Compounded Drugs

Judith M. Glassgold
Specialist in Health Policy

May 23, 2013
Summary

Compounding has been traditionally defined as a process where a pharmacist or a physician combines, mixes, or alters ingredients to create a medication tailored to the needs of an individual patient. Traditionally compounded drugs (CDs) are made in response to an individual prescription from a licensed health provider in the context of a pharmacist’s and health care professional’s relationship with a specific patient.

Some have suggested that certain activities not traditionally associated with compounding be considered compounding. Such activities include the large-scale production of drugs to ease certain drug shortages, to meet outsourcing needs of hospitals, and to supply physician-administered drugs. Nontraditional compounding may include (1) the production and shipping of large volumes of drugs across state lines; (2) production of drugs that are copies of FDA-approved commercially available drugs; (3) provision of CD without a prescription for an individual patient to receive a compounded version and outside of a professional relationship; and (4) production of products to third parties, such as hospitals, clinics, physician offices, and home health providers. These activities could be considered more akin to manufacturing than traditional compounding, which is considered part of the traditional practice of pharmacy.

Adverse events involving contaminated compounded drugs have drawn attention to the growing use of nontraditionally compounded drugs in health care delivery. Shortages of sterile generic drugs and hospital outsourcing are cited as causes of increased numbers of CDs produced by nontraditional compounders. Efforts to assess the risks and benefits of CDs on public health and safety are complicated by the lack of publicly available information, including the absence of a federal adverse event reporting requirement and the lack of information about the number of drugs compounded, the types of drugs compounded, and the number of businesses in this market.

Policymakers have raised questions regarding how best to improve the safety of CDs while maintaining patient access to needed medications. Drug compounding has historically been the focus of state governments through their regulation of pharmacies. Recently, questions have arisen regarding the extent to which the federal government can regulate the practice of compounding through the Federal Food, Drug, and Cosmetic Act (FFDCA). Policy discussions include proposals to modify federal oversight of high-risk activities and products, to improve federal and state coordination, and to increase use of existing federal authorities.

This report provides background information on CDs and nontraditional compounding pharmacies relevant to policy discussions. This includes an overview of the 2012 fungal meningitis outbreak; recent recalls of compounded drugs; definitions of traditional compounding and nontraditional compounding; information on the CDs produced and by whom; information on the demand for nontraditional compounding, including the role of shortages of sterile injectable drugs, hospital outsourcing, and patient and provider demand; and information on adverse events involving compounded drugs.
Contents

Introduction .. 1
Background .. 2
 Health Concerns Involving CDs .. 3
 Background ... 3
 Adverse Event Reporting .. 5
 Traditional Compounding .. 8
 Nontraditional Compounding .. 10
Existing Regulatory Oversight ... 11
 Federal Authorities .. 11
 State Authorities .. 12
 Industry Self-Regulation ... 13
Growth of Nontraditional Compounding ... 13
 Hospital Compounding and Outsourcing .. 15
 The Role of Drug Shortages in CD Demand ... 16
 Shortages of Generic Injectable Drugs .. 16
 Shortages of CDs ... 17
 Other Sources of Demand for Compounded Products .. 18
 Pharmacist Business Development ... 19
 Provider Demand .. 19
Issues for Consideration ... 20
 Adverse Event Reporting and Labeling ... 21
 The Federal Role in Oversight ... 22

Tables

Table 1. Hospital Beliefs About The Effect of Shortages of Compounded Sterile Products on Patient Care and Health Care Delivery .. 18
Table A-1. -Adverse Events ... 25

Appendixes

Appendix A. Congressional Hearings on CDs 2012-2013 .. 24
Appendix B. Selected Adverse Events Involving Compounded Drugs and Solutions 25

Contacts

Author Contact Information ... 30
Acknowledgments ... 30
Introduction

In September 2012, the Centers for Disease Control and Prevention (CDC), the Food and Drug Administration (FDA), the Tennessee Department of Health, and other state health departments began investigating a rare, noncontagious outbreak of fungal meningitis. As of May 2013, 20 states had reported 741 infections (including fungal meningitis and other conditions), and 55 deaths traced to injections of contaminated, preservative-free methylprednisolone acetate produced by the New England Compounding Center (NECC). NECC, which self-identified as a compounding pharmacy—not a manufacturer—and was licensed by the state of Massachusetts, produced large volumes of drugs that were shipped across state lines to health care providers. Unlike traditional pharmacy practices, NECC produced drugs without individual prescriptions and made copies of existing commercially manufactured drugs.

These serious adverse events drew attention to compounded drugs (CDs). Six congressional hearings were held in 2012-2013 to understand the factors that led to these adverse events and ways to prevent future such incidents; these hearings are listed in Appendix A. In these hearings Members of Congress and stakeholders raised questions regarding how best to improve the safety of CDs while maintaining patient access to needed drugs.

Issues raised at these hearings include the following: (1) what are CDs; (2) how are CDs made and by whom; (3) what is the role of CDs in health care delivery; (4) what are the federal and

1 For more information on the events relating to tracking the fungal meningitis outbreak, see Beth Bell, Director, Director, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS), “Testimony Before the Health, Education, Labor, and Pensions Committee, U.S. Senate: The CDC and Public Health Response to the 2012 Fungal Meningitis and Other Infections Outbreak,” pp. 2-6, http://www.help senate.gov/imo/media/doc/Bell.pdf.

2 This form of fungal meningitis is noncontagious; the more common form of meningitis is bacterial and is infectious. See http://www.cdc.gov/meningitis/fungal.html.

6 The Food and Drug Administration (FDA) defines a serious adverse event as any undesirable experience associated with the use of a medical product in a patient. For more information, see FDA “What is a Serious Adverse Event?” http://www.fda.gov/safety/medwatch/howtoreport/ucm053087.htm.

Compounded Drugs

state roles in oversight of CDs; (5) how safe are CDs; and (6) what steps could be taken to prevent adverse events from CDs.9

This report provides background information about these issues that may be used to inform the policy discussion as Congress considers legislation. This report focuses on (1) available background information on CDs and compounding pharmacies; (2) changes in the role of CDs in healthcare delivery; (3) factors leading to an increase of compounding; (4) safety of CDs, including a table of selected publicly available adverse events; and (5) a brief summary of policy issues raised to date. This report includes material on CDs for human patients and does not include a discussion of veterinary drug compounding or the compounding of dietary supplements.

Issues of public health and safety of CDs are tied to the regulation and oversight of CDs. This report includes brief information on federal, state, and professional efforts to increase the safety of CDs. Information on the federal regulation of CDs is addressed in other CRS reports: CRS Report R40503, FDA’s Authority to Regulate Drug Compounding: A Legal Analysis, by Jennifer Staman, and CRS Report R43038, Federal Authority to Regulate the Compounding of Human Drugs, by Andrew Nolan. Information on the regulation of commercially manufactured drugs can be found in CRS Report R41983, How FDA Approves Drugs and Regulates Their Safety and Effectiveness, by Susan Thaul.

Background

Compounding has been traditionally defined as a process where a pharmacist or a physician combines, mixes, or alters ingredients to create a medication tailored to the needs of an individual patient. Traditionally compounded drugs (CDs) are made in response to an individual prescription from a licensed health provider in the context of a pharmacist’s and health care provider’s professional relationship with a specific patient. CDs provide alternatives to standard commercially manufactured drugs when such drugs do not meet the unique medical needs of a patient (e.g., due to a need for an allergen-free drug, weight-based dosing, or alternate modes of delivery), or are unavailable due to discontinuation, unavailability, or shortages. Shortages of sterile generic drugs and hospital outsourcing are cited as causes of the increased reliance of health care providers on CDs.10

Some have suggested that certain activities not traditionally associated with compounding be considered compounding. Such activities include the large-scale production of drugs to ease certain drug shortages, to meet outsourcing needs of hospitals, and to supply physician-administered drugs. Nontraditional compounding may include (1) the production and shipping of large volumes of drugs across state lines; (2) production of drugs that are copies of FDA-approved commercially available drugs; (3) production of drugs outside of a personal relationship with a patient and without a prescription for an individual patient to receive a compounded version; and, (4) providing products to third parties, such as hospitals, clinics, physician offices, and home health providers. These activities may be considered more akin to manufacturing than

9 See information in Appendix A.
traditional compounding, which is considered part of the traditional practice of pharmacy. In this report, references to these types of activities will be called “nontraditional compounding.”

Health Concerns Involving CDs

Background

Adverse events stemming from CDs in 2012 are the starting point for the current policy debate about existing regulatory oversight of CDs. The 2012 fungal meningitis outbreak was triggered by contaminated sterile CDs, injectable methylprednisolone, and was the worst recorded adverse event involving CDs,11 with news reports indicating that up to 14,000 individuals were exposed to this product.12 Contaminated sterile drugs pose the most serious threats to human health, and can cause death.13 Details on this event are listed in the following text box.14

Fall 2012 Fungal Meningitis Events

- September 26, 2012, NECC recalls three lots of methylprednisolone acetate, an injectable steroid.
- October 4, 2012, the FDA verified that NECC, a compounding center in Massachusetts, was the source of the contaminated compounded injectable methylprednisolone.15
- October 6, 2012, NECC recalled all compounded products from its Framingham, MA, facility.16 The FDA urges health care providers to follow up with patients who received injectable and ophthalmic products.
- October 31, 2012, Ameridose, a company associated with NECC, recalled all unexpired products in circulation.

The safety of CDs has been a concern of Congress for over two decades due to the expansion of nontraditional compounding.17 Potential safety risks for CDs include problems with potency (i.e.,

13 Ibid., p. 5.
14 An expanded overview of events related to the 2012 fungal meningitis outbreak can be found in CRS Report R42837, Selected Resources on Federal Oversight of Compounding Pharmacies, by Judith M. Glassgold, Susan Thaul, and Janet Kinzer.
the dosage is inaccurate, either too strong or too weak), purity (e.g., the drug contains other chemicals that could be harmful), and contamination (the drug is contaminated with a bacteria, fungus, or virus).18

The FDA conducted surveys in 2001 and 2006 to assess identity, strength, quality, and purity issues for CDs.19 In a nonrandom survey of compounded drugs available over the internet, about one-third (33%) failed analytic testing, mostly regarding potency or uniformity of dosage. In these surveys, the rates of analytic testing failures for compounded drugs were higher than those for commercially available drugs, where only 2% of drugs failed analytic testing.20 There is no specific federal or state requirement that an individual CD be tested for potency, purity, and sterility prior to being sold or administered.21 The compounding of a product may voluntarily perform such tests along with other quality control processes.22

Safety issues with CDs also have been found by state pharmacy boards.23 Certain states have started testing a certain percentage of compounded drugs for nondisciplinary purposes. For example, the State of Missouri Board of Pharmacy initiated a testing program in 2003 for compounded drugs and each year tests a certain number of finished products.24 Over the course of the testing program, 15%-25% of the CDs were found to have problems with drug potency, ranging from a sub-potent drug with 0%—no active ingredient present—to a super-potent drug with almost 400% of the prescribed dosage. An inaccurate dose may present a risk of harm to the patient through a risk of toxicity (super-potent) or the risk of ineffective treatment (sub-potency) (see, for example, Table A-1, years 2010, 2007).25

(...continued)

18 See US Pharmacopeial Convention-NF, General Chapter <797> Pharmaceutical Compounding – Sterile Preparations and USP-NF <795> Non-Sterile Compounding.

The lack of resources to carry out testing of CDs appears to be a problem in several states. For example, a newspaper reported that Texas passed a law to provide for inspections of compounding pharmacies, but did not authorize funds for such purposes until 2007; once funded, testing dropped by two-thirds in 2012 compared to 2010 due to state budget cuts.

Adverse Event Reporting

There is no federal requirement for producers of CDs to report adverse events, so the actual number of individuals harmed by CDs is unknown. Policymakers have had concerns with CDs that date back almost two decades; these include reports of contamination of products that should be sterile, sub- or super-potent dosages, and impurities.

Table A-1 provides a selected compilation of publicly available reports of adverse events involving CDs and other compounded medical products with details about the date, the number of states affected, the number of people affected, mortality (if any), drug involved, condition treated, and other characteristics, such as whether the product was shipped across state lines or was an off-label use. The vast majority of these adverse events involve sterile compounded products.

Sterile compounded products include injectable drugs, IV-delivered drugs and solutions.

32 Off-label use of a prescription drug or device refers to the ability of licensed health care providers to prescribe or use the drug for indications, conditions, patients, dosages or routes of administration not yet evaluated and approved by the FDA as part of a new drug approval application.

Compounded Drugs

inhalation drugs, and parenteral nutrition that are administered directly into the body and must be sterile to assure patient safety.34

There is no specific federal requirement for the reporting of adverse events with CDs, so that this information is by nature selective and cannot be used to draw inferences about the overall risks of CDs. Reports of incidents with CDs that do not rise to adverse events are excluded from the table.35 \textbf{Table A-1} also includes other characteristics of CDs, including where it was evident that CDs were shipped across state lines, an element of nontraditional compounding and high-volume facilities, whether CD were prescribed for off-label uses, and whether a drug shortage was in effect. For example, a shortage of generic preservative-free methylprednisolone was reported by some sources prior to the 2012 fungal meningitis outbreak, which was caused by compounded versions of that drug.36

The 2012 fungal meningitis outbreak led to greater scrutiny by federal and state authorities of sterile CDs.37 In 2013, FDA and state authorities inspected certain facilities that produce sterile CDs and found a variety of safety concerns.38 Later, some, but not all, of these compounders issued product recalls due to sterility concerns.39 Recalls of sterile CDs in 2013 are listed in the following text box.40

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{2013 Manufacturer Recalls of Sterile CDs} \\
\hline
\textbullet{} On May 17, 2013, the FDA announced that Pentec Health, Inc. initiated a recall of nutritional prescriptions for renal patients due to a lack of sterility assurance. No adverse events had been reported as of the date of recall.41 \\
\textbullet{} On May 6, 2013, the FDA alerted health care providers of concerns regarding sterility assurance for sterile drugs produced and distributed by the Compounding Shop. The FDA reports that the Compounding Shop is in the \\
\hline
\end{tabular}
\end{table}

39 Ibid.

40 This list of recalled CD is current as of May 18, 2013.

process of recalling products.42

- On April 22, 2013, Nora Apothecary and Alternative Medicine recalled all lots of sterile compounded products produced on or before April 19, 2013, due to the lack of sterility assurance and concerns associated with quality control processes. No adverse events had been reported as of the date of recall.43

- On April 21, 2013, Balanced Solutions Compounding Pharmacy (Balanced Solutions), a division of Axium Healthcare Pharmacy, Inc., of Lake Mary, FL, recalled all lots of its sterile nonexpired drug products due to a lack of sterility assurances associated with the quality control processes. No adverse incidents had been reported as of the date of recall.44

- On April 15, 2013, NuVision Pharmacy recalled all lots of all compounded lyophilized products due to sterility assurance concerns. No adverse events had been reported as of the date of recall.45 On May 18, 2013, the FDA expanded its alert to health care providers to all sterile drug products made and distributed by NuVision.46

- On April 15, 2013, ApothéCure, Inc. recalled all lots of all sterile products compounded, repackaged, and distributed by ApothéCure, Inc. due to sterility assurance concerns. No adverse events had been reported as of the date of recall.47

- On April 05, 2013, Green Valley Drugs recalled all lots of all sterile products compounded, repackaged, and distributed by the firm due to quality control concerns. No adverse events had been reported as of the date of recall.48

- On March 25, 2013, state regulators halted production of sterile products made by Pallimed, a compounding pharmacy, and requested a recall of all sterile products.49 Pallimed issued such a recall March 26, 2013. No adverse events had been reported as of the date of recall.50

- On March 20, 2013, Clinical Specialties Compounding Pharmacy recalled all sterile products repackaged and distributed due to the company’s lack of confidence in product sterility.51 This followed a recall on March 18, 2013, of Avastin compounded for ophthalmic use. No adverse events had been reported as of the date of recall.52

- On March 17, 2013, Med Prep recalled all lots of its compounded drugs due to mold contamination.53 This followed the recall of a single product line on March 16, 2013. No adverse events had been reported as of the date of recall.54

Traditional Compounding

Traditional compounding is a process where a pharmacist or a physician “combines, mixes, or alters ingredients to create a medication tailored to the needs of an individual patient” in response to a prescription from a health care provider. CDs can include different formulations of drugs (e.g., liquid instead of tablet), doses, and certain ingredients (e.g., allergen-free, dye-free). This report will use the phrase “traditional compounding” to reference the historical use of the term compounding.

CDs can provide patients drugs tailored to their individual health needs. The benefits of traditional compounding include (1) providing individualized drugs when commercially produced drugs do not meet the health requirements of an individual patient; and (2) maintaining access to certain prescription drugs that are not commercially available due to shortages, unavailability, or discontinuation, among other factors.

The number of CDs made cannot be determined due to the lack of publicly available information. Currently no federal reporting requirement exists for producers of CDs with respect to their compounding activities. The most recent attempt to assess the number of CDs was through a survey commissioned by the FDA in 2001. This report estimated that 650 pharmacies filled about 13 million prescriptions for compounded prescription drugs per year.

Some stakeholders estimate that anywhere from 1% to 5% of all prescriptions filled annually are for CDs, but the basis of this information cannot be verified. There is also no publicly available information on the types of CDs made, for instance, the percentage of CDs that include dosage, formulation, or ingredient alterations, or that are produced in response to shortages of commercially manufactured drugs. The lack of information on the current scope of compounding presents challenges for public health authorities and policy makers.

56 Ibid.
61 Since close to 4 billion prescriptions are filled annually in the United States, this percentage would yield a range of 40-200 million CDs annually.
Pharmacists, or technicians supervised by a licensed pharmacist, and physicians can produce CDs. Compounding is part of the standard practice of pharmacy and is within the scope of state licensure of pharmacists and pharmacies. The number of pharmacists engaged in compounding on a regular basis is difficult to evaluate due to a lack of publicly available information. The most recent attempt to survey pharmacists, commissioned by the FDA, found that the majority of compounded prescriptions are filled by a small number of pharmacies, and for some, CDs are the majority of their business. Others provide different estimates. Janet Woodcock, Director of the FDA Center for Drug Evaluation and Research (CDER), stated in a recent interview that 28,000 pharmacies compound drugs nationwide. The American Pharmacists Association (APhA), a trade association of pharmacists, reports that there are 7,500 pharmacies in the United States that specialize in compounding. The International Academy of Compounding Pharmacies, a trade association representing the compounding profession, has 2,700 members. As of January 2013, there were 163 pharmacies in the United States accredited by the Pharmacy Compounding Accreditation Board, which offers a voluntary accreditation process for compounding pharmacies.

Existing sources of publicly available information on specific CD products include those listed by compounding pharmacies on their websites, products described by professional associations, products mentioned in scientific journals, and on CDC and FDA websites due to warning and other notices. These CDs include, among others, drugs for pain management (including

63 States license health care professionals. The scope of permitted activities of pharmacy professionals is largely determined by state law. For an example of a job description for a compounding professional, see http://www.wedgewoodpharmacy.com/jobs/pharmacy-technician-general-compounding.html, accessed April 1, 2013.

66 Steven Galson, FDA, at a hearing of the Senate Committee on Health, Education, Labor, and Pensions, 108th Congress, 1st Session, October 22, 2003, “Examining State and Federal Oversight to Ensure the Safety and Quality of Drug Compounding.” The FDA provided limited information on this study, so its reliability cannot be assessed.

70 Telephone conversation between the author and Joe Cabaleiro, Executive Director, Pharmacy Compounding Accreditation Board, January 4, 2013.

71 Products provided by compounding pharmacies can be found on websites generated by standard searches of the web with keywords such as “compounding pharmacies.” Further, the website of the Pharmacy Compounding Accreditation Board, a private nonprofit organization that accredits compounding pharmacies has a list of accredited compounding pharmacies, http://www.pcab.org/. A list of products provided by compounded pharmacies can be found on the websites of accredited members, see for instance, CarePro Compounding, http://www.careprohs.com/pharmacies/compounding/ or A & O pharmacy, http://www.aopharmacy.com/compounding.html.

73 FDA Actions, http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/PharmacyCompounding/#compliance See list (continued...)
alternate delivery, combined medications, dosage variations), hormone replacement therapies for
women (including bioidentical hormones) and men (e.g., testosterone), men’s and women’s
health, sports medicine, weight-loss, dental care, veterinary care, pediatric patients, and hospice
care. Some compounded products include items advertised as treatments for Autism/ADHD, “adrenal fatigue,” or-fat-elimination; the FDA and others have raised questions regarding these
claims.

Nontraditional Compounding

As noted earlier, some enterprises have engaged in certain activities not traditionally associated
with compounding, but have asserted that these activities should be considered compounding. Such activities include the large-scale production of drugs to ease certain drug shortages, to meet outsourcing needs of hospitals, and to supply physician-administered drugs. Nontraditional
compounders make a variety of products, including sterile injectables, parenteral nutrition, and
drugs on the FDA shortage list. Sterile injectable CDs include epidurals (for childbirth and pain
management), nerve-blocking agents, drugs for pain management, and antibiotics. Individuals
might receive these products in a hospital, doctor’s office, or other medical facility as a
medication, an IV solution, or nutrition.

(...continued)
of resources in CRS Report R42837, Selected Resources on Federal Oversight of Compounding Pharmacies, by Judith M. Glassgold, Susan Thaul, and Janet Kinzer for examples of medical and scientific journals and FDA resources.
75 For example, see the following compounding pharmacy website: http://www.myvillagegreen.com/compounding-pharmacy/.
76 For example, see the following compounding pharmacy http://www.hotzehwc.com/en-US/Treatment-Programs/Adrenal-Fatigue.aspx.
77 In some instances the FDA has issued warning letters to compounding pharmacies regarding the claims of these products. For example, see FDA, "FDA Issues Warning Letters for Drugs Promoted in Fat Elimination Procedure," press release, April 7, 2010, http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2010/ucm207453.htm.
79 See for instance, objections by compounding pharmacies to FDA regulation, including Medical Ctr. Pharm., 536 F.3d and Franck’s Lab, 816 F. Supp. 2d.
80 The term “nontraditional” compounding is found in a number of sources: Comments of Margaret Hamburg, Commissioner of Food and Drugs, FDA, transcript of public meeting “Framework for Pharmacy Compounding: State and Federal Roles,” December 19, 2012; Office of the Inspector General, Memorandum Report: High-Risk Compounded Sterile Preparations and Outsourcing by Hospitals that Use Them, Department of Health and Human Services, OEI-01-13-00150, Washington, DC, April 1, 2013. Another term used for this activity is “compounding manufacturing” (Source: Draft legislation by the Senate Committee on Health, Education, and Labor circulated in the 113th Congress).
81 Parenteral nutrition is IV administered nutrition, which bypasses the digestive tract.
Some nontraditional compounders have large numbers of customers. For example, PharMedium, a large-scale compounder, reported 2,300 hospital customers for a variety of compounded products. NECC, the compounding pharmacy involved in the fungal meningitis outbreak of 2012, was listed on a FDA website as having over 20,000 customers, including physicians, clinics, and hospitals.

Existing Regulatory Oversight

Drug compounding has historically been the focus of state governments through their regulation of pharmacies. Recently questions have arisen regarding the extent to which the federal government can regulate the practice of compounding through the Federal Food, Drug, and Cosmetic Act (FFDCA). This section discusses federal and state authorities, as well as industry self-regulation.

Federal Authorities

Federal authority over compounding largely stems from the Federal Food Drug and Cosmetics Act (FFDCA), enacted in 1938, and its subsequent amendments, including the Food and Drug Administration Modernization Act (FDAMA) of 1997, which added compounding-specific provisions to the FFDCA in Section 503A. Litigation over Section 503A’s advertising provisions has created doubt, however, over the legal effect of FDAMA’s compounding provisions.

The precise limit to federal authority with respect to drug compounding remains uncertain, as the federal authority to regulate traditional drug compounding has been discussed by very few courts, and each court that has approached the issue did so from a unique factual setting that colored the eventual outcome of the case. Courts appear to agree that the federal government can regulate compounding activity that is akin to manufacturing (i.e., nontraditional compounding), and courts have afforded deference to the FDA’s interpretation of when a compounder is acting like a manufacturer, which appears to be within the FDA’s discretion. However, there is not a bright-line distinction between behaviors that are “akin to manufacturing” and those of a traditional compounding pharmacy. As a result, uncertainty remains regarding the possible limits to the FDA’s current authority to regulate traditional compounding practices.

Even assuming that FDA has the authority to regulate traditional compounding, as a matter of policy, the FDA has generally declined to test the current limits of its authority to regulate

85 Unless otherwise noted this section is based on CRS Report R43038, Federal Authority to Regulate the Compounding of Human Drugs, by Andrew Nolan. For more information, see CRS Report R43038, and CRS Report R40503, FDA’s Authority to Regulate Drug Compounding: A Legal Analysis, by Jennifer Staman.
86 Ibid., see the above reports for a discussion of Section 503A.
87 See generally Franck’s Lab, 816 F. Supp. 2d at 1235-1239 (discussing the cases that have examined the scope of the FDA’s authority with respect to compounding).
88 See, e.g., Wedgewood Village Pharmacy, 421 F.3d at 272-73.
compounding, preferring instead to defer to state governments with respect to the regulation of “traditional compounding.”

State Authorities

Traditional compounding is a component of the practice of pharmacy and has typically been regulated by the states as “part of their regulation of pharmacies” and the licensing of pharmacists as health care professionals. There is great variety in existing state legislation addressing CDs. Certain states have passed new laws, or are considering revisions of laws and regulations for compounding pharmacies, in part due to recent events. The National Association of Boards of Pharmacies (NABP) has listed summaries of approved and proposed state changes to permitted compounding practices.

State boards of pharmacy evaluate pharmacists and pharmacies on compounding practices and facilities. Compounding from bulk ingredients is generally an approved part of pharmacy practice, with some states requiring all licensed pharmacies to offer compounding services. Some states follow NABP model language and permit a pharmacist to compound drugs to patients only upon receipt of a valid prescription from a doctor or other medical practitioner licensed to prescribe medication. Some states require a special license for compounding sterile medications, which requires special facilities and adherence to sterile methods. Other states license a separate class of pharmacy facility that produces drugs for pharmacies or other providers, such as central fill pharmacies. Finally, some states permit pharmacies to make exact copies of commercial products in response to discontinued products or drug shortages.

89 See CPG §460.200 (May 29, 2002); see also CPG §608.400 (July 14, 2003).
92 This report is not meant to be a comprehensive survey of state law regulations on pharmacy compounding. For more information on the topic, the National Conference of State Legislators provides summaries of existing state laws and new initiatives. See “State Regulation of Compounding Pharmacies,” updated April 13, 2013, http://www.ncsl.org/issues-research/health/regulating-compounding-pharmacies.aspx.
93 Ibid.
95 Ibid.
Industry Self-Regulation

Professional programs in pharmacy are accredited and pharmacists generally receive formal education and professional training with respect to the practice of compounding drugs. Pharmacists can participate in a voluntary accreditation process for compounding established by professional pharmacy organizations, and the U.S. Pharmacopeial Convention (USP). As of December 2012, 163 facilities nationwide have this accreditation. professional pharmacy organizations, and the U.S. Pharmacopeial Convention (USP). As of December 2012, 163 facilities nationwide have this accreditation.104

Professional standards and guidelines for CDs are established by the USP in published standards: Chapter 797 “Pharmaceutical Compounding—Sterile Preparations” for sterile products and Chapter 795 “Pharmaceutical Compounding—NonSterile Preparations.” USP Standard 797 includes standards for facilities, procedures, and staff in order to produce safe sterile drugs, such as sterilizing equipment, a sterile clean room, special ventilation, and decontamination processes.

Not all pharmacies or compounders adhere to these USP standards, and these standards, unless required by state law, are voluntary. To date, 20 states have laws that require full adherence to USP Standard 797.

USP standards are designed for pharmacy compounding and may not be suitable for large-scale production of CDs. Commercial production of drugs is addressed by the current good manufacturing practices (cGMP) required by Section 501 of the FFDCA for commercial manufacturers; cGMP requires certain manufacturing practices as well as adverse event reporting.

Growth of Nontraditional Compounding

Some believe that the numbers and types of CDs and other products (IV and parenteral nutrition) are increasing, coinciding with increasing demand for certain compounded products due to a

102 W. States Med. Ctr., 535 U.S. at 361 (noting that as a “traditional component of the practice of pharmacy, compounding is taught as a part of the standard curriculum at most pharmacy schools.”)
103 The U.S. Pharmacopeial Convention (USP) is a scientific nonprofit organization that sets standards for the identity, strength, quality, and purity of medicines, food ingredients, and dietary supplements manufactured and distributed worldwide. USP’s drug standards are referenced in FFDCA. The Pharmacy Compounding Accreditation Board (PCAB) sets standards for compounding, http://www.pcab.org/.
105 See USP-NF, “General Chapter <797> Pharmaceutical Compounding – Sterile Preparations,” (Date), Appendix A.
106 Ibid., p. 9.
108 Ibid.
109 See also FDA “Facts About Current Good Manufacturing Practices” http://www.fda.gov/drugs/developmentapprovalprocess/manufacturing/ucm169105.htm
variety of reasons, including (1) an increase in hospital outsourcing of CDs; (2) drug shortages, unavailability, and discontinuation of FDA-approved drugs; \(^{112}\) (3) interest in individualized products by physicians and consumers; and (4) an increased interest by pharmacists in new markets. \(^{113}\)

As noted earlier, the exact number of business facilities engaged in nontraditional compounding is unclear. \(^{114}\) In 2013, the FDA inspected nontraditional compounding facilities that were engaged in sterile compounding and lists 36 facilities that it inspected located around the country. \(^{115}\) Some of these facilities, such as Central Admixture Pharmacy Services and PharMEDium Services, have multiple locations. Press and other sources indicate growth of centralized compounding facilities that provide outsourcing and related activities to pharmacies and hospitals. \(^{116}\) Some of these compounding facilities include compounding pharmacies, central fill pharmacies, \(^{117}\) and outsourcing pharmacies. \(^{118}\) Some states, but not all, permit certain types of consolidated services, such as “shared services” or “central fill IV pharmacies,” \(^{119}\) which make products for distribution among a variety of providers. For example, Med Prep Consulting, Inc lists itself as a state-licensed central fill pharmacy and provides products to other pharmacies. \(^{120}\)

\(^{(...continued)}\)

117 A central fill pharmacy is defined as a pharmacy which is permitted by the state in which it is located to prepare prescriptions on behalf of a retail pharmacy (pursuant to a valid prescription) to be distributed by the retail pharmacy to the patient if the two pharmacies have a contractual agreement. See for instance, 21 CFR 1300.01 “Definitions.”

118 “Outsourcing pharmacy” refers to the transmitting of a prescription order from a primary pharmacy to a secondary “outsourcing” pharmacy that prepares the prescription. See for instance: Maryland Office of the Secretary of State, http://www.dsd.state.md.us/comar/SubtitleSearch.aspx?search=10.34.04.

Hospital Compounding and Outsourcing

Hospitals commonly compound drugs, IV solutions, and IV nutrition. For example, children’s hospitals compound a variety of products such as pediatric dosages or products that are not commercially available. One source reports that increases in use of drugs dosed by weight, rather than in commercially available dosing, and the expansion of treatment of disorders that require personalized dosing have led to a growth of hospital-based compounding.

Trends in health care include increasing hospital consolidation and integration of hospitals, leading to consolidated purchasing and centralized production, including the production of CDs. For example, the Cleveland Clinic Health System, a network of 10 hospitals and 15 pharmacies, reported that in 2012, approximately 870,000 doses were compounded at its central facility. Cleveland Clinic reported that 56% of its products were compounded for the needs of specific patients; 44% were made in anticipation of patient needs in a large hospital, such as the preparation of syringes used in the operating room, epidurals, narcotic infusions, doses not commercially available, and medications that were unavailable due to drug shortages. Smaller facilities in rural areas may increase the outsourcing of CDs due to need for specialty intravenous products without the facilities to produce such products. Reductions in staff or insufficient staff or facilities to continue compounding; streamlining workflow; and cost savings may also be factors related to outsourcing by facilities.

121 Telephone conversation between author and Joe Cabaleiro, Executive Director, Pharmacy Compounding Accreditation Board, January 4, 2013. Recent amendments to the FFDCA require more extensive tests and labeling for prescription drugs for children. For more information about prescription drugs for children see CRS Report RL33986, *FDA’s Authority to Ensure That Drugs Prescribed to Children Are Safe and Effective*, by Susan Thaul, and CRS Report R42680, *The Food and Drug Administration Safety and Innovation Act (FDASIA, P.L. 112-144)*, coordinated by Susan Thaul.

122 Such drugs include epidurals for pain management during childbirth or chronic pain conditions, and chemotherapy.

125 Ibid. See also Pew Charitable Trust, American Society of Health-System Pharmacists, and American Hospital Association, “Pharmacy Compounding Summit: Summary of a Stakeholder Meeting,” February 6, 2013, Washington, DC.

127 Products for an individual patient include: anti-infectives, pain management therapies, chemotherapy drugs, replacement fluids and electrolytes, and ophthalmic preparations. See Pharmacy Compounding Summit: Summary of a Stakeholder Meeting, Pew Charitable Trust, American Society of Health-System Pharmacists, and American Hospital Association, February 6, 2013, Washington DC, p. 4.

129 Ibid., p. 5, see text related to Prattville Baptist Hospital.

As noted earlier, there is limited information on the numbers of outsourced compounded products, as the records of compounding entities are not publicly reported. However, a 2013 report of the Office of the Inspector General (OIG) of the Department of Health and Human Services (HHS) on outsourcing of sterile products by hospitals found that 25% used “high-risk” sterile products, those made from nonsterile ingredients, while 92% of hospitals used compounded sterile products that were not “high-risk”. The reasons hospitals provided for outsourcing sterile compounded products include drug shortages and their lack of capacity to produce products that remained stable over time and thus had a long shelf-life. Stability and extended shelf-life permit hospitals to store products for use as patient needs emerge. Shortages were cited as a reason for outsourcing by 62% of hospitals, as were stability (69%) and extended shelf-life (62%).

The Role of Drug Shortages in CD Demand

Shortages of Injectable Drugs

Shortages of commercially available drugs, especially shortages of generic sterile products, play a central role in the increased demand for CDs. The drug shortages may be temporary or permanent and are due to a variety of factors including voluntary discontinuation of products, supply chain problems, and production issues, including safety problems at commercial manufacturers. Certain compounders advertise their ability to fill certain back-ordered drugs or those in short supply on their websites. Shortages of commercially manufactured drugs are predicted to continue, leading to continued demand for certain compounded products.
Physicians, hospitals, and other health care providers may turn to compounders to meet a time-sensitive need when specific drugs may be temporarily unavailable. A 2013 report by the Office of the Inspector General (OIG) of the Department of Health and Human Services (HHS) surveyed hospitals participating in Medicare and found that many hospitals turn to compounding pharmacies to provide drugs to maintain supply due to shortages of commercially manufactured FDA-approved drugs. According to the OIG report, 68% of hospitals indicated that they sought a CD due to a drug shortage.

The FDA and other safety advocates are concerned because reportedly 73% of drug shortages are for sterile injectable generic drugs, which are some of the most difficult drugs to compound safely. Several generic commercial manufacturers have struggled with manufacturing problems that have led to interruptions in supply of sterile generic drugs. For example, as of May 15, 2013, a major generic manufacturer in this business sector, Hospira, has recalled eight different sterile injectable drugs for 2012 and 2013. An alternative to sterile injectable CDs and generics are brand-name sterile injectables. These are less likely to be in short supply or suffer from quality problems, however, brand-name sterile drugs usually cost more than generic or compounded products.

Shortages of CDs

Recalls of products from compounding pharmacies may also exacerbate drug shortages. Ameridose and NECC ended production of certain sterile drugs in 2012-2013 due to problems

(...continued)

143 Ibid.

Compounded Drugs

with sterility, and these drugs were already in short supply.\(^\text{145}\) In 2013, compounders recalled certain products produced at these facilities;\(^\text{146}\) some of these products were drugs listed on the FDA shortages website. For example, drugs recalled by Med Prep in March 2013 include drugs on the FDA Current Drug Shortage Index.\(^\text{147}\)

CD shortages heighten problems of patient access to commercially manufactured generic drugs when there are shortages. Table 1 details the perceptions of hospitals about the effect of disruptions in supply of sterile products from compounding pharmacies. Almost 50% of respondents perceived that health care delivery would be seriously impacted, while only 11.5% perceived that the effect on patient health would be life-threatening.

Table 1. Hospital Beliefs About The Effect of Shortages of Compounded Sterile Products on Patient Care and Health Care Delivery

<table>
<thead>
<tr>
<th>Perceived Level of Risk to Patients/Disruption of Care</th>
<th>Percentage of Hospitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Threatening/Major Disruptions</td>
<td>11.5</td>
</tr>
<tr>
<td>Not Life Threatening/Great Impact</td>
<td>48.1</td>
</tr>
<tr>
<td>Little Impact/Inconvenience</td>
<td>16.6</td>
</tr>
<tr>
<td>No Impact at All</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Source: Adapted by CRS from Office of Inspector General, Department of Health and Human Services, Memorandum Report; “High Risk Compounded Sterile Preparations and Outsourcing by Hospitals that Use Them” OEI-01-13-00150, p. 14.

Other Sources of Demand for Compounded Products

A growth of interest in customized products, including allergen-free drugs, single administration of multiple drugs, and individualized formulations of drugs (such as liquids instead of tablets) may play a role in heightened demand for CDs.\(^\text{148}\) The sources of this demand include physician and patient demand as well as changing pharmacist business models. There appears to be an increase in marketing of CDs for treatment of common disorders, such as menopausal symptoms (e.g., “bio-identical” hormones), men’s health, and weight loss, which may lead to an increase in demand for these CDs.\(^\text{149}\)\(^\text{150}\)

Pharmacist Business Development

Compounding may provide pharmacists alternatives to expand business growth. Pharmacy publications have emphasized how compounding pharmacists improve their own professional satisfaction through providing more individualized services and increased engagement with patients.¹⁵¹ This reflects an evolution to business models that expand pharmacist roles in areas of patient care beyond distributing commercially manufactured products.¹⁵²

A 2012 article in *Business Week* describes drug compounding as a growing business sector, and describes how focusing on compounding can provide a new market niche for community pharmacies.¹⁵³ Some of these pharmacies may be exploring new business models due to increased competition with chain pharmacies and retailers to fill prescriptions for commercially manufactured drugs. This account appears consistent with material on certain compounding pharmacies’ websites that describes business development from community pharmacies into a market niche in compounded products (both prescription drugs and dietary supplements).¹⁵⁴

Provider Demand

Demand may be generated in part by off-label prescribing by physicians for a variety of reasons, including drug prices and shortages. As Table A-1 indicates, some of the incidents of contamination and adverse events are for CDs prescribed for off-label uses. Off-label prescribing allows physicians flexibility to prescribe medications they feel are necessary for patient health.¹⁵⁵ Off-label use of a CD may present additional, but unknown risks. For example, two common off-label uses of sterile CD are a compounded version of a chemotherapy drug, Avastin, for use to treat macular degeneration, and preservative-free methylprednisolone for back pain.¹⁵⁶ There have

(...continued)

Widespread is the Marketing of Compounded “BHRT” drugs?"; http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/PharmacyCompounding/ucm183088.htm; and a compounding pharmacy site, Precision Compounding Pharmacy: http://www.precisioncompoundingpharmacy.com/?q=bhrt.

¹⁵⁰ The FDA has issued warnings about the evidence of the usefulness or uniqueness of CDs for these indications. FDA, see “Bio-Identicals: Sorting Myths from Facts,” http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm049311.htm.

been recent adverse events with compounded Avastin, the main appeal of which is its lower price compared to FDA-approved drugs to treat macular degeneration (see Table A-1, 2011).157 Preservative-free methylprednisolone is used to treat back pain (see Table A-1, years 2012, 2002, 2001). Compounded versions of this drug by NECC were the cause of the 2012 fungal meningitis outbreak.158

The processes for creating sterile CDs require special equipment, facilities, and personnel training.159 When compounding exclusively with sterile ingredients, sterility must be maintained in all phases of production; when compounding with nonsterile ingredients, sterility must be achieved for the finished product requiring a sterilization process or related procedure that does not affect product stability. Regulators and industry agree that the highest risk to patient safety is from those sterile products made from nonsterile ingredients.160

Issues for Consideration

Consumers, pharmacists, pharmacy compounders, hospitals, Congress, and state and federal regulators all have a stake in access to, and safety of, needed drugs. Increasing demand for CDs by patients and providers, drug shortages, consolidation of hospital services, and other factors have led to changes in health delivery. The potential risks to public health of product failures have increased as nontraditional compounding has expanded.161 Given the expansion of sterile compounding, balancing patient access to CDs with patient safety has become more complex.162 Thus, some stakeholders believe that changes in business trends, such as drug shortages and outsourcing of compounding, must be taken into consideration in considering changes in professional standards and federal and state oversight and regulation of CD.163

(continued...)

differs on whether these off-label treatments are effective.

157 Ibid.

158 See CDC, \textit{Multistate Fungal Meningitis Outbreak Investigation - Current Situation}, http://www.cdc.gov/HAI/outbreaks/currentsituation/.

163 See statements and response to questions of Panel 2 at “Pharmaceutical Compounding: Proposed Legislative Solution,” a hearing of the Senate Committee on Health, Education, Labor and Pensions, May 9, 2013, (continued...)
Three issues have emerged in the congressional hearings about CDs: (1) adverse event reporting, (2) labeling, and (3) modifying federal oversight of nontraditional compounding. These issues will be discussed in the following section.

Adverse Event Reporting and Labeling

There is a lack of publically available information on the number and types of adverse events involving compounded drugs, as there is no requirement that compounders report adverse events to federal authorities, and state requirements vary. Adverse event reporting is not required by federal regulators for producers of CDs as it is for prescription drugs, nonprescription drugs, and dietary supplements. Without knowing the total number of compounded products made, as well as the total number of adverse events, it is difficult to ascertain the overall safety of CDs or to understand the benefits and risks of using CDs.

The publicly available information on CDs is published by public health authorities, FDA inspections of facilities listed on websites, records of state licensing boards, and reports in professional journals documenting adverse events. Adverse events can be voluntarily reported to the FDA MedWatch database, but without mandatory reporting, the completeness of the information cannot be ascertained.

Labeling specifying that a drug or another product is compounded is not a universal requirement. Due to the complexity of the supply chain and the growth of nontraditional compounding, patients and providers may not realize that a drug has been compounded. Unlike traditional compounding where a patient is given a prescription by a physician for a CD, nontraditional CDs are not necessarily identified as compounded. Given the potential benefits

168 Statement and response to questions, Janet Woodcock, FDA at a hearing of the Senate Committee on Health, Education, Labor and Pensions, “Pharmaceutical Compounding: Proposed Legislative Solution,” May 9, 2013. H.R. 6584 and H.R. 6638 introduced in the 112th Congress and draft legislation by the Senate Committee on Health, Education, Labor, and Pensions circulated in the 113th Congress include provisions that provide for patient information on whether a drug is compounded in labeling.

and risks of CDs, an argument could be made for providing patients this information as part of informed consent for medical treatment.\(^{170}\) Informed consent for treatment is an ethical and a legal requirement to ensure that a patient fully understands the potential risks and benefits of a medical procedure.\(^{171}\) CDs and other compounded solutions pose potential risks and benefits that may be different from commercially manufactured products. Informed consent is based on a patient’s knowledge and understanding of a medical procedure; as most patients assume that drugs are commercially manufactured, this additional information could be seen as necessary to ensure patient consent.\(^{172}\)

The Federal Role in Oversight

Policymakers have raised questions regarding how best to improve the safety of CDs while maintaining patient access to needed medications, including the need for new legislation and increased accountability.\(^{173}\) In testimony to Congress, FDA administrators have expressed reservations about nontraditional compounding activities that are akin to manufacturing (i.e., nontraditional compounding) and their potential risks to public safety.\(^{174}\) The FDA recommends increased federal oversight of sterile compounding and certain other high-risk activities.\(^{175}\)

Attempts to clarify federal authority over nontraditional compounding is represented in certain elements of draft bipartisan legislation of the Senate Committee on Health, Education, Labor and Pensions (HELP)\(^{176}\) and in legislation introduced in the 112\(^{th}\) Congress.\(^{177}\) For example, a

\(^{175}\) Ibid.

\(^{176}\) See Draft legislation posted at: http://www.help.senate.gov/newsroom/press/release/?id=0aa068ee-4f2a-4e31-9fd6-39fd47472a5a&groups=Ranking,Chair.

\(^{177}\) See H.R. 6584 introduced by Representative Markrey and H.R. 6638 introduced by Representative DeLauro.
Compounded Drugs

provision in the draft HELP legislation would create new authorities for FDA oversight of “compounding manufacturers” (i.e., nontraditional compounders).178

Some Members of Congress argue that new FDA authorities should await better implementation of existing authorities.179 For example, a House Committee on Energy and Commerce report questions whether a lack of enforcement by FDA and state authorities of certain vendors is an issue.180 The report cites safety violations at NECC in prior years, which do not appear to have been resolved despite FDA involvement.181

Some in the compounding pharmacy industry believe that the current safety issues are isolated to certain vendors and that compounding, in general, is not unsafe.182 Some compounding associations have reservations about the FDA having new authorities; others support increased FDA oversight.183 Many acknowledge that compounded health care products have become more complex and health delivery more complicated. In a recent report, the Association of Health-System Pharmacists (AHSP) and American Hospital Association (AHA) noted that there was general support from stakeholders in these associations for (1) FDA oversight of certain nontraditional compounding pharmacies (e.g., providing a CD without a prescription and shipped over state lines); (2) improved communication between state and federal regulators; (3) a list of “do-not-compound” CDs; and (4) improved access to USP compounding monographs that provide guidance to compounders on making certain CDs.184

181 Ibid., pp. 6-23.
Appendix A. Congressional Hearings on CDs 2012-2013

185 For latest version of bill text, see http://www.help.senate.gov/imo/media/052213_S_959_Compounding_KER13207.pdf.
Appendix B. Selected Adverse Events Involving Compounded Drugs and Solutions

Table A-1. -Adverse Events
2001-present

<table>
<thead>
<tr>
<th>Date</th>
<th># States Affected</th>
<th>Reported Cases</th>
<th>Reported Deaths</th>
<th>Adverse Events</th>
<th>Drug Issue</th>
<th>Condition/ Disease Treated</th>
<th>Product</th>
<th>Other Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>20</td>
<td>741</td>
<td>55</td>
<td>Fungal meningitis and other infections(^a)</td>
<td>Fungal contamination</td>
<td>Lumbar and other back pain</td>
<td>Preservative-free methylprednisolone injections</td>
<td>Off-label use, shipped across state lines, drug shortage</td>
</tr>
<tr>
<td>2012 -</td>
<td>6</td>
<td>33</td>
<td>NA</td>
<td>Fungal eye infection, 23 cases of partial to severe vision loss(^b)</td>
<td>Fungal contamination</td>
<td>Eye surgery</td>
<td>Eye injections, Brilliant B retinal dye and triamcinolone</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td>21</td>
<td>NA</td>
<td>Bacterial eye infection, one case of meningitis and encephalitis; four cases of loss of eyesight, three cases eye removal(^c)</td>
<td>Bacterial contamination</td>
<td>Macular degeneration</td>
<td>Eye injections: Intravitreal use of bevacizumab (Avastin) injections</td>
<td>Off-label use, shipped across state lines</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>5</td>
<td>NA</td>
<td>Blindness(^d)</td>
<td>Lack of purity—presence of another medication</td>
<td>Macular degeneration</td>
<td>Eye injections: intravitreal use of bevacizumab (Avastin) injections</td>
<td>Off-label use</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>19</td>
<td>9</td>
<td>Bacterial bloodstream infection(^e)</td>
<td>Bacterial contamination</td>
<td>Nutrition</td>
<td>Parenteral nutrition solution</td>
<td>Drug Shortage</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Fatal overdose(^f)</td>
<td>Super-potent dosage</td>
<td>IV solution</td>
<td>Sodium chloride</td>
<td>- -</td>
</tr>
<tr>
<td>2007</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>Fatal overdose(^g)</td>
<td>Super-potent dosage</td>
<td>Back pain</td>
<td>Colchicine</td>
<td>Off-label use</td>
</tr>
<tr>
<td>2007</td>
<td>2</td>
<td>8</td>
<td>NA</td>
<td>Bacterial bloodstream infection(^h)</td>
<td>Bacterial contamination</td>
<td>Pain control</td>
<td>IV-solution, fentanyl</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>Date</td>
<td># States Affected</td>
<td>Reported Cases</td>
<td>Reported Deaths</td>
<td>Adverse Events</td>
<td>Drug Issue</td>
<td>Condition/ Disease Treated</td>
<td>Product</td>
<td>Other Characteristics</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Drug toxicity</td>
<td>Drug Stability/Age</td>
<td>Chronic airway infection</td>
<td>Antibiotic administered by nebulizer</td>
<td>Off-label use</td>
</tr>
<tr>
<td>2006-2004</td>
<td>6</td>
<td>80</td>
<td>NA</td>
<td>Bacterial bloodstream infection exclusively</td>
<td>Bacterial contamination</td>
<td>IV flush, reduction of blood clots</td>
<td>IV solution heparin/saline</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Fatal overdose exclusively</td>
<td>Super-potent dosage</td>
<td>Cancer</td>
<td>Chemotherapy infusion</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1</td>
<td>1 (pediatric)</td>
<td>Fatal overdose exclusively</td>
<td>Super-potent dosage</td>
<td>Nutrition</td>
<td>Parenteral nutrition</td>
<td>-</td>
</tr>
<tr>
<td>2005</td>
<td>Unavailable</td>
<td>2</td>
<td>NA</td>
<td>Bacterial bloodstream infection exclusively</td>
<td>Bacterial contamination</td>
<td>IV flush</td>
<td>Preservative-free heparinized saline</td>
<td>-</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>Systemic inflammatory response syndrome exclusively</td>
<td>Contamination</td>
<td>Cardiac conditions</td>
<td>Health infusion, cardioplegia</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
<td>6</td>
<td>NA</td>
<td>Bacterial eye infection, partial or complete loss of vision, 2 eye removals exclusively</td>
<td>Bacterial contamination</td>
<td>Assessment of eye conditions</td>
<td>Trypan blue—eye stain</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2005</td>
<td>5</td>
<td>18</td>
<td>NA</td>
<td>Bacterial bloodstream infection exclusively</td>
<td>Bacterial contamination</td>
<td>IV solution</td>
<td>Magnesium sulfate</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>2</td>
<td>NA</td>
<td>Bacterial bloodstream infection (pediatric) exclusively</td>
<td>Bacterial contamination</td>
<td>IV flush syringes</td>
<td>Heparin/vancomycin, hemophilia</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2004</td>
<td>5</td>
<td>64</td>
<td>NA</td>
<td>Bacterial bloodstream infection exclusively</td>
<td>Bacterial contamination</td>
<td>IV flush syringes</td>
<td>Heparin/saline</td>
<td>Shipped across state lines</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>16</td>
<td>NA</td>
<td>Hepatitis C infection exclusively</td>
<td>Contaminated with Hepatitis C virus</td>
<td>Diagnosis of cardiac conditions</td>
<td>Radio-isotope use in cardiac stress tests</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>Fungal meningitis</td>
<td>Fungal contamination</td>
<td>Back pain</td>
<td>Preservative-free methylprednisolone acetate injections</td>
<td>Off-label use, drug shortage</td>
</tr>
<tr>
<td>Date</td>
<td># States</td>
<td>Reported Cases</td>
<td>Reported Deaths</td>
<td>Adverse Events</td>
<td>Drug Issue</td>
<td>Condition/Disease Treated</td>
<td>Product</td>
<td>Other Characteristics</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>Bacterial meningitis, epidural abscess, injected joints and spine</td>
<td>Fungal contamination</td>
<td>Back pain, joint pain</td>
<td>Preservative-free betamethasone injection</td>
<td>Off-label use, drug shortage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bacterial meningitis, other infections</td>
<td>Bacterial contamination</td>
<td>Gastric reflux</td>
<td>IV Ranitidine</td>
<td>- -</td>
</tr>
</tbody>
</table>

Source: This list has two sources (1) a CRS literature search of medical and scientific databases such as Medline and PubMed with search terms included “drug compounding,” and “adverse effects,” “quality control,” “risk assessment,” “drug contamination,” “disease outbreaks,” “complications,” “administration and dosage,” “fatal outcome,” and “medication errors.” These selected adverse events resulted in reported patient illness and/or death. This list is not comprehensive as not all adverse effects of compounded medications may be reported to federal and state authorities or result in published articles; (2) Pew Charitable Trust compilation of adverse events associated with compounded medications (2001-present), Appendix B of Summary of Stakeholder Meeting, Pharmacy Sterile Compounding Summit. Available at http://www.ashp.org/compounding%20summit, accessed April 18, 2012. The CRS and Pew Trust lists overlap except for two adverse events that are included only in this report; these two events are italicized.

Notes: “NA” means not applicable. “Unknown” means not included in source document. Off-label use of a prescription drug or device refers to the ability of licensed health care providers to prescribe or use the drug for indications, conditions, patients, dosages or routes of administration not yet evaluated and approved by the FDA as part of a new drug approval application. Drug Shortage designation is based on either a specific discussion of those issues in the article or a third-party source, such as the FDA, the American Health-System Pharmacists or professional article. Specific sources for the reports of adverse events are listed below:

Author Contact Information

Judith M. Glassgold
Specialist in Health Policy
jglassgold@crs.loc.gov, 7-9455

Acknowledgments

The author acknowledges the assistance of Amalia Corby-Edwards, Analyst in Public Health and Epidemiology, DSP; Ada Cornell, Information Research Specialist, DSP; Janet Kinzer, Information Research Specialist, DSP; Andrew Nolan, Legislative Attorney, ALD; Michaela Platzer, Specialist in Industrial Organization and Business, RSI; Amanda Sarata, Specialist in Health Policy, DSP; and Susan Thaul, Specialist in Drug Safety and Effectiveness, DSP in the writing of this report.