Utilization of cyanide as the sole nitrogen source by Pseudomonas fluorescens NCIMB 11764 (Pf11764) occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated oxygenolytically by an enzyme referred to as cyanide oxygenase (CNO), which exhibits properties of a pterin-dependent hydroxylase. The pterin requirement for Pf11764 CNO was satisfied by supplying either the fully (tetrahydro) or partially (dihydro) reduced forms of various pterin compounds at catalytic concentrations (0.5 µM). These compounds included, for example, biopterin, monapterin and neopterin, all of which were also identified in cell extracts. A related CNO-mediated mechanism ...
continued below
The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.
Utilization of cyanide as the sole nitrogen source by Pseudomonas fluorescens NCIMB 11764 (Pf11764) occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated oxygenolytically by an enzyme referred to as cyanide oxygenase (CNO), which exhibits properties of a pterin-dependent hydroxylase. The pterin requirement for Pf11764 CNO was satisfied by supplying either the fully (tetrahydro) or partially (dihydro) reduced forms of various pterin compounds at catalytic concentrations (0.5 µM). These compounds included, for example, biopterin, monapterin and neopterin, all of which were also identified in cell extracts. A related CNO-mediated mechanism of cyanide utilization was identified in cyanide-degrading P. putida BCN3. This conclusion was based on (i) the recovery of CO2 and NH3 as enzymatic reaction products, (ii) the dependency of substrate conversion on both O2 and NADH, and (iiii) utilization of cyanide, O2 and NADH in a 1:1:1 reaction stoichiometry. In contrast to findings reported for Pf11764, it was not possible to demonstrate a need for exogenously added pterin as a cofactor for the PpBCN3 enzyme system. However, results which showed that cells of PpBCN3 contained approximately seven times the amount of pterin as Pf11764 (of which a significant portion was protein-bound) were interpreted as indicating that sufficient bound CNO-cofactor exists, thus eliminating any need for a supplemental source.
This thesis is part of the following collection of related materials.
UNT Theses and Dissertations
Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.
Dolghih, Elena.Bacterial Cyanide Assimilation: Pterin Cofactor and Enzymatic Requirements for Substrate Oxidation,
thesis,
May 2004;
Denton, Texas.
(digital.library.unt.edu/ark:/67531/metadc4525/:
accessed February 19, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
.