Comparative Bioavailability of Dietary and Dissolved Cadmium to Freshwater Aquatic Snails

Use of this thesis is restricted to the UNT Community. Off-campus users must log in to read.

Description

Heavy metal bioaccumulation in aquatic organisms may occur through direct or indirect uptake routes. Research indicates that the significance of uptake route varies with contaminant and organism exposed. The relative importance of different metal sources in aquatic systems was investigated by exposing freshwater snails to dietary or dissolved sources of cadmium. Snails were exposed to control, contaminated food only, contaminated water only, and contaminated food and water treatments. During the 15-day exposure, samples were taken to determine Cd concentration in snail soft tissue, snail shell, algal food, and overlying water. Analyses of snail soft tissue and shells indicate that exposure ... continued below

Creation Information

White, Jessica C. December 2003.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 90 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • White, Jessica C.

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Heavy metal bioaccumulation in aquatic organisms may occur through direct or indirect uptake routes. Research indicates that the significance of uptake route varies with contaminant and organism exposed. The relative importance of different metal sources in aquatic systems was investigated by exposing freshwater snails to dietary or dissolved sources of cadmium. Snails were exposed to control, contaminated food only, contaminated water only, and contaminated food and water treatments. During the 15-day exposure, samples were taken to determine Cd concentration in snail soft tissue, snail shell, algal food, and overlying water. Analyses of snail soft tissue and shells indicate that exposure route significantly affects Cd concentrations in the tissues. In both cases, dissolved Cd is the primary contributor to metal body burden.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2003

Added to The UNT Digital Library

  • Feb. 15, 2008, 3:11 p.m.

Description Last Updated

  • Oct. 30, 2009, 5:44 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 90

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

White, Jessica C. Comparative Bioavailability of Dietary and Dissolved Cadmium to Freshwater Aquatic Snails, thesis, December 2003; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc4351/: accessed April 30, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .