categorized into the following categories:

• Viruses - A virus is a small piece of software that attaches to real programs. For
example, a virus might attach itself to a program such as a spreadsheet program. Each
time the spreadsheet program runs, the virus runs, too, and it has the chance to
reproduce (by attaching to other programs) or wreak havoc [28].

• E-mail viruses - e-mail virus moves around in e-mail messages, and usually replicates
itself by mailing itself to dozens of people in the victim's e-mail address book [28].

• Worms - A worm is a small piece of software that uses computer networks and
security holes to replicate itself. A copy of the worm scans the network for another
machine that has a specific security hole. It copies itself to the new machine using the
security hole, and then starts replicating from there, as well [28].

• Trojan horses - A Trojan horse is simply a computer program. The program claims to
do one thing (it may claim to be a game) but instead does damage when you run it (it
may erase your hard disk). Trojan horses have no way to replicate automatically [28].

In the past active worms have taken hours if not days to spread effectively. This gives

sufficient time for humans to recognize the threat and limit the potential damage. This is not the

case anymore. Modern viruses spread very quickly. Damage caused by modern computer viruses

2

(example - Code Red, Sapphire and Nimda) is greatly enhanced by the rate at which they spread.

Most of these viruses have an exponential spreading pattern. Future worms will exploit

vulnerabilities in software systems that are not known prior to the attack. Neither the worm nor

the vulnerabilities they exploit will be known before the attack and thus spread of these viruses

cannot be prevented by software patches or antiviral signatures [1].

Existing Defenses

There are a variety of network components in the market today that protect machines

from different kinds of worms. Network perimeter is primary concern for security managers.

Security managers have focused on multiple security components to keep their networks safe.

Examples are: Antivirus, Firewalls, Intrusion Detection Systems, and Honey Pots.

Intrusion Detection Systems

Network Intrusion Detection Systems examine the network traffic and host intrusion

systems detect outsider infiltration as well as unauthorized access by users who are trusted

insiders. Intrusions are characterized into network traffic patterns that are suspicious and these

are called signatures. These signatures are compared against the network traffic patterns and

deviation generates security alerts. But these alerts can be false alarms. Due to nature of the

signatures, these systems can be as accurate as the signatures themselves. Moreover, these

systems are reactive and cannot prevent the attacks [5].

Firewalls

Firewalls often only have the packet filter rules applied or are used to protect just one

server, such as external Web server. Hence most of these firewall rules are static and cannot

respond to dynamic changes [5].

3

Honey Pots

Honey pots lure attackers by presenting a more visible and apparently vulnerable

resource than the enterprise network itself. These are also useful for forensics. But these can be

vulnerable themselves because they attract attackers’ special attention. Also if they are

incorrectly configured, they make network more vulnerable [5].

Thus, firewalls, routers, Intrusion Detection Systems, and Honey Pots can be very useful

as elements for network defense but they can not protect the network by themselves. But by

careful integration and engineering of these devices, security level can be increased [5].

Statement of the Problem

It is difficult to control or stop the unknown computer worms that spread very fast.

Modern day viruses spread in milliseconds. They cannot be controlled with existing technologies

which are either signature based or too slow to control the spread and damage caused by

unknown fast spreading worms, such as Slammer, Code Red, Nimda etc.

Purpose of the Study

Purpose of the study is to

• Develop and simulate a state model to contain the rate of outgoing connections made
by a compromised system.

• Implement and test the state model using LabVIEW® (National Instrument
Corporation, Austin, Texas, www.ni.com).and implement feedback control using PID
(Proportional Integral Derivative) controller

• Perform stability, controllability, observability and sensitivity analysis on the
implemented control system.

 Objectives of this research are to design an architecture based on classical feedback

control to: (1) detect worm-based threats; (2) dynamically quarantine infections to localized

sectors to prevent propagation of infection; and (3) develop technologies to automatically and

4

dynamically quarantine these fast spreading worms to a peak infection portion of 1% of

vulnerable machines that would otherwise infect approximately 100% of vulnerable machines.

5

REVIEW OF LITERATURE

The model developed is based on the analysis of some popular worms that spread very

fast and caused havoc in the recent history. Below is a brief description of these worms, their

spreading pattern and some of the techniques these worm authors’ use to increase the spread rate.

Recent Worms and Techniques Used to Spread Them

Code Red 1

 On July 12, 2001, this worm began to exploit the buffer-overflow vulnerability in

Microsoft® IIS Web servers (Microsoft Corporation, www.microsoft.com). Upon infecting a

machine, the worm checks to see if the date (as kept by the system clock) is between the first and

the nineteenth of the month. If so, the worm generates a random list of IP addresses and probes

each machine on the list in an attempt to infect as many computers as possible [3].

Code Red II

This worm also used the same Microsoft IIS Web server’s buffer overflow vulnerability

as Code Red I. This worm had single stage scanning technique and used a localized scanning

strategy, which made it successful in infecting addresses close to it [3].

Nimda

This worm used multiple ways to spread through the network. This worm is believed to

have used the following five different strategies to spread itself

• Infecting Web servers from infected client machines via active probing for Microsoft
IIS vulnerability.

• Bulk emailing of itself as an attachment based on email addresses determined from
the infected machine.

• Copying itself across open network shares.

• Adding exploit code to Web pages on compromised servers in order to infect clients
that browse the page.

6

• Scanning for the backdoors left behind by Code Red II and also the “sadmind” worm”
[3]

Slammer/Sapphire

Slammer's attack was hundreds of times faster than the Code Red virus or Nimda worm.

It started with a single packet. The worm hit its first victim at 12:30 am (January 25 2003)

Eastern standard time. The machine - a server running Microsoft SQL (Structured Query

Language) - instantly sent out millions of Slammer clones, targeting computers at random. By

12:33 am, the number of slave servers in Slammer's replicant army was doubling every 8.5

seconds [28].

How Slammer Works

Slammer owes its speed to UDP (Unreliable Datagram Protocol), an Internet protocol

that's lighter and quicker than the TCP (Transmission Control Protocol used for Web sites, email,

and file downloads). TCP requires sender and receiver to acknowledge each other in a handshake

before exchanging information; UDP can carry a message in a single, one-way packet. Microsoft

SQL Server 2000 software has a UDP-powered directory service that lets applications

automatically find the right database. Moreover, SQL code comes built into other programs the

company sells. Many Slammer victims didn't even realize they were running SQL [28].

The worm takes advantage of a common software bug called a buffer overflow. Buffers

overflow when a data string is written into memory without its length being checked by the

program. If the string is too long, the tail end of the data overwrites the program's own code [28].

The unique intelligent feature of Slammer is how it uses an attack on just one type of

software as leverage for a general attack on the Web itself. Machines infected by the worm

swiftly spam the Network with randomly addressed traffic, hitting other vulnerable servers. As

the number of computers spewing Slammer packets rises, the situation reaches critical mass,

7

potentially creating a denial of service attack on all 4 billion IP (Internet Protocol) addresses on

the Net [28].

Below is a brief description of how Slammer worked and how it could achieve such high

speed spreading, as described in an article from Wired [28].

Get inside: Slammer is a single UDP packet, one that would normally be a harmless
request to find a specific database service. The first byte in the string - 04 - tells SQL
Server that the data following it is the name of the online database being sought.
Microsoft specifies that this name be at most 16 bytes long and end in 00. But in the
Slammer packet, the bytes run on, so there is no 00 among them. As a result, the SQL
software pastes the whole thing into memory.

Reprogram the machine: The initial string of 01 character spills past the 128 bytes of
memory reserved for the SQL Server request and into the computer's stack. The first
thing the computer does after opening Slammer's UDP "request" is overwrite its own
stack with new instructions that Slammer has disguised as a routine query. The computer
reprograms itself without realizing it.

Choose victims at random: Slammer generates a random IP address, targeting another
computer that could be anywhere on the Internet. To randomize: It looks up the number
of milliseconds that have elapsed on the CPU's system clock since it was booted and
interprets the number as an IP address.

Replicate: The envelope is addressed, now it just needs to be stuffed. Slammer points to
its own code as the data to send. The infected computer writes out a new copy of the
worm and sends the UDP packet.

Repeat: After sending off the first packet, Slammer loops around immediately to send
another to a different computer without wasting a single millisecond. Instead of making
another call to the system clock to get the time, it just shuffles the bits of the IP address
already in memory to create a new one. A home Personal Computer could send a couple
hundred copies onto its broadband link every second. Corporate data centers started
launching tens of thousands of worms per second. Because it replicated so fast, the worm
was able to take down millions more, kicking them offline with a flood of meaningless
traffic.

Response to Sapphire’s Spread

Most accurate data was obtained from the University of Wisconsin Advanced Internet

Lab, where all packets into an otherwise unused network (a “tarpit” network) is logged. Many

sites began filtering all the UDP packets with a destination port of 1434. Though filtering

reduced the bandwidth consumed by the infected hosts, it did nothing to limit the spread of the

worm.

8

Figure 1 Aggregate scans per second in first 5 minutes (Sapphire) [4]

Note: Break in the graph above shows transient failure in the data collection
approximately 2 minutes and 40 seconds after Sapphire began to spread.

Figure 2 Aggregate scans per second in first 12 hours (Sapphire) [4].

9

The response was so slow that by the time filtering was implemented; the worm had

infected almost all the susceptible hosts [4]. Figure 1 & 2 shows the scanning rate of this virus in

the first five minutes and first twelve hours after the launch of the worm.

Distributed Denial of Service Attacks

This can be described as attempt by an attacker to prevent legitimate users from using

resources. An attacker usually floods the network and steals the bandwidth available to the user.

 Some well-known examples of denial of service attacks include

• Attempts to “flood” a network, thereby preventing legitimate network traffic

• Attempts to disrupt connections between two machines, thereby preventing access to
a service.

• Attempts to prevent a particular individual from accessing a service

• Attempts to disrupt service to a specific system or person” [2]

Some of the techniques which could be used by the worm authors to enhance the spread

rate of worms are described below.

“Better” Worms - Theory

There are several ways a worm spreads through the network. Some of the common

techniques employed by the worms are discovering more widespread security holes and

increasing the scanning rate. Apart from these some of the strategies that a worm author could

adopt are [3]

• Hit list scanning

• Permutation scanning

• Topologically aware worms

• Internet scale hit lists.

The ultimate goal of all these strategies is to spread the worm as fast as possible.

10

Hit List Scanning

Though most of the worms propagate exponentially, it is the initial take off time that is

difficult. It takes more time to infect the first 1000 machines. The strategy to overcome this

problem is called hit list scanning. In this strategy the worm author collects a list of 10,000 to

50,000 potentially vulnerable machines.

 Some of the ways the worm author collects these list of vulnerable machines are

• Stealthy scans – it can be obtained by scanning the entire Internet.

• Distributed scanning – Using this strategy the attacker can scan a few dozen to few
thousand already-compromised “zombies”.

• DNS (Domain Name Server) searches – A list of domain names can be obtained and
then their IP addresses from domain names.

• Spiders – Use of Web-crawling techniques similar to search engines to get a list of
most interconnected Web sites.

• Public surveys - there are surveys to a get a list of potential targets.

• Just listen – Some applications like peer-to-peer networks advertise their servers, also
previously effective worms broadcast the vulnerable machines [3].

Permutation Scanning

One of the main problems faced by random scanning was that many infected machines

were scanned many times wasting time. This problem was overcome in permutation scanning

In permutation scan, all worms share a common pseudo random permutation of the IP

address space. This is done by encrypting an index to get the corresponding address in the

permutation, and decrypt an address to get its index [3].

Topological Scanning

This is an alternative approach to obtain a set of vulnerable IP addresses. This method

uses information contained in the victim’s machine [3].

11

Flash Worms

This is an alternative to hit-list scanning discussed. Using an OC12 connection all the

Web servers can be scanned within 2 hours. The list is divided into ‘n’ blocks. After infecting a

host, the worm hands over the list to a child worm, which goes on and infects that particular

block. Thus parallel spreading can be achieved and hence faster worms [3].

Control Systems

Control systems is based on the foundations of feedback theory and linear system

analysis, it also integrates the concepts of network theory and communication theory. It is

interconnection of various components forming a system configuration that will provide desired

system response.

 With the availability of digital computers, it is convenient to consider the time-domain

formulation of the equations representing control systems. If one or more parameters of a system

vary with time, then it is considered time-varying control system. A multivariable system is one

in which many parameters vary with respect to time.

 “The state of a system is a set of variables such that the knowledge of these variables and

the input functions will, with the equations describing the dynamics, provide the future state and

output of the system” [27]. The figure belowFigure 3 State Mmodel.

 shows state model representation, all the inputs and outputs in the figure can be single or

multivariable.

12

X(0) Initial
conditions

u(t)
input

Dynamic system

State x(t)
Y(t)

Output

Figure 3 State model.

 The state model is described by

• State differential equation

x Ax Bu
•

= +

• Output equation

y Cx Du= +

Where

X is column matrix consisting of state variables.

•

x is derivative of the state vector with respect to time.

A is system matrix of size n*n.

B is input matrix of size n*m.

C is output matrix of size n*m.

D is feedforward matrix of size n*m.

Y is the set of output signals expressed in column vector form.

Open Loop Control System

In control systems, each block represents a component or process. An open loop system

utilizes an actuating device to achieve control. It has no feedback. It can be generally represented

as shown in Figure 4 below [27]:

13

Figure 4 Open loop control system.

Closed Loop Control System

In contrast to an open loop control system, a closed-loop control system shown below in

Figure 5 uses the actual output from the process to compare with the desired response and give

out control signals [27].

Desired
output
response

Output
Actuating
device

Process Comparis
on

Measurement

Figure 5 Closed loop control system.

Below is a brief description of proportional (P), the integral (I), and the derivative (D)

controls, and how to use them to obtain a desired response.

The Three-Term Controller

The transfer function of the PID controller is as shown in equation 1:

S
KsKsKsK

s
KK IPD

D
I

p
++

=++
2

 (1)

• Kp = Proportional gain

Desired
output
response

Output
Actuating
device

Process

14

• Ki = Integral gain

• Kd = Derivative gain

PID controller in the closed-loop system is as shown in Figure 6. Advantages of feedback

control are: (i) System (e.g., group of security components in a network) output can be made to

follow the specified function in an automatic fashion; (ii) System performance is less sensitive to

variations of parameter values; and (iii) Use of feedback makes it easier to achieve the desired

transient and steady-state response.

y u
e R

_ +

Controller

Plant

Figure 6 Feedback controller.

The variable (e) represents the tracking error, the difference between the desired input

value (R) and the actual output (Y). This error signal (e) is sent to the PID controller, and the

controller computes both the derivative and the integral of this error signal. The signal (u) past

the controller is equal to the proportional gain (Kp) times the magnitude of the error plus the

integral gain (Ki) times the integral of the error plus the derivative gain (Kd) times the derivative

of the error.

∫ ++=
dt
deKedtKeKu DIP (2)

15

This signal (u) is sent to the plant, and the new output (Y) will be obtained. This new output (Y)

is sent back to the sensor again to find the new error signal (e). The controller takes this new

error signal and computes its derivative and integral again. The process continues.

The Characteristics of P, I, and D Controllers

A proportional controller (Kp) has the effect of reducing the rise time and reduces, but

never eliminates, the steady-state error. An integral control (Ki) has the effect of eliminating the

steady-state error, but it makes the transient response worse. A derivative control (Kd) has the

effect of increasing the stability of the system, reduces the overshoot, and improves the transient

response. Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are summarized

in the table shown below.

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

Table 1 Relationship between different PID gains, rise time, overshoot, settling time and steady
state error. (Source: 1997, Regents of the University of Michigan, CTM tutorial, PID tutorial,
reprinted with permission.)

Previous Work

Modern day viruses spread incredibly fast. One of the main difference between an

infected system and an uninfected system is that an infected system tries to make connection to

as many different machines as fast as possible. Uninfected machines make connections at a

lower rate and are locally correlated (repeat connections to recently accessed machines are

likely) [1].

16

These computer viruses are so fast that automatic control is needed to contain their

spread. One of the main drawbacks of automatic control of such viruses is false positive. If the

system responds to every false positive, then the performance of such a system will be very low.

Therefore one of the techniques is to use benign processes. This method uses slowing down the

spread rather than stopping the virus. Slowing down an infection earns valuable time for human

mediated response in case of fast spreading worms [1].

There is a need to control the spread of above mentioned, fast spreading viruses

automatically. They spread very fast for human initiated control. Some of the automatic

approaches like quarantining the systems and shutting them down reduce the performance of the

network. False positives are one more area of concern [1] [15].

This situation can be improved a lot by using “benign” responses, those that slow but do

not stop the virus [1]. The main idea is to delay the virus by so long as to earn time for human

mediated responses [1] [15]. Feedback control strategy is desirable in such systems because well-

established techniques exist to handle and control such a system [14].

This technique is based on the fact that an infected machine tries to make connections at a

faster rate than the machine that is not infected. The idea is to implement a filter, which restricts

the rate at which a computer makes connection to other machines in the network. The delay

introduced by such an approach for normal traffic is very low (0.5 –1 Hz). This rate can severely

restrict the spread of high-speed worm spreading at rates of at least 200 Hz [1] [15].

In this research the idea of delaying the virus and not stopping it is used. The established

concepts of control theory and queuing theory are applied for a better model. Instead of just

comparisons, the idea of delaying the connections in separate dedicated queues in incorporated

and a state model is developed to implement feedback control theory. The idea, model and

implementation are explained in the next chapter.

17

EXPERIMENTAL SETUP AND PROCEDURE

As a first step towards our design, feedback control should be applied at different levels

in a network. The idea is to develop and implement an architecture, which gives feedback at

different stages of the network. All the controllers in the network receive the feedback from other

controllers and they make collective decision about network security. Figure 7 shows the

architecture for achieving such a feedback mechanism for secure network [5][1]. A description

of the architecture follows.

System Architecture

It is assumed that a secured network consists of firewalls, sensors, analyzers, Honey Pots,

and various scanners and probes. These components are either separate elements or collocated

with hosts, servers, routers and gateways.

In this architecture, a (centralized or distributed) controller is responsible for collection

and monitoring of all the events in the network. This controller is knowledgeable about the

network topology, firewall configurations, security policies, intrusion detections and individual

events in the network elements. This controller is logical function and can be deployed anywhere

in the network.

18

Figure 7 Controller architecture for end-to-end security engineering.

19

Figure 7 shows the controller communicating with clients located in different network

elements. Clients are responsible for detection and collection of the events in the node and

communicate to the controller. Subsequently, controller will run through the algorithms, rules,

policies and mathematical formulas (transfer functions) for next course of action. These actions

are communicated to the clients.

As described in Figure 7, the architecture evolves from a concept of closed loop control.

Changes regarding the security behavior are captured and mixed with the incoming network

signals. This piece of information is used to formulate the next course of action. The final result

is an outcome from multiple loops and integration of multiple actions. The response times within

each loop are indicated in Figure 7. Response time varies from few milliseconds to several tens

of minutes. For example, nodal events like buffer overflows, performance degradation can be

detected in matter of milliseconds. On the other hand, it may take several seconds to detect

failed logins, changes to system privileges and improper file access.

The architecture explained above is for any network consisting firewalls, routers,

Intrusion Detection Systems etc. These are general elements used commonly in almost all

computer networks today. At different stages in the network different anomalies are detected and

decisions about required patches for the network are made. First step towards the development of

this architecture is to develop the first loop of the architecture explained which is the objective of

this thesis. At the first loop of the architecture nodal anomalies are detected. One of the

important anomalies detected on the infection of a system is; the system tries to make many

connections per second to spread the virus to as many systems as possible before any protection

against the virus can be applied. The model described below was developed to detect such an

anomaly, give the feedback and achieve control (reduce the rate of outgoing connections).

20

Model Description

Figure 8 shows the model at the nodal level. At this stage, the anomaly being observed is the

rate of outgoing connections. Connection requests block in Figure 8 represents any computer that

is connected to the network. As any other computer on the internet, it generates connection

requests. Connection requests generated are split into three categories.

• Connections to machines that are considered safe (a queue is maintained for safe list
connections).

• Connections that are delayed (All the connection not present in the safe list but can go
through).

• Connections that are dropped for other reasons (naturally).

Threshold

α

α

 Suspect (Delay) queue

Safe Queue Connections
requests

d
β

1- 2α

D

Connections
not accepted

Figure 8 Model for connections accepted, delayed and rejected for parametric control.

If the system is not infected, then the system will make fewer outgoing connections per

second (less than 20 connections per second). All the connections generated should go out of the

system without delay. Therefore all the connections enter the safe queue and establish outside

connection. System makes more than 20 connections per second (set point) when infected. Set

point was chosen based on observing different worms explained in the previous section. Though

each worm has different value associated with it, average value is 20. This value can be tuned for

individual implemented. At this stage the controller should send signal to push more connections

21

to the delay queue to slow down the rate of outgoing connections. Connections after getting

processed by the delay queue are appended back to the safe queue and leave the system. Some

connections after staying in the delay queue for time specified by the user get dropped on

timeout. Timeout is application level timeout and not the protocol level timeout. Parameters

related to the size of the delay queue and the number of dropped connections is used to control

the total number of connections resulting in a slow down of spreading worm.

Sapphire worm spreading is taken as an example to show the applicability of this

approach. The goal of the example is to slow down the spreading velocity of a worm by

controlling the rate of connections (C(t)) detected by the host. A model capturing the behavior of

the system, i.e., how the number of total connections is changing is needed to achieve this goal

[6][7].

The rate of change of the number of connections (dc/dt) is proportional to the number of

dropped connections (-dc, where d is the specified drop rate) plus the number of connections

removed from the delayed queue (βD, where β is delay parameter and D is the number of

delayed connections on the queue) and the new successful connections (αu, where α is the

percentage of not delayed connections). This result in equation (3)

c dc D uβ α= − + +
o

 (3)

Differentiating Equation. 3 gives

[]c d c= −
oo o

 (4)

Substituting for c
o

 gives

2c d c d D d uβ α= − + − +
oo

 (5)

22

The rate of change in the size of the delayed queue (dD/dt) is proportional to the new incoming

successful connections send to the queue (αu) minus the connections removed from the queue -

βd. This results in equation 6 below.

D D uβ α= − +
o

 (6)

Where D is the size of the delay queue; d is the drop rate; β is the delay parameter; u is the total

connections arriving; and α is the success rate

Combining equations for dC/dt and dD/dt in state variable format leads to Eqs. 7 and 8.

[]2

0
0

0 0

c cd
c d d c d u

DD

β α
β α
β α

⎡ ⎤ ⎡ ⎤⎢ ⎥ −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

o

oo o

o

 (7)

[]2

0 1 0 0
1 0 0 0

0
0 0 1 0

C c
C

c u
d d dC D

D

β α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

o

o

oo

 (8)

Equations 7 and 8 represent state of output equations of the state model. Using these equations

the state model is simulated. Figure 9 shows the MATLAB® (MathWorks, Inc., Natick, MA)

simulation results of the state model.

As shown in the graph the system was tested to check the behavior by applying control at

different stages on spreading. Next stage after obtaining simulation results from MATLAB was

to implement the model in real computers, test the model and perform analysis on it. Below is

23

the description how the system was implemented using LabVIEW® (National Instrument

Corporation, Austin, Texas, www.ni.com).

Experimental Setup

 Experimental setup consists of the first loop explained in the architecture of the previous

section. Any network consists of computers (hosts) at the bottom level. Bridges, switches,

firewall, Intrusion Detection Systems, routers etc form the higher layers of any computer

network. The objective of this thesis is to build and test the model at the host level (between two

computers). One important future works includes building similar controllers at different layers

of network and make them communicates with each other to make accurate decisions about the

network traffic patterns. The experimental setup of research consists of computers (hosts)

communicating with other computers using LabVIEW clients and server running UDP.

Implementing and testing the model require software which supports networking as well

as control system technology. LabVIEW 7.0 was found to be best suited for testing the model.

LabVIEW also has very useful tools for visual outputs. Data could be observed live and

modifications done online.

LabVIEW Model

LabVIEW user interface screen for the model is shown in Figure 9 below. It consists of

many numeric controls and indicators. It also has graphical interface to observe variations

graphically. The interface can be used to make connection to any system by changing the IP

address or a range of IP addresses can be given in a loop to make connection to many systems.

User can also set some other important parameters like timeout, delay for suspected queue, PID

gains and set point.

24

Figure 9 Front panel of LabVIEW client.

25

Connections are generated using LabVIEW’s graphical programming. Virus attack is

simulated mathematical equation for S-curve [3]. Disturbance is given to the system using

mathematical equation, simulating an attack. The user enters set point manually. Set point refers

to the number of connections per second any computer is allowed to make and is considered

safe. Acting by the mathematically simulated attack the computer increases its outgoing

connection rate. PID controller takes this as feedback and switches the connections between safe

and suspected queue (delay queue) to maintain a steady outgoing connection rate.

 Timeout has been implemented at the application level. If the computer is infected and

makes very high rate of outgoing connections, then suspected queue builds up and many

connections timeout thereby avoiding many more infections. Below is description of some

important loops used in LabVIEW to implement the model.

Time to Synchronize Different Loops

Figure 10 Timer Loop for synchronous operation of all the loops.

26

The above block of the LabVIEW program shows the while loop which synchronizes

time between various blocks of the model. It runs at the speed of the processor. One of the clock

records the time at the start of the run and the other increments at the speed of the processor.

Difference between the two gives the time to synchronize all the loops.

27

Generation and Queuing

Figure 11 Simulation of attack and queuing.

The block shown above generates 5000 connections. This while loop uses UDP open connections to open ports from 60000 to

65000. The port number range was selected randomly to avoid conflicts with the already used ones. Random number block is used to

generate random numbers between 0 and 1. A numeric control is used to compare with the generated random

28

number and based on its output “safe” or “suspected” queue is selected. The program

implements a timeout independent of protocol timeout. To achieve this, the present time from the

clock loop is inserted into the queue along with the connections after converting both of them

into string data type as queue structure supports conversion of anything to string and back. The

connections are generated in S-shape to simulate an attack. The equation used to generate S-

function is given by

y = 200 - ((165*0.007)/((0.007+(165-0.007)*exp(-0.09*t)))+5);

The above mentioned exponential equation determines the delay between generating each

connection. Initially connections are generated at a rate of 5 connections per second, which is

considered safe. At the end of execution of the loop the number of connections per second will

increase to 33. LabVIEW takes 30 milliseconds to make a UDP connection. Therefore limitation

on the upper limit for the number of connections exists in LabVIEW.

29

Safe Connections

Figure 12 Makes outgoing connections from safe queue.

This loop makes connections, which are considered safe. At this stage in this research,

there is not enough intelligence in the system to decide which connections should be send to safe

queue and which ones should go to suspected queue. As mentioned before in the present

implementation random number or controller decides which queue the connections should go to.

Whatever connections go to safe queue are considered harmless and they need to be serviced

immediately without delay. This loop performs the required action and makes connections to the

client or server based on the IP address and port number specified as shown in the diagram. This

loop just de-queues the safe queue and makes the connection.

30

Delaying Suspected Connections

Figure 13 Delaying suspected connections and adding them back to safe queue; also dropping timed out connections.

31

Suspected connections are connections, which are considered harmful, which spreads

worm. These connections are sent to the suspected queue when queuing. These connections are

sent back to the safe queue after delaying, if they have not timed out. This loop processes

suspected queue at the specified rate. It separates the time string and connection string from the

element. Checks the time with the present time, if the difference is greater than the timeout

specified then drop the connection. If the connection is not timed out, the connection is pushed

into safe queue.

 If the connection is timed out, then timed out connections should not be processes with

delay. Here the program logic resets the loop processing speed and timed out connections get

dropped without any delay.

PID Controller

Figure 14 Feedback loop with PID controller.

This loop performs feedback action using shift register. It shifts the old values of the

outgoing connection rate (dc/dt). PID gains (Kp, Ti and Td), set point and output range for the

32

controller can be modified. It gives output to the “ratio for each queue” (α). Ratio for each queue

determines the number of connections going to safe or suspected queue. As the number of

connections per second increases more than the set point controller increases/decreases the value

for “ratio for each queue” and sends more connections to the delay queue, thus reducing the

actual number of outgoing connections. Number of connections in the delay queue increases as

time progresses and also due to the slow processing speed of the delay loop.

At this stage in the research model for containment has been developed and tested real

time using LabVIEW. There are some differences in the MATLAB simulation of the model and

the LabVIEW implementation. Percentage values of the MATLAB model have been

implemented as time factors in LabVIEW. There fore the next step is to develop a relation

between them. This is done empirically. LabVIEW implementation is run many times and for the

time values set by the user, percentage of connections going to safe queue, suspected queue,

percentage of connections getting timed out and going back to safe queue from suspected queue

are calculated. To validate the system, values are used in Simulink® (MathWorks, Inc., Natick,

MA) model and validated. Simulink model is described below

33

Simulink Validation

Figure 15 Simulink model with a PID controller and the state variable model.

In Figure 15, the system represents the complete state space model. Constant (20)

represents the set point for the system (the maximum desired outgoing connections per second).

The PID controller controls the values for parameter α. A constant outgoing rate of 20

connections per seconds is achieved by the control system in Figure 15.

34

RESULTS AND DISCUSSIONS

First step in the implementation of this thesis is to implement the state model represented

by equations 7 and 8. Figures 16, 17, 18 and 19 shows the simulation result for feedback applied

to total number of connections, acceleration of outgoing connections and effect of applying to

different parts of the network.

Total Connections

Figure 16 Behavior of the state model for the control of the number of connections on the
presence of a worm spreading according to an S-shape function. (a) Shows the total number of

connections with and without feedback.

35

The input in Eq. (8) represents the number of requested new connections per time unit. In

the case of a normal traffic the average number of requests can be considered constant over a

period of time. However, an S-shape form is expected for the spread function of a worm and

dU/dt=U (1-U) is used to generate the input. The solid line in Figure 16 represents the behavior

of the system with drop rate and delay parameters under “regular” conditions. The dashed lines

in Figure 16 represent the results for different detection times of the application of feedback

control for the scenario described above. As shown in the figure, control can be achieved at

different stages of attack and total number of connections being made still remains the same. As

expected, the sooner the infection is detected the faster the reduction of the spreading velocity.

Acceleration

Figure 17 Acceleration of outgoing connections for better detection times.

The acceleration of outgoing connections is used here as a detection mechanism to achieve

earlier detection because of second derivative. That is, when the acceleration reaches a certain

36

threshold the drop rate and the delayed parameters on the model in Equation (6) are adjusted to

slow down the spreading of the worm.

Total Input Connections

Figure 18 Number of connections on the delayed queue.

Figure 18 shows input curve applied to the model. The curve follows the S-curve pattern

to simulate an attack. Analysis is carried out at various stages of this attack. This is analogous to

step input disturbance of control theory.

37

Delay

Figure 19 Result of application of the feedback loop approach at the host and at the firewall

level.

Now, consider a scenario where hosts are connected to the firewall and a controller is

available at the hosts and at the firewall. The control can be done at the host level, at the firewall

level, or at both levels.

Figure 19 shows the results of applying or firewall converges to the same results though a

larger overshoot is observed at the firewall level. Regarding detection time, the acceleration at

the firewall level increases faster than at the host level and consequently an earlier detection time

is expected at the firewall level. As observed from

Figure 19, a double feedback loop has the advantage of the early detection time at the

firewall level and a more effective result in slowing down the infection.

38

LabVIEW Implementation

Next step after simulation of state model is to implement it in real time with feedback

PID controller. LabVIEW® (National Instrument Corporation, Austin, Texas, www.ni.com)

provides convenient toolsets to implement, test and observe the results.

After running the experiment more than twenty five times and finding the percentage of

connections going to each queue (α) and number of connections removed from suspected queue

and appended to safe queue was found to be

α = 0.5, β = 0.2 and Time out (θ) = 0.21

In the final model, outgoing rate of connections was taken for feedback and another

parameter timeout was introduced into the model. Therefore the model can be modified to

include timeout as shown in Figure 20 below

Safe QueueSafe Queue

Suspected Queue

Threshold β

θ

1-α

α

Delay queue

Accepted connections

D

Figure 20 State model implemented.

39

Important difference between the previous model is the introduction of timout. As can be

seen in equation (9) system matix A changes in the model implemented.

0
0 () 1

C C
N

DD

β α
β θ α

•

•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (9)

The final state model matrices were found to be

0 0.2
0 0.41

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

0.2
0.8

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

[]0 0.2C =

[]0.2D =

So the state equations for the system are

0 0.2 0.2
0 0.41 0.8

C C
N

DD

•

•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (10)

Where

N is the number of new connections

And the output equation is

[] []0 0.2 0.2C C N
• •⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (11)

Transfer function of the system was found to be (sys = ss(a,b,c,d);)

x = tf(sys)

Transfer function:

40

0.2 0.242
0.41

sTF
s
+

=
+

 (12)

Therefore, characteristics equation of the system is

S + 0.41 = 0 (13)

Finding poles of the system [y = eig(x)]

y = -0.4100

The system has a zero and a pole. The pole is located on the left side of y-axis. So the system is

stable.

 Some of the experimental data appears in Figures 8 and 9. The red line in the plots shows

the rate of input connections to the system and the black line shows the outgoing rate. Where,

Ti is the reset time which is the inverse of reset rate, or how often the controller resets it output.

Td is the derivative time that defines the rate at which derivative action is taken.

Figure 21 Experimental result for Kp= 1, Ti = 0.01, Td = 0 & set point = 20, where time is in
seconds and y-axis is number of connections per second.

 The set point for the controller was set to 20. This means that no more than

approximately 20 connections should go through a host at any instant of time. Application and

41

protocol timeout is checked before en-queuing the delayed connections to the safe queue. In

Figure 21 a large overshoot and settling time is observed. This can be reduced by varying Ti

(Integration constant) as shown in Figure 22. The controller was set to Kp = 1.5, Ti = 0 & Td = 5

for the graph of the experiment below.

Figure 22 Experimental result for Kp = 1.5, Ti = 0 & Td = 5

Controllability & Observability

In state space model, one of the important concerns is whether we can steer the state via

the control input to certain locations in the state space. This property is called controllability or

reachability [10].

“The issue of controllability concerns whether a given initial state x0 can be steered to the

origin in finite time using input u(t)” [10].

If one can say something about the state of the system by observing the output, this

property is called observabiltity[10].

“Observability is concerned with the issue of what can be said about the state when one is

given measurements of the plant output” [10].

42

MATLAB® (MathWorks, Inc., Natick, MA) simulations showed that the system is

completely controllable. A rank of 3 was obtained. The system was also tested for observability

and rank of 3 was found.

Sample Results obtained for drop rate of five percent and delay of 1ms is shown below. The

controllability matrix is given by:

 1.0000 0 -0.0500 0.0010 0.0025 -0.0001
 -0.0500 0 0.0025 0.0005 -0.0001 0.0000
 0 1.0000 0 -0.0010 0 0.0000

Observability matrix is given by:

 0 1.0000 0
 1.0000 0 0
 0.0025 0 0.0005
 0 0 1.0000
 0.0025 0 0.0005
 -0.0500 0 0.0010
 -0.0001 0 0.0000
 0 0 -0.0010
 -0.0001 0 0.0000
 0.0025 0 -0.0001
 0.0000 0 -0.0000
 0 0 0.0000

 Rank for both controllability and observability were found to be 3. The results proves that the

system is both controllable as wells as observable.

Settling Time

Settling time is a very important parameter for the control system described above. It

signifies the time in which a worm can be controlled in our discussion. Figure 23 shows the

relation between settling time and period of integration. Smaller periods of integration are better

but it increases the steady state error as shown in Figure 24.

43

Integral (Ti) vs Settling time

0
10
20
30
40
50
60
70
80

0 0.02 0.04 0.06 0.08 0.1 0.12

Integral (Ti)

Se
ttl

in
g

tim
e

(s
ec

)

Figure 23 Relation between integral time constant and settling time.

Proportional vs Settling time

0

10

20

30

40

50

60

0 1 2 3 4

Proportional constant (Kp)

Se
ttl

in
g

tim
e

(s
ec

)

Figure 24 Graph showing relation between proportional constant and settling time.

44

Figure 23 shows the relation between proportional constant and settling time. It can be

observed that the optimal value for the proportional gain is around 1.5. With the values obtained

from the analysis, controller can be tuned and containment can be achieved in very short span of

time.

Sensitivity Analysis

It is important to understand how changes in the parameters of the system affect its

results. For example, the effect of the delay parameter with respect to the steady state error and

the number of connections sent directly to the safe queue are of interest. The number of

connections sent directly to the safe queue is used here to exemplify the results of the analysis. A

simulation based sensitivity analysis, as shown in Eq. 14 is used to achieve these goals [18].

)(
)()(

xV
xVxxVS

ρ
ρ −+

= (14)

The value of V(x+ρx) represents the output of the system when parameter x is increased by a

certain value ρ. V(x) is the output of the system with no changes in the specified parameter.

45

Sensitivity Analysis

0
2
4
6

8
10
12

0 20 40 60 80 100 120

Delay

Se
ns

iti
vi

ty

Series1

Figure 25 Sensitivity of the number of connections sent directly to the safe queue as the delay
parameter changes.

As seen in Figure 25, the sensitivity of the system with respect to the number of

connections that are directly sent to the save queue decreases as the value of the delay parameter

increases. It is expected that higher the value of the delay parameter, higher the number of

connections that will time out. If the delay is too large, all the connections in the delayed queue

will be eventually dropped. Therefore, as the delay increases the number of connections to be

sent to the safe queue converges to the set point (20 in this case). Consequently the sensitivity of

the referred parameter decreases as can be observed in Figure 25. This analysis is an indication

of the proper functioning of the system.

Limitations

This study is limited to communication between two computers. The experiment was

limited to two computers because at the node level any computer tries to communicate with

another machine one at a time and the scope can be extrapolated to bigger networks.

46

 The implementation has been done using LabVIEW 7.0. LabVIEW is an excellent tool

for designing and analysis of such models where as its performance needs to be tested with

performance when same code is executed using other languages. Since time is such an important

issue in this study, it is a very important concern. Also LabVIEW can generate only 33

connections per second because it takes a minimum of 30 ms to generate each connection. The

model has been tested for set points of 10 or 20 connections per second.

 The study is also limited by the protocol (UDP) used, the model and the system needs to

be tested for other protocols as TCP/IP. It also needs to take into consideration other anomalies

of virus attack such as CPU usage and memory overflow.

 This research has been completely done on windows operating systems. Though other

operating systems such as UNIX, Linux and Java are also vulnerable, they have been built for

networking. Windows on the other hand is not built for networking from the onset.

Implementation, if done at the perimeter just by considering protocol connections then the kind

of operating system should not be a major concern [30].

47

CONCLUSIONS

 In this research, a security architecture based on the feedback control theory has been

proposed. The first loop has been designed, developed and tested. The architecture proposes a

feedback model with many controllers located at different stages of network. The controller at

each stage gives feedback to the one at higher level and a decision about network security is

taken.

 The first loop implemented in this thesis detects one important anomaly of virus attack,

rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing

connection is an important one to contain the spread. Based on the feedback model, this

symptom is fed back and a state model using queuing theory is developed to delay the

connections and slow down the rate of outgoing connections. Upon implementation of this

model, whenever an infected machine tries to make connections at a speed not considered safe,

the controller kicks in and sends those connections to a delay queue. Because of delaying

connections, rate of outgoing connections decrease. Also because of delaying, many connections

timeout and get dropped, reducing the spread.

 PID controller has been implemented to decide the number of connections going to safe

or suspected queue. Multiple controllers can be implemented to control the parameters like delay

and timeout. Control theory analysis is performed on the system to test for stability,

controllability, observability. Sensitivity analysis is done to find out the sensitivity of the

controller to the delay parameter.

 The first loop implemented gives feedback to the architecture proposed about symptoms

of an attack at the node level. A controller needs to be developed to receive information from

different controllers and decision about quarantining needs to be made. This research gives the

48

basic information needed for the controller about what is going on at individual nodes of the

network. This information can also be used to increase sensitivity of other loops to increase the

effectiveness of feedback architecture.

49

FUTURE WORK

 LabVIEW® 7.0 (National Instrument Corporation, Austin, Texas, www.ni.com) has been

used as a tool to develop and test the model on Microsoft® Windows® operating systems

(www.microsoft.com). LabVIEW provides toolkits needed to develop and test the model. Visual

controllers and indicators provided by LabVIEW are suitable for developing and testing a model

because of the excellent user interface and real time monitoring capabilities, but they might

degrade the performance at the time of implementation. Alternative implementation technologies

needs to be explored and developed (for example developing the model in hardware or

implementing more efficient hardware oriented or less memory consuming software).

 A major issue in the proposed model is how to identify if the new connection is a safe or

a suspect one. The solution depends on the domain knowledge and learning from the traffic

patterns. Also, currently there is limited number of hosts (i.e., 2) and it can be extended to large

number of hosts for large-scale analysis.

 The model should be implemented at various stages of the network architecture. Each

controller should be able to interact with other controllers in the architecture and make decisions

based on the kind of traffic pattern. The whole architecture should be self-learning. Over a period

of time it should have a blacklist and white list patterns of the network traffic. This study has

been done on UDP traffic; future work would involve testing this architecture on different

networks and different protocols.

 The entire architecture needs to be tested for false positives and performance. Delaying

traffic can be a major bottleneck in high-speed networks of today. Quarantining the infected

systems is one more area where more work can be done. Single system or part of a network can

50

be quarantined in case of infection. Architecture for performing such an action needs to be

developed.

 To satisfy the feedback control loop, a specification and requirements for expected output

need to be specified. Also, certain measurements, benchmarks, and metrics are specified for

satisfying these requirements. Likewise, certain buffer size, CPU utilizations can also be

specified. Further work involves specification of requirements, and benchmarks, and deriving

transfer functions for each module in the feedback loop.

