Evaluating the Scalability of SDF Single-chip Multiprocessor Architecture Using Automatically Parallelizing Code

PDF Version Also Available for Download.

Description

Advances in integrated circuit technology continue to provide more and more transistors on a chip. Computer architects are faced with the challenge of finding the best way to translate these resources into high performance. The challenge in the design of next generation CPU (central processing unit) lies not on trying to use up the silicon area, but on finding smart ways to make use of the wealth of transistors now available. In addition, the next generation architecture should offer high throughout performance, scalability, modularity, and low energy consumption, instead of an architecture that is suitable for only one class of ... continued below

Creation Information

Zhang, Yuhua December 2004.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 177 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Zhang, Yuhua

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

Advances in integrated circuit technology continue to provide more and more transistors on a chip. Computer architects are faced with the challenge of finding the best way to translate these resources into high performance. The challenge in the design of next generation CPU (central processing unit) lies not on trying to use up the silicon area, but on finding smart ways to make use of the wealth of transistors now available. In addition, the next generation architecture should offer high throughout performance, scalability, modularity, and low energy consumption, instead of an architecture that is suitable for only one class of applications or users, or only emphasize faster clock rate. A program exhibits different types of parallelism: instruction level parallelism (ILP), thread level parallelism (TLP), or data level parallelism (DLP). Likewise, architectures can be designed to exploit one or more of these types of parallelism. It is generally not possible to design architectures that can take advantage of all three types of parallelism without using very complex hardware structures and complex compiler optimizations. We present the state-of-art architecture SDF (scheduled data flowed) which explores the TLP parallelism as much as that is supplied by that application. We implement a SDF single-chip multiprocessor constructed from simpler processors and execute the automatically parallelizing application on the single-chip multiprocessor. SDF has many desirable features such as high throughput, scalability, and low power consumption, which meet the requirements of the next generation of CPU design. Compared with superscalar, VLIW (very long instruction word), and SMT (simultaneous multithreading), the experiment results show that for application with very little parallelism SDF is comparable to other architectures, for applications with large amounts of parallelism SDF outperforms other architectures.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2004

Added to The UNT Digital Library

  • Feb. 15, 2008, 3:43 p.m.

Description Last Updated

  • May 6, 2014, 4:09 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 177

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhang, Yuhua. Evaluating the Scalability of SDF Single-chip Multiprocessor Architecture Using Automatically Parallelizing Code, thesis, December 2004; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc4673/: accessed May 30, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .