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There are two main approaches for intrusion detection: signature-based and anomaly-based. Signature-based
detection employs pattern matching to match attack signatures with observed data making it ideal for detecting known
attacks. However, it cannot detect unknown attacks for which there is no signature available. Anomaly-based detection
builds a profile of normal system behavior to detect known and unknown attacks as behavioral deviations. However, it
has a drawback of a high false alarm rate. In this thesis, we describe our anomaly-based IDS designed for detecting
intrusions in cryptographic and application-level protocols. Our system has several unique characteristics, such as the
ability to monitor cryptographic protocols and application-level protocols embedded in encrypted sessions, a very

lightweight monitoring process, and the ability to react to protocol misuse by modifying protocol response directly.
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CHAPTER 1

INTRODUCTION

Cryptographic protocols are communication protocols that rely upon cryptography to provide
security services across distributed systems. Applications are increasingly relying on encryption
services provided by cryptographic protocols to ensure confidentiality and authentication during
secure transactions over the network. However, the security provided by these encryption services
might be undermined if the underlying security protocol' has design or implementation flaws. In
fact, research has revealed numerous weaknesses in security protocols [19], [20], [21], [22], [23], [25]
with results ranging from the misuse of encryption [30] to compromising the private encryption
key [36]. Much research in this area has focused on applying formal methods for analysis and
verification of security protocols, and although most of this research was successful in detecting
flaws in and improving the protocols, it remains a fact that complete security of cryptographic
protocols is still a work in progress. Given the imperfect nature of security protocol design, it can
be concluded that in order to be able to improve the confidence in security protocols, detecting
intrusions in those protocols is important.

Intrusion detection is a well studied field, and two main detection approaches have been in
use for several years: signature-based and anomaly-based. The signature-based approach is effec-
tive for detecting known attacks, since it matches the monitored data with a database of known

attack signatures to detect suspicious activities. However, due to its reliance on the availability

!The terms cryptographic protocol and security protocol are used interchangeably throughout this thesis.



of attack signatures, it is ineffective against previously unknown attacks and modified versions of
known attacks. In addition, available but imprecise signatures may cause increased false positives.
Anomaly-based detection tries to ameliorate these problems by focusing on modeling normal system
behavior in order to be able to detect behavioral deviations, rather than explicitly matching attack
signatures. A normal system behavior profile is created by observing data over a period of time,
and then intrusions are detected as deviations in the monitored behavior, enabling anomaly-based
detection systems to detect novel attacks. Although this is a distinct advantage over signature-
based systems, anomaly-based systems have demonstrated difficulty in selecting system features
in order to characterize the normal behavior in such a way that any subtle deviation caused by
malicious activities is not missed, and at the same time expected deviations do not generate alerts.
Further, imprecise normal behavior profiles may increase false alerts, limiting the applications of
anomaly-based systems in practice. However, recent research has introduced a new approach,
specification-based detection, which has been applied to address the problem of high false posi-
tives. The specification-based intrusion detection approach uses manually developed specifications
to characterize the legitimate system behavior, rather than relying on machine-learning techniques
to learn the normal behavior by observing data, thus eliminating false positives caused by legiti-
mate but previously unseen behavior. The advantages of specification-based and anomaly-based
approaches were combined by Sekar et al. [34] in their specification-based anomaly detection system,
which greatly simplifies feature selection while being able to detect novel attacks.

Given the success of current intrusion detection technology, applying it for detecting intrusions

in cryptographic protocols seems to be an attractive choice. However, it must be noted that most



network intrusion detection systems inspect network packet fields in order to match them with
attack signatures or to generate a high-level model of interactions between communicating principals
to detect suspicious activity. These activities become infeasible at the network level when protocol
sessions are encrypted at the application level, which suggests that application level techniques must
be employed in order to detect intrusions in cryptographic protocols and application-level protocols
embedded in encrypted sessions. Indeed, recently, Yasinsac [28] demonstrated that dynamic analysis
of security protocols, rather than a static analysis as in the case of formal methods, enables detection
of certain class of attacks on cryptographic protocols. Yasinsac’s technique is based on protocol-
oriented state-based attack detection, which reconstructs protocol sessions in terms of state models
and matches these with previously generated attack state models to detect attacks. However, the
attack behavior is modeled as state-machine representations of execution traces of known protocol
attacks, which is essentially a signature-based technique since it needs explicit knowledge of attack
sessions, and hence has a drawback of not being able to detect novel attacks.

1.1 ProtoMon

Our technique derives inspiration from the specification-based anomaly detection system of Sekar
et al. [34] and inherits its benefits, such as reduced false alarm rate, simplified feature selection and
unsupervised learning. In this thesis, we propose ProtoMon, a novel approach of instrumenting
shared libraries for cryptographic and application-level protocols to be able to detect and prevent
intrusions in those protocols. ProtoMon detects attacks on protocols embedded in encrypted ses-
sions since we integrate the monitoring into processes taking part in the protocols. Monitoring at a

gateway or even another process on the same machine will not be able to detect these attacks. The



framework that we propose has an ability to move data collection and analysis off the host to make
the performance impact minimal. Also, moving the analysis from the hosts to a central protocol
monitor process makes it possible to correlate alerts in order to further reduce the false alarm rate
and to detect network-wide attack patterns. We present experimental results to demonstrate the
effectiveness of our approach in detecting some of the recent attacks on OpenSSL, such as timing
attack and password interception [36], [37].

To start with, we will give definitions of some of the concepts used in this thesis.

1.2 Definitions

Intrusion. An intrusion can be defined as “any set of actions that attempt to compromise the
integrity, confidentiality, or availability of a resource” [1]. These actions involve unauthorized
access or manipulation of the resource either by an outsider who does not have any privileges on
the resource or by an insider who exceeds the assigned privileges. Recent studies show phenomenal
increase in the number of intrusions as a result of increase in the networked machines: from merely
6 incidences reported in 1988 the number has grown to 82094 in 2002 [2].

Intrusion Detection. Intrusion detection is defined as “the problem of identifying individu-
als who are using a computer system without authorization (i.e., crackers) and those who have
legitimate access to the system but are abusing their privileges (i.e., the insider threat)” [3]. As
described in section 1, intrusion detection approaches are categorized in two main types: signature-
based and anomaly-based. Signature-based detection is effective against known attacks, whereas

anomaly-based detection is effective against known and unknown attacks.



Intrusion Detection System. An Intrusion Detection System (IDS) is an application that is
responsible for monitoring and analyzing host or network activity to detect intrusions in order to
protect information from unauthorized access or manipulation. IDSs are classified in two main
types: network-based and host-based. Network-based IDSs use sensors to monitor the traffic in all
network segments and collect and analyze the data to detect intrusions, whereas host-based IDSs
analyze the traffic destined for or processes running on a particular host. Crosbie and Spafford give

a list of properties that are desirable for an IDS [4]:

It must run continually without human supervision.

e It must be fault tolerant by being able to recover from system crashes, either accidental or
caused by malicious activity. Upon startup the intrusion detection system must be able to

recover its previous state and resume its previous operation unaffected.

o It must resist subversion. The system must be able to monitor itself to ensure that it has not

been modified by an attacker.

e It must impose minimal overhead on the system where it is running to avoid interfering with

the system’s normal operation.

o It must be configurable according to the security policies of the system that is being monitored.

e It must be adaptable to changes in system and user behavior over time as new applications

and resources are added and as users change their activities.



1.3 Secure Sockets Layer (SSL) Protocol

We use the SSL protocol to demonstrate the ability of our proposed system to detect attacks. This
warrants some discussion of the workings of SSL. SSL is a widely used protocol which combines
the strengths of symmetric and asymmetric key cryptography and aims at providing secure key
distribution, authentication, and data transfer services. SSL, which was originally proposed by
Netscape®?, has been expanded and standardized in the latest IETF standard TLS (Transport
Layer Security) protocol [5]. SSL protocol, as shown in Figure 1.2, is composed of two layers: the
record protocol and the handshake protocol, each one used during different stages of the protocol
run. According to the specification, “The primary purpose of SSL is to provide data integrity and
privacy between two communicating applications.” The handshake protocol is used to negotiate a
unique symmetric key per session between the two communicating applications, which is then used

by the record protocol to provide data encryption during data transfer.

1.3.1 SSL/TLS Handshake Protocol

SSL provides a handshake sub-protocol that uses public-key encryption techniques to enable the
communicating applications to authenticate themselves and negotiate security parameters before
they can start a secure data transfer at the record layer. Figure 1.1 shows various messages
exchanged between a server and a client during the handshake. At the end of the handshake, the
two peers generate the same master secret and verify that they have agreed upon the same security

parameters. The handshake also allows resumption of a session that has been legally terminated

2Netscape Communications Corporation
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Figure 1.1: SSL Handshake

and whose session id is still in the server cache. The change cipher spec message is not a part
of the handshake protocol and is specified as a separate sub-protocol which allows the peers to
signal change in ciphering strategies. Another sub-protocol, the alert protocol, is of a particular
importance in the context of one of the attacks on OpenSSL described later in this thesis. The alert
protocol is used to communicate errors and fatal alerts that result in an immediate termination of
the connection, making that session non-resumable. Alerts could be generated because of failures
at different stages in the computation of secrets, authentication of messages, and decryption of the
data. One of the attacks detected by our system takes advantage of the difference in the time it

takes to generate two different alerts: bad_record_mac and decryption._failed.

1.3.2 SSL Record Protocol

The SSL record protocol provides data fragmentation, compression, encryption, and transmission

services on the transmitting side, and data reassembly, decompression, decryption and delivery
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Figure 1.2: SSL Protocol Stack

services on the receiving side. It uses session keys negotiated during the handshake to encrypt and
decrypt the data. The record protocol defines a content type, which can be handshake protocol,

alert protocol, change cipher spec protocol, or application data protocol.

1.4 Related Work

Anomaly-based IDSs do not compare well with misuse-based IDSs in the production environment
due to their high false positive rate, which is a result of the difficulty in characterizing the normal
system behavior. However, the anomaly-based approach remains effective for detecting novel at-
tacks and modifications of known attacks. This technique has been studied with various approaches,
with the probability-based approach being the most common. Probability-based anomaly detection
builds a database of reference network packets with various packet parameters and probabilities
of occurrences of those packets. If any of the packets observed in the monitored traffic has the

probability below the threshold it is most likely a malicious packet and is flagged as anomalous.



For example, SPADE [6] has a model with four different probabilities:

e P(destination-address, destination-port)

e P(source-address, destination-address, destination-port)

e P(source-address, source-port, destination-address, destination-port)

e Bayes network approximation of the above

ADAM [7] and NIDES [35] are also probabilistic anomaly detection systems which use frequency-
based statistical models of normal network traffic, in which probability of an event depends on
frequency of that event during the training period. Time-based probabilistic approaches are imple-
mented in PHAD [8], ALAD [9], and LERAD [10], in which probability of an event depends on the
time of its last occurrence. Although the probabilistic approach is the most well studied, recent
research suggests a focus on more advanced methods such as clustering approaches and state-based
detection.

Cluster analysis is a multivariate technique and has been shown to be useful for anomaly
detection. Taylor and Alves-Foss proposed NATE (Network Analysis of Anomalous Traffic Events),
which uses cluster analysis to form normal groups of TCP /IP sessions based on Euclidean distances
between TCP flag and byte counts [11]. Attack sessions are then detected as data points that do not
fall in any of the normal groups. More recently, Arshad and Chan proposed the CLAD (CLustering
for Anomaly Detection) algorithm that finds suspicious clusters as outliers, which are clusters far
away from and of size unusual to the normal clusters [12]. The cluster size is defined in terms of

cluster width, which specifies a local neighborhood of clusters that are considered close. However,



these clustering techniques use data sampling to form normal clusters by selecting network packet
fields as data points, which is impossible when the sessions are encrypted.

Machine-learning is another approach to anomaly detection that learns normal behavior of
a subject® in terms of sequences of actions performed or commands executed by that subject.
Lane and Brodley proposed a machine-learning approach that is based on a hypothesis that a user
responds in a similar manner to similar situations, leading to repeated sequences of actions [13].
These characteristic sequences of commands generated by the user are then used to form a user
profile and serve as a fundamental unit of comparison in their anomaly detector. Forrest et al. have
developed an anomaly detection system based on human immunology that monitors sequences of
system calls generated by privileged processes (daemons) to compare them against profiles created
during learning phase [14]. Our approach is similar in that we also use machine-learning technique
to characterize normal usage of cryptographic and application protocols.

Lee and Stolfo proposed an application of data mining to intrusion detection, in which normal
usage patterns are formed by learning (mining) large amounts of audit data [15]. As noted by
them, computing the rule sets in order to learn the normal behavior with the help of data mining
is certainly not a lightweight process, making it unsuitable for real-time intrusion detection unless
a distributed detection framework is designed. By contrast, our approach is inherently lightweight,
enabling it to detect attacks on cryptographic protocols without excessive computing power. In
addition, it has the ability to move the data collection and analysis off the host to make performance

impact minimal and to enable centralized alert analysis and correlation.

3A subject can be a user, a program, or a protocol
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Statistical-based anomaly detection relies on collecting normal usage statistics of an object
during the training phase to create statistical models. It is important that the training data be
free of any attacks so that statistics generated by attacks are not included in the long term normal
usage profile. Anomalous activity is detected by quantifying observed statistics over a number of
variables to create a short term profile and comparing it to the long term profile. If the difference in
these two profiles is greater than a predetermined threshold then that short term activity is flagged
anomalous, otherwise it is included in the long term profile to adapt to the changing system or user
behavior. SRI’s NIDES/STAT [35] algorithm uses similar approach and uses “chi?” [16] like tests
to determine the similarity between short-term and long-term profiles.

All of the approaches for anomaly-detection discussed above have one common problem: choos-
ing the correct features that need to be learned in order to create an accurate normal behavior profile
of the system. Consequently, attacks that manifest themselves as anomalies in the features not in-
cluded in the normal behavior profile are likely to be missed. This problem is ameliorated by a
new variant of anomaly detection, specification-based anomaly detection, which uses specifications
of protocols given in standard documentation like RFCs to be able to select appropriate features.
Use of protocol specifications enables manual characterization of a legitimate behavior rather than
learning the normal behavior by observing data over a period of time. As another advantage,
this approach alleviates the problem of high false positives evidenced in the anomaly detection, by
eliminating the false positives caused by behaviors that are legitimate but absent in the training

data.
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Sekar et al. proposed a method, specification-based anomaly detection, that uses state-machine
specifications of network protocols and statistical learning to map packet sequence properties to
properties of state-machine transitions to detect network intrusions [34]. They model the network
protocols using extended finite state automata (EFSA) to be able to divide up packet sequences
into traces, where each trace corresponds to a path in the state machine. The specification language
proposed by them enables capturing all the relevant information about the state-machine and the
statistics that need to be maintained to detect the attacks. The effectiveness of their approach is
evidenced at a network gateway by successful detection of most of the attacks by simply monitoring
the distribution of frequencies with which each state transition is taken. However, as noted by
Sekar et al., current intrusion detection techniques rely primarily on inspecting network packet
fields to gather information about the system behavior, which becomes infeasible when sessions
are encrypted making it difficult to detect intrusions. With the advent of IPv6 and wider use of
IPSec this problem will get worse, as there will be more end-to-end encrypted connections making
network-level detection techniques ineffective for detecting application-level attacks. Our approach
addresses this problem by embedding the monitoring into the protocol process, thus eliminating
the need for inspection at the network level.

Encryption is used by underlying cryptographic protocols to distribute keys and authenticate
principals and data over the network. Unfortunately, more than two decades of research has
demonstrated that designing secure protocol is an extremely difficult problem and as a result many
security protocols have serious design and implementation flaws. Extensive work has been done to

formally verify and test the security protocols to prove that they are secure. Several works have
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been published on the topic after Needham and Schroeder [18] first suggested the possibility of
applying formal methods for cryptographic protocol analysis, and Dolev and Yao [19] developed a
polynomial-time algorithm for deciding the security of restricted class of protocols. Based on these
works, several tools for formally analyzing security protocols were developed including special-
purpose model-checkers such as the Interrogator [20], and the NRL Protocol Analyzer [21], and
general-purpose model-checkers such as FDR [22] and Mur [23]. Most of the tools were successful in
detecting flaws that had been previously undetected, as in the case of the NRL protocol analyzer,
which uses inductive theorem proving techniques and was able to find a flaw in the Simmons
Selective Broadcast Protocol [21]. However, they exhaustively search through all possible sequences
of actions to check if the attack could be possible, and hence suffer from state space explosion. Song
proposed Athena [25], an extension of the strand space model [24], employing state space reduction
techniques to be able to verify security properties of a protocol for an unbounded number of
concurrent runs. One point that must be noted about all of the formal verification techniques
discussed so far, is that they use mathematical models of protocols in a laboratory environment to
perform symbolic protocol runs in order to prove the security properties. However, given that the
protocol security problem is undecidable [26], [27], theoretical techniques have limited application to
the problem, meaning that the analysis tools will not be successful all the time. Thus, supplemental
to the formal methods, a mechanism for detecting misuse of cryptographic protocols is highly
desirable in the production environment. This argument is further strengthened by recent research
results that continue to uncover serious flaws in cryptographic protocols [36], [37]. We address

this problem by proposing a way to monitor the behavior of cryptographic and application-level
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protocols during their execution, unlike the off-line formal analysis approach, to detect intrusions.

More recently, this issue was addressed by Yasinsac who applied classic knowledge-based and
behavior-based intrusion detection techniques for detecting intrusions in security protocols [28], [29].
This technique develops signatures of attacks on protocols by gathering information from three

sources:

e Known attacks identified in the literature.

o Attack taxonomies identified in the literature.

e Flaws and suspicious activity gathered during execution.

The attack signatures are developed from protocol execution traces modeled as state machines,
which are then used by the detection system for matching with the state machines that are dynam-
ically built during actual protocol execution. If the observed state transition sequence is similar to
one of the signature state transition sequences then it signals the probability of an ongoing attack.
Unlike our approach, this approach requires explicit knowledge of attack signatures in terms of pro-
tocol execution traces making it a signature-based system. Our approach needs no prior knowledge
of attack signatures, as it detects attacks as behavioral anomalies, thus enabling it to detect novel

attacks as well as modifications of known attacks.
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CHAPTER 2

OVERVIEW OF PROTOMON

Identifying protocol implementation libraries that participate in the protocol state machine is our
first step for instrumenting embedded monitors in the protocol process. We implement the em-
bedded monitors as shared libraries that are integrated with other cryptographic libraries in an
implementation, and that act as sensors within our monitoring framework. However, it should be
noted that unlike traditional IDS sensors which extract data from passive sources such as audit logs,
our sensors are directly integrated inside the process and generate signals as the process executes.

2.1 Generic Protocol Monitoring Framework

Figure 3 shows the basic architecture of our system, which we describe more fully in the remainder
of this section. We propose a generic protocol monitoring framework that can be configured as a
host-based intrusion detection system or as a central protocol monitor for all hosts on a network,
moving data collection and analysis off the hosts to minimize the performance impact, as illustrated
in Figure 2.1. Our framework consists of three main components: the protocol monitor, pluggable

protocol behavior profiles, and monitor stubs. We now briefly describe each of these components.

2.1.1 The Protocol Monitor

The protocol monitor is primarily responsible for collecting and analyzing the protocol state transi-

tion notifications sent by the stubs and detecting anomalies in the protocol behavior. The anomalies
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Figure 2.1: Generic Protocol Monitoring Framework

are detected by building a short-term profile of the protocol usage and comparing it with the normal
behavior profile built during the learning phase. We show in section 4 that most of the attacks
that are within the scope of our system are detected by monitoring the state change notifications.
The protocol monitor can be started to operate in three modes: learn, detect, and prevent, which
are described next.

Learn mode. In the learn mode, the protocol monitor creates normal behavior profiles for
target protocols by taking manually developed protocol state-machine specifications and then ob-
serving training data for a period of time to be able to perform statistical analysis of state transitions
reported by monitor stubs. It is important that the training data reflects the expected usage pat-
tern of the protocol so that the resultant normal behavior profile captures the correct expected
behavior, thus reducing the false positives. However, it should be noted that since we use the

specification-based approach, the scope of the learning phase is limited to statistical analysis of
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legitimate protocol use, rather than learning the legitimate use itself which can cause false alarms
generated by legitimate behavior that is unseen in the training data. Further, generally the use
of the network services, and hence the use of the protocols, is much more during business hours
compared to the use during non-business hours. In order to reflect this variance in the protocol
usage pattern during different times of the day, we divide each 24 hour period into six different
time slots: midnight 00:00:00 to 03:59:59, early morning 04:00:00 to 06:59:59, morning 07:00:00 to
11:59:59, afternoon 12:00:00 to 16:59:59, evening 17:00:00 to 19:59:59, and late evening 20:00:00 to

23:59:59. The statistics collected by the monitor in the learn mode are:

e Maximum number of protocol sessions for each time slot.

e Maximum number of broken protocol sessions for each time slot.

e State transition statistics. These include the average of the number of times each state
transition is taken. The averages are calculated per second, per minute, and per hour to be
able to detect attacks that create sudden and short-term anomalies as well as attacks that

cause slow and relatively long-term anomalies.

At the end of the learning phase the protocol monitor creates a normal behavior profile for each
monitored protocol by recording and averaging the statistics mentioned above.

Detect mode. The normal protocol behavior profiles created in the training phase are sub-
sequently used by the protocol monitor in the detect mode as a protocol usage baseline, both is
terms of legitimate protocol use and expected protocol usage statistics. We define a tolerance limit

for the deviation of protocol behavior as the maximum deviation from the normal behavior that
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is acceptable and is not flagged as anomalous. The protocol monitor creates a short-term protocol
usage profile at regular intervals by observing the data and comparing it with tolerance limits of the
baseline provided by the normal behavior profile to be able to detect specification violations and
statistical anomalies. To be able to successfully execute an undetected attack, the attack must not
create any protocol behavior anomalies and must strictly follow the protocol state transition spec-
ifications. Any attempts that cause specification violations or behavior anomalies are immediately
detectable.

Prevent mode. Intrusion response is a well-studied field and various approaches are currently
in use, with the most common using techniques such as blocking traffic from offending IP addresses
and forcefully resetting connections [33]. However, these techniques could be used by an adversary
to make an IDS block the traffic from non-offending IP addresses causing a denial of service. We
address this issue, as it pertains to responding to protocol misuse, by using the prevent mode
of operation. In the prevent mode, upon detecting a protocol behavior that falls above the upper
tolerance limit, the protocol monitor coordinates with the monitor stub and slows down the protocol
response. This is possible because of our positioning of the monitor stubs inside the protocol process,
which allows the monitor stub to introduce a delay in each protocol state transition as long as the
protocol monitor signals anomalous behavior. This is similar to some of the other approaches, such
as introducing system-call delays in processes that show abnormal behavior [31] and deliberately
slowing the connection from suspected scanner machines [32]. Our embedded stubs force the
protocol behavior to remain within the upper tolerance limit causing the attacks that need several

hundreds of thousands of sessions to be slowed down to the point where they are no longer effective.
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Further, elongating the time needed for the attack to be successful allows for human intervention.
Also, as a supplemental response to the detected attack, alerts generated by the protocol monitor
could be used to invoke other response mechanisms, such as at the router, to stop an attack. Since
the stubs remove the delays once the behavior returns back in the tolerance limit, the protocol is
not completely halted and our mechanism cannot be used by an attacker to cause an indefinite
denial of service. However, it should be noted that the prevent mode introduces increased network
traffic overhead due to the increased communication between the protocol monitor and the monitor
stub, as illustrated in Chapter 3.

Architecture of the Protocol Monitor. The protocol monitor process consists of four threads:
listener, validator, timer, and counter. Figure 2.1 shows the interaction between these threads
and the alerts that they generate. The listener collects the state change notifications generated by
the monitor stubs and inserts them into a notification queue. The validator thread picks up the
notifications from the notification queue and validates them against the protocol specification to
detect any specification violations. It also generates statistics of protocol usage which are later used
by the counter thread to create a behavior profile. Valid state change notifications are inserted in
the timer queue for timing each state. Timing each state allows the protocol monitor to generate
timeout alerts if the protocol state machine is aborted before the final state is reached. Observing
the number and frequency of timeout alerts detects some of the side channel attacks described in
Chapter 3. The counter thread constantly compares the normal behavior profile with the short term
profile, referred to as “Runtime statistics”, that it generates using the state transition statistics,

collected by the validator thread. Significant difference between the state transition statistics in
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the short term profile and the ones in the normal behavior profile are detected as anomalies by the

counter thread.

2.1.2  Pluggable Protocol Behavior Profiles

At the end of the learning phase, protocol behavior profiles are generated for all target protocols.
A behavior profile has a specification component, which is manually developed in terms of protocol
state-machine by studying implementations of the protocol and standard documents like RFCs.
The specification component is complimented by a statistical component, which is built during the
training phase, in which training data is used to learn normal protocol usage statistics for six differ-
ent time periods in a day, with one each for weekdays and weekends. The specification component
characterizes legitimate protocol usage in terms of valid states, start states, final states, and all
valid state transitions. The rationale behind incorporating these two components is that, some of
the attacks cause the protocol to directly violate the protocol specification and are thus detected
immediately by validations performed against the specification component, whereas attacks that
may not generate specification violations but merely are manifested as traffic or usage anomalies
are detected due to the usage baseline provided by the statistical component. It is important that
the training data resembles the use of the protocol in the target environment to ensure increased
precision of behavior profiles. Profiles generated in this way are then loaded in to the protocol
monitor and are used to be able to enforce legitimate and expected protocol usage and to detect
attacks as anomalies.

The following is a sample entry in the profile of OpenSSL for a weekday afternoon:
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Statistics weekday afternoon{
8464 {8496 1 64 3779}
8496 {8512 1 64 3779} {8656 0 0 0}
8512 {8528 1 64 3779}
8528 {8544 1 64 3779}
8544 {8560 1 64 3779}
8560 {8448 1 64 3779}
8448 {8576 1 64 3779} {8640 0 0 0} {3 1 64 3779}
8576 {8592 1 64 3779}
8592 {8608 1 64 3779}
8608 {8640 1 64 3779}
8640 {8656 1 64 3779} {3 0 0 0}
8656 {8672 1 64 3779}

8672 {8448 1 64 3779}

maxSessions=9983

maxBrokenSessions=57

Each line begins with a number of a current state followed by all states reachable from that state
and the statistics on that particular state transition for three different time intervals: 1 second, 1

minute and 1 hour. This enables detection of attacks that create short-term anomalies which might
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not get manifested as an anomaly in relatively long term statistics, as well as attacks that create

anomalies in the long-term statistics.

2.1.3 Monitor Stubs

Stubs provide a generic interface between the protocol process and the protocol monitor and are
integrated into shared libraries of the protocol implementation. Integrating the stubs with the
protocol libraries allows them to capture the protocol activity dynamically, rather than relying
on passive methods such as audit logs, and to monitor encrypted protocol sessions. Monitor stubs
perform a handshake with the protocol monitor to check network availability and to know the mode
in which the protocol monitor is running (learn, detect, or prevent). The stubs send protocol state
change notifications to either the local protocol monitor functioning as a host-based monitoring
system, or to a central protocol monitor for network-wide analysis and to reduce the performance
impact on the host. During the experiments, the process of integrating the stubs with the protocol
libraries required a very minimal change in the protocol implementation files since the state tran-
sitions were clearly and directly implemented in the original libraries, which we conjecture would

be the case with any well-written protocol library.

2.2 Benefits of ProtoMon

e Detection of attacks on cryptographic protocols and application-level protocols embedded in en-
crypted sessions. As a primary contribution of our work, our system is able to detect attacks

on the application protocols that use encryption to provide authentication, key distribution,

22



and other services necessary for secure communication between participating principals. Cur-
rent intrusion detection systems which detect attacks on the application-level protocols pri-
marily analyze the application-level payload in network packets to match patterns of known
attacks. Use of encryption by the application-level protocol makes this analysis infeasible
since the payload is encrypted and can only be decrypted at the application-level after apply-
ing proper decryption operation. We have addressed this issue by positioning our dynamic
analysis mechanism inside the application-level protocol process. Further, application of the
specification-based anomaly detection approach enables detection of known and unknown

attacks and should keep the false positive rate low.

Generic framework. Although we demonstrate the ability of our system to detect attacks on
application-level and cryptographic protocols, the design of our framework is generic, meaning
it could be applied to any arbitrary protocol with clearly defined specifications. As noted
earlier, this will allow our system to act as a central protocol monitor for the entire network
enabling correlation of alerts generated due to behavior deviations in protocols running on

different hosts.

Response ability. Intrusion response systems aim at preventing or minimizing the damage
caused by detected intrusions. Detection systems that are based on analyzing information
from passive sources such as audit logs rely on peripheral response actions such as isolating
the target host or changing network firewall rules to block traffic from offending IP addresses.
However, the response of an application which is under attack does not change to defend

itself. In our approach, due to their positioning inside the protocol process, the monitor stubs
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enable changing the response of the protocol that is being attacked.

o Lightweight. Our system is lightweight meaning it adds minimal overhead to the host that
is running the monitored protocol. The prevent mode introduces increased overhead, as
compared to the detect mode, due to the increased communication between the monitor and

the stub.
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CHAPTER 3

EXPERIMENTAL RESULTS

For evaluation purposes we used attacks against OpenSSL.

3.1 Experimental Setup

We carried out the experiments on a private LAN with no considerable background traffic and
with the configuration shown in Figure 3.1. During the learning phase, normal OpenSSL protocol
usage was simulated by using a four week access log of a real web site. Any instances of attacks
in the access log were removed in order to exclude the behavior of the protocol during the attack.
Statistics collected during the learning phase were then used in the detect phase to demonstrate

the ability of the system to detect attacks not observed during the learning phase.

Nigel Darwin Donnie Eliza
Alerts stub
Attacker https request Protocol https server
generator Monitor )
100 Mbps
Ethernet

Figure 3.1: Experimental setup

3.2 Attack Prevention

We categorize attacks that are within the scope of our system into two general classes: atomic, and

non-atomic. We denote attacks which need to use the protocol once or for very few times to be
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successful as atomic. On the other hand, attacks that are based on using the protocol for a large
number of times are referred to as non-atomic. Non-atomic attacks are preventable in the prevent
mode of the protocol monitor, whereas atomic attacks are only detectable. This follows from the
fact that we use an approach of slowing down the protocol response if the protocol monitor detects
the protocol behavior going beyond the upper tolerance limit. Atomic attacks do not generate this
type of anomaly and hence cannot be prevented by the slow-down mechanism. However, our results
show that this mechanism is effective in considerably elongating the time taken by an ongoing non-
atomic attack to complete. The slow-down-factor can be tuned to a value that practically prevents
the attack from becoming successful. In the following section, we show the results of performing

three specific attacks on OpenSSL.

3.3 Attack Detection

1. Side-channel attacks. Side-channel attacks have been shown to be possible and practical
on cryptographic protocols based on RSA encryption routines [36], [37], [38], [39]. These
attacks deduce the private key, or invert the encryption with the help of information that
is unintentionally leaked by the protocol. In the case of timing attack against OpenSSL
implementations, it takes around 350,000 failed session negotiation attempts to break a 1024-
bit RSA private key [36]. As a general characteristic of these attacks, each failed attempt to
negotiate a session results in aborting the protocol state-machine before the final handshake
state is reached. Our protocol monitor times each state and observes the increased number of

timeouts to be able to detect these attacks. We simulated the timing attack by tweaking the
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OpenSSL client library and using a dummy SSL client application to repeatedly abort the
handshake at a particular state. Figure 3.2 demonstrates the increased number of timeouts
during the time when the attack is in progress. The attack simulation took approximately
6 hours to complete in the detect mode, whereas in the prevent mode, with 1 second delay
introduced in the state transitions after the threshold number of sessions were aborted, the
stub slowed down the protocol and it took an average of 7 seconds per session. As seen,
this considerably elongates the time taken for the attack to be successful. While the original
attack simulation completed all 350,000 probes in approximately 6 hours, the prevent mode

protocol monitor allowed only about 15,420 probes in the first 30 hours.
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Failed session negotiation attempts

Figure 3.2: Detection of Timing Attack on OpenSSL
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2. Rollback Attacks. Wagner and Schneier pointed out possible vulnerabilities in the specification
of SSL version 3 [40], and we specifically demonstrate detection of version rollback and cipher-
suite rollback attacks. SSLv3 is susceptible to a version rollback attack in which the client
hello message sent by the client during session resumption can be intercepted by an intruder
to change the version number to 2, thus forcing the server to downgrade the version used
in the session with that client. If the server finds the session id supplied in the client hello
message in its cache, it assumes resumption of a previous session, but with a lower SSL
version and directly proceeds to the finished message. Further, unlike SSLv3, the finished
message in SSLv2 does not include the version number making this attack undetectable. The
downgrading of the SSL version by the server exposes the server to several vulnerabilities
in SSLv2. To be able to detect this attack, the protocol monitor maintains separate session
caches for SSLv2 and SSLv3 as suggested by Wagner and Schneier. This attack is detected
by simply observing a state transition from the SSL2_ST SEND _SERVER_HELL(QO_A state to
the SSL2_ST_SERVER_START_ENCRYPTION state reported by a monitor stub embedded
in SSLv2 for a session id that was previously registered with the protocol monitor by a stub

in SSLv3.

The cipher-suite rollback attack exploits the fact that the change cipher spec message is ex-
cluded from the calculation of a symmetric MAC on the previous handshake messages, which
is used as an authentication code for the finished message. The attacker can drop the change
cipher spec message causing the server and the client to never change the pending cipher-suite

to the current cipher-suite, potentially disabling encryption and message authentication at
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the record layer. Although the SSLv3 protocol specification documents the change cipher spec
message as an optional message, it is most likely a cipher-suite rollback attack if this message
is excluded from the initial handshake since the initial configuration provides no encryption
or authentication, with the exception of the session resumption scenario. The protocol mon-
itor requires the change cipher spec message during the initial handshake and dropping this
message by the attacker results in a specification violation that is immediately detected. Also,

note that, unlike signature-based systems, the monitor has no prior knowledge of the attack.

3. Buffer overflow and Denial of service attacks. Buffer overflow vulnerabilities that exist in the
implementations of SSL protocol routines [42], [41] could be exploited to execute arbitrary
code on the server. For example, an Apache/mod_ssl worm exploited a buffer overflow during
the SSLv2 handshake process. Although the attacker can gain full control of the server by
executing this arbitrary code, it should be noted that the attacks that fall in this category
most likely result in aborting the state-model of the protocol at an arbitrary state. The
protocol monitor detects this behavior by using the timeout mechanism described earlier.
The timeout alert could then be correlated with the anomaly in protocol statistics reported
to the protocol monitor to detect the denial of service that may be caused by the executed

code.

3.4 Behavior Comparison

Figure 3.3 demonstrates the behavior of OpenSSL during the two operating modes: detect and

prevent.
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Figure 3.3: Protocol behavior comparison
As seen, alerts are generated in both modes when the protocol behavior deviates from the normal
behavior beyond the tolerance limit. However, in the prevent mode, the protocol monitor signals
the monitor stub to insert delays in the protocol state transitions upon detection of significant
deviation, effectively slowing down the protocol and forcing the protocol behavior to be within the
upper tolerance limit of the normal behavior. If the protocol behavior deviates towards the lower

tolerance limit, alerts are generated in both the modes.
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Figure 3.4: Protocol response time variation
Figure 3.4 illustrates the variation in the protocol response time due to the delays introduced
by the stub after the protocol monitor signals that the deviation of the protocol behavior is beyond
the upper tolerance limit. The behavior is sampled every second, every minute and every hour.
Figure 3.3 shows the behavior sampled every minute with the behavior crossing the upper tolerance
limit at the beginning of the fourth minute. As a result the protocol response time plotted in

Figure 3.4 shows the corresponding increase for the period of approximately 90 seconds.

3.5 Performance Overheads

Given that cryptographic computations based on encryption standards such as RSA are complex

and resource intensive, it is desirable that the overhead added by any mechanism that aims at
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detecting intrusions in protocols based on these encryption standards is to the minimum. This
section shows overheads in the performance of the OpenSSL protocol implementation caused by

our detection and prevention mechanism, and measured with our experimental setup of Figure 3.1.

3.5.1 Network Bandwidth

Detect mode | Prevent mode

Network overhead 840 bytes 1162 bytes

per SSL session (14.7%) (20.4%)

Table 3.1: SSL sessions vs. network traffic overhead

The monitor stub sends state transition notifications to the protocol monitor over the network
when they are running on different hosts, resulting in an overhead in the network traffic. Table 3.1
shows the average network traffic overhead over 1000 SSL sessions with average of 2465 bytes of
SSL protocol related data and average of 3243 bytes of application data, all measurements taken
on the wire. For each state transition reported to the protocol monitor by the stub, the actual
UDP payload is only 12 bytes (3.9% overhead), with the rest of the overhead being the Ethernet,
IP, and UDP header information. It is possible to collect the state transitions and pack them in
a single notification in order to reduce this network overhead; however, we have not experimented
with this option. It is also possible to send the state change notifications on a separate network

interface for heavily used servers to reduce overhead on the production network.
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3.5.2 Protocol Response Time

Response time Percentage

per request(miliSec) | slow-down-factor

OpenSSL 385.66 -
Learn mode 404.81 4.9%
Detect mode 406.02 5.2%
Prevent mode 2080.60 439.4%

Table 3.2: Response time comparison

As described in Section 3.1, we used the normal behavior profile of OpenSSL to detect anomalies
in the detect and prevent modes of operation. Table 3.2 shows average response time of the
OpenSSL enabled web server per request after anomalies have been detected. Prevent mode slows
down the protocol response by the factor of approximately 4.4 for the purpose of this experiment.
This slow-down-factor can be tuned to a desired value by adjusting the delays introduced by the
monitor stubs. Consequently, the time taken by any attack that spans across multiple protocol

sessions can be elongated when the protocol monitor is running in the prevent mode.
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3.5.3 Processor

Processor usage time | Percentage
per session (milliSec) | overhead
Standard OpenSSL 22.2 -
Learn mode 25.5 14.8%
Detect mode 25.7 15.7%
Prevent mode 26.3 18.4%

Table 3.3: Processor usage time comparison

When the protocol monitor is used as a host-based detection mechanism it uses the processor
time on the server. Our experiment involving measurements of processor overhead were carried out
by using the protocol monitor as a host-based detection system. We used a host with a Pentium4
2GHz processor to run the protocol and the protocol monitor. Table 3.3 gives a percentage increase
in the processor usage by the protocol process when the protocol monitor is used in learn, detect,

and prevent mode. This overhead can be minimized by moving the protocol monitor process to a

central host to perform a network-wide alert analysis and correlation.
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CHAPTER 4

DISCUSSION

Inspite of the substantial amount of research that has been performed on problems in detecting
intrusions accurately, intrusion detection is still a work in progress. Consequently, relatively recent
paradigms, such as intrusion response, intrusion tolerance, and survivable systems need wider
consideration as mechanisms supplemental to passively detecting intrusions. In this chapter we
consider open research problems and challenges to both intrusion detection in general, and with
respect to the specific approach explored in this thesis.

4.1 Current Intrusion Detection Issues and Challenges

1. Automatic, accurate, comprehensive and faster intrusion response mechanisms. The recently
observed increase in the speed at which the Internet worms are spreading has brought manual
intrusion response mechanisms requiring human intervention to the point that they have
started to become less effective for keeping the damage at the minimum and stopping the
worms from spreading to other networks or hosts. Although, containing such attacks or
worms would need faster and automatic intrusion response schemes, it remains a fact that
further research is needed in order to make these response schemes more reliable and accurate
to prevent the attacker from using such a mechanism against the network or the host that is

being protected.
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2. Feasibility of continued use of current IDS technologies under IPSec/IPv6 environments. We
recommend that the current IDSs should be studied to evaluate the feasibility of their con-
tinued use in the IPSec/IPv6 environments. IP level encryption is being considered as a
mechanism to prevent attacks that are based on mangling IP packets on the network. It
should be noted that given the heterogeneous nature of the attacks, it is unlikely that this
mechanism will be able to address all the attacks, suggesting that the IDSs will still be re-
quired to detect intrusions. However, current IDS technology is mainly based on analyzing
network packets to detect malicious activities. Consequently, such an analysis will become

impossible under IPSec/IPv6 environments because of the use of encryption.

3. Increasing survivability of network applications and services by making them aware of their
behavior. The concept of “Defense in Depth” deals with increasing the reliability and fault
tolerance of a security mechanism by creating multiple layers of heterogeneous security mech-
anisms around a resource that needs to be protected. In the case of a network service, we
recommend that the service should be made aware of its normal behavior in the target envi-
ronment and should be given an ability to act on its own if it detects any abnormal use of the
service. We believe that increasing the survivability of the network services or applications
in such a manner would help in an effort to ensure an uninterrupted deliverance of services,

although with a downgraded performance.
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4.2 Future Work on Embedded IDS Monitors

Although our results indicate that our approach of dynamically learning the normal behavior of a
cryptographic protocol by embedding monitors inside the executing protocol process detects and

prevents attacks on those protocols, there remains a large number of open research issues.

1. Tt is possible to apply more advanced learning techniques and models such as Markov chains
for building comprehensive behavior profiles. Further research is needed in applying such
models to learn transition probabilities in a protocol state machine to enhance the precision
of the normal behavior profile. Adaptive learning strategies could be employed to be able to
continuously modify the normal behavior profile to take into account legitimate and expected

changes in the protocol usage patterns.

2. The high false alarm rate experienced by anomaly-based intrusion detection systems is a
current research topic. We believe that alerts caused by protocols running on various nodes
in the network could be correlated to reduce false alarms generated by a centralized proto-
col monitoring process. This argument is strengthened by the fact that a successful attack
executed by an active attacker often involves compromising various network services on the
network to maximize the damage. Consequently, the protocols used by these network services,
if monitored at a centralized protocol monitor, should cause alerts that could be correlated

for a more comprehensive and correct attack detection.

3. Our approach of responding to the detected anomalies by slowing down the response of

an abnormally behaving protocol slows down all clients connecting to that server until the
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protocol behavior returns within the tolerance limit of its baseline. We are investigating into
a selective response scheme which identifies and slows down the protocol response for only

the clients causing the protocol anomalies.

. As discussed in Chapter 3, our current system is able to prevent non-atomic attacks on the
cryptographic protocols. Further research is needed in order to be able to include the atomic
attacks in the scope of the response mechanism proposed in this thesis. It could be possible
to implement the monitor stub as a wrapper around the protocol process, validating all the
state transitions before passing them on to the protocol process. This should allow immediate
response to atomic attacks; for example, the cipher suite rollback attack could be prevented by
first validating the state transition to detect the dropping of the change cipher spec message

and then aborting the session to prevent the unprotected session from continuing.

. During the experimental evaluation of ProtoMon, we tested its ability to detect and prevent
attacks by generating attack simulation tools and data specific to our requirements in order to
characterize the normal protocol behavior and detect anomalies caused by the attack behavior.
Research work is needed in developing a generic and comprehensive test suite for evaluating
mechanisms aimed at detecting attacks on protocols embedded in encrypted sessions. Such a
test suite would provide a testing baseline making it possible to compare different detection

mechanisms on a generic evaluation criteria.
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4.3 Conclusion

The main issue addressed by this thesis is real-time detection of intrusion attempts in application
level protocols encapsulated inside encrypted sessions. The results shown in this thesis illustrate
that embedding the monitor stubs inside the cryptographic protocol process restricts the avenues
available to the attacker to successfully execute an attack without creating either protocol specifica-
tion violations or protocol usage behavior anomalies, both of which are detectable by our proposed
system, ProtoMon. As another contribution, this thesis demonstrates that slowing down the pro-
tocol response is an effective way to prevent certain class of attacks on cryptographic protocols and

minimize the damage to the system.
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APPENDIX

e In order to integrate the monitor stub with the OpenSSL libraries, we needed to add a small
patch in the OpenSSL implementation. We show the relevant portion of code to illustrate

that the amount of change needed in the OpenSSL implementation is minimal.

File: /ssl/s3_srvr.c
if (s->cert == NULL)

SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_NO_CERTIFICATE_SET);
return(-1);

|// STUB PATCH

|if (is_stub_initialized() == -1) {

| if (initialize_monitor_stub(PROTOID_OPENSSLv3) < 0) {

| fprintf(stderr, "ssl/s3_srvr.c: ssl3_accept(): initlialize_monitor_stub() failed\n");

|
|
|
|
| } |
|
|
|
|

| else
| set_stub_initialized();

|// STUB PATCH ENDS

| // STUB PATCH |
| ids_state_1 = s->state; |
| // STUB PATCH ENDS |

switch(s->state)

{
default:
SSLerr (SSL_F_SSL3_ACCEPT,SSL_R_UNKNOWN_STATE) ;
ret= -1;
goto end;
/* break; */
}

| // STUB PATCH |
| ids_state_2 = s->state;

| if (register_transition(ids_state_1, ids_state_2, PROTOID_OPENSSLv3) < 0){

| |
| |
| |

fprintf(stderr, "ssl/s3_srvr.c: ssl3_accept(): register_transition() failed\n");
T
// STUB PATCH ENDS

if (!s->s3->tmp.reuse_message && !skip)
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if (s->debug)
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