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PREFACE

This work was part of an interdisciplinary project supported by the National Sci-

ence Foundation (NSF) Biocomplexity in the Environment grant CNH BCS-0216722. This

project studies coupled human-natural systems for an understanding of ways that human

behavior could impact the environment of the future. Human system models are based on

multiagent methods and environmental models include land use change in forest landscapes

and hydrological responses. The contents of this paper are related to the mathematical

models we are using for these systems.

The models we encountered were non-homogenous semi-Markov processes. We were

quickly able to adapt these to form non-homogeneous Markov processes. While very little

is currently known about this non-homogenous variety, we were able to embed our specific

models into R
n, and consider a continuous transformation representing the evolution of the

systems.

One of the goals of our group was to be able to detect the presence of chaos in these

models, in particular to find chaotic attractors. The simplest method was to test the systems

ii



for a positive lyapunov exponent. We adapted existing software to test our models, but found

no indication of chaos.
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CHAPTER 1

INTRODUCTION

1.1 History

In 1932 Birkhoff proved the Individual Ergodic Theorem, which related the time averages

of individual orbits to the space average for certain types of dynamical systems. While

this theorem is a remarkable result, it is constrained by the types of averages that are

used. In 1963 Kingman extended Birkhoff’s theorem by proving the Subadditive Ergodic

Theorem, which allowed more general types of averages for subadditive sequences. Shortly

after this, in 1968, Oseledec proved the Multiplicative Ergodic Theorem, which allowed

for the computation of geometric means (rather than arithmetic means) for similar ergodic

processes. A direct result of Olsedec’s Multiplicative Ergodic theorem is the existence of

Lyapunov exponents, which opened a door to practical analysis of dynamical systems in a

context outside of pure mathematics.

These ideas from chaos theory quickly overtook the scientific community. In the 1970’s

and 80’s researchers were using Lyapunov exponents to indicate whether “chaos” was present
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in a slew of systems, arising in fields from physics to biology. Non-linear studies had become

the wave of the future. This was a result of Oseledec’s theorem, and newfound availability

of computational equipment brought by computers.

But the implications of Oseledec’s theorem were not just confined to the areas of applied

mathematics. In 1981 Anthony Manning confirmed a relationship between the Lyapunov

exponents, entropy, and dimension for Axiom A diffeomorphisms of a surface [Ma]. In the

next year Lai-Sang Young proved a more general result: that for a C1+α diffeomorphism of

a surface, there is a similar relationship[Y1]. This work was extended by Ledrappier and

Young to diffeomorphisms of higher dimensional manifolds [LY1] [LY2]. In short their results

state that dimension is equal to the entropy divided by the exponential rate of expansion.

This line of research continues today, in try to expand this relationship to more and more

general types of dynamical systems, such as conformal systems. [MU]

1.2 What Will Be Covered

In this paper, Oseledec’s Multiplicative Ergodic Theorem for surfaces will be proven,

using Kingman’s Theorem. We will then examine some of the implications of this theorem

on the structure of invariant sets arising from dynamical systems.

Next we will build some of the tools needed to prove Young’s 1982 result. This will

involve an introduction to measure theoretic entropy, and the theory of dimensions. Much of
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the work here will be stated without proof, due to the large amount of background needed.

The main result will be the proof of Young’s Formula in Chapter 9. Though the proof

is somewhat technical, requiring Lyapunov charts, we will take an almost naive approach to

the charting process, allowing the reader to clearly see the ideas in the proof rather than a

lump of technical lemmas. The formula is a result for diffeomorphisms of a surface, and as

of yet there are no results generalizing this formula to higher dimensions.

We will then conclude with a short discussion of the work in the 1985 paper of Ledrappier

and Young, which gives great insight in to the beautiful link between the exponents, entropy,

and dimension. We also mention the Kaplan-Yorke conjecture which is partially verified by

these works.

Let us will conclude this introduction with two examples showing the link between ex-

ponents, entropy, and dimension.

1.3 Examples

In this paper we will prove Young’s Formula, that the dimension varies directly with

entropy and inversely with the rate of expansion; hence the formula d = h
λ
. Here are a few

concrete examples.

Example 1.3.1. (The Cantor Middle Thirds Set)
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The cantor set, C := {x ∈ [0, 1) : x =

∞∑
i=1

xi

3i
where xi = 0, 2} is invariant under

T (x) = 3x mod 1. The Hausdorff dimension of C, HD(C), can be shown to be log 2
log 3

. Also

T has Lyapunov exponent log 3 and entropy h = log 2. Thus the formula HD = h
λ

holds.

Example 1.3.2. (Hyperbolic Toral Automorphisms)

Consider the torus T = R
2 / Z

2 Let A ∈ SL2(Z). Let f : T → T be the action induced by

A on the torus. The attractor for this function is all of T, and HD(T)=2. By the Perron-

Frobenius theorem h = log(γ1) where γ1 is the largest eigenvalue of A [PY]. The Lyapunov

exponents of f are λ1 = −λ2 = log(γ1). Thus, we have the formula HD = h( 1
λ1

− 1
λ2

).

More examples of this equality can be found in [Y1] [Ma].
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CHAPTER 2

PRELIMINARIES AND CONTEXT

2.1 Manifolds

The setting for the main results discussed in this paper will be a diffeomorphism of a

Riemannian manifold. A thorough treatment of the development of manifolds is beyond the

scope of this paper, therefore we will introduce this topic very naively. A reader who would

like a more thorough introduction is referred to [L1] , and [S].

A n-dimensional Riemannian manifold is a connected, second countable, Hausdorff space

endowed with a metric which makes the manifold locally homeomorphic to R
n. The home-

omorphisms are called local coordinates or charts, and we will develop a particular type

of charting systems in Chapter 8. Intuitively a n-dimensional Riemannian manifold is a

space which “looks like” R
n locally but has no particular orientation. Some examples of

2-manifolds, or surfaces, are the sphere, the torus, and the plane.

The fact that a Riemannian manifold locally looks like R
n also gives rise to the tangent

space. One can think of the tangent space at x, TxM , as the set the set of all vectors tangent
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to the manifold, M, at x. This resembles looking at the vector space created when you lay

R
n across the manifold at x via charts.

Definition 2.1.1. Let M be a n-dimensional Riemannian manifold. Let f : M → M . The

derivative of f at a point x ∈ M , denoted Dxf is a linear transformation going between TxM

and Tf(x)M that has the following property:

lim
h→0

|f(x+h)−f(x)−Dxf ·h|
h

= 0

A function which has a derivative at every point is called differentiable. Furthermore

if derivative is also continuous, the function is bijective, and the inverse is differentiable

the function is called a diffeomorphism. Diffeomorphisms are classified by their degree of

differentiability. A function which is twice differentiable is called a C2-diffeomorphism and

so on. A C1+α-diffeomorphism is a diffeomorphism with α-Holder continuous first derivative.

In this paper we will consider a compact Riemannian manifold X with an associated

C1+α-diffeomorphism, f : X → X, representing the evolution of the system.

2.2 Measure Theory

Much of this paper is built on the back of measure theory. For the purposes of this paper,

we will only develop a few theorems and definitions which are commonly used in ergodic
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theory. For a more thorough treatment see [Roy] or [Ro]. As a note: Measure spaces are

a collection of a set, X, a measure, µ, and a sigma algebra Σ. In this paper we do not

reference the sigma algebra, as it will always be assumed to be the standard Borel sigma

algebra generated by the open sets on the manifold.

The next few definitions lay out some of the properties which the measures encountered

in this paper will have.

Definition 2.2.1. Let X, µ be a measure space. The measure µ is said to be a probability

measure if µ(X) = 1.

Definition 2.2.2. Let (X, µ) be a measure space, and let f : X → X be measurable. A

measure µ is called f-invariant if for every A ⊂ X, µ(f−1(A)) = µ(A). When the function

is unambiguous, we may simply call µ an invariant measure

Peterson’s derivation of ergodicity. Another property we would like our measures to have

is ergodicity. There are many different equivalent definitions of the word ergodic. For this

paper the following definition will be used.

Definition 2.2.3. Let (X, µ) be a measure space, and let f : X → X be measurable. An

invariant probability measure µ is called ergodic if for every A ⊂ X such that f−1(A) = A,

either µ(A) = 0 or µ(A) = 1.
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We will denote the set of probability measures on X by M(X) and the set of f -invariant

probability measures M(X, f). We will frequently rely on the existence of a ergodic measure

(with respect to f), µ, on X. This is given by the following theorem:

Theorem 2.2.4. (Krylov and Bogolioubov)

If (X, d) is a compact metric space with f : X → X continuous, then M(X, f) is a non-

empty convex subset M(X) which is compact in the weak∗ topology. Additionally the extreme

points of M(X, f) are the ergodic f-invariant measures.

We will also use frequently the following ergodic theorem due to Birkhoff stating that

the time averages along most orbits are the same as the space averages.

Theorem 2.2.5. (Birkhoff’s Ergodic Theorem)

Let (X, B, µ) be a probability space and T : X → X be ergodic with respect to µ.

Then ∀ f ∈ L1(µ)

lim
n→∞

1
n

n−1∑
i=0

f ◦ (T i(x)) =

∫
X

fdµ for µ-a.e. x ∈ X

Theorem 2.2.6. Poincaré Recurrence Theorem

Let (X, µ) be a probability space, and let f : X → X be a measure preserving transfor-

mation. Let A ⊂ X be measurable such that µ(A) > 0. Then for µ- almost every x ∈ A.

The orbit of x, {fn(x)}∞n=0

⋂
A is infinite.

Definition 2.2.7. Absolute Continuity
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A measure µ is said to be absolutely continuous with respect to the measure ν, written

µ << ν, if ν(A) = 0 ⇒ µ(A) = 0.

2.3 Linear Algebra and Matrix Theory

To prove the special case of the Multiplicative Ergodic Theorem, we will need a few theo-

rems from linear algebra relating to symmetric matrices, their eigenvalues and eigenvectors.

To prove the general version of this theorem requires more advanced tools such involving

matrix decompositions and representations (these will be excluded here). In this paper the

norm of the matrix A, denoted ‖A‖ , will always be defined as ‖A‖ = sup
v∈V

‖Av‖ where the

second norm is the usual vector norm on V.
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CHAPTER 3

THE SUBADDITIVE ERGODIC THEOREM

Kingman’s Subadditive Ergodic theorem extends the Individual Ergodic theorem to

subadditive sequences. It will allow us to obtain ergodic type results for functions involving

the logarithm of the norm of a matrix. In particular, we will use a direct corollary of the

subadditive theorem to prove the Multiplicative Ergodic Theorem. First a statement of

Kingman’s Subadditive Ergodic Theorem.

Theorem 3.0.1. The Subadditive Ergodic Theorem (Kingman 1968) Let (X, B) be a mea-

sure space, T : X → X be a measurable transformation, and µ be an ergodic measure (with

respect to T). Let (Fn)∞n=1 ⊂ L1(µ) be such that for every n, k ≥ 1 the following condition

holds:

Fn+k(x) ≤ Fn(x) + Fk(T
n(x)) for µ − a.e. x ∈ X. (3.1)

Then there exists λ ∈ R ∪ {−∞} such that for µ- a.e. x ∈ X , lim
n→∞

1
n
Fn(x) = λ.

Furthermore:
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λ = inf
n>0

1
n

∫
Fndµ.

Proof of this theorem follows in a fashion similar to the proof of Birkhoff’s Ergodic

Theorem. In this paper we will use this theorem without proof. For more details and a

complete proof, the reader is referred to [P]. Also note that by taking Fn(x) =

n−1∑
i=0

f ◦T i(x),

Kingman’s theorem implies Birkhoff’s theorem. Of particular interest to us is the following

corollary, which is what is actually needed to prove the Multiplicative Ergodic Theorem.

Corollary 3.0.2. Let f : M → M be a C1- diffeomorphism of a compact Riemann manifold,

M, and let µ be ergodic with respect to f . Then there exists λ ∈ R such that lim
n→∞

1
n
log‖Dxf

n‖ =

λ for µ-a.e. x ∈ M .

Proof.

We employ the Subadditive Ergodic Theorem. For each n ∈ N, take Fn(x) = log‖Dxf
n‖.

Since f is a C1-diffeomorphism, for each n, there exists positive constants, An, Bn, such that

0 < An ≤ ‖Dxf
n‖ < Bn < ∞. Thus log‖Dxf

n‖ is bounded for every n, and Fn ∈ L1(µ). To

establish subadditivity consider the following inequality using the chain rule:

‖Dxf
(n+k)‖ = ‖Dfn+k−1(x)f ◦Dxf

n+k−1‖ = ... = ‖Dfn(x)f
k◦Dxf

n‖ ≤ ‖Dfn(x)f
k‖ ‖Dxf

n‖.

Thus taking the log of both sides one gets:
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Fn+k(x) = log‖Dxf
n+k‖ ≤ log‖Dfn(x)F

k‖ + log‖Dxf
n‖ = Fk(f

n(x)) + Fn(x).

Therefore there exists λ ∈ R ∪ {−∞} such that lim
n→∞

1
n
log‖Dxf

n‖ = λ for µ-a.e.

x ∈ M . To rule out the possibility that λ = −∞, let ‖Df−1‖ = sup
x∈M

{‖Dxf
−1‖}. The

following inequality uniformly bounds 1
n
log‖Dxf

n‖ from below:

1
‖Df−1‖n ≤ ‖Dxf

n‖ and thus, −log‖Df−1‖ ≤ 1
n
Fn for every n ∈ N.

This gives us the desired λ.
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CHAPTER 4

LYAPUNOV EXPONENTS AND OSELEDEC’S MULTIPLICATIVE ERGODIC

THEOREM

Throughout this section we will consider a compact Riemannian manifold M with an

associated C1-diffeomorphism, f : M → M , representing the evolution of the system. We

would like to find a quantitative measurement of how chaotic the system is. In particular

we want to measure the degree of “sensitive dependence on initial conditions” inherent in

the system. Intuitively if some point x ∈ M is perturbed slightly how will the trajectories

of the original point be related to those of the perturbed point. At first glance, one would

think that this could depend on a variety of factors, such as the initial point, the direction of

the perturbation etc. We will first examine the general one dimensional case, then a specific

example, standard continued fractions on [0,1] with the shift map, f(x) = 1
x

mod 1. In

these scenarios, one finds via Birkhoff’s Ergodic Theorem a global measure of the sensitive

dependence which is constant for almost every x ∈ [0, 1] with respect to Lebesgue measure.
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4.1 The One Dimensional Case: A Heuristic Derivation

Let M be a 1-dimensional Riemann Manifold. Pick a point x ∈ M . Now perturb x by an

infinitesimal amount dx. We wish examine the (exponential) rate at which the trajectories

of x and x + dx diverge. Let x0 = x and y0 = x + dx. Continue inductively to define

xn = fn(x0) and yn = fn(y0). Using the derivative of f we can also inductively approximate

the distance between xn and yn:

d(x0, y0) = dx

d(x1, y1) = d(f(x0), f(y0)) ≈ d(f(x0), f(x0) + f ′(x0)dx) = |f ′(x0)|dx

d(x2, y2) = d(f(x1), f(y1)) ≈ d(f(x1), f(x1) + f ′(x1)d(x1, y1)) = |f ′(x1)|d(x1, y1) =

|f ′(x0)f
′(x1)|dx

...

d(xn, yn) ≈ dx
n−1∏
i=0

|f ′(xi)|

Now the ratio of expansion(contraction) after n iterations of f can be found by taking:

d(xn,yn)
dx

=
n−1∏
i=0

f ′(xi).

Taking the absolute value and then the log of both sides, we have:

log(|d(xn,yn)
dx

|) = log(|
n−1∏
i=0

f ′(xi)|) =
n−1∑
i=0

log(|f ′(xi)|).

Now averaging and taking the limit gives us the average rate of expansion:
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lim
n→∞

1
n

n−1∑
i=0

log(|f ′(xi)|) = lim
n→∞

1

n

n−1∑
i=0

log(|f ′(f i(x))|.

Birkhoff’s Ergodic Theorem says that the above average exists and if µ is ergodic this

average is constant for µ-a.e. x, and even gives us a specific method of calculating it:

λ = lim
n→∞

1
n

n−1∑
i=0

log(|f ′(xi)|) =

∫
log|f ′|dµ (provided log|f ′| ∈ L1(µ) ).

The number λ is called the Lyapunov exponent of the dynamical system. Note: In

the case of a one dimensional manifold, there is only one Lyapunov exponent, though as

we will see in the next section higher dimensional systems can have multiple Lyapunov

exponents, each corresponding to a particular direction. A similar heuristic derivation for

higher dimensional manifolds can be found in [O].

Example 4.1.1. Let M = (0, 1] and let f : M → M be define by f(x) = 1
x

mod 1. The

Gauss measure, µ given by µ(A) = 1
ln 2

∫
A

1
x+1

dx, is ergodic with respect to f. Thus the

Individual Ergodic theorem again yields the Lyapunov exponent:

λ =
∫ 1

0
ln 1

x2 dµ = 1
ln 2

∫ 1

0
ln

(
1
x2

)
1

x+1
dx = π2

6ln 2
≈ 2.37 for µ-a.e. x ∈ (0, 1]

Since µ is equivalent ( has same sets of measure zero) to Lebesgue measure, we know that
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λ is constant for l-a.e. x ∈ (0, 1].

4.2 Oseledec’s Multiplicative Ergodic Theorem

In the general case, the existence of the Lyapanov exponent(s) is given by Oseledec’s

Multiplicative Ergodic Theorem. There are many incarnations of this theorem for various

types of dynamical systems. For the case of diffeomorphisms of Riemannian manifold, its

general form is:

Theorem 4.2.1. (Oseledec’s Multiplicative Ergodic Theorem)

Let f : M → M be a C1- diffeomorphism of a compact manifold of dimension n, and let

µ be ergodic with respect to f . Then one can find:

i. real numbers λ1 > λ2 > ... > λk where k ≤ n

such that there exists

ii. positive integers n1, n2, ..., nk such that n1 + n2 + ...nk = n ,

that invoke

iii. a measurable splitting TxM = E1
x

⊕
E2

x

⊕
...

⊕
Ek

x with dim(Ei
x) = ni

and Dxf(Ei
x) = Ei

f(x);

such that for µ − a.e.x ∈ M ,
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lim
n→∞

1
n
log‖Dxf

n(v)‖ = λl for each v ∈ TxM

where l is the unique integer satisfying v ∈ E1
x

⊕
E1

x

⊕
...

⊕
El

x but v /∈ E1
x

⊕
E2

x

⊕
...

⊕
El−1

x

We will call the numbers λi the Lyapunov Exponents for µ. Furthermore we will call

the set of points for which parts i,ii, and iii of Oseledec’s Multiplicative Theorem hold for a

particular measure, µ, µ-regular or just regular when there is no ambiguity. In some papers,

these points may be called “regular in the sense of Pesin”.

In this paper we will prove a simplified version of this theorem for 2-dimensional manifold.

The proof has all the features of the general theorem, but requires less linear algebra. This

proof can be found in [P] and is due to Ruelle.

Theorem 4.2.2. Oseldec’s Multiplicative Ergodic Theorem for Surfaces

Let f : M → M be a C1-diffeomorphism of a compact surface, and let µ be ergodic with

respect to f . Then either:

i.) There exists λ ∈ R such that for every v ∈ TxM , lim
n→∞

1
n
log‖Dxf(v)‖ = λ for µ-a.e.

x ∈ M ,

or
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ii.) There exists λ1 > λ2 and a measurable splitting TxM = E1
x

⊕
E2

x such that

For v ∈ E1
x, lim

n→∞
1
n
log‖Dxf(v)‖ = λ1 , and

For v ∈ E2
x lim

n→∞
1
n
log‖Dxf(v)‖ = λ2

for µ-a.e. x ∈ M

Proof. The proof of this theorem will basically involve three parts. First we will find the

exponents λ1 and λ2. Then we will find the necessary splitting. Finally we will show that

our exponents work correctly on our splitting.

Finding the Exponents:

Fix x ∈ M and let Bn = Dxf
n. Since these matrices Bn are not necessarily symmetric we

define the following matrices, An. See [Ru]. For each n, there exists An, a symmetric matrix,

such that A2
n = BBT and ‖Anv‖ = ‖Bnv‖ for every v ∈ R

2. Since the An’s are symmetric,

for each n, there exists real eigenvalues λn
1 , λ

n
2 and orthonormal eigenvectors vn

1 , vn
2 such that:

1.) Anvn
1 = λn

1v
n
1

2.) Anvn
2 = λn

2v
n
2

3.) ‖v1‖ = ‖v2‖ = 1

4.) λn
1 ≥ λn

2

18



By Corollary 4.2 there exists λ1 ∈ R such that:

λ1 = lim
n→∞

1
n
log‖Dxf

n‖ = lim
n→∞

1
n
log‖An‖ = lim

n→∞
1
n
logλn

1 for µ a.e. x ∈ M .

Using f−1 in the place of f , there exists:

λ2 = lim
n→∞

1
n
log‖Dxf

−n‖ = lim
n→∞

1
n
log‖A−1

n ‖ = lim
n→∞

1
n
log 1

λn
2

for µ a.e. x ∈ M .

The numbers λ1, λ2 will be the Lyapunov exponents for f .

Construction of the Splitting

To construct the splitting we will look at the sequence of eigenvectors and show that it

is Cauchy. We will in fact find a rate of convergence which will be used in part three of this

proof.

Suppose λ1 > λ2. For each x ∈ M consider En
1 = span(vn

1 ). We will show that the sequence

vn
1 is Cauchy, thus the subspaces, En

1 , ”converge” to a space E1.We will prove this inductively.

Let en
1 be a unit basis vector for En

1 , and en
2 be unit basis vector for En

2 . With x ∈ M again

fixed, first look at ‖en+1
1 − en

1‖. If this sequence converges this norm will either go to 0 or to

2 ( the directions may be reversed).

‖en+1
1 − en

1‖2 = | < en+1
1 − en

1 , e
n+1
1 − en

1 > | = | < en+1
1 , en+1

1 > −2 < en+1
1 , en

1 > + <

en
1 , e

n
1 > |

= |2(1− < en+1
1 , en

1 >)| = |2(1 ±
√

1 − | < en
2 , e

n+1
1 > |2| (*)
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With the last equality coming from the orthonormal decomposition of < ·, · >. We now

consider | < en
2 , e

n+1
1 > |. For each ε > 0 there is an n such that the following inequality

holds. (This is just using the properties of the inner product, and the convergence of the

exponents found in part one of this proof.)

| < en
2 , e

n+1
1 > | = | <

An+1en+1
1

λn+1
1

, en
2 > | ≤ |<en+1

1 ,An+1en
2 >|

e(n+1)(λ1−ε) ≤ ‖An+1en
2 ‖

e(n+1)(λ1−ε) =
‖Dxfn+1en

2 ‖
e(n+1)(λ1−ε)

=
‖(Dfnxf)Dxfnen

2 ‖
e(n+1)(λ1−ε) ≤ ‖Dfnxf‖ ‖Anen

2 ‖
e(n+1)(λ1−ε)

Now since M is compact, there exists W ∈ R such that ‖Dxf‖ ≤ W for every x ∈ M . Using

this and the definition of λ2, for sufficiently large n:

| < en+1
1 , en

2 > | ≤ We(λ2+ε)n

e(n+1)(λ1−ε) .

Since λ1 > λ2, and we can take ε as small as we like, there exists real numbers C ′, δ > 0

such that:

| < en+1
1 , en

2 > | ≤ C ′e−δn.

Now considering (*): ‖en+1
1 −en

1‖ either goes to 0 or to 2. Without loss of generality suppose

it goes to 0. Then triangle inequality gives the following bound:

‖en+1
1 − en

1‖ =

√
|2(1 −

√
1 − | < en

2 , e
n+1
1 > |2)| ≤

√
|2(1 −√

1 − C ′e−2δn)|.

Now adjusting the constants:

≤ C
√

1 −√
1 +

√
e−2δn ≤ Ce−

δn
2 , and by induction
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‖en+k
1 − en

1‖ ≤
n+k−1∑

i=n

‖ei+1
1 − ei

1‖ ≤ Ce−
δn
2

1 − e−
δ
2

. (4.1)

Therefore the sequence is Cauchy, and must converge. A similar argument for E2 can be

made using f−1. This shows that the exponents and splitting exist, now all that remains is

to show that the function as advertised.

Putting it Together

To put the previous two parts together, fix x ∈ M let u ∈ E1 such that ‖u‖ = 1. We will

show 1
n

log ‖Bnu‖ → λ1 using the following inequality arising from the triangle inequality.

| ‖Bnu‖ − ‖Bne
n
1‖ | ≤ ‖Bn(u − en

1 )‖

or

‖Bnen
1‖ − ‖Bn(u − en

1 )‖ ≤ ‖Bnu‖ ≤ ‖Bnen
1‖ + ‖Bn(u − en

1 )‖ (4.2)

We will establish bounds for each piece of the above inequality separately. First consider

the ‖Bn(u − en
1 )‖. It is clearly less than or equal to ‖Bn‖ ‖u − en

1‖. Take Inequality 4.1,

and let k → ∞. Since the sequence converges, and for each n, ‖en
1‖ = 1, meaning en+k

1 → u.

Thus for sufficiently large n, the following inequality holds:

‖u − en
1‖ ≤ Ce−δn

1−e−δ .
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Looking at the way λ1 was found, for sufficiently large n:

‖Bn‖ ≤ e(λ1+δ/2)n

Thus ‖Bn(u − en
1 )‖ ≤ Ce(λ1−δ/2)n

1−e−δ .

Now we bound ‖Bnen
1‖ by considering the following ‖Bnen

1‖ = ‖Anen
1‖ = λn

1 . Now for

ε < δ/2, the following inequality arises again from the way λ1 was found.

e(λ1−ε)n ≤ λn
1 = ‖Bnen

1‖ ≤ e(λ1+ε)n

Now these can be put together with Inequality 4.2 to finish the problem. We will de-

termine that λ1 − ε ≤ lim
n→∞

1
n
log‖Bnu‖, a similar inequality can be formed for the limit

superior, to finish the proof.

‖Bnen
1‖ − ‖Bn(u − en

1 )‖ ≤ ‖Bnu‖

e(λ1−ε)n − Ce(λ1−δ/2)n

1−e−δ ≤ ‖Bnu‖

e(λ1−ε)n
[
1 − e(ε−δ/2)n

1−e−δ

]
≤ ‖Bnu‖

λ1 − ε + 1
n

log
(
1 − e(ε−δ/2)n

1−e−δ

)
≤ 1

n
log ‖Bnu‖

Now letting n → ∞ yields lim
n→∞

1
n

log ‖Bnu‖ ≥ λ1 − ε since ε < δ/2. The other direction

follows similarly, as does u ∈ E2. Note: The case of λ1 = λ2 is relatively trivial, as the above

computation is all that is necessary.
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CHAPTER 5

ENTROPY

The Lyapunov exponents give one way of quantifying chaotic behavior. Another is entropy.

There are two different versions of the entropy of a transformation: a topological version

and a measure theoretical version. While these differ for most maps the variational principle

gives a relationship for the two.

In this section the standard definitions of measure theoretical entropy, and topological

entropy are given. Several equivalent definitions are also given, along with some pointwise

formulas and approximations of measure theoretical entropy.

5.1 Measure-theoretic Entropy

Let (X, B, µ) be a probability space, and let T : X → X be a measure preserving

transformation. To define the measure theoretic entropy of T, we will first need to develop

some specified partitions. Let {An} be a finite partition of X such that:

1.) For each i, Ai is measurable and µ(Ai) > 0

2.) µ(
⋃
i

Ai) = 1
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3.) For each i �= j, µ(Ai

⋂
Aj) = 0

Definition 5.1.1. Entropy of a Partition

Let α be a partition satisfying 1,2,and 3. We define the entropy of α to be:

H(α) = −
∑

i

µ(Ai)logµ(Ai)

A axiomatic derivation which shows why this quantity agrees with the concept of entropy

can be found in Khinchin’s beautiful book.

For two partitions α, β of this type define their join by:

α ∨ β = {Ai

⋂
Bj : Ai ∈ α, Bj ∈ β}

We are interested in how T acts on members of a partition. In particular, we would like

to know the behavior of α ∨ T−1(α). Inductively define:

αn = ∨n−1
i=0 T−i(α) = αn−1 ∨ T−1(αn−1)

Definition 5.1.2. Entropy of a partition relative to T.

h(T, α) = lim
n→∞

1
n
H(αn)

The previous limit can be shown to exist due to the fact that {H(αi)}∞i=0 is subadditive.

(H(αi+j) ≤ H(αi) + H(αj) ) Finally we are ready to give the definition of the measure

theoretical entropy of a transformation.
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Definition 5.1.3. Measure Theoretical Entropy

hµ(T ) = sup
α

h(T, α) = sup
α

lim
n→∞

− 1
n

∑
Aj∈ ∨n−1

i=0 T−i(α)

µ(Aj)logµ(Aj)

In certain cases a suitable partition, called a generator, can be found so that it is not

necessary to take the sup over all partions [W].

Now that the measure theoretic entropy has been defined, an intuitive description will be

given. We can consider the act of partitioning the space to be equivalent to performing an

experiment. In this experiment we only determine which member of the partition the result

is in. By taking the joins of the inverse images, we replicate past experiments; the more

experiments the more we know aboout the orbit of the particle. The entropy of the partition

relative to T examines the limiting behavior of predicting the orbit of the particle based

on n-past experiments. Finally the entropy of a transformation, hµ, examines all possible

ways of constructing an experiment(partition) for a given system. For more information on

entropy in the sense of Information Theory, the reader is referred to [Bi].

5.2 Entropy on Manifolds

The previous section required only a measure space, and a transformation. When con-

sidering the measure theoretic entropy on a manifold, you can find many formulas which

use the metric properties of the manifold rather than the partitions found in the previous
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definitions. Of particular importance are the following two theorems due to Mane and Katok

and Brin respectively. [M] [BK] [Y1] Mane’s theorem gives an inequality relating the metric

entropy to the measure of a special set. Katok and Brin’s theorem gives improves on this,

giving an equality under some circumstances. The beauty of both of these theorems is that

they provide global estimates based on pointwise calculations, removing the need for difficult

partitions.

Theorem 5.2.1. Mane

Let f : M → M be a diffeomorphism, φ : M → R+ and µ be an ergodic borel probability

measure. Furthermore suppose
∫ −log φ dµ < ∞, then for µ-a.e. x ∈ M :

lim
n1,n2→∞

−1
n1+n2

log µ(V (x, φ, n1, n2)) ≤ hµ

Where V (x, φ, n1, n2) := {y ∈ M : d(fk(x), fk(y)) ≤ φ(fk(x)) for each −n2 ≤ k ≤ n1}.

The following theorem improves this estimate if you take φ(x) = ε > 0.

Theorem 5.2.2. Brin - Katok

For µ - a. e. x ∈ M :

lim
ε→0

lim
n1,n2→∞

−1
n1+n2

log µ(V (x, ε, n1, n2)) = hµ

Due to Theorem 6.4, the result for 6.5 also holds for the lim sup. We will make strong

use of these theorems in Chapter 9.
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5.3 Topological Entropy

Let M be a compact metric space. Consider f : M → M . To define the topological

entropy the following metric is needed:

Define dn(x, y) = max
i≤n

d(f i(x), f i(y)).

Definition 5.3.1. A set A is called a (n, ε)- separated set if for every a, b ∈ A , dn(a, b) > ε.

To say that A is a maximal (n, ε)- separated set means that A is a (n, ε)- separated set, and

if B is also an (n, ε) separated set then card(A) ≥ card(B).

Definition 5.3.2. The topological entropy of a transformation is given by:

htop(f) = lim
ε→0

lim
n→∞

sup
An

1
n
log card(An)

where An is a maximal (n, ε) − separated set.

5.4 Variational Principle

The variational principle relates the topological entropy to the measure theoretical entropy.

Theorem 5.4.1. Variational Principle

htop ≥ hµ for every µ. Furthermore htop = sup
µ

hµ.

The Variational Principle is a very powerful tool. To see some of it uses in dynamical

systems see [P]. Due to this strength, researchers have found other incarnations of variational

principle for different dynamical quantities. See [PY] and [W].
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CHAPTER 6

DIMENSION

The notion of dimension is of great interest to mathematicians studying invariant sets

of transformations. Like entropy, there are multiple ways of quantifying the dimension of a

set. In this paper we will deal with two different versions of dimension: metric dimension

and measure theoretic dimension.

6.1 Metric Dimension

Consider a compact subset, A, of a metric space. For each ε > 0, A can be covered by

finitely many balls of radius ε. The box counting dimension looks at the asymptotic growth

of the logarithm of the number of balls needed, divided by the negative logarithm of ε.

Definition 6.1.1. The upper (or lower) box counting dimension or Capacity, C (or C) ,

of a set X is given by:

C(X)= lim
ε→0

logN(ε)
−log(ε)

or C(X) = lim
ε→0

logN(ε)
−log(ε)

respectively
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Where N(ε) is the number of cubes of diameter ε needed to cover X. If C(X) = C(X) then

this common called the box counting dimension denoted C(X).

One of the big advantages of using the box counting dimension is that it is quite easy to

calculate, both theoretically and experimentally. On the downside though it does not always

behave in the way one would like. There are countable sets for which the box counting

dimension is positive. A better notion is the Hausdorff dimension. It is constructed using

the Hausdorff measure, and fixes many of the problems found in capacity.

Definition 6.1.2. Let A be a subset of a compact metric space. The δ-mesh α-dimensional

Hausdorff measure is defined as follows:

Hα
δ (A) := inf{

∑
G∈F

(diam(G))α : F is a δ − mesh cover of A}

For each α, the δ-mesh Hausdorff measure is a metric outer measure. To define the

α-dimensional Hausdorff measure, take the limit as δ → 0.

Hα(A) = lim
δ→0

(
Hα

δ (A)
)

Definition 6.1.3. The Hausdorff dimension, HD, of a set is given by:

HD(X) = inf
α
{α : Hα = 0}
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Note: While the definition of the Hausdorff dimension uses a measure, this is still a metric

definition because this measure is based entirely on the metric properties of X.

For further information on capacity and Hausdorff dimension see [Fal].

6.2 Measure-Theoretic Dimension

The disadvantage of a metric definition of dimension, is that it looks at all points in the

space equally. Frequently one would like to know about the probable points rather than the

whole set. One way to fix this shortcoming is to look at the metric dimension of a set of

full measure. Our first two definitions of measure theoretic dimension produced using this

method.

There are measure theoretic versions of Hausdorff dimension and Capacity. Given a

measure µ, define the following:

Definition 6.2.1. HD(µ) = inf
A⊂X

µ(A)=1

HD(A)

C(µ) = sup
δ→0

inf
A⊂X

µ(a)≥1−δ

C(A)

C(µ) = sup
δ→0

inf
A⊂X

µ(a)≥1−δ

C(A)

Renyi modified the capacity in a different way. He picked the important points based on

partitions and information theory, rather than covering with balls.
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Definition 6.2.2. The Renyi or Information Dimension of a set X. Let {αi}i∈I be the set

of all partitions satisfying 1,2,3 in 5.1. Define H(α) as in Definition 5.1.1. Define:

H(ε) = inf
αi

diam(αi)≤ε

H(αi).

The upper and lower Reyni dimensions of µ denoted R(µ) and R(µ)respectively are defined

by:

R(µ)= lim
ε→0

H(ε)
−log(ε)

R(µ)= lim
ε→0

H(ε)
−log(ε)

If R(µ)= R(µ), then this common number is called the Reyni dimension of µ and is denoted

R(µ).

The last version of measure theoretic dimension we will examine is the pointwise dimen-

sion. Rather than being a global property of the whole set, the pointwise dimension looks at

a neighborhood of a given point, then determines how “thick” the set is around that point.

Hence this quantity can vary from point to point. We will exploit this local property in the

proof of Young’s formula.

Definition 6.2.3. Let µ be a Borel probability measure on a compact metric space. The upper

or lower Pointwise dimension at x with respect to µ, denoted P µ(x) or P µ(x) respectively, is

given by
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P µ(x) = lim
ε→0

log µBε(x)
log ε

P µ(x) = lim
ε→0

log µBε(x)
log ε

If P µ(x) = P µ(x), this common value is called the pointwise dimension of µ at x, and is

denoted Pµ(x)

There are many additional notions of dimension. In particular the upper and lower

Ledrappier dimensions, CL(µ), and CL(µ) respectively are very similar to the upper and

lower measure theoretic Capacity, but instead uses a slightly different limiting procedure.

When these two agree, their common value is called simply the Ledrappier Dimension,(or

Ledrappier Capacity). See [Y1].

6.3 Relationships Between Various Notions of Dimension

A great amount of study has attempted to determine when various notions of dimension

agree. It is conjectured that for certain types attractors each of the topological notions of

the dimension agree. This common value is sometimes called the fractal dimension. dF of

the set. It is also conjectured that under the right conditions the values of the measure

theoretical dimensions will agree. This dimension is referred to as the ‘”dimension of the

natural measure” ,dµ. There are cases where the topological and measure theoretical dimen-

sions agree, though this is thought to be the exception rather than the rule, but in general

dµ ≤ dF . For a more thorough explanation see [Far]. The following inequalities give some
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relationships between the various dimensions.

HD(µ) ≤ HD(X)

CL(µ) ≤ C(µ) ≤ C(X)

CL(µ) ≤ C(µ) ≤ C(X).

The following four theorems can be found in [Y1]. Their amalgamation results in the final

theorem of this chapter: that all the measure theoretic notions of dimension are the same

on a manifold where Pµ(x) is constant for µ- a.e. x ∈ M .

Theorem 6.3.1. Let µ be a probability measure on a compact metric space X. Then HD(µ) ≤

CL(µ).

Theorem 6.3.2. Let µ be a continuous Borel probability measure on R
n and let A ⊂ R

n be

measurable and bounded such that µ(A) > 0 and for every x ∈ A:

a ≤ P µ(x) ≤ P µ(x) ≤ b.

Then a ≤ C(µ) ≤ C(µ) ≤ b.

Theorem 6.3.3. Let µ be a Borel probability measure on a compact metric space X with

C(x) < ∞. Then :
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1.) R(µ)≤ CL(µ)

2.) If for µ-a.e. x, Pµ(x) ≥ a, then R(µ)≥ a.

Theorem 6.3.4. The Big Equality

Let µ be a Borel Probability measure on a compact Riemannian manifold, and suppose

that for µ-a.e. x, Pµ(x) = a. Then:

HD(µ)=C(µ)= C(µ)=CL(µ)= CL(µ)= R(µ)= R(µ)=a

For a very good primer on dimension of an attractor, especially from an applied stand-

point see [Far].
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CHAPTER 7

LYAPUNOV EXPONENTS AND ENTROPY

The Lyapunov exponents provide a substantial amount of information about the structure

of sets which are invariant under the transformation. The first part of this section deals with

the Pesin Formula and Ruelle Inequality which relate the exponents to the entropy. Next

we will focus on the information the exponents give as to the structure of invariant sets. We

finally give a brief introduction to the charting process needed to prove Young’s Formula.

7.1 Results of Pesin and Ruelle

Theorem 7.1.1. Ruelle Inequality

Let f : M → M be a C1- diffeomorphism of a compact Riemannian Manifold. Let µ be

ergodic with respect to f, with associated Lyapunov exponents λ1 ≥ λ2 ≥ ... ≥ λd. Then:

hµ ≤
∑
λi>0

λi
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Theorem 7.1.2. Pesin Formula

Let f : M → M be a C2-diffeomorphism of a compact Riemannian manifold. Let µ be

a ergodic measure with respect to f that is equivalent to lebesgue measure, with associated

Lyapunov exponents λ1 ≥ λ2 ≥ ... ≥ λd. Then:

hµ =
∑
λi>0

λi

Young reformulated the inequality in a pointwise manner, and used this to prove the following

theorem [LY1][LY2].

Theorem 7.1.3. Let f : M → M be a C2-diffeomorphism of a compact Riemannian mani-

fold preserving µ, a Borel probability measure. Then µ has absolutely continuous conditional

measures on unstable manifolds if and only if:

hµ =
∫ ∑

i

λ+
i (x)dimEi(x)dµ(x) where a+ = max(a, 0)

and in particular if µ is also ergodic: hµ =
∑

i

λ+
i dim Ei.

The decompositions necessary to get these conditional measures are quite complicated,

and can be found in [LY1],[LY2], [Ro].

7.2 The Structure of Invariant Sets

Lyapunov exponents are frequently used to detect “chaos” in dynamical systems. The

main reason for this is because they are much easier to calculate than entropy. With entropy
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one must make partitions and find the join of the inverse images, while the exponents only

require the iteration of a single point. With less than 200 lines of code, a researcher can

simulate the dynamical system under various parameters and initial conditions, and calcu-

late the exponents. The exponents can then be used to determine the general structure of

the invariant set. They can be used to differentiate between periodic attractors, strange

attractors, divergence to infinity, attracting fixed points,etc [O]. We now will examine how

the Lyapunov exponents are used to make this distinction. We will break the problem into

four cases: all exponents are positive, all exponents are negative, at least one positive and

one negative exponent with no zero exponents, and zero exponents.

All Positive Exponents: If each of the exponents are positive there is expansion in all

directions. If the orbits are also bounded, then this indicates a chaotic condition in the

whole space. If the orbits are unbounded, this will signify divergence to infinity.

All Negative Exponents: If each of the exponents are negative, there is an attractor. If

additionally the sequence of iterates of a point converge to some z0, then z0 is a point

attractor. If not there is a periodic attractor.

No zero exponents: The situtation in which there are both positive and negative expo-

nents with no zero exponents is known as hyperbolicity. This frequently produces what is

know nas a “strange attractor”, and is a strong indicator of chaos.

Zero Exponents: If some of the exponents are zero, then there are indifferent directions.
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This makes classification difficult. The presence of zero exponents is also very difficult from

a theoretical standpoint, and as of yet, have not had a thorough treatment. However see

[MU] for recent work on these systems in a conformal setting.

Due to the fact that zero exponents make things difficult, we will need the following

lemma, which removes them from consideration in the context of diffeomorphisms of a sur-

face.

Lemma 7.2.1. Let T : M → M be a C1-diffeomorphism of a compact surface such that

hµ > 0, then λ1 > 0 > λ2.

Proof. Since hµ > 0, Ruelle’s inequality says that λ1 > 0 also. Since hµ(T−1) = hµ(T ),

−λ2 > 0 similarly. Thus λ1 > 0 > λ2

7.3 Lyapanov Charts

Let M be a Surface, f : M → M a C1+α diffeomorphism, and µ an ergodic borel

probability measure on M with Lyapunov exponents λ1 ≥ λ2. Fix ε > 0. Let A : M → R

be a function such that for µ − a.e.x ∈ M with the following properties:

1.)A(f(x)) ≥ (1 − ε)A(x)

2.)A(f−1(x)) ≥ (1 − ε)A(x)
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Define R(r) = [−r, r] × [−r, r] ⊂ R
2.

Here we assume the existance of the function, A(x), but it can be shown to exist given f

is at least C1+α. This proof is quite technical and hinges on finding a uniformly hyperbolic

metric, hence the need for C1+α. A thorough treatment can be found in [LY1].

Definition 7.3.1. Let Φx : R(A(x)) → M have the following properties:

1.) Φx(0) = x

2.)‖f̃x(x) −

⎛
⎜⎜⎝eλ1 0

0 eλ2

⎞
⎟⎟⎠ · x‖ < ε‖x‖ for each x ∈ M where f̃x := Φ−1

f(x) ◦ f ◦ Φx

The function Φx is called a (ε, A, x) − chart, or just an x-chart when it is clear. The

function f̃x is called the connecting map. A point x is called a chart point if x satisfies the

conditions above.

To distinguish between metrics on M and R
2, we will always use d(·, ·) for the Riemannian

metric on M , and ‖ ·− · ‖x for Euclidean distance in the x-chart. The following lemma gives

a relationship between d(·, ·) and ‖ · − · ‖x.

Lemma 7.3.2. There exists C ∈ R and K(x) : M → R such that for every z, z′ ∈ R(A(x))

:

1.) d(Φx(z), Φx(z
′)) ≤ C‖z − z′‖x

2.) ‖z − z′‖x ≤ K(x)d(Φx(z), Φx(z
′))
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The next general lemma will be used to describe the relationship between an x-chart,

and its iterate an f(x)-chart.

Lemma 7.3.3. Suppose 2ε < χ1 − 1 and 2ε < 1 − χ2, and for k = 1,2,... gk : R
2 → R

2

satisfy gk(0) = 0 and ‖gk(x) −

⎛
⎜⎜⎝χ1 0

0 χ2

⎞
⎟⎟⎠ · x‖ < ε‖x‖. Then:

1.) For any r > 0 , gk ◦ ... ◦ g2 ◦ g1(R(r)) ⊂ R((χ1 + 2ε)kr)

2.) if y = (y1, y2) ∈ R
2 such that |y1| ≥ |y2| then:

|(gk ◦ ... ◦ g1(y))1| ≥ |(gk ◦ ... ◦ g1(y))2|

|(gk ◦ ... ◦ g1(y))1| ≥ (χ1 − 2ε)k|y1|

Proof. 1.) Let ε and gk be defined as above.

‖gi(x) −

⎛
⎜⎜⎝χ1 0

0 χ2

⎞
⎟⎟⎠ (x)‖ < ε‖x‖

Since x ∈ R(r), ‖x‖ ≤ 2r, thus:

|(gi(x))1 − χ1x1| ≤ ‖gi(x) −

⎛
⎜⎜⎝χ1 0

0 χ2

⎞
⎟⎟⎠ (x)‖ < ε‖x‖ ≤ 2εr

This allows us to bound (gi(x))1 as follows:

χ1x1 − 2εr < (gi(x))1 < χ1x1 + 2εr
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Again since x ∈ R(r), |x1| ≤ r, which gives the following inequalities:

−χ1r − 2εr < (gi(x))1 < χ1r + 2εr

|(gi(x))1| < (χ1 + 2ε)r.

A similar argument holds for (gi(x))2 giving:

|(gi(x))2| < (χ2 + 2ε)r ≤ (χ1 + 2ε)r.

Thus for each i:

gi(R(r)) ⊂ R((χ1 + 2ε)r),

and by induction we obtain the desired result:

gk ◦ ... ◦ g2 ◦ g1(R(r)) ⊂ R((χ1 + 2ε)kr)

The proof of part 2 follows similarly.

41



CHAPTER 8

YOUNG’S FORMULA

Theorem 8.0.4. Let f : M → M be a C1+α-diffeomorphism of a compact surface, and let

µ be ergodic with respect to f, with Lyapunov exponents λ1 ≥ λ2. Then

HD(µ) = hµ( 1
λ1

− 1
λ2

) whenever the right side is not 0
0
.

Proof. If λ1, λ2 are both positive or both negative, µ is supported on a finite set. Thus

HD(µ) and hµ are both zero. Thus the remaining case is when λ1 > 0 and λ2 < 0. Fix

ε > 0. We will construct a set Λ1 such that µ(Λ1) = 1 and for µ-a.e. x ∈ Λ1:

lim
p→0

log µ(Bp(x))

log p
≥ (hµ − ε)

⎡
⎣ 1

log χ1+2ε
1−ε

+
1

log
χ−1

2 +2ε

1−ε

⎤
⎦ (8.1)

where χ1 = eλ1 and χ2 = eλ2 .

We then fix δ > 0 and construct a set Λδ, such that µ(Λδ) > 1− δ and for µ−a.e x ∈ Λδ:

lim
p→0

log µ(Bp(x)

log p
≤ hµ

[
1

log (χ1 − 2ε)
+

1

log(χ−1
2 − 2ε)

]
(8.2)
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Thus the intersection Λ = Λ1

⋂
Λδ has measure larger than 1 − δ and has the desired

property.

Proof of equation 1.

Take Λ1 = {x ∈ M : x is Pesin regular, and Katok’s Entropy formula holds for x.}. Let

χi = eλi and fix x ∈ Λ1. Choose p0 > 0 such that :

lim
n1,n2→∞

−1
n1+n2

log µ(V (x, p0, n1, n2)) ≥ hµ − ε

Let p1 = min{A(x), p0

C
} and let p << p1. Now define n1(p) and n2(p) to be the unique

integers satisfying:

(χ1 + 2ε)n1(p)p ≤ (1−ε)n1(p)p1

2
< (χ1 + 2ε)n1(p)+1p

(χ−1
2 + 2ε)n2(p)p ≤ (1−ε)n2(p)p1

2
< (χ−1

2 + 2ε)n2(p)+1p

This implies:

n1(p) ≤ log
P1
2
−log p

log
χ1+2ε
1−ε

≤ n1(p) + 1 and

n2(p) ≤ log
P1
2
−log p

log
χ−1
2

+2ε

1−ε

≤ n2(p) + 1 and in particular

log
p1
2
−log p

n1(p)+n2(p)+2
[ 1

log
χ1+2ε
1−ε

+ 1

log
χ−1
2 +2ε

1−ε

] ≤ 1

For p small enough we will show BK−1(x)p(x) ⊂ V (x, p0, n1(p), n2(p)).

Thus log µ(BK−1(x)p(x)) ≤ log µ(V (x, p0, n1(p), n2(p))). And for very small p:
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log µ(BK−1(x)p(x))

log p+log K(x)−1 ≥ log µ(V (x,p0,n1(p),n2(p)))
log p−log K(x)

log µ(BK−1(x)p(x))

log p+log K(x)−1 ≥ log µ(V (x,p0,n1(p),n2(p)))
log p−log K(x)

log
p1
2
−log p

n1(p)+n2(p)+2

[
1

log
χ1+2ε
1−ε

+ 1

log
χ−1
2

+2ε

1−ε

]

log µ(BK−1(x)p(x))

log p+log K(x)−1 ≥ −log µ(V (x,p0,n1(p),n2(p)))
n1(p)+n2(p)+2

log
p1
2
−log p

log K(x)−log p

[
1

log
χ1+2ε
1−ε

+ 1

log
χ−1
2

+2ε

1−ε

]

lim
p→0

log µ(Bp(x))

log p
≥ (hµ − ε)

⎡
⎣ 1

log χ1+2ε
1−ε

+
1

log
χ−1

2 +2ε

1−ε

⎤
⎦ (8.3)

Now for the first direction all that is left is to prove BK(x)−1p ⊂ V (x, p0, n1(p), n2(p)). For

this we use Lyapunov charts and Lemma 8.7.

Let y ∈ BK(x)−1p. Thus d(x, y) ≤ K(x)−1p. For small enough p, y can be found in the

x-chart, and by the Lipschitz condition on the metrics ỹ ∈ R(p) in the x- chart. By lemma

8.7, f̃x(ỹ) ∈ R((χ1 + 2ε)kp) in the f̃k
x - chart, for each 0 ≤ k ≤ n1(p). Thus

d(fk(x), fk(y)) ≤ C‖f̃k(x̃) − f̃k(ỹ)‖x = C‖f̃k(ỹ)‖x ≤ 2C(χ1 + 2ε)kp ≤ C(1 − ε)kp1 ≤

Cp1 ≤ p0

A similar argument can be made for −n0(p) ≤ k < 0 using f−1. Thus y ∈ V (x, p0, n1(p), n2(p)),

and BK(x)−1p ⊂ V (x, p0, n1(p), n2(p)).

Proof of Part 2.

Fix δ > 0. For the reverse inequality we will construct a set Λδ with measure greater

than 1 − δ, and a function φ : M → R with the property
∫ −log φ dµ < ∞. This will allow

44



us to use Mane’s estimate, and arrive at the following inequality:

lim
p→∞

log µ(Bp(x))

log p
≤ hµ[

1

log(χ1 − 2ε)
+

1

log(χ−1
1 − 2ε)

]. (8.4)

From there we will complete the proof in a similar fashion as the first part.

Construction of Λδ:

Let Λ2 = {x ∈ M : x is a chart point }. By Definition µ(Λ2) = 1. We now want to

remove a few bad points. Let Bn = {x ∈ Λ2 : K(x) ≥ n}. Clearly the Bn are a nested set of

subsets, and Λ2 =

∞⋃
i=0

Bi. Thus there exists Bn such that µ(Bn) > 1− δ
2
. Likewise construct

En = {x ∈ Λ2 : A(x) ≥ 1
n
}. These sets are again nested, and Λ2 =

∞⋃
i=1

Ei, and there exists

Em such that µ(Em) ≥ 1 − δ
2
. Now define Λδ = Bn

⋂
Em. This set has measure at least

1− δ, and both K(x) and A(x) restricted to Λδ are bounded (above and below respectively).

Define K1 := sup
x∈Λδ

K(x), and A1 := inf
x∈Λδ

A(x). Since A(x) = A(x)
2

also satisfies the conditions

for Lyapunov charts, we can assume without loss of generality that A1C ≤ 1.

Construction of φ:

To produce the function φ we use Poincare’s Recurrence theorem. Again without loss of

generality we may assume that every x ∈ Λδ returns to Λδ under both f and f−1. Define:

r1(x) = { the smallest positive integer such that fk(x) ∈ Λδ, and
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r2(x) = { the smallest positive integer such that f−k(x) ∈ Λδ.

Define φ : M → R by :

φ(x) :=

{
min

{
A1K−1

1
(χ1+2ε)−r1(x)

A1K−1
1 (χ−1

2 +2ε)−r2(x)

}

1

if x∈Λδ

if x/∈Λδ

}

By Kac’s Formula both r1, r2 are integrable ([PY], pg.92). Thus
∫ −log φ dµ < ∞, and

Mane’s inequality holds for µ − a.e. x ∈ M .

Now will we finish the proof in the same way as Part 1. Let p > 0, define n1(p) and n2(p)

to be the smallest integers such that:

(χ1 − 2ε)n1(p)p ≥ A1 and (χ−1
2 − 2ε)n2(p)p ≥ A1

The Subset Argument:

We now show that V (x, φ, n1(p), n2(p)) ⊂ B2Cp(x) for all x ∈ Λδ. Let x ∈ Λδ and

y ∈ V (x, φ, n1(p), n2(p)). Since d(x, y) ≤ φ(x) ≤ A1K
−1
1 (χ1 + 2ε)−r1(x) ≤ A1 ≤ A(x), y is

in the x-chart. y can be written (y1, y2). Without loss of generality suppose |y1| ≥ |y2|. We

will show that |y1| ≤ p.

Let {s0, s1, ...} be the set of all points such that f si ∈ Λδ written in ascending order.

There exists and n ∈ N such that sn ≤ n1(p) < sn+1. Since y ∈ V (x, φ, n1(p), n2(p)),

d(f si(x), f si(y) ≤ φ(f si(x)) ≤ A1K
−1
1 (χ1 +2ε)−r1(fsi (x)) ≤ A1 ≤ A(f si(x) for each 0 ≤ i ≤ n,

fk( y) is in the fk(x)-chart. Now by Lemma 8.7:

46



|(f sn(y))1| ≥ (χ1 − 2ε)sn|y1| ≥ A1|y1|
(χ1−2ε)n1(p)−snp

.

Now by the way n was picked,

|(f sn(y))1| ≥ A1|y1|
(χ1−2ε)r1(fsn (x))p

≥ φ(fsn (x))K1|y1|
p

.

Using the fact that d(f sn(x), f sn(y)) ≤ φ(f sn(x)) and working on the other side yields:

K1φ(f sn(x)) ≥ |(f sn(x))1| ≥ φ(fsn (x))K1|y1|
p

.

and finally |y1|
p

≤ 1. Thus ‖x − y‖ ≤ 2p and by the lipschitz condition on the charts,

d(x, y) ≤ 2Cp, which puts y ∈ B2Cp(x).

Putting It Together:

V (x, φ, n1(p), n2(p)) ⊂ B2Cp(x) ⇒ log µ(V (x, φ, n1(p), n2(p))) ≤ log µ(B2Cp(x)), and:

−log µ(V (x, φ, n1(p), n2(p))) ≥ −log µ(B2Cp(x)) (8.5)

Now looking at the way n1(p) and n2(p) were picked yields:

n1(p) ≥ log A1−log p
log(χ1−2ε)

≥ n1(p) − 1 and

n2(p) ≥ log A1−log p

log(χ−1
2 −2ε)

≥ n2(p) − 1 Thus

1
n1(p)+n2(p)−2

≥ 1
log A1−log p

(
1

log(χ1−2ε)
+ 1

log(χ−1
2 −2ε)

)−1
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Putting this together yields:

−log µ(V (x,φ,n1(p),n2(p)))
n1(p)+n2(p)−2

(
1

log(χ1−2ε)
+ 1

log(χ−1
2 −2ε)

)
≥ log µ(B2Cp(x))

log p−log A1
.

Now taking the lim sup as p → 0, then putting parts one and two together gives:

(hµ − ε)

⎡
⎣ 1

log χ1+2ε
1−ε

+
1

log
χ−1

2 +2ε

1−ε

⎤
⎦ ≤ P µ(x) ≤ P µ(x) ≤ hµ

[
1

χ1 − 2ε
+

1

χ−1
2 − 2ε

]
. (8.6)

Now taking the ε → 0 gives the desired result.
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CHAPTER 9

CONCLUSION

In this paper, we showed a strong relationship between the dimension, entropy, and

Lyapunov exponents of a diffeomorphism on a surface. There has been further work trying

to relate this to other dynamical systems. In [LY1] [LY2] Ledrappier and Young prove:

Let f : M → M be a C2-diffeomorphism of a compact Riemannian manifold preserving

µ, a Borel probability measure. Then µ has absolutely continuous conditional measures on

unstable manifolds if and only if:

hµ =
∫ ∑

i

λ+
i (x)dimEi(x)dµ(x) where a+ = max(a, 0)

and in particular, if µ is also ergodic:

hµ =
∑

i

λ+
i dimEi

A brief sketch of the proof:

Many of the ideas in Young and Ledrappier’s proof can be found in the proof of Theorem

9.1. They define a function hi in a similar manner as Mane, Katok, and Brin, but the sets

V (·) are restricted to tangent subspace Ei, so there is only one Lyapunov exponent at work.
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The idea is to run through the unstable foliations one exponent at a time, and use a similar

method as in Theorem 9.1. First prove h1 = λ1δ1. Next show hn − hn−1 = λn(δn − δn−1)

by looking a ’quotient’ space W n/W n−1. Finally show hu = hµ. Each piece of the inductive

proof requires a more thorough version of Lyapunov charts, and many complex estimates,

but still analogous to the proof of Young’s formula.

There has also been more work done on the applied side of dynamical systems, notably

Taken’s Embedding Theorem. [T] It states that attractors arising from a diffeomorphism

of a manifold, can be reconstructed by taking certain measurements of the system then

embedding them in R
n through time-delay series. This allows researchers to take field data

from a dynamical system, and recreate the attractor, determine its exponents, and so on.

All of this can be found without knowing anything about the equations for its evolution.

Finally, an interesting aspect of this problem is the fact that it occurs where manifolds

and measure theory cross. Questions arise on whether there is a purely measure theoretic

relationship between the dimension, entropy, and expansion. Or possibly a purely metric

relationship, or even a purely topological relationship.
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