51

REFERENCES

1. Williamson, M.M, “Throttling viruses: Restricting propagation to defeat malicious
mobile code.” Computer Security Applications Conference, December 2002.
Proceedings. pp. 61 –68.

2. Lau, F.; Rubin, S.H.; Smith, M.H.; Trajkovic, L.; “Distributed denial of service attacks.”
Systems, Man, and Cybernetics, 2000 IEEE International Conference, October 2000, vol.
3, pp. 2275 -2280

3. S. Staniford, V. Paxson, and N. Weaver. “How to own Internet in your spare time.” In
Proceedings of the USENIX Security Symposium, August 2002, pp. 149-167.

4. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas
Weaver, “The spread of the Sapphire worm.” Retrieved September 2004 from
http://www.cs.berkeley.edu/~nweaver/sapphire/.

5. R.V. Dantu, “An architecture of security engineering.” ACSA Workshop on Application
of Engineering Principles for Security System Design, November 2002.

6. R.V. Dantu “Feedback control for network security engineering.” 18th Annual ACSCA
Conference on practical solutions to security engineering, December 2002.

7. João W. Cangussu, Ray A. DeCarlo, and Aditya P. Mathur, “A formal model of the
software test process.” IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.
782-796, August, 2002.

8. Somayaji, A., and Forrest, S., “Automated response using system-call-delays.”,
Proceedings of the 9th USENIX security symposium, 2000.

9. João W. Cangussu, Ray A. DeCarlo, and Aditya P. Mathur, “Using sensitivity analysis to
validate a state variable model of the software test process.” IEEE Transactions on
Software Engineering, vol. 29, no. 5, pp. 782-796, May, 2003.

10. Graham C. Goodwin, Stefan F. Graebe and Mario S. Salgado, “Control system design.”
Prentice Hall, 2001.

11. João W. Cangussu, Ray A. DeCarlo, and Aditya P. Mathur, “A state model for the
software test process with automated parameter identification.” Proceeding of the 2001
IEEE systems, man, and cybernetics. Tucson, Arizona, pp. 706-711.

12. João W. Cangussu, Ray A. DeCarlo, and Aditya P. Mathur, “Feedback control of the
software test process through measurements of software reliability.” Proceedings of the
12th IEEE international symposium on software reliability engineering, pp. 232-241,
Hong Kong.

13. David Moore, Colleen Shannon, Geoffrey M. Voelker, Stefan Savage, “Internet
quarantine: requirements for containing self-propagating code.” INFOCOM, 2003.

52

14. Feng-Li Lian, James Moyne, and Dawn Tilbury, “Network design consideration for
distributed control systems.” IEEE transactions on control system technology, Vol. 10,
No.2, March, 2002.

15. N. Gandhi, D.M. Tilbury, Y. Diao, J. Hellerstein and S. Parekh, “MIMO control of an
apache Web server: modeling and controller design.” Proceedings of the American
control conference, Anchorage, AK May 8-10, 2002.

16. N. Gandhi, D.M. Tilbury, J. Hellerstein and S. Parekh, “Feedback control of a Lotus
notes server: modeling and control design.” Proceedings of the American control
conference, Arlington, June 25-27, 2001.

17. David A. Nash, and Daniel J. Ragsdale, “Simulation of self-similarity in network
utilization patterns as a precursor to automated testing of Intrusion Detection Systems.”
IEEE transactions on systems, man, and cybernetics, Vol. 31, No. 4, July 2001.

18. Nong Yo, Xiangyang Li, Qing Chen, Syed Masum Emran and Mingming Xu,
“Probabilistic techniques for intrusion detection based on computer audit data.” IEEE
transactions on systems, man, and cybernetics, Vol. 31, No. 4, July 2001.

19. G.A. Fink, B.L. Chappell, T.G. Turner, and K.F. Donoghue, “A metric-based approach to
Intrusion Detection Systems evaluation for distributed real-time systems.”

20. Richard A. Kemmerer and Giovanni Vigna, “Intrusion detection: A brief history and
overview.” IEEE symposium on security and privacy, pages 27-30, 2002.

21. Joseph S. Sherif, Tommy G. Dearmond, “Intrusion detection: systems and models.” IEEE
International workshops on enabling technologies: Infrastructure for collaborative
enterprises (WETICE’02), 2002.

22. Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Ricahrd Kemmerer, “Stateful
intrusion detection for high-speed networks.” IEEE symposium on security and privacy,
2002.

23. Steven Bellovin, Jeffrey Schiller, “Security mechanisms for the internet.” IETF draft,
draft-iab-secmech-01.txt, June 2002.

24. Dantu, R.; Cangussu, J.; Yelimeli, A.;”Dynamic control of worm propagation.”
International conference on information technology: coding and computing, 2004.
Proceedings. ITCC 2004. Volume: 1, April 5-7, 2004
Pages: 419 – 423.

25. Dantu, R.; Loper, K.; Kolan, P.;”Risk management using behavior based attack graphs.”
International conference on information technology: coding and computing, 2004.
Proceedings. ITCC 2004., Volume: 1, April 5-7, 2004
Pages: 445 – 449.

53

26. Andrea Saltelli, K. Chan, and E. M. Scott, “Sensitivity analysis.”, John Wiley & Sons,
2000.

27. Richard C. Dorf, Robert H. Bishop, Modern control systems, Ninth Edition, Prentice Hall
–2001.

28. Wired, “Slammed! An inside view of the worm that crashed the internet in 15 minutes.”
2003, http://www.wired.com/wired/archive/11.07/slammer.html. (08/27/2004)

29. University of Michigan, control tutorials for MATLAB, “PID tutorial.” 1997,
http://www.engin.umich.edu/group/ctm/PID/PID.html. (08/27/2004)

30. Paul Thurrott, “Windows uniquely vulnerable to viruses.” 1999,
http://www.winnetmag.com/Article/ArticleID/18746/18746.html. (08/27/2004)

31. Symantec, “Norton Antivirus 2001 7.0 knowledge base.” 2004,
http://service1.symantec.com/SUPPORT/nav.nsf/aab56492973adccd8825694500552355/
024c927836400f528825675100593eb2?OpenDocument&src=sec_web_nam.
(08/27/2004)

