Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles.

PDF Version Also Available for Download.

Description

In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear ... continued below

Creation Information

Zhou, Bo December 2004.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 904 times , with 8 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Zhou, Bo

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH- sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH- sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a thermodynamic perturbation theory combined with lightscattering and spectrometer measurements. It was shown how the volume transition of PNIPAM particles affected the interaction potential and determined a novel phase diagram that had not been observed in conventional colloids. Because both particle size and attractive potential depended on temperature, PNIPAM aqueous dispersion exhibited phase transitions at a fixed particle number density by either increasing or decreasing temperature. The phase transition of PNIPAm-co-AAc colloids was also studied. The results from the comparison between pure PNIPAm and charged PNIPAm colloids showed that the introducing of carboxyl (-COOH) group not only contributed to the synthesis of three-dimensional nanoparticle network but also effectively increased the crystallization temperature and concentration range. The phase transitions at both low and high temperatures were observed from the turbidity change by using UV-Vis spectrometer. Centrifugal vibration method was used to make crystalline PNIPAm-co-AAc dispersion at high concentration (8%). The turbidity test proved the formation of iridescent pattern.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2004

Added to The UNT Digital Library

  • Feb. 15, 2008, 3:43 p.m.

Description Last Updated

  • March 3, 2008, 11:14 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 8
Total Uses: 904

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhou, Bo. Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles., dissertation, December 2004; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc4671/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .