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Automatic memory management is crucial in implementation of runtime systems 

even though it induces a significant computational overhead. In this thesis I explore the 

use of statistical properties of the directed graph describing the set of live data to decide 

between garbage collection and heap expansion in a memory management algorithm 

combining the dynamic array represented heaps with a mark and sweep garbage collector 

to enhance its performance. 

  The sampling method predicting the density and the distribution of useful data is 

implemented as a partial marking algorithm. The algorithm randomly marks the nodes of 

the directed graph representing the live data at different depths with a variable probability 

factor p. Using the information gathered by the partial marking algorithm in the current 

step and the knowledge gathered in the previous iterations, the proposed empirical 

formula predicts with reasonable accuracy the density of live nodes on the heap, to decide 

between garbage collection and heap expansion. The resulting heuristics are tested 

empirically and shown to improve overall execution performance significantly in the 

context of the Jinni Prolog compiler’s runtime system.   
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CHAPTER 1 

INTRODUCTION 

1.1 MEMORY MANAGEMENT OVERVIEW 

Memory management is a field of computer science, which is vital for the 

effective utilization of the computer resources. Memory management can be at various 

levels between the user program and the memory hardware. Operating systems provide 

an illusion of more main memory than what is actually present and create a virtual 

memory, which makes it possible to run many programs simultaneously. Application 

level memory management deals with the allocation and reclamation of the memory used 

by a user program. It can be classified into manual memory management and automatic 

memory management.  

 Manual memory management is in which programmer explicitly allocates and 

reclaims the memory after its use. One of the examples for this type of memory 

management is malloc and free operations in the C language. This type of memory 

management technique has an advantage of knowing the exact inner workings of the 

program. The main disadvantage of this technique is that it requires a lot of extra 

programming to keep track of the liveness information of the objects or variables 

allocated in the program. This causes a memory overhead and reduces the efficiency of 

the program. 

 In automatic memory management, routines are provided by the programming 

language to recycle the memory which is not reachable from the program variables. 
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These types of memory managers are also called as garbage collectors. Garbage 

collectors overcome the memory overhead problem of the manual memory managers and 

improve the efficiency of a program. One of the examples of this type of memory 

management is implementation of garbage collectors in Java.  Because of the advantages 

of the automatic memory management, most of the modern runtime systems use different 

variations of them to improve the performance.  

 Automatic memory managers can be classified as reference count collectors and 

tracing collectors. A reference count collector keeps track of the references to a memory 

block from other memory blocks. Different variations of the reference count collectors 

like deferred reference collectors make garbage collection procedures efficient. In a 

simple reference counting algorithm, reference count is maintained for each object, and 

the count is increased when there is a new reference to the object and decremented if a 

reference is lost or changed. If the count decreases to zero during the course of the 

execution of the program, the object is considered to be unreachable and hence 

reclaimed. One of the major disadvantages is that this technique fails to recycle memory 

when there are loops between the objects.  

Tracing collectors[3] follow the pointers from the program variables (also called 

root sets), and mark all the reachable memory blocks and the unmarked memory used by 

the user program as temporary variables is reclaimed. The different types of tracing 

collectors that are frequently used are Copying collectors, Generational collectors, 

Incremental counters and Mark and Sweep collectors. 

 2



In copying collectors[4] the heap is divided into active and inactive regions. The 

active region is the location on the heap where all the live objects reside. When the 

executing program uses up all the memory on the active region of the heap, the program 

is suspended and the garbage collector is invoked and all the live objects are copied to the 

inactive region of the heap and all the references to the objects are updated to point to the 

new memory locations. After all the live objects are copied, the active and inactive 

regions reverse their roles and all the memory allocated for the objects left over in the 

active region are recycled. The main advantage of copy collectors is that it avoids the 

fragmentation problem. Disadvantages of copy collectors include utilization of additional 

time to relocate the objects from active to inactive region; also the algorithm uses extra 

memory while relocating the live objects if there are two copies of the same object.  

In generational garbage collection, objects that are not reachable are reclaimed 

based on the life of the objects. This algorithm is based on the assumption that the older 

the object, the more it will continue to be accessed[9]. Variations of conventional 

generational collectors are developed which use different heuristics models to predict the 

longevity of the objects. 

Incremental collectors[3] overcome the problem of long pauses during the 

program execution caused by garbage collection by performing the bookkeeping work in 

small incremental steps. A mutator is a program that allocates blocks of new memory 

and/or updates the old references to the objects simultaneously while the garbage 

collector marks the memory that is reachable. Improved garbage collection performance 

is achieved by the collective working of the mutator and the collector. 
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Mark and Sweep algorithm traces out all the objects that are directly or indirectly 

reachable from the given set of root nodes (local variable on the stack and static variables 

that refer to the objects) of a program. This phase is called as mark phase. In the next 

phase the algorithm scans through the heap and reclaims all the objects that are not 

marked (not reachable). This phase is called as sweep phase.  

5 10 

2 6 11 

3 7 12 

 

Figure 1.1: Marking Phase of the GC 

Different steps in the working of the mark and sweep algorithm are explained from the 

figure 1.1. 

Mark and Sweep algorithm proceeds in a recursive manner and marks all the 

memory blocks that can be reached from the program variables.  In the first step of the 

marking phase, memory blocks 2, 3 and 4 are marked. In the second step, block 5 is 

marked since it is reachable from block 2; similarly, blocks 7 and 8 are marked.  In the 

third step blocks 6 and 11 are marked since they are reachable from 5. In the next step 

1 (Root set) 

4 8 13 

9 14 
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block 6 tries to mark block 2, which is already marked; hence nothing happens in this 

step. When the mark phase terminates, all the blocks that are reachable from the root set 

are marked, irrespective of loops between the memory blocks.  In the sweep phase of the 

algorithm, all the unmarked memory blocks (9, 10, 12, and 13) are recycled.  

One of the drawbacks of this algorithm is that the mark phase has a complexity 

proportional to that of the live data on the heap. If the heap has a sufficiently dense live 

data distribution, this algorithm consumes a significant amount of computation power. 

Moreover this algorithm should be executed without interruptions; otherwise the marked 

nodes before interruption might not be valid and hence the algorithm should start the 

whole process of marking from the root set.  

In this study I will explore the statistical properties of the directed graphs which 

describe the live data on the heap, to improve the performance of the traditional garbage 

collectors.  

1.2 DIRECTED GRAPH MODELS FOR MEMORY MANAGEMENT 

Application of graphs to describe the physical properties in the real world has 

yielded spectacular results. For example, as Kumar et al.[8] have shown that power law 

degree distribution to describe the nodes in World Wide Web gives an insight into the 

dynamic nature of the connectivity and thus helps in some applications to predict the 

optimal route for the network packets in the internet. Random graphs are a special case of 

graphs in which the graphs are built over probability space[5]. A random graph G(n,p) 

where n is a positive integer and 0≤p≤1, is a probability space over the set of the graphs 

on the set of vertex{1,…,n},  and is described by  
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Pr[{e} ЄG] = p  

 with each event being mutually independent [6]. By varying the probability function 

random graphs can be approximated to emulate different distribution functions. For 

instance as William Aiello and et al. [7] have shown that the call graphs(“graphs of calls 

handles by some subset of telephone carriers for a specific time period“) which follow 

power law degree distribution model can be effectively emulated using the random 

graphs.   

Directed graphs can be used to accurately emulate the pointer connections 

between the memory blocks on heap. In the heap representation of the variables, different 

data types are identified by checking the field tags on memory blocks. The data types in 

the Jinni[14] implementation of heap can be categorized as atoms, variables and 

compounds. Atoms can be a symbolic constant or an integer. Variables are the data types 

that point to an atom, other variable or a compound. A compound statement can have 

different number of arguments and in the representation of the directed graph, it points to 

each of the parameters. The arguments can be either one of the above three data types. 

The number of arguments for a compound statement is also called as its arity. Figure 1.2 

is the graph generated by the program gc.pl(Appendix B). It is a snap shot of the 

distribution of the live data over the heap before the sweeping phase of the garbage 

collector. Table 1.1 is a sample mapping of node numbers to represent the prolog terms 

of gc.pl program.  

The graph is generated by Pajek network generator. The generator takes the input 

in a specific format and gives a visual output. This tool is very useful in studying 
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distribution of nodes in dense graphs. Complete manual for the usage of Pajek generator 

is available at [11]. 
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Figure 1.2 Graph representation of live data on the heap  

 
 

58 "statistics(go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = 
no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))" 
59 "go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) 
, !(0) , do_body(true)),no = no,true))))" 
55 go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) 
, !(0) , do_body(true)),no = no,true)))) 
57 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , 
do_body(true)),no = no,true))) 
52 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , 
do_body(true)),no = no,true))) 
54 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no 
= no,true)) 
48 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no 
= no,true)) 

51 or(((no = yes) , !(0) , do_body(true)),no = no,true) 

28 or(((no = yes) , !(0) , do_body(true)),no = no,true) 

31 true 

30 no = no 
 

Table 1.1 Sample of Node Numbers and corresponding Prolog terms 

1.3 STATISTICAL PROPERTIES OF DIRECTED GRAPHS 

In this thesis I will investigate statistical methods which will help to estimate with 

a fairly high statistical significance(p-value)[16] that the live data density is high – and 

that garbage collection should be postponed – without visiting a large number of cells 

during the marking phase. 

Correlational analysis is performed on the data to bring out any dependent 

relationships between the different variables under observation. Experimental analysis is 
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done on the data by modifying a variable and checking how it influences the behavior of 

the other variables in the data set. Experimental analysis can be effectively used to study 

the causal relationship between variables.  

Cluster analysis is used in the analysis of random graphs. It is used to establish a 

classification system based on the output generated by the programs. The groups are 

assigned accordingly to reflect the total number of nodes marked at a given step, given 

the number of marked nodes at that step. This allocation will aid in the prediction of the 

number of live nodes at a given step given the percentage of nodes sampled and the 

number of marked nodes this percentage yields.  

 The underlying theory can be explained with the Central Limit Theorem[2], 

which states that given a distribution with a meanµ  and variance , the sampling 

distribution of mean approaches a normal distribution with a mean 

2σ

µ  and variance 

N
2σ as the size of the sample N increases. It is observed that the data collected from the 

programs with multiple runs for statistical analysis has a mean and has a definitive 

standard deviation from the mean for each level of the directed graph.  
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CHAPTER 2 

PROBLEM DESCRIPTION 

Let DG be a directed graph describing the data on the heap, NDG be the set of 

nodes in the graph DG, n be the cardinality of NDG and EDG be the set of edges of DG. 

Given a subset R of NDG called the roots let CR be the connected component of DG 

generated by following all the paths starting from R. 

The memory reference inspired problem can be formulated as follows: determine 

the probability that CR contains not more than k nodes of G, where k< n. Clearly, I would 

like to solve this problem with a high probability yes/no answer –using a limited 

sampling in G – with a computational effort that is significantly smaller than O(n). The 

implementation of the heap and the partial marking algorithm is discussed in this chapter. 

2.1 DYNAMIC MEMEORY MANAGEMENT IN RUNTIME SYSTEMS 

On heap overflow (usually detected by catching an exception) the runtime system has 

two choices – call the garbage collector or expand the heap as a part of memory 

management algorithm.  If the live data is sparse- garbage collection is a good idea, 

despite of being a relatively costly process. If the live data is dense(and amount of 

memory recovered is likely to be small) – doubling the heap size and avoiding the 

garbage collection until the ratio of live data/ heap size becomes small enough, can 

provide significant time savings. 
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For memory management techniques to be effective heap expansion and shrinking 

operations should be efficient. Dynamic arrays are used in the implementation of heap in 

Jinni runtime system[1], because they provide amortized O(1) complexity data structure.  

If the heap overflow exception is caught, partial marking algorithm is invoked and based 

on the predicted values, either heap expansion or garbage collection is done. If the 

algorithm predicts that there is considerable amount of live data is on the heap, the heap 

is doubled. Otherwise the heap is completely marked and the sweep phase in the garbage 

collection algorithm recycles all the unmarked memory.  

 Jinni runtime system garbage collection procedures are a combination of mark 

and sweep and copying collection algorithms. The program heap is divided into upper 

heap and lower heap. Expansion or shrinking of the heap takes place with a factor of 2 

i.e. the heap doubles if it runs out of memory or shrinks by half if it has more than 50% of 

free space.  After marking the heap and before the sliding phase is initiated, the algorithm 

checks for viability of relocating the objects to the upper heap. The upper heap should 

have enough space to accommodate the marked objects in the lower heap. If it fails, then 

the heap is expanded, otherwise the algorithm copies each marked cell to the upper heap 

and forward the links from old memory cells (vars and nonvars) to copied new cells but, 

variables in new cells still point to old addresses. Before sliding the heap, all the memory 

pointers are updated to point to the new locations of upper heap. All the choice points and 

registers of the stack are relocated to the new memory cells. 

 After the updating the registers, the memory in the trial pointer cells is made to 

point to an unbound variable at address 0. The heap slides from the upper heap to lower 
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heap and the relocation table in the lower heap is overwritten and the new reference value 

of the heap top is updated. By implementing the mark and sweep algorithm with copying 

and sliding, memory can be dynamically managed with arrays efficiently. 

2.2 STATISTICAL DETECTION OF GARBAGE COLLECTION OPPORTUNITY 

Memory graphs are generated starting from the root nodes (program variables) 

and are extended as the nodes reference out to other memory locations. The marking 

algorithm initiates the marking phase from the root set R. It randomly picks a node from 

the root set and marks it. In the second step it looks for the references (edges in our 

directed graph model) going out of the marked root set node. It picks an edge randomly 

form the edge set , and will only proceed further if the probability factor generated 

for the edge is less than the probability factor pi assigned at the beginning of the iteration. 

Once it succeeds, the algorithm marks the edge as visited( ) and marks the node 

referenced and the depth information is updated. This method of marking the heap is 

repeated till all the edges are considered and the marking algorithm reaches the leaves of 

the graph. The data for our statistical model is generated based on the results of the 

marking algorithm. The parameters that are considered for this study are number of nodes 

marked at each depth , the probability factor , the number of edges in the directed 

graph , and total number of nodes on the heap . For each iteration the 

probability factor is incremented by 0.1. 

DGE

visitedE

dN ip

DGE TotalN

∑ += GarbagedTotal NNN  
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There are two variations of marking algorithm; one is in which the previously 

marked information for lower probability factors is accounted. For example, if the 

number of nodes marked for a probability factor 0.3 is 18, then for the probability factor 

for 0.4(say) include all the nodes marked in the lower probability factor 

iterations(0.1,0.2,0.3) and the new nodes added in the current iteration. In the second 

variation of the algorithm, previously marked information is completely erased for each 

iteration and the graph is traversed from the root set with varying probability factors. 

One of the important parameters in the directed graph of memory graph is its 

depth information. Depth of nodes in memory graphs is calculated by following the 

references from the root set. Let d be the depth of the node k in a particular path traversal 

of the graph, then  is the depth of the node referenced by k. This process is repeated 

till the leaves of the graph are reached.  Depth information of nodes in the graphs is 

recorded. This method of marking depth might lead to different depths for different path 

traversals. In order to overcome the problem of different depth information for the same 

node, all the depths calculated from different path traversals are stored in a vector. This 

has an added advantage of finding the indegree[15] for each of the nodes, which is a 

useful parameter for calculating the connectivity in the graph. If a node is encountered 

with already marked depth, the second depth is assigned assuming that the node is a leaf, 

so that no information is lost. 

1+d

Having different depths to a node create another problem in further traversal from 

the node, because node k might have depth of d1 and d2. To resolve this ambiguity the 

node referenced by k is allocated a depth of { } 1,min 21 +dd . 
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The data is generated and tabulated for cluster analysis. The tabulated output of 

the data generated by gc.pl is shown in the table. The partial marking algorithm’s pseudo 

code is described in the appendix A. The data collected from the marking of heap is used 

to evaluate the dependency of probability factor in the detection of the garbage collection 

opportunity. 

To establish the groups, I started by generating a random samples from a set of 

programs with multiple runs. Gc.pl is used to establish the groups and the clusters are 

analyzed by boyer.pl(Appendix C) and tak.pl(Appendix D) programs.  

One of the obvious ways to decide about the opportunity for garbage collection – 

is to stop the garbage collection algorithm after the marking phase, provided that the 

majority of the cells have been marked. However, this has a paradoxical consequence that 

the algorithm stops after the O(heapsize) cost has already been paid –assuming that most 

cells are marked- a computational effort we would like to avoid in the first place! 

Given the probabilistic nature of this estimation process, the partial marking 

memory management algorithm will eventually perform the garbage collection 

unconditionally after a number of failed estimates – but the mechanism for delaying it 

works as an important computation time saving mechanism – as our empirical evaluation 

will show. 
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CHAPTER 3 

EMPIRICAL EVALUATION 

The memory reference graph properties(nodes, depths and edges information) are 

stored and trial runs are made with varying probability factor pi and the data is analyzed 

by clustering. Let Nd be the number of nodes marked at depth d with the probability pi of 

ph ( )ii pNG , where dN .  the random gra iN

  

where Ntotallive is the total number of live nodes on the heap. Two sets of 

experim

3.1 EXPERIMENT 1: 

In this experiment, data is collected by partially marking the live nodes on the heap. 

Starting from the probability factor of 0.1, th

    

2

1

22221

11211

n

n

XXX  and can be represented in short by the set 

 ∑
=

=
max

1d

totallivei NN ⊂

 ∑= itotallive NN

ents are performed to evaluate the distribution of the live data on the heap.  

e memory graph is traversed and the edges 

and nodes are marked at different depths of the directed graph. In the next traversal of the 

heap, the probability factor is incremented by 0.1 and the total process is repeated 

including the knowledge of the marking from previous iterations. In this experiment the 

distribution of data in the triangular array format can be represented as follows  

,.....,, XXX

...

,,........., ∑=
d

dii xS  
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Variables are recorded at each depth of the process. The output of the collected nodes  

is displayed in table 3.2. Based on the data generated by the programs and the clustering 

analysis of the sets, I propose an empirical formula  

β
ii pxy =        where y is the predicted total live nodes on the heap 

        xi is the number of nodes marked at the step i 

       pi is the probability factor 

       β is the constant for each of the step i  

to predict the total number of live nodes at each step. Based on the observation of the 

distribution of the data and projecting it to the total number of nodes at each step i, 

these values are calibrated. The variation of β is between -0.05 to +0.05 

approximately depending on the program. Table 3.1 describes the different values of 

β for different probability factors. 

 

pi β 

<=0.1 0.71 

<=0.2 0.46 

<=0.3 0.28 

<=0.4 0.16 

<=0.5 0.09 

<=0.6 0.06 

<=0.7 0.03 
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<=0.8 0.02 

<=0.9 0.01 

 

Table 3.1 Values of ‘β’ for EXPERIMENT 1 

 

Depth 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 0 1 1 4 4 4 4 4 4 4
1 0 3 4 9 9 9 9 9 9 9
2 1 7 8 13 13 13 13 13 13 13
3 2 9 11 17 17 17 17 17 17 17
4 2 9 12 19 19 19 19 19 19 19
5 2 9 13 20 21 21 21 21 21 21
6 2 10 14 21 22 22 22 22 22 22
7 3 13 17 24 25 25 25 25 25 25
8 4 16 20 27 28 28 28 28 28 28
9 5 18 25 33 34 34 35 35 35 35

10 6 19 28 36 39 39 40 40 40 40
11 8 22 32 42 46 47 48 48 48 48
12 9 24 36 47 51 52 53 53 53 53
13 9 26 41 53 57 58 59 59 59 59
14 9 28 43 55 59 60 61 61 61 61
15 9 29 44 56 61 62 63 63 63 63

           
TOTAL MARKED=60/60 65538        
           
Number of edges: 59         
           
Max depth: 15          
GC: words collected=65478, free=65476 gc time=312ms, total GC=726, trail=0, choice=0
Java Memory: total=17580032 free=3744280 
     

 

 

Table 3.2 Output Data from gc.pl with partial marking 
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The analysis of the data generated by partial marking algorithm is done in Matlab[12]. 

The graphs are generated using the plot function. Matlab is a useful tool for analyzing 

huge amounts of data. The formulae for the graphs are described in the appendix.  

0 10 20 30 40 50 60 70
0

5

10

15

Number of Nodes 

Depth 

gc.pl, exp1,first iteration 
 

Figure 3.1 Gc.pl Experiment 1; Depth Vs No. of Nodes 

The graph 3.1 above is the plot between the number of nodes marked at a depth d 

 in the directed graph for different probability factors pi, varying from 0.1 to 

1.0. The plot line to the left of the graph is for p = 0.1 and the line to the extreme right 

is for pi = 1.0(all the live nodes).  

),( dNd
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Figure 3.2 Gc.pl Experiment 1; Projected to Total Nodes Vs No. of Nodes 

TOTAL MARKED=60/60 65538         
              
Number of edges: 59           
              
Max depth: 15            
GC: words collected=65478, free=65476 gc time=312ms, total GC=726, trail=0, choice=0 
Java Memory: total=17580032 free=3744280       

 

Graph 3.2 is the plot between the number of nodes versus projected total number of 

nodes where . This plot gives us an idea of the variation of the 

distribution of data on the heap at same depths.  

),( ti NN ∑
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=

=
1

0

i

i
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Figure 3.3 Gc.pl Result after applying the empirical formula 

Graph 3.3 is the plot between number of nodes and the projected total number of 

nodes after the empirical formula has been used to predict all the live nodes for 

different probability factors varying from p =0.1 to 1.0.It can be observed from the 

graph that the plots almost form a straight line except for p =0.1 but, it also predicts 

the total nodes on the heap to be 62. 
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Figure 3.4 Boyer.pl Experiment 1 Depth Vs No. of Nodes 

TOTAL MARKED=3298/65560         
              
Number of edges: 3464          
              
Max depth: 109            
GC: words collected=62262, free=62238 gc time=537ms, total GC=537, trail=7, choice=7 
Java Memory: total=17698816 free=3355592       
 

Graph 3.4 is the plot between number of nodes and depth. The data for this graph is 

generated by boyer.pl. It can be observed that the graph rises exponentially as the depth 

increases and becomes a straight line as it reaches a depth of 93. 

Graph 3.5 shows the plot between number of nodes and the total number of nodes. It can 

be observed that the graphs are straight lines. Figure 3.6 shows that after applying the 

empirical formula all the lines merge to form a straight line. 
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Figure 3.5 Boyer.pl Experiment 1 Projected to Total Nodes Vs Number of Nodes 
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Figure 3.6 Boyer.pl Result after applying the empirical formula 

 22



 

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

Number of Nodes   (tak.pl, Exp1, First Iteration) 

Depth 

 

Figure 3.7 Tak.pl Experiment 1 Depth Vs No. of Nodes 

TOTAL MARKED=363/363 65541         
              
Number of edges: 460           
              
Max depth: 111            
GC: words collected=65178, free=65173 gc time=318ms, total GC=802, trail=0, choice=0 
Java Memory: total=17559552 free=3552528       
 

Graph 3.7 above is the plot between number of nodes and depth. The data for this graph 

is generated by tak.pl. It can be observed that the graph rises almost linearly as the depth 

increases.  
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Graph 3.8 shows the plot between number of nodes and the projected total number of 

nodes. It can be observed that the graphs are straight lines. Figure 3.9 shows that after 

applying the empirical formula all the lines almost merge to form a line. 
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Figure 3.8 Tak.pl Experiment 1 Projected to Total Nodes Vs No. of Nodes 
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Figure 3.9 Tak.pl Result after applying the empirical formula 

 

After analyzing all the graphs from three different programs it is observed that 

distribution of nodes at different depths varies exponentially with the probability factor if 

the number of nodes is significantly high as in boyer.pl (3464). The data for the graph is 

chosen from a random run, out of multiple runs of the algorithm. 

3.2 EXPERIMENT 2 

In this experiment information is stored based on the number of nodes marked at each 

of the probability factors not using the previously marked information of the nodes. In 

each iteration, nodes are marked with increasing probability factor with out accounting 

for the previous iterations. From the data gathered it can be observed that the constant β 

converges to 0.5. The graphs in the subsequent sections are generated by different 
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programs. Three different prolog programs gc.pl, boyer.pl and tak.pl are used as the input 

for the jinni to describe the behavior of heap allocations. From the analysis of the data, it 

can be observed that as the density of the live data increases the accuracy of the empirical 

formula prediction increases proportionately.  

 

pi β 

<=0.1 0.75 

<=0.2 0.67 

<=0.3 0.61 

<=0.4 0.56 

<=0.5 0.53 

<=0.6 0.50 

<=0.7 0.49 

<=0.8 0.49 

<=0.9 0.49 

 

Table 3.3 Values of ‘β’ for EXPERIMENT 2 

 

Table 3.4 Output Data from gc.pl with partial marking and not using previously marked 

information 

Depth 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 0 1 1 1 4 4 3 3 4 4
1 0 4 4 2 8 10 8 8 10 10
2 0 7 6 2 11 12 11 11 13 13
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3 0 8 8 3 15 14 15 15 17 17
4 0 8 9 4 17 16 17 17 19 19
5 0 8 10 6 18 18 18 19 21 21
6 0 9 11 7 19 19 18 20 22 22
7 0 10 14 9 21 22 20 23 25 25
8 0 11 16 12 23 25 22 26 28 28
9 0 12 18 18 27 30 29 32 35 35

10 2 14 21 22 31 34 34 37 39 40
11 5 16 24 27 38 41 41 45 47 48
12 8 17 25 31 43 46 44 49 52 53
13 10 18 26 33 47 50 46 54 57 59
14 10 19 27 33 49 52 48 56 59 61
15 10 19 28 33 51 52 50 58 61 63

           
TOTAL MARKED=60/60 
65538        
           
Number of edges: 59         
           
Max depth:15          
GC: words collected=65478, free=65476 gc time=256ms, total GC=979, trail=0, 
choice=0 
Java Memory: total=17580032 free=3744584      
      

 

In the table 3.4 above, the totally marked nodes are 60, but the total number of nodes 

counted are 63 for 100% marking. This is because of the multiple depths for the same 

node as explained in second chapter. Graph 3.10 is generated by gc.pl with out using the 

information in the previous iterations. The graph is plotted between the depth and the 

number of nodes. Graph 3.12 is the result after applying the empirical formula.  
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Figure 3.10 Gc.pl Experiment 2 Depth Vs No. of Nodes 

TOTAL MARKED=60/60 65538        
             
Number of edges: 59          
             
Max depth: 15           
GC: words collected=65478, free=65476 gc time=313ms, total GC=2608, trail=0, choice=0
Java Memory: total=17829888 free=3994584      
runtime = [5118,4644]          
global_stack = [10843,54692]         
local_stack = [4,0]          
trail = [3,1]            
code = [20904,11864]          
symbols = [1020,0]          
htable = [2157,6035]          
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Figure 3.11 Gc.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes 
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Figure 3.12 Gc.pl Result after applying the empirical formula 
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Figure 3.13 Boyer.pl Experiment 2 Depth Vs No. of Nodes 

TOTAL MARKED=16910/16910 65548        
             
Number of edges: 17157         
             
Max depth: 149           
GC: words collected=48638, free=48626 gc time=420ms, total GC=2784, trail=12, choice=12 
Java Memory: total=17874944 free=2776952       

 

Graph 3.13 is plotted between depth and the number of nodes. In this iteration the 

number of live nodes on the heap is approximately 17000, more than 25% of the 

heap. Graph 3.15 is the result after applying empirical formula. It can observed from 

various runs of the programs that as the number of live nodes increase the empirical 

formula is more effective in predicting the total number of live nodes.   
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Figure 3.14 Boyer.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes 
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Figure 3.15 Boyer.pl Result after applying the empirical formula 
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Figure 3.16 Tak.pl Experiment 2 Depth Vs No. of Nodes 

TOTAL MARKED=387/387 65541         
              
Number of edges: 492           
              
Max depth: 119            
GC: words collected=65154, free=65149 gc time=281ms, total GC=2207, trail=0, choice=0 
Java Memory: total=19345408 free=5324784       
 

Graphs 3.16, 3.17 and 3.18 are generated by the runs of tak.pl. The empirical formula 

predictions are with in 10% error.  
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Figure 3.17 Tak.pl Experiment 2 Projected to Total Nodes Vs No. of Nodes 
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Figure 3.18 Tak.pl Result after applying the empirical formula 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 Statistical techniques when combined with the proposed partial marking 

algorithm can be used to predict the actual size of the set of live nodes with a reasonable 

accuracy. Considerable performance gain is achieved by using the predicting formula for 

different programs. It is observed that the error ranges are from -0.05 to +0.05. 

The scope of the future work would include studying of the degree distribution of 

the nodes in the directed graph and also investigating different properties like 

connectivity of the heap, existence of the giant component in a sufficiently large memory 

graphs. Also, interpreting the importance of β approaching 0.5 in experiment 2 as the 

probability factor reaches 1.0. Monte Carlo method [10] of approximation can be used for 

effective prediction of the answer to the go/no go question with a fixed error rate. Related 

work in the study of the connectivity between the heap objects is done by Martin Hirzel 

et al. [9] 
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APPENDIX A 

PSEUDO CODE OF THE ALGORITHM 
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void partial_marking() throws SystemException { 

        double prob; 

        int var1; 

        int var2; 

        ctr_arr= new int[max_depth+1][10]; 

        // math.random()<0.1 then the probability is 10% 

       // Pick an edge at random 

        for(int k =0;k<nEdges;k++){ 

             prob = Math.random(); 

      //If the probability of generated random number is less than 0.1 

      // Proceed to mark the node 

            if(prob<=0.1){ 

                // if the edge is not marked then 

     // determine the depths of the end nodes 

                for(int y = 1;y<=max_depth;y++) 

                    if( y == depth_edge[k][3] && (int)depth_edge[k][4] == 0){ 

                        // mark the edge 

                        depth_edge[k][4] = 1; 

                        var1 = depth_edge[k][1]; 

                        var2 = depth_edge[k][0]; 

// mark the 'to' node and/or 'from' node 

                        //in the 'nodes' array 

 36



                        // increment the ctr_arr if 'to' 

                        //and/or 'from' are unmarked 

 

                        // check if 'to' node is marked 

                        if(((int)nodes[var1][1]) == 0 ){ 

                               //If the ‘to’ node is not marked already 

                            // Increment the counter at the respective depth of the node  

++ctr_arr[y][0]; 

                                ++nodes[var1][2]; 

                           // If the node has multiple depths 

                              if(nodes[var1][2] == Depth[var1].size()) 

                         //mark the ’to’  node only after all the depths are exhausted 

                            nodes[var1][1] = 1; 

                        } 

                        // check if 'from' node is marked 

                        if(nodes[var2][1] == 0){ 

                      // If not marked increment the counter array at the depth of the node 

                            ++nodes[var2][2]; 

                            ++ctr_arr[y-1][0]; 

                      // check if the node has multiple depths 

                            if(nodes[var2][2] == Depth[var2].size()) 

                                nodes[var2][1] = 1; 
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APPENDIX B 

GC.PL 
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% Benchmark gc 

go:-go(100000),go1(1000000),go2(100). 

go(N):-loop(N),statistics. 

loop(0). 

loop(N):-N>0,N1 is N-1,make_garbage(N1,_),loop(N1). 

make_garbage(X,g(X)). 

go1(N):-loop1(N,dummy),statistics. 

loop1(0,_). 

loop1(N,X):-N>0,N1 is N-1,make_garbage(X,X1),loop1(N1,X1). 

go2(N) :- 

        mkfreelist(N,L), ctime(A), (mmc(N,L), fail ; true), ctime(B), 

        X is B - A, write(time(X)), nl, fail;       

        statistics. 

mmc(N,L) :- N > 0,M is N - 1, mmc(M,L), !. 

mmc(_,L) :-  mkground(L).mkfreelist(N,L) :-  

(N = 0 -> L = [] ;NN is N - 1, L = [_|R], mkfreelist(NN,R) ). 

mkground([]).mkground([a|R]) :-  mkground(R). 
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APPENDIX C 

BOYER.PL 
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:-write('use -h8000 -t1000 in BinProlog'),nl. 

/* 

% generated: 20 November 1989 

% option(s):  

%   boyer 

%   Evan Tick (from Lisp version by R. P. Gabriel) 

%   November 1985 

%   prove arithmetic theorem 

*/ 

 

go:-    statistics(global_stack,[H1,_]), statistics(runtime,_), run_boyer,  

        statistics(runtime,[_,Y]),statistics(global_stack,[H2,_]),H is H2 - H1, 

        write('BMARK_boyer time: '), write(time(Y)+heap(H)), nl. 

run_boyer:- wff(Wff), write('rewriting...'),nl, rewrite(Wff,NewWff),  write('proving...'),nl, 

 tautology(NewWff,[],[]). 

wff(implies(and(implies(X,Y),  and(implies(Y,Z),  and(implies(Z,U), implies(U,W)))), 

            implies(X,W))) :-X = f(plus(plus(a,b),plus(c,zero))), 

        Y = f(times(times(a,b),plus(c,d))), 

        Z = f(reverse(append(append(a,b),[]))), 

        U = equal(plus(a,b),difference(x,y)), 

        W = lessp(remainder(a,b),member(a,length(b))). 
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tautology(Wff,Tlist,Flist) :-(truep(Wff,Tlist) -> true 

 ;falsep(Wff,Flist) -> fail 

        ;Wff = if(If,Then,Else) -> 

  (truep(If,Tlist) -> tautology(Then,Tlist,Flist) 

  ;falsep(If,Flist) -> tautology(Else,Tlist,Flist) 

  ;tautology(Then,[If|Tlist],Flist), % both must hold 

   tautology(Else,Tlist,[If|Flist]) 

                ) 

        ),!. 

 

rewrite(Atom,Atom) :-atomic(Atom),!. 

rewrite(Old,New) :-functor(Old,F,N),functor(Mid,F,N), rewrite_args(N,Old,Mid), 

        ( equal(Mid,Next),        % should be ->, but is compiler smart 

          rewrite(Next,New)       % enough to generate cut for -> ? 

        ; New=Mid 

        ),!. 

 

rewrite_args(0,_,_) :- !. 

rewrite_args(N,Old,Mid) :-  N1 is N-1,  arg(N,Old,OldArg),  arg(N,Mid,MidArg), 

        rewrite(OldArg,MidArg),  rewrite_args(N1,Old,Mid). 

 

truep(t,_) :- !. 
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truep(Wff,Tlist) :- member_chk(Wff,Tlist). 

falsep(f,_) :- !. 

falsep(Wff,Flist) :- member_chk(Wff,Flist). 

member_chk(X,[X|_]) :- !. 

member_chk(X,[_|T]) :- member_chk(X,T). 

equal(  and(P,Q),  if(P,if(Q,t,f),f)   ). 

equal(  append(append(X,Y),Z),  append(X,append(Y,Z))  ). 

equal(  assignment(X,append(A,B)),  if(assignedp(X,A), assignment(X,A), 

assignment(X,B))). 

equal(  assume_false(Var,Alist), cons(cons(Var,f),Alist)    ). 

equal(  assume_true(Var,Alist),  cons(cons(Var,t),Alist)     ). 

equal(  boolean(X),  or(equal(X,t),equal(X,f))     ). 

equal(  car(gopher(X)),  if(listp(X),  car(flatten(X)),   zero)  ). 

equal(  compile(Form),  reverse(codegen(optimize(Form),[]))  ). 

equal(  count_list(Z,sort_lp(X,Y)),  plus(count_list(Z,X), count_list(Z,Y)) ). 

equal(  countps_(L,Pred),  countps_loop(L,Pred,zero)  ). 

equal(  difference(A,B), C  ) :- difference(A,B,C). 

equal(  divides(X,Y),   zerop(remainder(Y,X))  ). 

equal(  dsort(X),  sort2(X) ). 

equal(  eqp(X,Y),  equal(fix(X),fix(Y))  ). 

equal(  equal(A,B), C  ) :- eq(A,B,C). 

equal(  even1(X),  if(zerop(X),t,odd(decr(X))) ). 
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equal(  exec(append(X,Y),Pds,Envrn), exec(Y,exec(X,Pds,Envrn),Envrn)  ). 

equal(  exp(A,B), C ) :- exp(A,B,C). 

equal(  fact_(I),fact_loop(I,1)). 

equal(  falsify(X),falsify1(normalize(X),[])). 

equal(  fix(X),if(numberp(X),X,zero)). 

equal(  flatten(cdr(gopher(X))), if(listp(X),cdr(flatten(X)),cons(zero,[]))). 

equal(  gcd(A,B),C) :- gcd(A,B,C). 

equal(  get(J,set(I,Val,Mem)),if(eqp(J,I),Val,get(J,Mem))). 

equal(  greatereqp(X,Y),not(lessp(X,Y)) ). 

equal(  greatereqpr(X,Y),not(lessp(X,Y))). 

equal(  greaterp(X,Y), lessp(Y,X)). 

equal(  if(if(A,B,C),D,E),if(A,if(B,D,E),if(C,D,E))). 

equal(  iff(X,Y),and(implies(X,Y),implies(Y,X))). 

equal(  implies(P,Q),if(P,if(Q,t,f),t)). 

equal(  last(append(A,B)), if(listp(B),last(B), if(listp(A),cons(car(last(A))),B))). 

equal(  length(A),B) :- mylength(A,B). 

equal(        lesseqp(X,Y),not(lessp(Y,X))). 

equal(  lessp(A,B),C) :- lessp(A,B,C). 

equal(  listp(gopher(X)), listp(X)). 

equal(  mc_flatten(X,Y),append(flatten(X),Y)). 

equal(  meaning(A,B),  C ) :- meaning(A,B,C). 

equal(  member_chk(A,B), C ) :- mymember(A,B,C). 
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equal(  not(P), if(P,f,t) ). 

equal(  nth(A,B), C ) :- nth(A,B,C). 

equal(  numberp(greatest_factor(X,Y)), not(and(or(zerop(Y),equal(Y,1)),          

not(numberp(X))))  . 

equal(  or(P,Q),if(P,t,if(Q,t,f),f) ). 

equal(  plus(A,B), C ) :- plus(A,B,C). 

equal(  power_eval(A,B), C ) :- power_eval(A,B,C). 

equal(  prime(X), and(not(zerop(X)), and(not(equal(X,add1(zero))),  

prime1(X,decr(X))))). 

equal(  prime_list(append(X,Y)),  and(prime_list(X),prime_list(Y))  ). 

equal(  quotient(A,B), C) :- quotient(A,B,C). 

equal(  remainder(A,B), C ) :- remainder(A,B,C). 

equal(  reverse_(X), reverse_loop(X,[]) ). 

equal(  reverse(append(A,B)), append(reverse(B),reverse(A)) ). 

equal(  reverse_loop(A,B), C ) :- reverse_loop(A,B,C). 

equal(  samefringe(X,Y), equal(flatten(X),flatten(Y))). 

equal(  sigma(zero,I), quotient(times(I,add1(I)),2) ). 

equal(  sort2(delete(X,L)), delete(X,sort2(L)) ). 

equal(  tautology_checker(X), tautologyp(normalize(X),[]) ). 

equal(  times(A,B), C ) :- times(A,B,C). 

equal(  times_list(append(X,Y)),  times(times_list(X),times_list(Y)) ). 

equal(  value(normalize(X),A),value(X,A) ). 
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equal(  zerop(X), or(equal(X,zero),not(numberp(X)))). 

 

difference(X, X, zero) :- !. 

difference(plus(X,Y), X, fix(Y)) :- !. 

difference(plus(Y,X), X, fix(Y)) :- !. 

difference(plus(X,Y), plus(X,Z), difference(Y,Z)) :- !. 

difference(plus(B,plus(A,C)), A, plus(B,C)) :- !. 

difference(add1(plus(Y,Z)), Z, add1(Y)) :- !. 

difference(add1(add1(X)), 2, fix(X)). 

 

eq(plus(A,B), zero, and(zerop(A),zerop(B))) :- !. 

eq(plus(A,B), plus(A,C), equal(fix(B),fix(C))) :- !. 

eq(zero, difference(X,Y),not(lessp(Y,X))) :- !. 

eq(X, difference(X,Y),and(numberp(X), and(or(equal(X,zero), zerop(Y))))) :- !. 

eq(times(X,Y), zero, or(zerop(X),zerop(Y))) :- !. 

eq(append(A,B), append(A,C), equal(B,C)) :- !. 

eq(flatten(X), cons(Y,[]), and(nlistp(X),equal(X,Y))) :- !. 

eq(greatest_factor(X,Y),zero, and(or(zerop(Y),equal(Y,1)),  equal(X,zero))) :- !. 

eq(greatest_factor(X,_),1, equal(X,1)) :- !. 

eq(Z, times(W,Z), and(numberp(Z), or(equal(Z,zero), equal(W,1)))) :- !. 

eq(X, times(X,Y), or(equal(X,zero),  and(numberp(X),equal(Y,1)))) :- !. 

eq(times(A,B), 1, and(not(equal(A,zero)), and(not(equal(B,zero)), and(numberp(A), 
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 and(numberp(B), and(equal(decr(A),zero),  equal(decr(B),zero))))))) :- !. 

eq(difference(X,Y), difference(Z,Y),if(lessp(X,Y),  not(lessp(Y,Z)),if(lessp(Z,Y), 

 not(lessp(Y,X)), equal(fix(X),fix(Z))))) :- !. 

eq(lessp(X,Y), Z, if(lessp(X,Y), equal(t,Z), equal(f,Z))). 

 

exp(I, plus(J,K), times(exp(I,J),exp(I,K))) :- !. 

exp(I, times(J,K), exp(exp(I,J),K)). 

 

gcd(X, Y, gcd(Y,X)) :- !. 

gcd(times(X,Z), times(Y,Z), times(Z,gcd(X,Y))). 

 

mylength(reverse(X),length(X)). 

mylength(cons(_,cons(_,cons(_,cons(_,cons(_,cons(_,X7)))))), 

         plus(6,length(X7))). 

 

lessp(remainder(_,Y), Y, not(zerop(Y))) :- !. 

lessp(quotient(I,J), I, and(not(zerop(I)), or(zerop(J), not(equal(J,1))))) :- !. 

lessp(remainder(X,Y), X, and(not(zerop(Y)), and(not(zerop(X)), not(lessp(X,Y))))) :- !. 

lessp(plus(X,Y), plus(X,Z), lessp(Y,Z)) :- !. 

lessp(times(X,Z), times(Y,Z), and(not(zerop(Z)), lessp(X,Y))) :- !. 

lessp(Y, plus(X,Y), not(zerop(X))) :- !. 

lessp(length(delete(X,L)), length(L), member(X,L)). 
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meaning(plus_tree(append(X,Y)),A, plus(meaning(plus_tree(X),A), 

             meaning(plus_tree(Y),A))) :- !. 

meaning(plus_tree(plus_fringe(X)),A, fix(meaning(X,A))) :- !. 

meaning(plus_tree(delete(X,Y)),A, if(member(X,Y),difference(meaning(plus_tree(Y),A), 

                      meaning(X,A)), meaning(plus_tree(Y),A))). 

 

mymember(X,append(A,B),or(member(X,A),member(X,B))) :- !. 

mymember(X,reverse(Y),member(X,Y)) :- !. 

mymember(A,intersect(B,C),and(member(A,B),member(A,C))). 

 

nth(zero,_,zero). 

nth([],I,if(zerop(I),[],zero)). 

nth(append(A,B),I,append(nth(A,I),nth(B,difference(I,length(A))))). 

 

plus(plus(X,Y),Z, plus(X,plus(Y,Z))) :- !. 

plus(remainder(X,Y),     times(Y,quotient(X,Y)),     fix(X)) :- !. 

plus(X,add1(Y),     if(numberp(Y),        add1(plus(X,Y)),        add1(X))). 

 

power_eval(big_plus1(L,I,Base),Base, 

           plus(power_eval(L,Base),I)) :- !. 

power_eval(power_rep(I,Base),Base,     fix(I)) :- !. 
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power_eval(big_plus(X,Y,I,Base),Base,      plus(I,plus(power_eval(X,Base), 

                       power_eval(Y,Base)))) :- !. 

power_eval(big_plus(power_rep(I,Base),   power_rep(J,Base),   zero,   Base), 

           Base, plus(I,J)). 

 

quotient(plus(X,plus(X,Y)),2,plus(X,quotient(Y,2))). 

quotient(times(Y,X),Y,if(zerop(Y),zero,fix(X))). 

 

remainder(_,         1,zero) :- !. 

remainder(X,         X,zero) :- !. 

remainder(times(_,Z),Z,zero) :- !. 

remainder(times(Y,_),Y,zero). 

 

reverse_loop(X,Y,  append(reverse(X),Y)) :- !. 

reverse_loop(X,[], reverse(X)          ). 

 

times(X,         plus(Y,Z),      plus(times(X,Y),times(X,Z))      ) :- !. 

times(times(X,Y),Z,              times(X,times(Y,Z))              ) :- !. 

times(X,         difference(C,W),difference(times(C,X),times(W,X))) :- !. 

times(X,         add1(Y),        if(numberp(Y),   plus(X,times(X,Y)), fix(X))  ). 
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% tak benchmark 

% generated: 17 November 1989 

% option(s): SOURCE_TRANSFORM_1 

% 

%   tak 

% 

%   Evan Tick (from Lisp version by R. P. Gabriel) 

% 

%   (almost) Takeuchi function (recursive arithmetic) 

tak(X,Y,Z,A) :- X =< Y, !, Z = A. 

tak(X,Y,Z,A) :- 

        X1 is X - 1,     

        Y1 is Y - 1,     

        Z1 is Z - 1,     

        tak(X1,Y,Z,A1),  

        tak(Y1,Z,X,A2),  

        tak(Z1,X,Y,A3),  

        tak(A1,A2,A3,A). 

go:-    statistics(runtime,_),  

        tak(24,16,8,X), 

        statistics(runtime,[_,T]),statistics,  

        write([time=T,tak=X]), nl. 
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APPENDIX E 

INPUT FILE TO PAJEK GENERATOR “INPUT.NET” 
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*Vertices 59 

58 "statistics(go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = 

no,or(((no = yes) , !(0) , do_body(true)),no = no,true)))))" 

59 "go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) 

, !(0) , do_body(true)),no = no,true))))" 

55 go1(1000000,go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , 

!(0) , do_body(true)),no = no,true)))) 

57 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , 

do_body(true)),no = no,true))) 

52 go2(10000,or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , 

do_body(true)),no = no,true))) 

54 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no 

= no,true)) 

48 or(((no = yes) , !(0) , do_body(true)),no = no,or(((no = yes) , !(0) , do_body(true)),no 

= no,true)) 

51 or(((no = yes) , !(0) , do_body(true)),no = no,true) 

28 or(((no = yes) , !(0) , do_body(true)),no = no,true) 

31 true 

30 no = no 

25 no = no 

27 no 

26 no 
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13 no 

29 ((no = yes) , !(0) , do_body(true)) 

22 ((no = yes) , !(0) , do_body(true)) 

24 (!(0) , do_body(true)) 

19 (!(0) , do_body(true)) 

21 do_body(true) 

17 do_body(true) 

18 true 

20 !(0) 

15 !(0) 

16 0 

23 no = yes 

12 no = yes 

14 yes 

50 no = no 

45 no = no 

47 no 

46 no 

33 no 

49 ((no = yes) , !(0) , do_body(true)) 

42 ((no = yes) , !(0) , do_body(true)) 

44 (!(0) , do_body(true)) 
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39 (!(0) , do_body(true)) 

41 do_body(true) 

37 do_body(true) 

38 true 

40 !(0) 

35 !(0) 

36 0 

43 no = yes 

32 no = yes 

34 yes 

53 10000 

56 1000000 

1 '$answer'(topcall(go)) 

5 '$answer'(topcall(go)) 

6 topcall(go) 

7 topcall(go) 

8 go 

2 ('$answer'(topcall(go)) :- topcall(go)) 

4 topcall(go) 

9 topcall(go) 

10 go 

3 '$answer'(topcall(go)) 
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*Edges 

3 5 

9 10 

4 9 

2 4 

2 3 

7 8 

6 7 

5 6 

1 5 

32 34 

32 33 

43 32 

35 36 

40 35 

37 38 

41 37 

39 41 

39 40 

44 39 

42 44 

42 43 
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49 42 

46 33 

45 47 

45 46 

50 45 

12 14 

12 13 

23 12 

15 16 

20 15 

17 18 

21 17 

19 21 

19 20 

24 19 

22 24 

22 23 

29 22 

26 13 

25 27 

25 26 

30 25 
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28 31 

28 30 

28 29 

51 28 

48 51 

48 50 

48 49 

54 48 

52 54 

52 53 

57 52 

55 57 

55 56 

59 55 

58 59 
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APPENDIX F 

MATLAB FORMULAE 
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Partial Marking 

plot(x1/(0.1)^0.71,y,'-',y,y,'-') 

plot(x2/(0.2)^0.46,y,'-',y,y,'-') 

plot(x3/(0.3)^0.28,y,'-',y,y,'-') 

plot(x4/(0.4)^0.16,y,'-',y,y,'-') 

plot(x5/(0.5)^0.09,y,'-',y,y,'-') 

plot(x6/(0.6)^0.06,y,'-',y,y,'-') 

plot(x7/(0.7)^0.03,y,'-',y,y,'-') 

plot(x8/(0.8)^0.02,y,'-',y,y,'-') 

plot(x9/(0.9)^0.01,y,'-',y,y,'-') 

 

i)plot(x1/(0.1)^0.71,y,'-',x2/(0.2)^0.46,y,'-',x3/(0.3)^0.28,y,'-',x4/(0.4)^0.16,y,'-'  

,x5/(0.5)^0.09,y,'-',x6/(0.6)^0.06,y,'-',x7/(0.7)^0.03,y,'-',x8/(0.8)^0.02,y,'-

',x9/(0.9)^0.01,y,'-',y,y,'-') 

ii) plot(x1,h,'-',x2,h,'-',x3,h,'-',x4,h,'-',x5,h,'-',x6,h,'-',x7,h,'-',x8,h,'-',x9,h,'-',y,h,'-') 

ii) plot(x1,y,'-',x2,y,'-',x3,y,'-',x4,y,'-',x5,y,'-',x6,y,'-',x7,y,'-',x8,y,'-',x9,y,'-',y,y,'-') 
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With out using previous Partial 

Markings 

plot(x1/(0.1)^0.75,y,'-',y,y,'-') 

plot(x2/(0.2)^0.67,y,'-',y,y,'-') 

plot(x3/(0.3)^0.61,y,'-',y,y,'-') 

plot(x4/(0.4)^0.56,y,'-',y,y,'-') 

plot(x5/(0.5)^0.53,y,'-',y,y,'-') 

plot(x6/(0.6)^0.50,y,'-',y,y,'-') 

plot(x7/(0.7)^0.49,y,'-',y,y,'-') 

plot(x8/(0.8)^0.49,y,'-',y,y,'-') 

plot(x9/(0.9)^0.49,y,'-',y,y,'-') 

 

 

plot(x1/(0.1)^0.75,y,'-',x2/(0.2)^0.67,y,'-',x3/(0.3)^0.61,y,'-',x4/(0.4)^0.56,y,'-' 

,x5/(0.5)^0.53,y,'-',x6/(0.6)^0.50,y,'-',x7/(0.7)^0.49,y,'-',x8/(0.8)^0.49,y,'-

',x9/(0.9)^0.49,y,'-',y,y,'-') 
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