INTELLIGENT MEMORY MANAGEMENT HEURISTICS

Pradeep Panthulu, B.E

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2003

APPROVED:

Paul Tarau, Major Professor
Roy T. Jacob, Committee Member
David Barrett, Committee Member
Rada Mihalcea, Committee Member
Robert Brazile, Program Coordinator
Krishna Kavi, Chair of the Department of Computer Science
Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies
Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance.

The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler’s runtime system.
Copyright 2003

by

Pradeep Panthulu
ACKNOWLEDGEMENTS

I would like to thank all my professors who have helped me in gaining in-depth knowledge of the concepts of Computer Science. I am grateful to my major professor Paul Tarau for guiding me through the course of my study. I would like to thank Nancy Glenn of University of South Carolina, for introducing to me the possibility of the application of statistical methods in my research. I also like to thank all of my committee members David Barrett, Rada Mihalcea, Tom Jacob for their valuable suggestions and support.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii
LIST OF TABLES.. vi
LIST OF FIGURES.. vii
INTRODUCTION ... 1
 1.1 MEMORY MANAGEMENT OVERVIEW ... 1
 1.2 DIRECTED GRAPH MODELS FOR MEMORY MANAGEMENT 5
 1.3 STATISTICAL PROPERTIES OF DIRECTED GRAPHS............................... 8
PROBLEM DESCRIPTION.. 10
 2.1 DYNAMIC MEMEORY MANAGEMENT IN RUNTIME SYSTEMS............ 10
 2.2 STATISTICAL DETECTION OF GARBAGE COLLECTION OPPORTUNITY ... 12
EMPIRICAL EVALUATION.. 15
 3.1 EXPERIMENT 1: ... 15
 3.2 EXPERIMENT 2 .. 25
CONCLUSIONS AND FUTURE WORK ... 34
APPENDIX A.. 35
PSEUDO CODE OF THE ALGORITHM ... 35
APPENDIX B.. 38
GC.PL ... 38

iv
LIST OF TABLES

1.1 SAMPLES OF NODES GENERATED BY GC.PL...9

3.1 ANALYZED VALUES OF β - PARTIAL MARKING.................................17

3.2 OUTPUT OF GC.PL – WITH PARTIAL MARKING.......................................17

3.3 ANALYZED VALUES OF β - WITHOUT REUSING PARTIAL MARKING……26

3.4 OUTPUT OF GC.PL – WITHOUT REUSING PARTIAL MARKING.................26
LIST OF FIGURES

Figure 1.1: Marking Phase of the GC ... 4
Figure 1.2 Graph representation of live data on the heap .. 8
Figure 3.1 Gc.pl Experiment 1; Depth Vs No. of Nodes .. 18
Figure 3.2 Gc.pl Experiment 1; Projected to Total Nodes Vs No. of Nodes 19
Figure 3.3 Gc.pl Result after applying the empirical formula 20
Figure 3.4 Boyer.pl Experiment 1 Depth Vs No. of Nodes 21
Figure 3.5 Boyer.pl Experiment 1 Projected to Total Nodes Vs Number of Nodes .. 22
Figure 3.6 Boyer.pl Result after applying the empirical formula 22
Figure 3.7 Tak.pl Experiment 1 Depth Vs No. of Nodes 23
Figure 3.8 Tak.pl Experiment 1 Projected to Total Nodes Vs No. of Nodes 24
Figure 3.9 Tak.pl Result after applying the empirical formula 25
Figure 3.10 Gc.pl Experiment 2 Depth Vs No. of Nodes 28
Figure 3.11 Gc.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes 29
Figure 3.12 Gc.pl Result after applying the empirical formula 29
Figure 3.13 Boyer.pl Experiment 2 Depth Vs No. of Nodes 30
Figure 3.14 Boyer.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes .. 31
Figure 3.15 Boyer.pl Result after applying the empirical formula 31
Figure 3.16 Tak.pl Experiment 2 Depth Vs No. of Nodes 32
Figure 3.17 Tak.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes 33
Figure 3.18 Tak.pl Result after applying the empirical formula 33
CHAPTER 1

INTRODUCTION

1.1 MEMORY MANAGEMENT OVERVIEW

Memory management is a field of computer science, which is vital for the effective utilization of the computer resources. Memory management can be at various levels between the user program and the memory hardware. Operating systems provide an illusion of more main memory than what is actually present and create a virtual memory, which makes it possible to run many programs simultaneously. Application level memory management deals with the allocation and reclamation of the memory used by a user program. It can be classified into manual memory management and automatic memory management.

Manual memory management is in which programmer explicitly allocates and reclaims the memory after its use. One of the examples for this type of memory management is malloc and free operations in the C language. This type of memory management technique has an advantage of knowing the exact inner workings of the program. The main disadvantage of this technique is that it requires a lot of extra programming to keep track of the liveness information of the objects or variables allocated in the program. This causes a memory overhead and reduces the efficiency of the program.

In automatic memory management, routines are provided by the programming language to recycle the memory which is not reachable from the program variables.
These types of memory managers are also called as garbage collectors. Garbage collectors overcome the memory overhead problem of the manual memory managers and improve the efficiency of a program. One of the examples of this type of memory management is implementation of garbage collectors in Java. Because of the advantages of the automatic memory management, most of the modern runtime systems use different variations of them to improve the performance.

Automatic memory managers can be classified as reference count collectors and tracing collectors. A reference count collector keeps track of the references to a memory block from other memory blocks. Different variations of the reference count collectors like deferred reference collectors make garbage collection procedures efficient. In a simple reference counting algorithm, reference count is maintained for each object, and the count is increased when there is a new reference to the object and decremented if a reference is lost or changed. If the count decreases to zero during the course of the execution of the program, the object is considered to be unreachable and hence reclaimed. One of the major disadvantages is that this technique fails to recycle memory when there are loops between the objects.

Tracing collectors[3] follow the pointers from the program variables (also called root sets), and mark all the reachable memory blocks and the unmarked memory used by the user program as temporary variables is reclaimed. The different types of tracing collectors that are frequently used are Copying collectors, Generational collectors, Incremental counters and Mark and Sweep collectors.
In copying collectors[4] the heap is divided into active and inactive regions. The active region is the location on the heap where all the live objects reside. When the executing program uses up all the memory on the active region of the heap, the program is suspended and the garbage collector is invoked and all the live objects are copied to the inactive region of the heap and all the references to the objects are updated to point to the new memory locations. After all the live objects are copied, the active and inactive regions reverse their roles and all the memory allocated for the objects left over in the active region are recycled. The main advantage of copy collectors is that it avoids the fragmentation problem. Disadvantages of copy collectors include utilization of additional time to relocate the objects from active to inactive region; also the algorithm uses extra memory while relocating the live objects if there are two copies of the same object.

In generational garbage collection, objects that are not reachable are reclaimed based on the life of the objects. This algorithm is based on the assumption that the older the object, the more it will continue to be accessed[9]. Variations of conventional generational collectors are developed which use different heuristics models to predict the longevity of the objects.

Incremental collectors[3] overcome the problem of long pauses during the program execution caused by garbage collection by performing the bookkeeping work in small incremental steps. A mutator is a program that allocates blocks of new memory and/or updates the old references to the objects simultaneously while the garbage collector marks the memory that is reachable. Improved garbage collection performance is achieved by the collective working of the mutator and the collector.
Mark and Sweep algorithm traces out all the objects that are directly or indirectly reachable from the given set of root nodes (local variable on the stack and static variables that refer to the objects) of a program. This phase is called as mark phase. In the next phase the algorithm scans through the heap and reclaims all the objects that are not marked (not reachable). This phase is called as sweep phase.

![Figure 1.1: Marking Phase of the GC](image)

Different steps in the working of the mark and sweep algorithm are explained from the figure 1.1.

Mark and Sweep algorithm proceeds in a recursive manner and marks all the memory blocks that can be reached from the program variables. In the first step of the marking phase, memory blocks 2, 3 and 4 are marked. In the second step, block 5 is marked since it is reachable from block 2; similarly, blocks 7 and 8 are marked. In the third step blocks 6 and 11 are marked since they are reachable from 5. In the next step
block 6 tries to mark block 2, which is already marked; hence nothing happens in this step. When the mark phase terminates, all the blocks that are reachable from the root set are marked, irrespective of loops between the memory blocks. In the sweep phase of the algorithm, all the unmarked memory blocks (9, 10, 12, and 13) are recycled.

One of the drawbacks of this algorithm is that the mark phase has a complexity proportional to that of the live data on the heap. If the heap has a sufficiently dense live data distribution, this algorithm consumes a significant amount of computation power. Moreover this algorithm should be executed without interruptions; otherwise the marked nodes before interruption might not be valid and hence the algorithm should start the whole process of marking from the root set.

In this study I will explore the statistical properties of the directed graphs which describe the live data on the heap, to improve the performance of the traditional garbage collectors.

1.2 DIRECTED GRAPH MODELS FOR MEMORY MANAGEMENT

Application of graphs to describe the physical properties in the real world has yielded spectacular results. For example, as Kumar et al.[8] have shown that power law degree distribution to describe the nodes in World Wide Web gives an insight into the dynamic nature of the connectivity and thus helps in some applications to predict the optimal route for the network packets in the internet. Random graphs are a special case of graphs in which the graphs are built over probability space[5]. A random graph $G(n,p)$ where n is a positive integer and $0 \leq p \leq 1$, is a probability space over the set of the graphs on the set of vertex $\{1, \ldots, n\}$, and is described by
Pr\{e \in G\} = p

with each event being mutually independent [6]. By varying the probability function random graphs can be approximated to emulate different distribution functions. For instance as William Aiello and et al. [7] have shown that the call graphs(“graphs of calls handles by some subset of telephone carriers for a specific time period“) which follow power law degree distribution model can be effectively emulated using the random graphs.

Directed graphs can be used to accurately emulate the pointer connections between the memory blocks on heap. In the heap representation of the variables, different data types are identified by checking the field tags on memory blocks. The data types in the Jinni[14] implementation of heap can be categorized as atoms, variables and compounds. Atoms can be a symbolic constant or an integer. Variables are the data types that point to an atom, other variable or a compound. A compound statement can have different number of arguments and in the representation of the directed graph, it points to each of the parameters. The arguments can be either one of the above three data types. The number of arguments for a compound statement is also called as its arity. Figure 1.2 is the graph generated by the program gc.pl(Appendix B). It is a snap shot of the distribution of the live data over the heap before the sweeping phase of the garbage collector. Table 1.1 is a sample mapping of node numbers to represent the prolog terms of gc.pl program.

The graph is generated by Pajek network generator. The generator takes the input in a specific format and gives a visual output. This tool is very useful in studying
In this thesis I will investigate statistical methods which will help to estimate with a fairly high statistical significance (p-value)\[16\] that the live data density is high – and that garbage collection should be postponed – without visiting a large number of cells during the marking phase.

Correlational analysis is performed on the data to bring out any dependent relationships between the different variables under observation. Experimental analysis is
done on the data by modifying a variable and checking how it influences the behavior of the other variables in the data set. Experimental analysis can be effectively used to study the causal relationship between variables.

Cluster analysis is used in the analysis of random graphs. It is used to establish a classification system based on the output generated by the programs. The groups are assigned accordingly to reflect the total number of nodes marked at a given step, given the number of marked nodes at that step. This allocation will aid in the prediction of the number of live nodes at a given step given the percentage of nodes sampled and the number of marked nodes this percentage yields.

The underlying theory can be explained with the Central Limit Theorem[2], which states that given a distribution with a mean μ and variance σ^2, the sampling distribution of mean approaches a normal distribution with a mean μ and variance $\frac{\sigma^2}{N}$ as the size of the sample N increases. It is observed that the data collected from the programs with multiple runs for statistical analysis has a mean and has a definitive standard deviation from the mean for each level of the directed graph.
CHAPTER 2

PROBLEM DESCRIPTION

Let DG be a directed graph describing the data on the heap, N_{DG} be the set of
nodes in the graph DG, n be the cardinality of N_{DG} and E_{DG} be the set of edges of DG.
Given a subset R of N_{DG} called the roots let C_R be the connected component of DG
generated by following all the paths starting from R.

The memory reference inspired problem can be formulated as follows: determine
the probability that C_R contains not more than k nodes of G, where $k < n$. Clearly, I would
like to solve this problem with a high probability yes/no answer –using a limited
sampling in G – with a computational effort that is significantly smaller than $O(n)$. The
implementation of the heap and the partial marking algorithm is discussed in this chapter.

2.1 DYNAMIC MEMORY MANAGEMENT IN RUNTIME SYSTEMS

On heap overflow (usually detected by catching an exception) the runtime system has
two choices – call the garbage collector or expand the heap as a part of memory
management algorithm. If the live data is sparse- garbage collection is a good idea,
despite of being a relatively costly process. If the live data is dense(and amount of
memory recovered is likely to be small) – doubling the heap size and avoiding the
garbage collection until the ratio of live data/ heap size becomes small enough, can
provide significant time savings.
For memory management techniques to be effective heap expansion and shrinking operations should be efficient. Dynamic arrays are used in the implementation of heap in Jinni runtime system[1], because they provide amortized $O(1)$ complexity data structure. If the heap overflow exception is caught, partial marking algorithm is invoked and based on the predicted values, either heap expansion or garbage collection is done. If the algorithm predicts that there is considerable amount of live data is on the heap, the heap is doubled. Otherwise the heap is completely marked and the sweep phase in the garbage collection algorithm recycles all the unmarked memory.

Jinni runtime system garbage collection procedures are a combination of mark and sweep and copying collection algorithms. The program heap is divided into upper heap and lower heap. Expansion or shrinking of the heap takes place with a factor of 2 i.e. the heap doubles if it runs out of memory or shrinks by half if it has more than 50% of free space. After marking the heap and before the sliding phase is initiated, the algorithm checks for viability of relocating the objects to the upper heap. The upper heap should have enough space to accommodate the marked objects in the lower heap. If it fails, then the heap is expanded, otherwise the algorithm copies each marked cell to the upper heap and forward the links from old memory cells (vars and nonvars) to copied new cells but, variables in new cells still point to old addresses. Before sliding the heap, all the memory pointers are updated to point to the new locations of upper heap. All the choice points and registers of the stack are relocated to the new memory cells.

After the updating the registers, the memory in the trial pointer cells is made to point to an unbound variable at address 0. The heap slides from the upper heap to lower
heap and the relocation table in the lower heap is overwritten and the new reference value of the heap top is updated. By implementing the mark and sweep algorithm with copying and sliding, memory can be dynamically managed with arrays efficiently.

2.2 STATISTICAL DETECTION OF GARBAGE COLLECTION OPPORTUNITY

Memory graphs are generated starting from the root nodes (program variables) and are extended as the nodes reference out to other memory locations. The marking algorithm initiates the marking phase from the root set R. It randomly picks a node from the root set and marks it. In the second step it looks for the references (edges in our directed graph model) going out of the marked root set node. It picks an edge randomly form the edge set E_{DG}, and will only proceed further if the probability factor generated for the edge is less than the probability factor p_i assigned at the beginning of the iteration. Once it succeeds, the algorithm marks the edge as visited($E_{visited}$) and marks the node referenced and the depth information is updated. This method of marking the heap is repeated till all the edges are considered and the marking algorithm reaches the leaves of the graph. The data for our statistical model is generated based on the results of the marking algorithm. The parameters that are considered for this study are number of nodes marked at each depth N_d, the probability factor p_i, the number of edges in the directed graph E_{DG}, and total number of nodes on the heap N_{Total}. For each iteration the probability factor is incremented by 0.1.

$$N_{Total} = \sum N_d + N_{Garbage}$$
There are two variations of marking algorithm; one is in which the previously marked information for lower probability factors is accounted. For example, if the number of nodes marked for a probability factor 0.3 is 18, then for the probability factor for 0.4(say) include all the nodes marked in the lower probability factor iterations(0.1,0.2,0.3) and the new nodes added in the current iteration. In the second variation of the algorithm, previously marked information is completely erased for each iteration and the graph is traversed from the root set with varying probability factors.

One of the important parameters in the directed graph of memory graph is its depth information. Depth of nodes in memory graphs is calculated by following the references from the root set. Let d be the depth of the node k in a particular path traversal of the graph, then $d + 1$ is the depth of the node referenced by k. This process is repeated till the leaves of the graph are reached. Depth information of nodes in the graphs is recorded. This method of marking depth might lead to different depths for different path traversals. In order to overcome the problem of different depth information for the same node, all the depths calculated from different path traversals are stored in a vector. This has an added advantage of finding the indegree[15] for each of the nodes, which is a useful parameter for calculating the connectivity in the graph. If a node is encountered with already marked depth, the second depth is assigned assuming that the node is a leaf, so that no information is lost.

Having different depths to a node create another problem in further traversal from the node, because node k might have depth of d_1 and d_2. To resolve this ambiguity the node referenced by k is allocated a depth of $\min\{d_1,d_2\} + 1$.
The data is generated and tabulated for cluster analysis. The tabulated output of the data generated by gc.pl is shown in the table. The partial marking algorithm’s pseudo code is described in the appendix A. The data collected from the marking of heap is used to evaluate the dependency of probability factor in the detection of the garbage collection opportunity.

To establish the groups, I started by generating a random samples from a set of programs with multiple runs. Gc.pl is used to establish the groups and the clusters are analyzed by boyer.pl(Appendix C) and tak.pl(Appendix D) programs.

One of the obvious ways to decide about the opportunity for garbage collection – is to stop the garbage collection algorithm after the marking phase, provided that the majority of the cells have been marked. However, this has a paradoxical consequence that the algorithm stops after the O(heap size) cost has already been paid –assuming that most cells are marked- a computational effort we would like to avoid in the first place!

Given the probabilistic nature of this estimation process, the partial marking memory management algorithm will eventually perform the garbage collection unconditionally after a number of failed estimates – but the mechanism for delaying it works as an important computation time saving mechanism – as our empirical evaluation will show.
CHAPTER 3

EMPIRICAL EVALUATION

The memory reference graph properties (nodes, depths and edges information) are stored and trial runs are made with varying probability factor p_i and the data is analyzed by clustering. Let N_d be the number of nodes marked at depth d with the probability p_i of the random graph $G(N_i, p_i)$ where $N_i = \sum_{d=1}^{\max d} N_d$.

\[
N_i \subseteq N_{\text{total live}}
\]

\[
N_{\text{total live}} = \sum N_i
\]

where $N_{\text{total live}}$ is the total number of live nodes on the heap. Two sets of experiments are performed to evaluate the distribution of the live data on the heap.

3.1 EXPERIMENT 1:

In this experiment, data is collected by partially marking the live nodes on the heap. Starting from the probability factor of 0.1, the memory graph is traversed and the edges and nodes are marked at different depths of the directed graph. In the next traversal of the heap, the probability factor is incremented by 0.1 and the total process is repeated including the knowledge of the marking from previous iterations. In this experiment the distribution of data in the triangular array format can be represented as follows

\[
X_{11}, X_{12}, \ldots, X_{1n_1}
\]

\[
X_{21}, X_{22}, \ldots, X_{2n_2}
\]

and can be represented in short by the set $S_i = \sum_{d} x_{di}$
Variables are recorded at each depth of the process. The output of the collected nodes is displayed in table 3.2. Based on the data generated by the programs and the clustering analysis of the sets, I propose an empirical formula

\[y = x_i / p_i^{\beta} \]

where \(y \) is the predicted total live nodes on the heap

\(x_i \) is the number of nodes marked at the step \(i \)

\(p_i \) is the probability factor

\(\beta \) is the constant for each of the step \(i \)

to predict the total number of live nodes at each step. Based on the observation of the distribution of the data and projecting it to the total number of nodes at each step \(i \), these values are calibrated. The variation of \(\beta \) is between -0.05 to +0.05 approximately depending on the program. Table 3.1 describes the different values of \(\beta \) for different probability factors.

<table>
<thead>
<tr>
<th>(p_i)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td><=0.1</td>
<td>0.71</td>
</tr>
<tr>
<td><=0.2</td>
<td>0.46</td>
</tr>
<tr>
<td><=0.3</td>
<td>0.28</td>
</tr>
<tr>
<td><=0.4</td>
<td>0.16</td>
</tr>
<tr>
<td><=0.5</td>
<td>0.09</td>
</tr>
<tr>
<td><=0.6</td>
<td>0.06</td>
</tr>
<tr>
<td><=0.7</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 3.1 Values of ‘\(\beta \)’ for EXPERIMENT 1

<table>
<thead>
<tr>
<th>Depth</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>13</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>13</td>
<td>17</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>16</td>
<td>20</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>18</td>
<td>25</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>19</td>
<td>28</td>
<td>36</td>
<td>39</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>24</td>
<td>36</td>
<td>47</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>26</td>
<td>41</td>
<td>53</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>28</td>
<td>43</td>
<td>55</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>29</td>
<td>44</td>
<td>56</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

TOTAL MARKED=60/60 65538

Number of edges: 59

Max depth: 15
GC: words collected=65478, free=65476 gc time=312ms, total GC=726, trail=0, choice=0
Java Memory: total=17580032 free=3744280

Table 3.2 Output Data from gc.pl with partial marking
The analysis of the data generated by partial marking algorithm is done in Matlab[12].

The graphs are generated using the plot function. Matlab is a useful tool for analyzing huge amounts of data. The formulae for the graphs are described in the appendix.

![Graph 3.1 Gc.pl Experiment 1; Depth Vs No. of Nodes](image)

Figure 3.1 Gc.pl Experiment 1; Depth Vs No. of Nodes

The graph 3.1 above is the plot between the number of nodes marked at a depth d (N_d, d) in the directed graph for different probability factors p_i, varying from 0.1 to 1.0. The plot line to the left of the graph is for $p = 0.1$ and the line to the extreme right is for $p_i = 1.0$(all the live nodes).
Figure 3.2 Gc.pl Experiment 1; Projected to Total Nodes Vs No. of Nodes

TOTAL MARKED=60/60 65538
Number of edges: 59
Max depth: 15
GC: words collected=65478, free=65476 gc time=312ms, total GC=726, trail=0, choice=0
Java Memory: total=17580032 free=3744280

Graph 3.2 is the plot between the number of nodes versus projected total number of nodes (N_i, N_j) where $N_i = \sum_{j=0}^{i} N_j$. This plot gives us an idea of the variation of the distribution of data on the heap at same depths.
Figure 3.3 Gc.pl Result after applying the empirical formula

Graph 3.3 is the plot between number of nodes and the projected total number of nodes after the empirical formula has been used to predict all the live nodes for different probability factors varying from \(p =0.1 \) to 1.0. It can be observed from the graph that the plots almost form a straight line except for \(p =0.1 \) but, it also predicts the total nodes on the heap to be 62.
Graph 3.4 is the plot between number of nodes and depth. The data for this graph is generated by boyer.pl. It can be observed that the graph rises exponentially as the depth increases and becomes a straight line as it reaches a depth of 93.

Graph 3.5 shows the plot between number of nodes and the total number of nodes. It can be observed that the graphs are straight lines. Figure 3.6 shows that after applying the empirical formula all the lines merge to form a straight line.
Figure 3.5 Boyer.pl Experiment 1 Projected to Total Nodes Vs Number of Nodes

Figure 3.6 Boyer.pl Result after applying the empirical formula
Graph 3.7 above is the plot between number of nodes and depth. The data for this graph is generated by tak.pl. It can be observed that the graph rises almost linearly as the depth increases.
Graph 3.8 shows the plot between number of nodes and the projected total number of nodes. It can be observed that the graphs are straight lines. Figure 3.9 shows that after applying the empirical formula all the lines almost merge to form a line.

Figure 3.8 Tak.pl Experiment 1 Projected to Total Nodes Vs No. of Nodes
After analyzing all the graphs from three different programs it is observed that distribution of nodes at different depths varies exponentially with the probability factor if the number of nodes is significantly high as in boyer.pl (3464). The data for the graph is chosen from a random run, out of multiple runs of the algorithm.

3.2 EXPERIMENT 2

In this experiment information is stored based on the number of nodes marked at each of the probability factors not using the previously marked information of the nodes. In each iteration, nodes are marked with increasing probability factor without accounting for the previous iterations. From the data gathered it can be observed that the constant β converges to 0.5. The graphs in the subsequent sections are generated by different
programs. Three different prolog programs gc.pl, boyer.pl and tak.pl are used as the input for the jinni to describe the behavior of heap allocations. From the analysis of the data, it can be observed that as the density of the live data increases the accuracy of the empirical formula prediction increases proportionately.

<table>
<thead>
<tr>
<th>p_i</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.1</td>
<td>0.75</td>
</tr>
<tr>
<td>≤ 0.2</td>
<td>0.67</td>
</tr>
<tr>
<td>≤ 0.3</td>
<td>0.61</td>
</tr>
<tr>
<td>≤ 0.4</td>
<td>0.56</td>
</tr>
<tr>
<td>≤ 0.5</td>
<td>0.53</td>
</tr>
<tr>
<td>≤ 0.6</td>
<td>0.50</td>
</tr>
<tr>
<td>≤ 0.7</td>
<td>0.49</td>
</tr>
<tr>
<td>≤ 0.8</td>
<td>0.49</td>
</tr>
<tr>
<td>≤ 0.9</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 3.3 Values of ‘β’ for EXPERIMENT 2

Table 3.4 Output Data from gc.pl with partial marking and not using previously marked information

<table>
<thead>
<tr>
<th>Depth</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
In the table 3.4 above, the totally marked nodes are 60, but the total number of nodes counted are 63 for 100% marking. This is because of the multiple depths for the same node as explained in second chapter. Graph 3.10 is generated by gc.pl without using the information in the previous iterations. The graph is plotted between the depth and the number of nodes. Graph 3.12 is the result after applying the empirical formula.
Figure 3.10 Gc.pl Experiment 2 Depth Vs No. of Nodes

TOTAL MARKED=60/60 65538

Number of edges: 59

Max depth: 15

GC: words collected=65478, free=65476 gc time=313ms, total GC=2608, trail=0, choice=0

Java Memory: total=17829888 free=3994584

runtime = [5118,4644]

global_stack = [10843,54692]

local_stack = [4,0]

trail = [3,1]

code = [20904,11864]

symbols = [1020,0]

htable = [2157,6035]
Figure 3.11 Gc.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes

Figure 3.12 Gc.pl Result after applying the empirical formula
Graph 3.13 is plotted between depth and the number of nodes. In this iteration the number of live nodes on the heap is approximately 17000, more than 25% of the heap. Graph 3.15 is the result after applying empirical formula. It can observed from various runs of the programs that as the number of live nodes increase the empirical formula is more effective in predicting the total number of live nodes.
Figure 3.14 Boyer.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes

Figure 3.15 Boyer.pl Result after applying the empirical formula
Figure 3.16 Tak.pl Experiment 2 Depth Vs No. of Nodes

TOTAL MARKED=387/387 65541

Number of edges: 492

Max depth: 119

GC: words collected=65154, free=65149 gc time=281ms, total GC=2207, trail=0, choice=0
Java Memory: total=19345408 free=5324784

Graphs 3.16, 3.17 and 3.18 are generated by the runs of tak.pl. The empirical formula predictions are within 10% error.
Figure 3.17 Tak.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes

Figure 3.18 Tak.pl Result after applying the empirical formula
CHAPTER 4

CONCLUSIONS AND FUTURE WORK

Statistical techniques when combined with the proposed partial marking algorithm can be used to predict the actual size of the set of live nodes with a reasonable accuracy. Considerable performance gain is achieved by using the predicting formula for different programs. It is observed that the error ranges are from -0.05 to +0.05.

The scope of the future work would include studying of the degree distribution of the nodes in the directed graph and also investigating different properties like connectivity of the heap, existence of the giant component in a sufficiently large memory graphs. Also, interpreting the importance of β approaching 0.5 in experiment 2 as the probability factor reaches 1.0. Monte Carlo method [10] of approximation can be used for effective prediction of the answer to the go/no go question with a fixed error rate. Related work in the study of the connectivity between the heap objects is done by Martin Hirzel et al. [9]
APPENDIX A

PSEUDO CODE OF THE ALGORITHM
void partial_marking() throws SystemException {
 double prob;
 int var1;
 int var2;
 ctr_arr = new int[max_depth+1][10];
 // math.random()<0.1 then the probability is 10%
 // Pick an edge at random
 for(int k =0;k<nEdges;k++){
 prob = Math.random();
 //If the probability of generated random number is less than 0.1
 // Proceed to mark the node
 if(prob<=0.1){
 // if the edge is not marked then
 // determine the depths of the end nodes
 for(int y =1;y<=max_depth;y++)
 if(y == depth_edge[k][3] && (int)depth_edge[k][4] == 0){
 // mark the edge
 depth_edge[k][4] = 1;
 var1 = depth_edge[k][1];
 var2 = depth_edge[k][0];
 // mark the 'to' node and/or 'from' node
 //in the 'nodes' array
 }
 }
 }
}
// increment the ctr_arr if 'to' and/or 'from' are unmarked

// check if 'to' node is marked
if((int)nodes[var1][1]) == 0){
 //If the 'to' node is not marked already
 // Increment the counter at the respective depth of the node
 ++ctr_arr[y][0];
 ++nodes[var1][2];
 // If the node has multiple depths
 if(nodes[var1][2] == Depth[var1].size())
 //mark the 'to' node only after all the depths are exhausted
 nodes[var1][1] = 1;
}

// check if 'from' node is marked
if(nodes[var2][1] == 0){
 // If not marked increment the counter array at the depth of the node
 ++nodes[var2][2];
 ++ctr_arr[y-1][0];
 // check if the node has multiple depths
 if(nodes[var2][2] == Depth[var2].size())
 nodes[var2][1] = 1;
APPENDIX B

GC.PL
% Benchmark gc

go:-go(100000),go1(1000000),go2(100).
go(N):-loop(N),statistics.

loop(0).

loop(N):-N>0,N1 is N-1,make_garbage(N1,_),loop(N1).

make_garbage(X,g(X)).

go1(N):-loop1(N,dummy),statistics.

loop1(0,)._.

loop1(N,X):-N>0,N1 is N-1,make_garbage(X,X1),loop1(N1,X1).

go2(N) :-
 mkfreelist(N,L), ctime(A), (mmc(N,L), fail ; true), ctime(B),
 X is B - A, write(time(X)), nl, fail;
 statistics.

mmc(N,L) :- N > 0,M is N - 1, mmc(M,L), !.

mmc(_,L) :- mkground(L).

mkfreelist(N,L) :- (N = 0 -> L = [] ;NN is N - 1, L = [_|R], mkfreelist(NN,R)).
mkground([]).mkground([a|R]) :- mkground(R).
APPENDIX C

BOYER.PL
go:- statistics(global_stack,[H1, _]), statistics(runtime, _), run_boyer,
 statistics(runtime,[_ ,Y]), statistics(global_stack,[H2, _]), H is H2 - H1,
 write('BMARK_boyer time: '), write(time(Y)+heap(H)), nl.
run_boyer:- wff(Wff), write('rewriting...'),nl, rewrite(Wff,NewWff), write('proving...'),nl,
 tautology(NewWff,[],[]).

wff(implies(and(implies(X,Y), and(implies(Y,Z), and(implies(Z,U), implies(U,W))))),
 implies(X,W)))) :- X = f(plus(plus(a,b),plus(c,zero))),
 Y = f(times(times(a,b),plus(c,d))),
 Z = f(reverse(append(append(a,b),[]))),
 U = equal(plus(a,b),difference(x,y)),
 W = lessp(remainder(a,b),member(a,length(b))).
tautology(Wff,Tlist,Flist) :- truep(Wff,Tlist) -> true
 ;falsep(Wff,Flist) -> fail
 ;Wff = if(If,Then,Else) ->
 (truep(If,Tlist) -> tautology(Then,Tlist,Flist)
 ;falsep(If,Flist) -> tautology(Else,Tlist,Flist)
 ;tautology(Then,[If|Tlist],Flist), % both must hold
tautology(Else,Tlist,[If|Flist]))
).
).

rewrite(Atom,Atom) :- atomic(Atom),!.
rewrite(Old,New) :- functor(Old,F,N), functor(Mid,F,N), rewrite_args(N,Old,Mid),
 (equal(Mid,Next), % should be ->, but is compiler smart
 rewrite(Next,New) % enough to generate cut for -> ?
 ; New=Mid
).
).

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :- N1 is N-1, arg(N,Old,OldArg), arg(N,Mid,MidArg),
 rewrite(OldArg,MidArg), rewrite_args(N1,Old,Mid).
truep(t,_) :- !.
truep(Wff,Tlist) :- member_chk(Wff,Tlist).

falsep(f,_) :- !.

falsep(Wff,Flist) :- member_chk(Wff,Flist).

member_chk(X,[X|_]) :- !.

member_chk(X,[_|T]) :- member_chk(X,T).

equal(and(P,Q), if(P,if(Q,t,f),f)).

equal(append(append(X,Y),Z), append(X,append(Y,Z))).

equal(assignment(X,append(A,B)), if(assignedp(X,A), assignment(X,A), assignment(X,B))).

equal(assume_false(Var,Alist), cons(cons(Var,f),Alist)).

equal(assume_true(Var,Alist), cons(cons(Var,t),Alist)).

equal(boolean(X), or(equal(X,t),equal(X,f))).

equal(car(gopher(X)), if(listp(X), car(flatten(X)), zero)).

equal(compile(Form), reverse(codegen(optimize(Form),[[]]))).

equal(count_list(Z,sort_lp(X,Y)), plus(count_list(Z,X), count_list(Z,Y))).

equal(countps_(L,Pred), countps_loop(L,Pred,zero)).

equal(difference(A,B), C) :- difference(A,B,C).

equal(divides(X,Y), zerop(remainder(Y,X))).

equal(dsort(X), sort2(X)).

equal(eqp(X,Y), equal(fix(X),fix(Y))).

equal(equal(A,B), C) :- eq(A,B,C).

equal(even1(X), if(zerop(X),t,odd(decr(X)))).
equal(exec(append(X,Y),Pds,Envrn), exec(Y,exec(X,Pds,Envrn),Envrn)).
equal(exp(A,B, C) :- exp(A,B,C).
equal(fact_(I),fact_loop(I,1)).
equal(falsify(X),falsify1(normalize(X),[])).
equal(fix(X),if(numberp(X),X,zero)).
equal(flatten(cdr(gopher(X))), if(listp(X),cdr(flatten(X)),cons(zero,[]))).
equal(gcd(A,B,C) :- gcd(A,B,C).
equal(get(J,set(I,Val,Mem)),if(eqp(J,I),Val,get(J,Mem))).
equal(greatereqp(X,Y),not(lessp(X,Y))).
equal(greatereqpr(X,Y),not(lessp(X,Y))).
equal(greaterp(X,Y), lessp(Y,X)).
equal(if(if(A,B,C),D,E),if(A,if(B,D,E),if(C,D,E))).
equal(iff(X,Y),and(implies(X,Y),implies(Y,X))).
equal(implies(P,Q),if(P,if(Q,t,f),t)).
equal(last(append(A,B)), if(listp(B),last(B), if(listp(A),cons(car(last(A))),B))).
equal(length(A),B) :- mylength(A,B).
equal(lesseqp(X,Y),not(lessp(Y,X))).
equal(lessp(A,B,C) :- lessp(A,B,C).
equal(listp(gopher(X)), listp(X)).
equal(mc_flatten(X,Y),append(flatten(X),Y)).
equal(meaning(A,B, C) :- meaning(A,B,C).
equal(member_chk(A,B), C) :- mymember(A,B,C).
equal(not(P), if(P,f,t)).
equal(nth(A,B), C) :- nth(A,B,C).
equal(numberp(greatest_factor(X,Y)), not(and(or(zerop(Y),equal(Y,1)),
not(numberp(X))))).
equal(or(P,Q),if(P,t,if(Q,t,f),f)).
equal(plus(A,B), C) :- plus(A,B,C).
equal(power_eval(A,B), C) :- power_eval(A,B,C).
equal(prime(X), and(not(zerop(X)), and(not(equal(X,add1(zero))),
prime1(X,decr(X))))).
equal(prime_list(append(X,Y)), and(prime_list(X),prime_list(Y))) .
equal(quotient(A,B), C) :- quotient(A,B,C).
equal(remainder(A,B), C) :- remainder(A,B,C).
equal(reverse(X), reverse_loop(X,[])).
equal(reverse(append(A,B)), append(reverse(B),reverse(A))).
equal(reverse_loop(A,B), C) :- reverse_loop(A,B,C).
equal(samefringe(X,Y), equal(flatten(X),flatten(Y))).
equal(sigma(zero,I), quotient(times(I,add1(I)),2)).
equal(sort2(delete(X,L)), delete(X,sort2(L))).
equal(tautology_checker(X), tautologyp(normalize(X),[])).
equal(times(A,B), C) :- times(A,B,C).
equal(times_list(append(X,Y)), times(times_list(X),times_list(Y))).
equal(value(normalize(X),A), value(X, A)).
equal(zerop(X), or(equal(X,zero),not(numberp(X)))).

difference(X, X, zero) :- !.
difference(plus(X,Y), X, fix(Y)) :- !.
difference(plus(Y,X), X, fix(Y)) :- !.
difference(plus(X,Y), plus(X,Z), difference(Y,Z)) :- !.
difference(plus(B,plus(A,C)), A, plus(B,C)) :- !.
difference(add1(plus(Y,Z)), Z, add1(Y)) :- !.
difference(add1(add1(X)), 2, fix(X)).

eq(plus(A,B), zero, and(zerop(A),zerop(B))) :- !.
eq(plus(A,B), plus(A,C), equal(fix(B),fix(C))) :- !.
eq(zero, difference(X,Y),not(lessp(Y,X))) :- !.
eq(X, difference(X,Y),and(numberp(X), and(or(equal(X,zero), zerop(Y))))) :- !.
eq(times(X,Y), zero, or(zerop(X),zerop(Y))) :- !.
eq(append(A,B), append(A,C), equal(B,C)) :- !.
eq(flatten(X), cons(Y,[[]], and(nlistp(X),equal(X,Y)))) :- !.
eq(greatest_factor(X,Y),zero, and(or(zerop(Y),equal(Y,1)), equal(X,zero))) :- !.
eq(greatest_factor(X, _),1, equal(X,1)) :- !.
eq(Z, times(W,Z), and(numberp(Z), or(equal(Z,zero), equal(W,1)))) :- !.
eq(X, times(X,Y), or(equal(X,zero), and(numberp(X),equal(Y,1)))) :- !.
eq(times(A,B), 1, and(not(equal(A,zero)), and(not(equal(B,zero)), and(numberp(A),
and(and(numberp(B), and(equal(decr(A), zero), equal(decr(B), zero))),)

eq(difference(X, Y), difference(Z, Y), if(lessp(X, Y), not(lessp(Y, Z)), if(lessp(Z, Y),
not(lessp(Y, X)), equal(fix(X), fix(Z)))),)

eq(lessp(X, Y), Z, if(lessp(X, Y), equal(t, Z), equal(f, Z))).

exp(I, plus(J, K), times(exp(I, J), exp(I, K)))

exp(I, times(J, K), exp(exp(I, J), K)).

gcd(X, Y, gcd(Y, X))

gcd(times(X, Z), times(Y, Z), times(Z, gcd(X, Y))).

mylength(reverse(X), length(X)).

mylength(cons(_, cons(_, cons(_, cons(_, cons(_, cons(_, cons(_, cons(_, cons(_, X7)))))))),
plus(6, length(X7))).

lessp(remainder(_, Y), Y, not(zerop(Y)))

lessp(quotient(I, J), I, and(not(zerop(I)), or(zerop(J), not(equal(J, 1))))).

lessp(remainder(X, Y), X, and(not(zerop(Y)), and(not(zerop(X)), not(lessp(X, Y))))).

lessp(plus(X, Y), plus(X, Z), lessp(Y, Z)).

lessp(times(X, Z), times(Y, Z), and(not(zerop(Z)), lessp(X, Y))).

lessp(Y, plus(X, Y), not(zerop(X))).

lessp(length(delete(X, L)), length(L), member(X, L)).
meaning(plus_tree(append(X, Y)), A, plus(meaning(plus_tree(X), A),
 meaning(plus_tree(Y), A))) :- !.
meaning(plus_tree(plus_fringe(X)), A, fix(meaning(X, A))) :- !.
meaning(plus_tree(delete(X, Y)), A, if(member(X, Y), difference(meaning(plus_tree(Y), A),
 meaning(X, A)), meaning(plus_tree(Y), A))).

mymember(X, append(A, B), or(member(X, A), member(X, B))) :- !.
mymember(X, reverse(Y), member(X, Y)) :- !.
mymember(A, intersect(B, C), and(member(A, B), member(A, C))).

nth(zero, _, zero).
nth([], I, if(zerop(I), [], zero)).
nth(append(A, B), I, append(nth(A, I), nth(B, difference(I, length(A))))).

plus(plus(X, Y), Z, plus(X, plus(Y, Z))) :- !.
plus(remainder(X, Y), times(Y, quotient(X, Y)), fix(X)) :- !.
plus(X, add1(Y), if(numberp(Y), add1(plus(X, Y)), add1(X))).

power_eval(big_plus1(L, I, Base), Base,
 plus(power_eval(L, Base), I)) :- !.
power_eval(power_rep(I, Base), Base, fix(I)) :- !.
power_eval(big_plus(X,Y,I,Base),Base, plus(I,plus(power_eval(X,Base),
 power_eval(Y,Base)))) :- !.

power_eval(big_plus(power_rep(I,Base), power_rep(J,Base), zero, Base),
 Base, plus(I,J)).

quotient(plus(X,plus(X,Y)),2,plus(X,quotient(Y,2))).

quotient(times(Y,X),Y,if(zerop(Y),zero,fix(X))).

remainder(_, 1,zero) :- !.

remainder(X, X,zero) :- !.

remainder(times(_,Z),Z,zero) :- !.

remainder(times(Y,_),Y,zero).

reverse_loop(X,Y, append(reverse(X),Y)) :- !.

reverse_loop(X,[], reverse(X)).

times(X, plus(Y,Z), plus(times(X,Y),times(X,Z))) :- !.

times(times(X,Y),Z, times(X,times(Y,Z))) :- !.

times(X, difference(C,W),difference(times(C,X),times(W,X))) :- !.

times(X, add1(Y), if(numberp(Y), plus(X,times(X,Y)), fix(X))).
APPENDIX D

TAK.PL
% tak benchmark
% generated: 17 November 1989
% option(s): SOURCE_TRANSFORM_1
%
% tak
% % Evan Tick (from Lisp version by R. P. Gabriel)
% % (almost) Takeuchi function (recursive arithmetic)

tak(X,Y,Z,A) :- X =< Y, !, Z = A.

operator(X,Y,Z,A) :-

 X1 is X - 1,
 Y1 is Y - 1,
 Z1 is Z - 1,

 tak(X1,Y,Z,A1),
 tak(Y1,Z,X,A2),
 tak(Z1,X,Y,A3),
 tak(A1,A2,A3,A).

go :-
 statistics(runtime, _),
 tak(24,16,8,X),
 statistics(runtime, [_, T]), statistics,
 write([time=T, tak=X]), nl.
APPENDIX E

INPUT FILE TO PAJEK GENERATOR “INPUT.NET”
*Vertices 59

58 "statistics(go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))"

59 "go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))"

55 go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))

57 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))

52 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))

54 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true))

48 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no = no,true))

51 or(((no = yes) , !(0) , do_body(true)),no = no,true)

28 or(((no = yes) , !(0) , do_body(true)),no = no,true)

31 true

30 no = no

25 no = no

27 no

26 no
13 no
29 ((no = yes) , !(0) , do_body(true))
22 ((no = yes) , !(0) , do_body(true))
24 !(0) , do_body(true))
19 !(0) , do_body(true))
21 do_body(true)
17 do_body(true)
18 true
20 !(0)
15 !(0)
16 0
23 no = yes
12 no = yes
14 yes
50 no = no
45 no = no
47 no
46 no
33 no
49 ((no = yes) , !(0) , do_body(true))
42 ((no = yes) , !(0) , do_body(true))
44 !(0) , do_body(true))
39 (!0, do_body(true))
41 do_body(true)
37 do_body(true)
38 true
40 !(0)
35 !(0)
36 0
43 no = yes
32 no = yes
34 yes
53 10000
56 1000000
1 'answer'(topcall(go))
5 'answer'(topcall(go))
6 topcall(go)
7 topcall(go)
8 go
2 ('answer'(topcall(go)) :- topcall(go))
4 topcall(go)
9 topcall(go)
10 go
3 'answer'(topcall(go))
*Edges

3 5
9 10
4 9
2 4
2 3
7 8
6 7
5 6
1 5
32 34
32 33
43 32
35 36
40 35
37 38
41 37
39 41
39 40
44 39
42 44
42 43
Partial Marking

<table>
<thead>
<tr>
<th>Plot Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot(x1/(0.1)^0.71,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x2/(0.2)^0.46,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x3/(0.3)^0.28,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x4/(0.4)^0.16,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x5/(0.5)^0.09,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x6/(0.6)^0.06,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x7/(0.7)^0.03,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x8/(0.8)^0.02,y,'-',y,y,'-')</td>
</tr>
<tr>
<td>plot(x9/(0.9)^0.01,y,'-',y,y,'-')</td>
</tr>
</tbody>
</table>

i) plot(x1/(0.1)^0.71,y,'-',x2/(0.2)^0.46,y,'-',x3/(0.3)^0.28,y,'-',x4/(0.4)^0.16,y,'-',x5/(0.5)^0.09,y,'-',x6/(0.6)^0.06,y,'-',x7/(0.7)^0.03,y,'-',x8/(0.8)^0.02,y,'-',x9/(0.9)^0.01,y,'-',y,y,'-')

ii) plot(x1,y,'-',x2,y,'-',x3,y,'-',x4,y,'-',x5,y,'-',x6,y,'-',x7,y,'-',x8,y,'-',x9,y,'-',y,y,'-')
Without using previous Partial Markings

<table>
<thead>
<tr>
<th>x / (0.1)</th>
<th>y / (0.75)</th>
<th>x1, y, '-'</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot</td>
<td>y</td>
<td>'</td>
</tr>
<tr>
<td>plot</td>
<td>x2</td>
<td>(0.2)</td>
</tr>
<tr>
<td>plot</td>
<td>y</td>
<td>(0.67)</td>
</tr>
<tr>
<td>plot</td>
<td>y</td>
<td>'</td>
</tr>
</tbody>
</table>

plot(x1/(0.1)^0.75,y,'-',x2/(0.2)^0.67,y,'-',x3/(0.3)^0.61,y,'-',x4/(0.4)^0.56,y,'-',x5/(0.5)^0.53,y,'-',x6/(0.6)^0.50,y,'-',x7/(0.7)^0.49,y,'-',x8/(0.8)^0.49,y,'-',x9/(0.9)^0.49,y,'-')
REFERENCE LIST:

[2] Nancy Glenn. Statistical Learning Techniques for intelligent memory management, Department of statistics, University of South Carolina

[12] Information about MATLAB® can be obtained at:

[14] Documentation of Jinni prolog can be obtained from the following link:
