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standard Borel spaces. We concentrate here on the study of the nature of translation equiv-

alence on 2 Zn
. We study these known hyperfinite spaces in order to gain insight into the

approach necessary to classify 2 Z<ω
as either being hyperfinite or not. In Chapter 1, we will

give the basic definitions and examples of spaces used in this work. The general construction

of marker sets is developed in this work. These marker sets are used to develop several

invariant tilings of the equivalence classes of 2 Zn
. Some properties that are equivalent to

hyperfiniteness in the space 2 Z<ω
are also developed. Lastly, we will give the new result that

there is a continuous injective embedding from 2 Z into 2 ω.
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CHAPTER 1

INTRODUCTION

This paper is a contribution to the study of countable Borel equivalence relations on standard

Borel spaces. We concentrate here on the study of the nature of translation equivalence on

2 Zn
. We study these known hyperfinite spaces in order to gain insight into the approach

necessary to classify 2 Z<ω
as either being hyperfinite or not. In Chapter 1, we will give

the basic definitions and examples of spaces used in this work. The general construction

of marker sets is developed in this work. These marker sets are used to develop several

invariant tilings of the equivalence classes of 2 Zn
. Some properties that are equivalent to

hyperfiniteness in the space 2 Z<ω
are also developed. Lastly, we will give the new result that

there is a continuous injective embedding from 2 Z into 2 ω.

1.1 Basic Definitions

Definition 1.1. An equivalence relation on a set X is a collection R of ordered pairs

(x, y) ∈ X2 such that the following hold:

1. Reflexive Property: For all x ∈ X, (x, x) ∈ R [or for all x ∈ X, xRx].

2. Symmetric Property: If (x, y) ∈ R then (y, x) ∈ R [or if xRy then yRx].
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3. Transitive Property: If (x, y), (y, z) ∈ R then (x, z) ∈ R. [or if xRy and yRz then

xRz].

Definition 1.2. A Borel equivalence relation on a topological space X is an equivalence

relation R on X such that R is a Borel subset of X2 equipped with the product topology.

Definition 1.3. For x ∈ X the equivalence class of x for R is

[x]R = {y ∈ X | yRx}.

Definition 1.4. An equivalence relation R on X is a finite equivalence relation if every

x ∈ X the equivalence class [x]R is finite.

Definition 1.5. An equivalence relation R on X is a countable equivalence relation if

every x ∈ X the equivalence class [x]R is countable.

Definition 1.6. A Polish space is a separable completely metrizable topological space.

Definition 1.7. X is a standard Borel space means X is a set equipped with a σ-algebra

which is Borel isomorphic to the σ-algebra of the Borel sets in a Polish space.

Definition 1.8. A Borel equivalence relation E on a standard Borel space X is a hyperfinite

equivalence relation if E = ∪nEn, where (En) is an increasing sequence of finite Borel

equivalence relations(i.e., xEy ⇔ ∃n(∀m ≥ n(xEmy))). Alternatively, a Borel equivalence

relation E on a standard Borel space X is a hyperfinite equivalence relation if E = EZ
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i.e. there is a Borel automorphism T of X with xEy ⇔ ∃n ∈ Z(T n(x) = y). [This is a result

of T. Slaman and J. Steel [6].]

We will now give some examples of hyperfinite equivalence relations. Let X be a Polish

space, U : X → X a Borel countable-to-one function. Define

xE0(U)y ⇔ ∃n(Unx = Uny).

xEt(U)y ⇔ ∃n∃m(Unx = Umy).

Then E0(U) and Et(U) are both hyperfinite (see Dougherty-Jackson-Kechris [2]).

1.2 Translation Equivalence

In this section, we will introduce the main equivalence relations that will be studied through-

out this paper. Let 2 Z = {f | f : Z → {0, 1}} and n ∈ Z. We will define πn : 2 Z → 2 Z as

follows: for each x ∈ 2 Z, (πn(x))(m) = x(m + n). Translation equivalence on 2 Z is defined

as follows:

xET y ⇔ ∃n ∈ Z, πn(x) = y.

Let 2 Zn
= {f | f : Zn → {0, 1}} and (m1, m2, . . . , mn) ∈ Zn. We will define π(m1,m2,...,mn) :

2 Zn → 2 Zn
as follows: for each x ∈ 2 Zn

,

(π(m1,m2,...,mn)(x))(k1, k2, . . . , kn) = x(m1 + k1, m2 + k2, . . . , mn + kn).
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Translation equivalence on 2 Zn
is defined as follows:

xET y ⇔ ∃(m1, m2, . . . , mn) ∈ Z
n, π(m1,m2,...,mn)(x) = y.

Definition 1.9. A translation equivalence class B of 2 Zn
is called a periodic class when

there exists (s1, s2, . . . , sn) ∈ Zn such that for every element x ∈ B, π(s1,s2,...,sn)x = x. Any

equivalence class of 2 Zn
which is not periodic will be called an aperiodic class.

Definition 1.10. For x, y ∈ 2 Zn
such that xET y we will define a distance between x and

y as follows:

dist(x, y) = min{
√

m2
1 + m2

2 + · · ·+ m2
n | π(m1,m2,...,mn)(x) = y}.

Let 2 Z<ω
= {f | f : Z<ω → {0, 1}} for each (zi)i≤k ∈ Z<ω, define π(zi)i≤k

: 2 Z<ω → 2 Z<ω

as follows: for f ∈ 2 Z<ω
let

π(zi)i≤k
(f)((xi)i≤k′) = f((xi + zi)i≤max(k,k′))

where any undefined xi or zi on the right hand side is zero. Translation equivalence on 2 Z<ω
is

defined as follows:

xET y ⇔ ∃(zi)i≤k ∈ Z
<ω(π(zi)i≤k

(x) = y).
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CHAPTER 2

MARKER SETS

In this chapter, we will explain the general construction and purpose of marker sets in 2 Zn
.

In the aperiodic equivalence classes of 2 Zn
, we choose a Borel set of points with certain

geometric properties with respect to each other and the other points which are equivalent

to them. This Borel set is called a marker set in 2 Zn
. These geometric properties usually

involve a given distance, the equivalent marker points will stay apart and that every point

in an aperiodic class has a marker point within a given distance of it. These marker sets

serve as starting points for various constructions of collections of equivalent points in 2 Zn
.

We will first construct a marker set which is Borel and relatively clopen on the free part

of 2 Zn
. It is well known that there exists Borel marker sets. We will show it is also possible

to get the marker sets to be relatively clopen on the free part of 2 Zn
. These marker sets will

be used in various constructions and tilings in the remainder of this work.

Theorem 2.1. There is a Borel Marker Set S in 2 Zn
and distance D where S is relatively

clopen on the aperiodic part of 2 Zn
with the following properties:

1. For each pair x, y ∈ S, dist(x, y) > D.

2. For each aperiodic x ∈ 2 Zn ∃y ∈ S, such that dist(x, y) ≤ D.
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Proof. Fix n ∈ ω. Let W = 2 Zn − ∪{B | B is a periodic class} the aperiodic part of 2 Zn
.

Lemma 2.2. For each distinct pair x, y ∈ W with xET y there exists a large enough m such

that x�[−m, m]n 	= y�[−m, m]n.

Proof. Suppose not. Then the (s1, s2, . . . , sn) ∈ Zn such that π(s1,s2,...,sn)(x) = y also trans-

lates the cube centered at x(0,0,...,0) of width 2m onto the cube centered at y(0,0,...,0) of width

2m since x�[−2m, 2m]n = y�[−2m, 2m]n. If this was true for all m, x would be contained in

a periodic class which is a contradiction.

Lemma 2.3. For each x ∈ W and distance D, there is a large enough N such that if

x�[−N, N ]n = y�[−N, N ]n, x 	= y, yETx then dist(x, y) > D.

Proof. Fix x ∈ W and distance D. For each yET x with dist(x, y) ≤ D, let Ny be such that

x�[−Ny, Ny]
n 	= y�[−Ny, Ny]

n.

Let N ′ = max{Ny | yETx and dist(x, y) ≤ D}.

Let N = N ′ + D.

For each x ∈ W, let N(x) be the least positive integer such that

Nx�[−N(x),N(x)]n

⋂
{y ∈ 2 Zn | yET x and 0 < dist(x, y) ≤ D} = ∅.
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For each x ∈ W, define ϕ(x) to be the binary string of ones and zeros defined by x�[−N(x), N(x)]n.

Let N1 = min{N(x) | x ∈ W} and

ϕ1 = min{ϕ(x) | x ∈ W, N(x) = N1}.

Note if x, y ∈ W such that ϕ(x) = ϕ(y) then x�[−N1, N1]
n = y�[−N1, N1]

n and dist(x, y) >

D. Let x̂1 ∈ W be such that N(x̂) = N1 and ϕ(x̂) = ϕ1. Let M1 = Nx̂�[−N1,N1]n. Now M1

has the property that for any pair x, y ∈ M1 and xET y then dist(x, y) > D.

Now, for the second pass consider N(y) for every y ∈ W2 = W − B(M1, D). Let

N2 = min{N(y) | y ∈ W2} and ϕ2 = min{ϕ(y) | y ∈ W2, N(y) = N2}. Choose x̂2 ∈ W2

such that N(x̂2) = N2, ϕ(x̂2) = ϕ2. Let M2 = (Nx̂2�[−N2,N2]n ∩ W2) ∪ M1. Now, M2 has the

property that for any pair x, y ∈ M2 and xET y then dist(x, y) > D.

Suppose Mk ⊃ Mk−1 ⊃ · · · ⊃ M1 have been selected with the property that for any

pair x, y ∈ Mk and xET y then dist(x, y) > D , consider N(y) for every y ∈ Wk+1 = W −

B(Mk, D) . Let Nk+1 = min{N(y) | y ∈ Wk+1} and ϕk+1 = min{ϕ(y) | y ∈ Wk+1, N(y) =

Nk+1}. choose x̂k+1 ∈ Wk+1 such that N(x̂k+1) = Nk+1, ϕ(x̂k+1) = ϕk+1. Let Mk+1 =

(Nx̂k+1�[−Nk+1,Nk+1]n ∩Wk+1)∪Mk. Now Mk+1 has the property that for any pair x, y ∈ Mk+1

and xET y then dist(x, y) > D. This process can go on only countably many times since for

each Nk there are only finitely many ϕk that are possible and Nk ≤ Nk+1. Let S = ∪Si, S

is an open set.
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Now, for each y ∈ (W − S), Ny�[−N(y),N(y)]n was not a basic open set used in defining S.

Thus, when Si is determined by a neighborhood of width greater than N(y), the procedure

must not be considering N(y) when minimizing over the neighborhood width. This implies

that there exists z ∈ S such that dist(y, z) ≤ D. For some i, z ∈ Si. Let k = 2(dist(y, z)+Ni)

now Ny�[−k,k]n ⊆ (W − S). Thus, S is relatively clopen in W .
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CHAPTER 3

A NEW PROOF THAT 2 Z×Z IS HYPERFINITE

In this section, we will give an original proof that (2 Z×Z, ET ) is hyperfinite. This proof will

yield a countable increasing union of finite equivalence relations which equals (2 Z×Z, ET ). It

was already known that (2 Z×Z, ET ) is hyperfinite by an unpublished result of S. Jackson.

For x, y ∈ 2 Z×Z with xET y, remember dist(x, y) = min{√s2 + t2 | π(s,t)(x) = y} and for

x, y ∈ R2, ρ(x, y) is the normal Euclidean distance between x and y.

Theorem 3.1. Translation equivalence on (2 Z×Z, ET ) is hyperfinite.

Proof. Assuming the marker sets and distances (Sn, Dn) have been chosen with the following

properties:

1. For each pair x, y ∈ Sn, dist(x, y) > Dn.

2. For each x ∈ 2 Z×Z∃y ∈ Sn, such that dist(x, y) ≤ Dn.

3.
(
∑

i≤n Di)2

Dn+1
< 1

2n+1 .

Definition 3.2. A marker sequence is a sequence of equivalent points (xn)n≥0 in 2 Z×Z

with the following properties:

1. ∀n ≥ 1, xn ∈ Sn.
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2. ∀n ≥ 1, dist(xn, xn−1) ≤ 10Dn.

Definition 3.3. Marker sequences (xn), (yn) are said to be equivalent marker sequences

when x0ET y0.

Fix an equivalence class [x] in 2 Z×Z. Let Ψ be the set of all sequences (xn)n≥0 of elements

in [x] such that

∀n ≥ 1, dist(xn, xn−1) ≤ 10Dn.

For x, y ∈ 2 Z×Z with xET y. Let x � y = (s, t) ∈ Z
2 ⊂ R

2 such that π(s,t)(x) = y.

Let B
(xn)n≥0

k = { xk�y
10Dk+1

| y ∈ Sk+1} ⊆ R2.

Claim 3.4. For each sequence (xn)n≥0 ∈ Ψ there is a point α ∈ R2 in the open unit ball and

(nk)k≥0 such that for each ε > 0, ∃m ≥ 0 such that ∀k ≥ m, B
(xn)n≥0
nk ∩ B(α, ε) 	= ∅.

Proof. ∀h ≥ 1, B
(xn)n≥0

h ∩B((0, 0), 1
5
) 	= ∅. Thus, by the compactness of the closed ball there

exists such an α and (nk)k≥o.

Let B(xn) be the collection of all points α satisfying the above claim for (xn)n≥0.

Claim 3.5. (Drift) If (xn), (yn) ∈ Ψ then B(xn) = B(yn).

Proof. Fix ε > 0 and α ∈ B(xn). Choose N1 so large such that

(dist(x0, y0) + 20
∑
i≤N1

Di) < (
ε

4
)10DN1+1.
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Let N2 > N1 such that B
(xn)
N2

∩ B(α, ε/4) 	= ∅. Let N = N2. Thus ∃z ∈ SN+1 such that

ρ(
xN � z

10DN+1

, α) <
ε

4

by the choice of N2 = N . And since N > N1 it follows that the vector translating xN onto

yN is less than ( ε
4
)10DN+1. Thus ρ( xN�z

10DN+1
, yN�z

10DN+1
) < ε

4
and ρ( yN�z

10DN+1
, α) < ε

2
. Therefore

α ∈ B(yn) proving that B(xn) = B(yn).

Fix x ∈ [x], let (xn)n≥0 be such that ∀n, xn = x. Let B([x]) = B(xn). Note claim 3.5

implies B([x]) is well defined.

Claim 3.6. B([x]) is the intersection of an open and closed set.

Proof. B([x]) = B
⋂

B((0, 0), 1) since B([x]) is relatively closed in B((0, 0), 1) using a similar

argument as in Claim 3.5.

For each x ∈ 2 Z×Z in a Borel manner choose α(x) ∈ B([x]) such that α(x) is invariant.

Now for each x ∈ 2 Z×Z define a canonical marker sequence CMS(x) = (xn) in the following

manner. Let x0 = x. For n ≥ 1 choose xn ∈ Sn in a Borel manner satisfying the following:

1. dist(xn−1, xn) < 10Dn.

2. ρ(α(x), xn−1�xn

10Dn
) is a minimum for the points satisfing (1).
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Claim 3.7. This definition of markers CMS(x) produces an embedding from translation

equivalence on 2 Z×Z into the equivalence relation ((2 Z×Z)N, E0).

Proof. Fix x, y ∈ 2 Z×Z such that CSM(x) = (xn), CSM(y) = (yn) are equivalent marker

sequences. Now two equivalent markers in Sn must be no closer than Dn unless they are

equal, thus for s1, s2 ∈ Sn ∩ [x] and for any z ∈ [x], ρ( z�s1

10Dn
, z�s2

10Dn
) must be greater than 1

10
.

Now choose N such that the following hold:

1. ρ(α, xN�xN+1

10DN+1
) < 1

40
.

2. (dist(x0, y0) + 20
∑

i≤N Di) < DN+1

4
.

By (2)

ρ(
xN � xN+1

10DN+1
,
yN � xN+1

10DN+1
) <

1

40
.

Thus ρ(α, yN�xN+1

10DN+1
) < 1

20
and there is no other z ∈ SN+1 which could satisfy

ρ(α,
yN � z

10DN+1
) <

1

20
.

So yN+1 = xN+1. Now by the way the canonical marker sequences are chosen using zn

to choose zn+1, it follows that ∀k ≥ N + 1, yk = xk. Therefore CSM(x) = (xn) and

CSM(y) = (yn) are E0 equivalent. Now suppose that CSM(x) = (xn) and CSM(y) = (yn)

are E0 equivalent. Then for any pair m, n ∈ ω it follows that xnET xm and ynET ym and there

exists some k ∈ ω such that xk = yk. Thus we have that xET y.
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Now since (2 Z×Z, ET ) embeds into ((2 Z×Z)ω, E0) it follows that translation equivalence

on 2 Z×Z is hyperfinite. For a proof of this see [2]. However, one can argue the hyperfiniteness

directly as follows: for each x ∈ S1 there is at most (10D1)
2 equivalent points within 10D1 of

x. And for each x ∈ Sn there is at most (10Dn)2 points in Sn−1 within 10Dn of x. Therefore

there are at most
∑n

i=1(10Di)
2 points that choose x ∈ Sn as the nth term in their canonical

marker sequence. We could define xETny when their canonical marker sequences agree at

the nth term. This shows ET =
⋃∞

i=1 ETi
where each ETi

is a finite equivalence relation, thus

showing ET is hyperfinite.

13



CHAPTER 4

BOREL BOUNDEDNESS AND LATTICE ROUNDING PROPERTIES

In this section we introduce the property Borel Boundedness which holds for all hyperfinite

equivalence relation. Moreover, if (2 Z<ω
, ET ) were Borel Bounded then it would be hyperfi-

nite. Also some rounding properties that holds for all countable equivalence relations.

Definition 4.1. An equivalence relation (X, E) is Borel Bounded means for all Borel

functions F : X → ωω there exists a Borel function G : X → ωω such that

1. for all x ∈ X, F (x) ≤� G(x),

2. for all x, y ∈ X if xEy then G(x) =� G(y).

Note for x, y ∈ ωω, x ≤� y means for all but finitely many n it follows that (x(n) ≤ y(n))

and likewise for other relations.

Claim 4.2. Any Hyperfinite (X, E) is Borel bounded.

Proof. Suppose E = ∪En where the En are finite and increasing equivalence relations, F :

X → ωω is a Borel function.

For each n ∈ ω, define Gn(x) = max{F (y)(n) | yEnx}.

Define G : X → ωω by G(x) = (Gn(x)).

14



For x ∈ X, G(x) ≥ F (x) and if xEy there exists an n such that for all m ≥ n, yEmx so

G(x) =� G(y).

Claim 4.3. If (X, E) is a Borel bounded countable equivalence relation such that we can

represent E as an increasing union E = ∪En and each En is hyperfinite then (X, E) is

hyperfinite.

Proof. Suppose E = ∪nEn, En = ∪mEm
n such that for all m, n Em

n is finite and En ⊆ En+1,

Em
n ⊆ Em+1

n . Also let G = {g1, g2, . . .} be a countable group which generates E. Define

F (x)(n) as follows: consider Bn(x) = {g1x, g2x, . . . , gnx} ⊆ [x]E let F (x)(n) be the least

integer m such that

∀i ≤ n (gixEnx =⇒ gixEm
n x).

Let G : X → ωω be defined by the Borel bounded property of (X, E). Define π : X → Xω

as follows:

π(x)(n) = x̂ ∈ [x]
E

G(x)(n)
n

where x̂ is chosen in an invariant Borel manner. If xEy then there exists an n0 such that

y = gix for some i ≤ n0 and xEn0y. Then for all n ≥ n0 where G(x)(n) = G(y)(n) it follows

that

[x]
E

G(x)(n)
n

= [y]
E

G(x)(n)
n

.

Now π embeds (X, E) into the equivalence relation (Xω, E0) thus (X, E) is hyperfinite. This
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is a result of Dougherty, Jackson and Kechris which appears in [2].

Corollary 4.4. Let (X, E) be an increasing union of hyperfinite equivalence relations. Then

(X, E) is hyperfinite if and only if (X, E) is Borel bounded.

Corollary 4.5. Let X = 2Z<ω
and ET be translation equivalence. If (X, ET ) is Borel

Bounded then (X, ET ) is Hyperfinite.

Proof. Suppose (X, ET ) is Borel bounded. Define (X, En
T ) by xEn

T y if y = π(s1,...,sn)(x) for

some (s1, . . . , sn) ∈ Zn. Now each En
T is hyperfinite and ET = ∪nEn

T . Thus if (X, ET ) is

Borel bounded then it is also hyperfinite.

Definition 4.6. Given Borel equivalence relations (X, E), (Y, F ) we say E is Borel re-

ducible to F , means there is a Borel map φ : X → Y such that xEy ⇔ φ(x)Fφ(y). This is

denoted by E ≤B F .

Lemma 4.7. If E ≤B F and F is Borel bounded then E is Borel bounded.

Proof. Suppose φ : X → Y is a Borel reduction of (X, E) to (Y, F ) and F is Borel bounded.

Also suppose K : X → ωω is a Borel function. Let By = {(x, y) | x ∈ φ−1(y)} and

B = ∪{By | y ∈ image(φ)} there is a uniformization u : image(φ) → X of B since

each section By of B is countable and B is Borel. Also let {g0, g1, g2, . . .} be a countable

group with g0 being the identity of the group which generates E. Define K̂ : Y → ωω by

K̂(y)(n) = max{K(giu(y))(n) | i ≤ n} if y ∈ image(φ), else let K̂(y) be all ones. Let

Ĝ : Y → ωω bound K̂ be defined by the Borel boundedness of F . We will now show
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G : X → ωω defined by G(x) = (Ĝ ◦φ)(x) will Borel bound K. Fix x ∈ X there exists some

n ∈ ω such that gn · (u(φ(x))) = x thus for all m ≥ n it follows that K(x)(m) ≤ G(x)(m)

satisfying property (1) of Borel boundedness. Now if xEy then φ(x)Fφ(y). Thus, by the

Borel boundedness of F there exists some n ∈ ω such that if m ≥ n then G(x)(m) =

Ĝ(φ(x))(m) = Ĝ(φ(y))(m) = G(y)(n) which shows that property (2) of Borel boundedness

is also satisfied. Thus E is Borel bounded.

Lemma 4.8. If E ⊆ F and F is Borel bounded then E is Borel bounded.

Proof. Suppose K : X → ωω is a Borel function. The bounding function G : X → ωω by

the Borel boundedness of F will also work for E.

Lemma 4.9. If |F/E| < ∞ and E is Borel bounded then F is Borel bounded.

Proof. Suppose (X, E), (X, F ) are countable Borel equivalence relations such that |F/E| <

∞ and E is Borel bounded. Also suppose K : X → ωω is a Borel function. Let Ĝ :

X → ωω be a Borel function that Borel bounds K with respect to E. Let {g1, g2, . . .}

be a countable group which generates F and g0 be the identity of the group. Fix x ∈ X

then [x]F = ∪k
i=0[gni

x]E for some Borel choice of (n0, n1, n2, . . . , nk) where n0 = 0 such

that for i 	= j, ¬(gni
xEgnj

x). Now we will let G(x)(n) = max{Ĝ(gni
x)(n) | 0 ≤ i ≤ k}.

∀x ∈ X, n ∈ ω, (G(x)(n) ≥ Ĝ(x)(n)) so G satisfies property (1) of Borel boundedness since

Ĝ satisfies property (1). Now suppose xFy thus

[x]F = ∪k
i=0[gni

x]E = ∪k
i=0[gmi

y]E = [y]F .
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These unions are the same so there exists k distinct pairs (i, j) ∈ {0, 1, . . . , k}2 such that

[gni
x]E = [gmj

y]E. Now we will choose q(i,j) large enough such that for the pair (i, j) it follows

that ∀p ≥ q(i,j), (Ĝ(gni
x)(p) = Ĝ(gmi

y)(p)), let q = max{q(i,j)} then ∀p ≥ q(G(x)(p) =

G(y)(p)) since G is taking maximum for x and y over the same set of integers when p ≥ q.

Thus G Borel bounds K with respect to F showing that F is also Borel bounded.

We will now define a weaker property called Weakly Borel Bounded and will eventually

show all countable Borel equivalence relations are Weakly Borel bounded.

Definition 4.10. Let h1, h2 : ω → ω such that limn→∞
h1(n)
h2(n)

= 0. (X, E) is Weakly Borel

Bounded with respect to h1, h2 if for all Borel F : X → ωω satisfying

(A) ∀xEy∀�
n | F (x)(n) − F (y)(n) |< h1(n).

Then there exists a Borel function G : X → ωω such that

1. ∀x∀�
n(F (x)(n) ≤ G(x)(n)),

2. ∀x∀�
n(| F (x)(n) − G(x)(n) |< 3h2(n)),

3. ∀xEy∃∞
n (G(x)(n) = G(y)(n)).

The following are some interesting open questions concerning Borel boundedness:

1. Is Borel boundedness equivalent to Hyperfiniteness?
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2. If (X, E) and (Y, F ) are both Borel bounded then is (X × Y, E × F ) Borel bounded?

If not, what if E is the equality relation?

We will now introduce some rounding properties used to map points with real coordinates

to points that have integer coordinates.

Definition 4.11. (X, E) a countable Borel equivalence relation has the 1-Lattice Round-

ing Property (1 − LRP ) if for every Borel function F : X → Rω satisfying

∀xEy lim
n→∞

|F (x)(n) − F (y)(n)| = 0.

There is a Borel function G : X → Zω such that

1. ∀x∀n(|F (x)(n) − G(x)(n)| ≤ 2),

2. ∀x∀n(F (x)(n) ≤ G(x)(n)),

3. ∀xEy(∃∞
n (G(x)(n) = G(y)(n))).

Lemma 4.12. If (X, E) has the 1 − LRP then (X, E) is Weakly Borel Bounded.

Proof. Suppose (X, E) has 1 − LRP and h1, h2 and F : X → ωω satisfies property (A) in

the definition of weakly Borel bounded. Define F̂ : X → Rω by F̂ (x)(n) = F (x)(n)
h2(n)

. Thus if

xEy then

lim
n→∞

|F̂ (x)(n) − F̂ (y)(n)| = 0.

Now by the 1 − LRP there exists a Borel function Ĝ : X → Z
ω such that
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1. ∀x∀n(|F̂ (x)(n) − Ĝ(x)(n)| ≤ 2),

2. ∀x∀n(F̂ (x)(n) ≤ Ĝ(x)(n)),

3. ∀xEy(∃∞
n (Ĝ(x)(n) = Ĝ(y)(n))).

Let G(x)(n) = Ĝ(x)(n) · h2(n). Thus we have

G(x)(n) = Ĝ(x)(n) · h2(n) ≥ F̂ (x)(n) · h2(n) = F (x)(n)

showing property (1) of Weakly Borel Boundedness is satisfied. Property (3) of Weakly Borel

Boundedness follows from property (3) of 1−LRP . Now by property (1) of 1−LRP we have

that ∀x∀n|F̂ (x)(n) − Ĝ(x)(n)| ≤ 2 thus we have ∀x∀n|F (x)(n) − G(x)(n)| ≤ 2h2(n) which

shows we satisfy property (2) of Weakly Borel Boundedness. Therefore (X, E) is Weakly

Borel Bounded.

Lemma 4.13. Any countable Borel equivalence relation (X, E) has the 1 − LRP .

Proof. Fix F : X → Rω satisfying the hypothesis of 1 − LRP and let

X1 = {x ∈ X | lim
n→∞

ρ(F (x)(n), Z) = 0}

and let X2 = X − X1. Note X1 is invariant because F satisfies the hypothesis of 1 − LRP .

Define G(x)(n) by the following:
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1. If x ∈ X1 let G(x)(n) = the nearest integer to F (x)(n) + 1.

2. If x ∈ X2 let G(x)(n) = �F (x)(n)� where �z� is the smallest integer larger than or

equal to z.

Clearly G is a Borel function that satisfies (1) and (2) of 1−LRP . To show property (3) of

1 − LRP , first suppose x ∈ X1 and yEx. Then y ∈ X1 by the invariance of X1 and since

limn→∞ |F (x)(n) − F (y)(n)| = 0 we have for all but finitely many n, (G(x)(n) = G(y)(n)).

Now suppose x ∈ X2 and yEx, y ∈ X2 as well. Since x, y ∈ X2 there is some ε > 0 and

infinitely many n such that |F (x)(n) − F (y)(n)| < ε
4

and ρ(F (x)(n), Z) > ε. For these n

it follows that G(x)(n) = G(y)(n). Thus we have shown that property (3) of 1 − LRP is

satisfied for all x ∈ X. Therefore (X, E) has the 1 − LRP .

Corollary 4.14. Any countable Borel equivalence relation (X, E) is Weakly Borel Bounded.

Proof. This follows directly from the previous 2 lemmas.

Definition 4.15. Let (X, E) be a countable Borel equivalence relation then (X, E) has the

2-Lattice Rounding Property (2 − LRP ) means for all Borel functions F : X → (R2)ω

satisfying

(A) ∀xEy lim
n→∞

d(F (x)(n), F (y)(n)) = 0

there exists a Borel G : X → (Z2)ω such that

1. ∀x∀n(d(F (x)(n), G(x)(n)) ≤ 2)
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2. ∀xEy(∃∞n(G(x)(n) = G(y)(n))).

Definition 4.16. (X, E) a countable Borel equivalence relation has the 2′-Lattice Round-

ing Property (2′ − LRP ) if for all positive integers b and for all Borel functions F : X →

((R2)≤b)ω satisfying:

(A) ∀xEy ∀ε > 0 ∃k ∀l > k

∀p ∈ (F (x)(l) ∩ B((0, 0), 3)) ∃q ∈ F (y)(l)[d(p, q) < ε]∧

∀p ∈ (F (y)(l) ∩ B((0, 0), 3)) ∃q ∈ F (x)(l)[d(p, q) < ε]

there exists a Borel function G : X → ((Z2)≤b)ω such that

1. ∀x∀n, dHaus(F (x)(n), G(x)(n)) ≤ 2,

2. ∀xEy(∃∞n(∀p ∈ B((0, 0), 3)[p ∈ G(x)(n) ↔ p ∈ G(y)(n)])).

Lemma 4.17. 2′ − LRP → 2 − LRP

Proof. Note for any F satisfying (A) of 2−LRP let (px, py) = F (n)(z). We could then define

F̂ (n)(z)
.
= ({px}, {py}) where {d} = d − �d� is the fractional part of d. Now suppose the

2′−LRP with b = 1 holds. Thus there exists a Ĝ for F̂ from the 2′−LRP . Let G = F−F̂ +Ĝ

notice this would satisfy the 2 − LRP . Thus 2′ − LRP implies the 2 − LRP .

Definition 4.18. (X, E) a countable Borel equivalence relation has the 2′′-Lattice Round-

ing Property (2′′ −LRP ) if for all positive integers b and for each Borel function F : X →
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((R2)≤b)ω satisfying:

(A) ∀xEy ∀ε > 0 ∃k ∀l > k

∀p ∈ (F (x)(l) ∩ B((0, 0), 3)) ∃q ∈ F (y)(l)[d(p, q) < ε]∧

∀p ∈ (F (y)(l) ∩ B((0, 0), 3)) ∃q ∈ F (x)(l)[d(p, q) < ε]

There exists an invariant Borel function which assigns to each x ∈ X a function rx :

(R2)<≤b → (Z2)≤b with the following property. For each pair of Borel functions F ′, F ′′ :

X → ((R2)<b)ω with the properties:

1. ∀x ∈ X, dHaus(F ′(x)(n), F (x)(n)) → 0

2. ∀x ∈ X, dHaus(F ′′(x)(n), F (x)(n)) → 0

we have for every x ∈ X, there exists infinitely many n such that rx(F
′(x)(n)) = rx(F

′′(x)(n)).

Lemma 4.19. Any countable Borel equivalence relation (X, E) has the 2′ − LRP .

Proof. Fix F satisfying (A) for the 2′ − LRP for some b ∈ ω. Now we will define for each

equivalence class [x]E a cut point (z1, z2) ∈ R2 such that there is a fixed ε > 0 such that

∀x ∈ [x]E ∃∞n ∀p ∈ (F (x)(n) ∩ B((0, 0), 3)) where (p = (px, py))

|{px} − z1| > ε ∧ |{py} − z2| > ε
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where again {px} is the fractional part of px. To define z1, z2 in a Borel manner we proceed

as follows. Let x ∈ X. Let

px
n = {({px}, {py}) | (px, py) ∈ F (x)(n)} ∈ [0, 1]≤b.

By compactness, we can get a subsequence px
ik
→ F , F ⊆ [0, 1]2. Let ε0 = 1

2(b+1)
then pick in

a Borel manner as a function of x, (z1, z2) ∈ [0, 1]2 with the following properties:

(a) (ρ(z1, Z) ≥ ε0) ∧ (ρ(z2, Z) ≥ ε0)

(b) ∀(px, py) ∈ F , (|{px} − z1| ≥ ε0) ∧ (|{py} − z2| ≥ ε0)

We have defined an invariant Borel function assigning for each x ∈ X a (z1(x), z2(x)) satis-

fying

(†) ∀yEx∃∞i∀p ∈ (F (y)(i) ∩ B((0, 0), 3))

(|{px} − z1| ≥ ε0

2
∧ |{py} − z2| ≥ ε0

2
).

Now to define G(x)(i) use (z1, z2) to round each p = (p1, p2) ∈ F (x)(i) as follows: For

j = 1, 2 if {pj} ≥ zj(x) round pj up to the next biggest integer, else round pj down to

the next smallest integer. Now property (1) of the 2′ − LRP is satisfied since we did not

adjust any point by more than 1 unit in either coordinate. It suffices to show that G satisfies

property (2) of the 2′ −LRP . Suppose x ∈ X and xET y, let ε1 = ε0
4
. By property (A) there
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exists some k such that for all l > k

∀p ∈ (F (x)(l) ∩ B((0, 0), 3))∃q ∈ F (y)(l)[d(p, q) < ε1]∧

∀p ∈ (F (y)(l) ∩ B((0, 0), 3))∃q ∈ F (x)(l)[d(p, q) < ε1].

Therefore we have satisfied property (2) of the 2′−LRP for the infinitely many i > k which

satisfy the condition (†).

Lemma 4.20. Any countable Borel equivalence relation (X, E) has the 2′′ − LRP .

The proof would be very similar to the proof for the 2′−LRP . So we will omit the proof.

The previous proof can be generalized to show that any countable Borel equivalence

relation (X, E) has the following n − LRP , n′ − LRP , and n′′ − LRP . Where for example

we will define the n − LRP . The n′ − LRP , and n′′ − LRP will be left to the reader.

Definition 4.21. (X, E) a countable Borel equivalence relation has the n-Lattice Round-

ing Property (n − LRP ). If for every Borel function F : X → (Rn)ω such that

∀xEy, lim
n→∞

ξ(F (x)(n), F (y)(n)) = 0

where ξ((a1, a2, . . . , an), (b1, b2, . . . , bn)) = max(|a1 − a2|, . . . , |an − bn|). There is a Borel

function G : X → (Zn)ω which satisfies:

1. ∀x∀m(ξ(F (x)(m), G(x)(m)) ≤ 2),
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2. ∀x∀m∀i ≤ n(F (x)(m)i ≤ G(x)(m)i),

3. ∀xEy(∃∞
m (G(x)(m) = G(y)(m))).

One significant use of the n′′−LRP is that it could be used to give another that translation

equivalence of 2 Zn
is hyperfinite. The spirit of the proof would be similar to the proof from

Chapter 3 that 2 Z×Z is hyperfinite. However instead of looking for a limit point here we

would look for an anti-limit point.
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CHAPTER 5

TILINGS OF THE EQUIVALENCE CLASSES OF 2 Z×Z

In this section we will investigate different possibilities for dividing each aperiodic equivalence

class of (2 Z×Z, ET ) into finite subclasses. These subclasses are determined by invariant tilings

of the equivalence classes. First, it will be shown that there is an invariant rectangular tiling

of the aperiodic classes of 2 Z×Z by nearly uniform-sized rectangles. Assume the Marker Sets

and distances (Sn, Dn) have been chosen with the following properties:

1. For each pair x, y ∈ Sn, dist(x, y) > Dn.

2. For each x ∈ 2 Z×Z∃y ∈ Sn, such that dist(x, y) ≤ Dn.

3.
(
∑

i≤n Di)2

Dn+1
< 1

2n+1 .

For any unit distance of at least 10 we have the following theorem:

Theorem 5.1. Each equivalence class of 2 Z×Zcan be divided up into rectangles that contain

a ball of diameter one half unit and are contained in a ball of diameter four units.

Proof. Fix an equivalence class [x]. By the above properties of the Marker Sets, a sufficiently

large n can be chosen such that squares of unit size (these squares will be called the marker

squares) can be placed at each origin of each y ∈ Sn ∩ [x] with those squares having the

following properties:
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1. The squares are all the unit size.

2. The pairs of these squares are all at least a distance of 20 apart.

We will now give an algorithm to produce vertical columns. To create columns of rectangles,

stack squares of the same size on top of these marker squares until one of the stacked

squares overlaps a marker square. Remove the overlapping square and then make the last

non-overlapping square a rectangle, which fills the space to the above marker square. This

procedure is illustrated in figure 5.1.

M

M

Figure 5.1: Illustrates building a vertical column in the upward direction between two marker
blocks which are the blocks with an M inside them.

Now if any marker square is not sharing a bottom edge with a stacking rectangle, do the

above procedure in the downward direction until overlapping a marker block or a block pro-

duced in the upward direction. Then remove the overlapping square and make the last non-

overlapping square a rectangle. This fills the space to the marker square or block produced

in the upward construction which was overlapped by the downward column construction.
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This procedure is illustrated in figure 5.2. This produces columns of stacked rectangles.

M

M

Figure 5.2: Illustrates building a vertical column in the downward direction between a marker
block and a rectangle built in the upward direction.

Lemma 5.2. Let G be the set of rectangles minus their horizontal edges produced in the

above column algorithm. Then G is a pair wise disjoint set in R2.

Proof. Suppose not. There would have to be at least two distinct blocks that intersect each

other. Thus we must have one of the following:

1. A marker block intersecting a column block.

2. A column block intersecting another column block.

Case (1) could not happen since the column block would be stopped by the marker block

in either direction of the column algorithm. For case (2) to happen it would occur in either

the upward direction or the downward direction of the column construction. Suppose two

column blocks produced in the upward direction of the column algorithm B1, B2 ∈ G are
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such that B1 ∩ B2 	= ∅. Then there exists M1, M2 marker blocks that produced B1, B2

respectively. If M1 ∩ M2 	= ∅, then M1 = M2 implying that B1 and B2 are not distinct. If

M1 ∩ M2 = ∅ then M1 and M2 are at different horizontal levels and whichever of M1, M2 is

higher would stop the column blocks produced by the lower of the two marker blocks M1, M2,

thus could not produce intersecting blocks. Now suppose two column blocks produced in the

downward direction of the column algorithm B1, B2 ∈ G are such that B1∩B2 	= ∅. If B1, B2

are both produced in the downward direction. Then, an argument similar to the upward

case would work. Now if B1 was produced in a downward direction and B2 was produced

in an upward direction then either B2 is directly below a marker block or there is a column

block directly above B2. In either case, the marker block or column block or B2 itself would

certainly prevent any column block produced in the downward direction from intersecting

B2.

Now fix a connected component D of K = R2 − the columns.

Definition 5.3. A left (right) column block with respect to D is the column block B

intersecting D such that a horizontal line through a point x ∈ D intersects the interior of the

column block B before intersecting any other column block, to the left (right) of the point

x.

Note if B is a left column block with respect to D then sup{y | (x, y) ∈ D} ≥ sup{z |

(x, z) ∈ B}.

30



Figure 5.3: Illustration of part of a possible connected component D of K = R2 −
the columns.

Lemma 5.4. No column block B is both a right and left column block of D.

Proof. Suppose not. Let B be a left and right column block of D. For this to be true there

would have to exist distinct x, y ∈ D such that x is to the left of B and y is to the right

of B. However, there is some connected path of column blocks touching B from above that

intersects every horizontal line in R2 above B. Likewise below B. This would place x and y

in different connected components of K which is A contradiction.

Corollary 5.5. If two distinct points (x1, y), (x2, y) ∈ D, then the line segment from (x1, y) to (x2, y)

is in D.

Corollary 5.6. There is at most one left column block with respect to D for each horizontal

level.
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Lemma 5.7. If B is a left column block with respect to D then one and only one of the

following is true:

1. sup{y | (x, y) ∈ D} = sup{z | (x, z) ∈ B}.

2. The right most column block sitting on top of B is also a Left column block with respect

to D.

Proof. Suppose B is a left column block with respect to D. Let B′ be the right most column

block sitting on top of B. Now suppose sup{y | (x, y) ∈ D} > sup{z | (x, z) ∈ B}. Thus

there exists a point (x, y) ∈ D such that the horizontal line through (x, y) intersects B′. If

B′ is not a left column with respect to D then there exists a left column block C with respect

to D determined by (x, y). Note C
⋂

B′ = ∅ so there exists (x1, y) ∈ D between C and B′

implying C contains part of the horizontal line segment between two distinct points in D.

This is a contradiction. Next suppose sup{y | (x, y) ∈ D} < sup{z | (x, z) ∈ B}. This can

not happen because column blocks do not share vertical edges and B is a left column block

with respect to D.

Corollary 5.8. If B1 and B2 are left column blocks of D then there is a path of left column

blocks of D from B1 to B2.

Lemma 5.9. For any left column block Bl of the region D there exists a horizontal line which

passes through block Bl no less than 1
3

unit from either vertical edge of Bl. Furthermore, this

32



line either passes through a vertical edge of a right column block of D or is no less than 1
3

unit from any horizontal edge of a right column block of D.

Proof. Let Bl be the left column block in the lemma. Consider the horizontal line L that is

1
3

unit below the top edge of Bl. If this line satisfies the lemma, we are done. Suppose not,

then there are two cases to consider.

Case 1 There is a vertical edge of a right column block within at least 1
3

unit below L.

Case 2 L passes through a right column block within 1
3

unit of this blocks top edge.

In either case, there is a horizontal line within 1
3

unit of L which satisfies the lemma. This

is due to the fact that each column block is at least one unit in height.

Let D be some connected component of K = R2 − the columns.

Definition 5.10. The left (right) column of D is the set of left (right) column blocks

with respect to D.

Note D is determined by a left and a right column. These columns can be viewed as

rectangles R that are one unit width and at least twenty units in height. Each of these

rectangles consists of a marker square with column blocks which are stacked above or below

the marker square as shown in figures 5.1, 5.2.
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Now consider one of the rectangles R in the left column of D. Using the previous lemma

we can put a horizontal line through the marker block determining R and every fifth column

block of R stacked above or below this marker block except the last one. If we do this for

all the rectangles used in the left column of D, we will partition D into horizontal strips

that are at least 4 units but no more than 11 units in height which are determined by these

horizontal lines and left and right column blocks.

Now consider one of the above horizontal strips HS of D. We will now give an algorithm

for filling these horizontal strips. We will either add rectangles that have edges that are at

least 1
3

unit but no more than 2 units in length or we will expand the portion of the column

blocks in the horizontal strip HS of D by no more than 1
3

unit in width.

Definition 5.11. A corner of a left (right) column of D is the right (left) most point of

some horizontal line segment of length greater than one unit contained in the left (right)

column of D. A corner of a left column is illustrated in figure 5.4.

Figure 5.4: Illustration of a possible horizontal strip HS with a corner in the left column.
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Claim 5.12. There exists a vertical line segment contained in D which connects the two

horizontal lines determining the horizontal strip HS.

Proof.

Case 1 One of the columns of HS has no corner. Then since the right column of D does not

intersect the left column, the claim is satisfied.

Case 2 Both of the columns of HS have a corner. Note: there is at most one corner to

either vertical edge of HS. Then each of these corners must be a marker block or have

a distinct marker block adjacent to them and these distinct marker blocks must be

at least 20 units apart. Since these marker blocks both intersect the same horizontal

strip which has a height of no more than 11 units they must be at least 10 units apart

horizontally. Now all the column blocks were 1 unit in width, thus the right most point

of the left column of D must be at least 6 units horizontally from the left most point

of the right column of D. Therefore, the claim must be satisfied in this case.

Now since the horizontal lines determining HS either coincide with a column block’s

horizontal edge or are at least 1
3

unit from a horizontal edge of a column block, we can use

a similar construction to that used to produce the columns to fill from the column blocks

(or portion of column block adjacent to HS) to the vertical line from the above claim. We

proceed as follows:
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1. If one of the horizontal lines determining HS passes through the middle of a column

block of D, use this horizontal line to divide the column block into two blocks. Note

these two blocks are at least 1
3

unit in height.

2. If the distance from a column block (or portion) determining HS to the vertical line

is less than 1
3

unit, we will enlarge horizontally the column block (or portion) adjacent

to HS to the vertical line.

3. If the distance from a column block (or portion) determining HS to the vertical line is

at least 1
3

unit, we will stack blocks the same height as the column block (or portion)

beside the column block until we get to the vertical line. These blocks will all be one

unit in width except the one intersecting the vertical line which will have a width of

at least 1
3

unit but less than two units.

Using the above algorithm for each horizontal strip of each connected component of K, we

have produced an invariant tiling of the plane for [x] which consists of rectangles with edge

length at least 1
3

units but less than 2 units.

Thus we can divide each equivalence class of 2 Z×Z into bounded-size rectangles. Now we

will show that there are also square tilings, however the squares will not be the same size.

Lemma 5.13. If p1, q1, p2, q2 are all pairwise relatively prime positive integers then any

rectangle with sufficiently larger integer dimensions can be constructed using only squares of
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length p1, q1, p2, q2.

Proof. Let p1, q1, p2, q2 be pairwise relatively prime positive integers. For any sufficiently

large H, W we write:

1. s1p1 + t1q1 = H

2. s2p2 + t2q2 = H

3. s3(p1q1) + t3(p2q2) = W

are all positive integer combinations. There are solutions to these equations for sufficiently

large values of H and W .

A Type 1 rectangle of width p1q1 and height H can be constructed in the following

manner using only squares of length p1 or q1 only. First, construct a rectangle of width p1q1

and height s1p1 with squares of width p1. Then, on top of this place a rectangle of width

p1q1 and height t1q1 constructed of squares of width q1. This is illustrated in figure 5.5.

A Type 2 rectangle of width p2q2 and height H can be constructed in a similar manner

using only squares of length p2 or q2.

Now we can use s3 Type 1 rectangles and t3 Type 2 rectangles to construct a rectangle

of width W and height H using only squares of length p1, q1, p2, or q2. This is illustrated in

figure 5.6.

Corollary 5.14. There are invariant square tilings of the aperiodic part of (2 Z×Z, ET ).

Furthermore the squares used in the tiling are nearly uniform (i.e. for ε > 0 there exists
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Figure 5.5: Shows a Type I rectangle of width p1q1 height H made using only squares of
length p1 and q1.

square tilings such that if S1, S2 are two squares in the tiling of widths w1, w2 respectively

then |w1

w2
− 1| < ε).

Proof. We can get sufficiently large rectangular tilings and then divide each rectangle into

squares satisfying the desired width uniformity using the previous lemmas.

Now we will give an alternate and more general way to produce a rectangular tiling of the

aperiodic part of (2 Z×Z, ET ), in particular this proof will generalize to higher dimensions.

Let d > 0 and choose a Marker set M with a marker distance D ≥ 10, 000d with the following

properties:

1. For all y ∈ 2 Z×Z there exists m ∈ M such that dist(y, m) ≤ D.

2. If x, y ∈ M and xET y then dist(x, y) > D.
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Figure 5.6: Shows a rectangle of dimensions W × H made using only squares of length
p1, q1, p2, or q2.

Let D̂ ≥ 100D. Partition M into finitely many subsets Mi such that if x, y ∈ Mi are distinct

and xET y then dist(x, y) > D̂. This can be done in the following manner. First use the

marker algorithm from Theorem 2.1 to choose M1 ⊆ M such that:

1. for all y ∈ M there exists x ∈ M1, xET y with dist(x, y) ≤ D̂,

2. if x, y ∈ M1, xET y then dist(x, y) > D̂.

After M1, . . . , Mk have been selected select Mk+1 such that:

1. Mk+1 ⊆ M − ⋃k
i=1 Mi,

2. if y ∈ M − ⋃k
i=1 Mi there exists x ∈ Mk+1 such that dist(x, y) ≤ D̂,
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3. if x, y ∈ Mk+1, xET y then dist(x, y) > D̂.

Every x ∈ M has a finite number of points of 2 Z×Z within D̂ of x. Thus this process must

terminate within a finite number of steps by (2) above. This process will partition M into a

finite pairwise disjoint collection of subsets {M1, . . . , Mn} such that M =
⋃n

i=1 Mi with the

above properties. For each x ∈ M put a square Sx of diameter 2D centered at x. Note: for

every y ∈ 2 Z×Z there is some x ∈ M with y ∈ Sx. Let S = {Sx | x ∈ M}.

Definition 5.15. Two distinct rectangles A, B are said to have the separation property

when one of the following hold:

1. dHaus(A, B) > 2.5D.

2. If dHaus(A, B) ≤ 2.5D then both of the following hold:

(a) If (a, b), (s, t) are points on a vertical edges of A, B respectively then |a− s| > 5d.

(b) If (a, b), (s, t) are points on a horizontal edges of A, B respectively then |b−t| > 5d.

Now we want to adjust the edges of each square Sx to get a rectangle Ŝx such that any

distinct pair of rectangles Ŝx, Ŝy with xET y have the separation property. To do this, we

will show for any x ∈ M no edge of Sx will needed to be adjusted by more than 200d in

order to achieve the separation property for the adjusted rectangles. Now we will proceed

by inductively adjusting the Mi squares and avoiding the edges of the previously adjusted

squares.
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We will leave the Sx with x ∈ M1 alone. Note, for x, y ∈ M1, xET y it follows that Sx, Sy

have the separation property since they are sufficiently far apart. Suppose k > 1 and the

adjustments have been made for all squares in ∪l<kMl and let Ŝk = {Ŝx | x ∈ ∪l<kMl} where

Ŝx is the adjusted Sx square. Fix x ∈ Mk, we will first adjust the lower edge of Sx. Note,

when adjusting the lower edge of Sx we will only adjust in order to avoid the horizontal

edges of the the squares in Ŝk. This will suffice since Sx is at least 90D from any other Mk

square and so if we adjust by no more than 200d, the set of adjusted rectangles for points

in Mk will have the separation property.

To adjust the lower horizontal edge of Sx, we will observe there is at most fifteen squares

with a horizontal edge within 200d vertical distance of the lower horizontal edge of Sx

and intersecting the vertical strip determined by vertical lines placed a distance of 2.5D

horizontally to either side of Sx. This is illustrated in Figure 5.7.

This is true since for some Ŝy ∈ Ŝk to have a horizontal edge within 200d below the lower

horizontal edge of Sx, Ŝy would have one of the following two properties:

1. Ŝy is at about the same horizontal level as Sx and has the property that the (s, t) ∈ Z2

such thatπ(s,t)(x) = y satisfies |t| ≤ 400d.

2. Sy is below Sx horizontally and has the property that the (s, t) ∈ Z
2 such thatπ(s,t)(x) =

y satisfies 0 ≥ t + 2D ≥ −400d.
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Sx

Ŝy

Ŝz

Figure 5.7: Note: picture of setup not to scale. This shows Sx square with the vertical strip
and possible locations of nearby rectangles.

There would be at most seven distinct Ŝy ∈ Ŝk satisfying property (1) which intersect the

vertical strip determined by Sx and at most eight distinct Ŝz ∈ Ŝk satisfying property (2),

which intersect the vertical strip determined by Sx [see Figure 5.7]. This is at most a total of

fifteen horizontal edges to avoid when adjusting the edge of Sx. Thus there must be a gap of

at least 10d within 200d below the lower horizontal edge of Sx inside the vertical lines 2.5D

to either side of Sx for which no Ŝy ∈ Ŝk has a horizontal edge intersecting this gap. Thus
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we can adjust the lower edge of Sx down to the middle of the first 10d vertical gap inside the

vertical strip which contains no horizontal edges of any Ŝy ∈ Ŝk. Note: this adjustment was

by no more than 200d. Now the other directions can be adjusted in a similar manner. This

will produce a Ŝx which satisfies the separation property with any Ŝy ∈ Ŝk. Furthermore,

as mentioned before, since distinct Sx, Sy squares for x, y ∈ Mk are at least 90D apart the

adjusted rectangles Ŝx, Ŝy must have the separation property thus, completing the inductive

step.

Now since any distinct pair Ŝy, Ŝz that intersect some other Ŝx have the separation

property, we can extend the edges of Ŝy, Ŝz in the interior of Ŝx to the boundary of Ŝx.

This will be illustrated in figure 5.8. This will partition Ŝx into rectangles that have length

Ŝx

Ŝy

Ŝz

Figure 5.8: This illustrates extending the edges of the Ŝy, Ŝz rectangles inside the Ŝx rect-
angle.
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and width at least 5d. Now we have given an invariant rectangular tiling of the equivalence

classes of 2 Z×Z which could be generalized to higher dimensions.

The following theorem will show we cannot do better than the nearly uniform square

tilings in Corollary 5.14.

Theorem 5.16. The equivalence classes of translation equivalence ET on 2 Z×Z cannot be

divided up in an invariant Borel manner into a grid of squares.

Proof. Suppose there is a Borel squaring of 2 Z×Z of blocks of size n0 × n0 with n0 > 1. Let

x �→ n(x) by defining n(x) to be the horizontal distance from x to the left-hand edge of the

square containing x when x is not on a horizontal edge of a square. If x is on a horizontal

edge of a square define n(x) to be 0. This is a Borel map. Let C0 ⊆ 2 Z×Z be a comeager,

invariant set such that n(x) is continuous on C0 and C0 is a subset of the free part of 2 Z×Z.

For each k ∈ ω, let Bk
.
= {x ∈ C0 : n(x) = k} which is a relatively clopen subset in C0 and

C0 = ∪0≤k≤n0Bk. Let each Dn ⊆ 2 Z×Z be a dense and open subset such that ∩Dn ⊆ C0.

Now build an equivalence class as follows. Let x0 ∈ D0∩B0∩C0. Note: D0∩B0 is a relatively

open set in C0. Thus we can choose an m ∈ ω such that (Nx0�[−m,m]2 ∩C0) ⊆ (D0 ∩B0 ∩C0).

Choose distance a > 2m such that a ≡ 1 mod n0. Let U1 ⊆ Nx�[−m,m]2 be the open set

U1 = {y ∈ 2 Z×Z | (y ∈ Nx�[−m,m]2) ∧ (π(a,0)(y) ∈ Nx�[−m,m]2)}.

Let x1 ∈ C0

⋂
U1. Then x1 ∈ B0 and π(a,0)(x1) ∈ B0. This implies both origin and (a, 0) are
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on the edge of a square. However this can not be true since a ≡ 1 mod n0. Therefore there

is no invariant Borel tiling of 2 Z×Z into squares of width n0 with n0 > 1.

Suppose one of the previous rectangular tiling arguments could be generalized to produce

a sequence of invariant rectangular partitions of the plane (Tn) for each equivalence class

with the following properties:

1. If Tm, Tn are distinct tilings from the sequence and m < n then Tm partitions Tn.

2. For each x ∈ 2 Z×Z the sequence of tilings has the property that the Hausdorff distance

of the origin of x to the set of edges of the rectangles in the tilings goes to infinity.

Then we would have a proof that (2 Z×Z, ET ) is hyperfinite by directly producing the in-

creasing union of finite equivalence relations on 2 Z×Z. However, we will now show there is

not even a sequence of Borel invariant polygonal tilings with a bounded geometry on the

equivalence classes of 2 Z×Z which satisfy partition property in (1).

Definition 5.17. Let α, β ∈ R2, define l(α, β) to be the line segment connecting α to β

which includes α but not β.

Definition 5.18. Let (α0, α1, · · · , αn) be finite length sequence of points in R2 satisfying

the following properties:

1. α0 = αn.
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2. α0, · · · , αn−1 are distinct.

3. If i 	= j then l(αi−1, αi))
⋂

l(αj−1, αj)) = ∅.

Let

B(α0, α1, · · · , αn) =

n⋃
i=0

(l(αn−1, αn)).

Let I(α0, α1, · · · , αn) be the nonempty bounded connected component of

R
2 − B(α0, α1, · · · , αn).

We will define the polygon P (α0, α1, · · · , αn) by

P (α0, α1, · · · , αn) = I(α0, α1, · · · , αn) ∪ B(α0, α1, · · · , αn).

For (a, b), (c, d) ∈ R2, let

π(a,b)(c, d) = (a + c, b + d).

For (a, b) ∈ R2, we define the (a, b) translation of the polygon P (α0, · · · , αn) by

π(a,b)[P (α0, · · · , αn)] = [P (π(a,b)(α0), · · · , π(a,b)(αn))].
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Recall we defined the π action of Z2 on 2 Z×Z in the following manner, for x ∈ 2 Z×Z, (a, b) ∈ Z2

define

π(a,b)(x) = y ⇔ y(i, j) = x(i + a, j + b).

Definition 5.19. A Borel Polygonal Tiling of 2 Z×Z is a Borel function F : 2 Z×Z → R

such that F (x) codes polygons (Pi(α
i
0, · · · , αi

ni
))i≥0 such that

1. R2 =
⋃

i≥0 Pi(α
i
0, · · · , αi

ni
).

2. If i 	= j then int[Pi(α
i
0, · · · , αi

ni
)] ∩ int[Pj(α

j
0, · · · , αj

nj
)] = ∅.

The reader should note in the previous definition the function F (x) used some reasonable

mechanism to code the set of polygons

{Pi(α
i
0, · · · , αi

ni
) | i ≥ 0}

into the reals. P ⊆ R2 is coded in F (x) means P is a polygon which is coded by F (x).

Definition 5.20. A Borel Polygonal Tiling of 2 Z×Z is invariant means if x, y ∈ 2 Z×Z such

that π(s,t)(x) = y and P is coded in F (x) then π(−s,−t)(P ) is coded in F (y).

Definition 5.21. For two Borel Polygonal Tilings F1, F2 of 2 Z×Z, F1 is said to respect F2

if for each x ∈ 2 Z×Z and pair of polygons P, Q such that P is coded in F1(x) and Q is coded

in F2(x) where P ∩ Q 	= ∅ then Q ⊆ P .
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For a Borel invariant polygonal tiling F : 2 Z×Z → R, define the Borel function f :

2 Z×Z → 2 Z as follows: Let P = P (α0, α1, · · · , αn) be the polygon coded in F (x) such that

(0, 0) ∈ I(P ), if it exists.

1. If P exists then f(x) codes the points {(a, b) ∈ Z
2 | (a, b) ∈ P}

2. If P does not exist (i.e. (0, 0) intersects an edge of a polygon coded in F (x)) then let

f(x) be the code for the empty set.

Now since f is a Borel function there exists a comeager set S such that f is continuous on

S. The saturation of a meager set is still meager, so without loss of generality we can assume

S is a comeager invariant set. Suppose x ∈ S such that f(x) is not the code for the empty set.

f is continuous at x, thus there exists a z ∈ ω such that for all y ∈ Nx�[−z,z]2∩S, f(y) = f(x).

Lemma 5.22. Translation Lemma: Let U be the open set constructed by placing a copy of

x � [−z, z]2 centered at the point (s, t) ∈ Z2 that is

U = {y ∈ 2 Z×Z | π(−s,−t)(y) ∈ Nx�[−z,z]2}.

For any y ∈ U ∩ S it follows that f(π(−s,−t)(y)) = f(x).

Proof. π(−s,−t)(y) ∈ S since y ∈ S and S is invariant. Also

(π(−s,−t)(y)) � [−z, z]2 = x � [−z, z]2 ⇔ f(π(−s,−t)(y)) = f(x).
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Note this implies that any y ∈ U ∩ S from above lemma has a polygon coded in F (y)

which has the same structure about the point (s, t) as the structure of the polygon about

(0, 0) coded by f(x). In other words, the polygon coded in F (y) which contains (s, t) also

contains π(a,b)(s, t) if and only if (a, b) is in the polygon containing (0, 0) which is coded in

f(x).

Definition 5.23. For x ∈ 2 Z×Z, (a, b), (c, d) ∈ R
2 which are vertices of polygons in F (x) a

walk from (a, b) to (c, d) is a sequence of distinct edges of the F (x) polygons whose union

connect (a, b) to (c, d).

Theorem 5.24. There is no sequence (Fn) of Borel Invariant Polygonal Tilings of 2 Z×Z

that have the following properties:

1. For all integers i, j ≥ 0 with i < j, Fj respects Fi.

2. Diameter of the Fn polygons are bounded by

bn = sup{diam(P ) | P coded in Fn(x), x ∈ 2 Z×Z} < ∞.

3. For each n, there exists (en, ln) ∈ Z2 with limn→∞ ln = ∞ such that for any x ∈ 2 Z×Z

and for any walk along edges of the Fn(x) polygons there could be at most en edges in

a row of length less than ln.

49



4. The F0 polygons are constructed using only finitely many slopes m1, m2, · · · , mk and

max(m1, m2, · · · , mk) < ∞.

5. For each equivalence class γ of 2 Z×Z, there is some x ∈ γ and polygon P coded in F (x)

and (a, b) ∈ Z
2 such that

{(a + i, b + j) |, i, j ∈ {0, 1, 2}} ⊆ P.

The motivations for the above properties are:

1. If we use the polygons to generate finite subequivalence classes of 2 Z×Z the equivalence

classes will be increasing.

2. Insures for each x ∈ 2 Z×Z, n ∈ 2 Z, there is an edge of a Fn(x) polygon within bn of

(0, 0).

3. Insures for each x ∈ 2 Z×Z, n ∈ 2 Z, there is a long edge of a Fn(x) polygon fairly close

to (0, 0).

4. There are no vertical edges to the polygons.

5. For each equivalence class γ of 2 Z×Z and x ∈ γ there is a polygon coded in F0(x) with

a two-by-two square contained inside the polygon.

Proof. By way of contradiction, suppose there there exists (Fn)n≥0 a sequence of Borel

Invariant Polygonal Tilings of 2 Z×Z with the above properties. For each Fn, let fn : 2 Z×Z →
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2 Z be defined as before the Translation Lemma and Sn ⊆ 2 Z×Z an invariant comeager set

on which fn is continuous. Let S =
⋂

Sn which is an invariant comeager set. Fix x ∈ S such

that f0(x) codes a set P0 and {(i, j) | 0 ≤ i, j ≤ 2} ⊆ P0, we know such an x ∈ S exists by

the invariance of S and property (5) from the statement of Theorem 5.24. Therefore there

is a polygon P0 coded in F0(x) which contains a two-by-two square with lower left corner

at (0, 0). x ∈ f−1
0 (f0(x)) which is an open set in 2 Z×Z ∩ S. So there is a neighborhood

N0 = Nx�[−z,z]2
such that z > 2b0 [b0 is the bound on F0 polygons from property (2)] and if

y ∈ N0 ∩ S then f0(y) = f0(x). Note that f0(y) codes the set of integer points contained in

the polygon P coded in F0(y) such that P contains (0, 0). Thus for F0(y), (0, 0) is the lower

left corner of a two-by-two square contained in the F0(y) polygon used to define the code

f0(y) = f0(x).

Let G0 = x �[−z,z]2 be this grid of 1’s and 0’s. We will now describe an algorithm for

building an open set U defined by a vertical strip of fixed width, with the property that no

edge of slope m1 of a polygon coded in Fm, m > 0 will pass through the entire vertical strip

and respect the F0 polygons.

1. Place G0 centered at the origin. Now for any y ∈ S ∩ NG0 there is a F0(y) polygon

which contains a square of width two with lower left corner at the origin. Define s0

to be the unit square with lower left corner at the origin then let (si) be unit squares

stacked vertically above s0.

2. Continue to place translated copies of G0 centered at the points (ai, bi) = (2zi +
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s0

s1

s2

...

Figure 5.9: Illustration shows the vertical stack of unit squares (si) and the square of width
two contained in a F0(y) polygon.

i, [m1(2zi + i) + i]) for i = 1 to 2z + 1 where [·] is the greatest integer function. A

line with slope m1 will not be able to pass through both si and the ith translation

of G0 without separating points in the two-by-two square with lower left corner at

(2zi + i, [m1(2zi + i) + i]). The grid G0 was translated by (2zi + i, [m1(2zi + i) + i])

which has a 2nd coordinate within one unit below m1(2zi + i) + i. This implies that

the two-by-two square determined by the ith translate of G0 has lower left corner at

(2zi+ i, [m1(2zi+ i)+ i]) and upper left corner at (2zi+ i, [m1(2zi+ i)+ i] + 2) . Note

that any line of slope m1 passing through si would also pass through (2zi+ i, y) where

[m1(2zi + i) + i] ≤ m1(2zi + i) + i ≤ y ≤ m1(2zi + i) + i + 1 < [m1(2zi + i) + i] + 2. In

particular, no edge of slope m1 from an Fn polygon could pass through si and the ith

translate of G0 and respect the F0 polygons. If an edge passes through si and the ith

translate of G0 it would separate the top left corner points from the lower right corner

point of the two-by-two square contained in the ith translate of G0. This is illustrated

in Figure 5.10.
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Figure 5.10: Illustrates an edge of a polygon of slope m1 passing through si unit square and
a square of width 2 contained inside a F0 polygon determined by the ith translate of G0.

This will produce 2z + 1 copies of G0 in a diagonal pattern with centers at the points

(ai, bi) as illustrated in figure 5.11 .

· · ·

Figure 5.11: 2z + 1 copies of G0.

3. Make a copy of the above neighborhood translated 2z +1 vertically to produce a more

restrictive neighborhood which will prevent a polygon edge with slope m1 from passing

through si and not separate corner points of the two-by-two square contained in the

polygon determined by the translate of G0 corresponding to si. We can continue to

place vertically translated copies of the diagonal pattern to produce as tall of a vertical

53



strip as desired which prevents edges of polygons with slope m1 from crossing the

vertical strip. This is illustrated in figure 5.12.

...

Figure 5.12: Vertical strip of translated copies of G0 which will prevent a polygon edge from
passing through this strip with slope m1 which respects the F0 polygons.

This process can be continued to make a vertical strip with the following properties:

(a) No polygon edge with slope m1 will be able to pass completely through the vertical

strip.

(b) The strip is no wider than SW1 = (2z + 1)2.

Now by modifying the algorithm to use m2 instead of m1 we can build a vertical strip of

width SW2 to the right of the strip for m1 which will prevent an edge with slope m2 from

passing through this second vertical strip without separating points in the some polygon

coded in F0. Figure 5.13 will illustrate this process.

Continue to use this algorithm for each slope mi to create a vertical strip of width SWi

which no edge of a polygon will cross without separating points of some polygon coded in F0.

This will create a collection of vertical strips we will call the master strip with the property
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m1 strip m2 strip

...
...

Figure 5.13: Vertical strips of translated copies of G0 which will prevent a polygon edge from
passing through these strips with slope m1 or m2 which respects the F0 polygons.

that no edge of a polygon will be able to completely cross the master strip and respect the

polygons coded in F0. The sum of the widths of these strips SW =
∑

SWi is no more than

k(2z + 1)2. SW is the width of the master strip. Let n be large such that

ln cos θ > 2SW, θ = max{θi | θi = | arctan(mi)|}

for the slopes (mi) of the polygons coded in F0 . Recall the following properties from the

hypothesis of Theorem 5.24.

Property (2) bn is the bound on how large the polygons are in Fn. If x ∈ P where P is

coded in Fn then the ball of radius bn centered at x contains P .

Property (3) en is the maximum number of distinct edges of polygons in Fn which can be

walked before there is an edge with length at least ln.
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Figure 5.14: Illustration of A where each vertical strip is a copy of the master strip of height
w.

Let r be the positive integer such that

r(SW ) ≤ [(en + 1)ln + bn] < (r + 1)(SW ).

Now we can use the algorithm to build an x ∈ 2 Z×Z which consists of Z copies of the master

strip extended vertically in both directions. Let A = x � [−w, w]2. See Figure 5.14 for an

illustration of A. Now for any point x ∈ (NA ∩ S), if we go to the closest vertex of the Fn

polygons and walk distinct edges, we will encounter an edge with length at least ln within

a distance of (en + 1)ln + bn from the origin of x. Note: ln cos θ > 2SW , therefore this long

edge will have to completely cross a master vertical strip used in constructing A. This long

edge of a Fn polygon would separate points is some F0 polygon since it crosses a master

vertical strip. Thus the Fn polygons would not respect the F0 polygons, thus proving the

theorem.
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CHAPTER 6

A CONTINUOUS INJECTIVE EMBEDDING FROM 2 Z TO 2 ω.

In this section we give a continuous injective embedding from 2 Z into 2 ω which is an extension

of the well known fact that a Borel embedding exists from 2 Z to 2 ω. Let W be the aperiodic

part of 2 Z.

Lemma 6.1. Let t be a positive integer. There are pairwise disjoint relatively clopen sets

(Mi)
N
i=1 and marker set M =

⋃N
i=1 Mi in W , for any marker distance D with the following

properties:

1. For each pair x, y ∈ M, dist(x, y) > D.

2. For each x ∈ W, ∃y ∈ M, such that dist(x, y) ≤ D.

3. For each pair x, y ∈ Mi, dist(x, y) > 10 · t · D + 1.

Proof. Using the standard marker algorithm from Theorem 2.1 we can generate a clopen

marker set M̂ with marker distance 10 · t · D + 1 such that:

1. For each pair x, y ∈ M̂, dist(x, y) > 10 · t · D + 1.

2. For each x ∈ W, ∃y ∈ M̂, such that dist(x, y) ≤ 10 · t · D + 1.
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For each x̂ ∈ M̂ , let s(x̂) be the largest integer s such that

{φα(x̂) | 1 ≤ α < (s + 1)(D + 1)} ∩ M̂ = ∅.

Note that s(x̂) is no larger than 22 · t. Let M0 = M̂ , for i ≥ 1 let

Mi = {φi(D+1)(x̂) | i ≤ s(x̂)}.

Let N be the largest i such that Mi 	= ∅ and M =
⋃N

i=1 Mi. Now to show each Mi is clopen

we note the following:

(a) The map x̂ → s(x̂) is continuous.

(b) {i | i ≤ s(x̂)} is a clopen set.

(c) For each i, {x̂ ∈ M | s(x̂) ≥ i} is clopen.

(d) φ is a homeomorphism.

So Mi is the homeomorphic image of a clopen set, thus Mi is clopen. (2) of Lemma 6.1 is

easily verified by the definition of s(x̂).

Lemma 6.2. let t be a positive integer. Let ε > 0 and (Di)i≥1 be a sequence of integers such
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that D1 · ε > 2 (2t+1)2

1−ε
and for all n ≥ 2,

n−1∑
i=1

(
Dn

Di(1 − ε)
+ 1) <

Dn · ε
(2t + 1)2

.

There are clopen Marker Sets (Mi, Di)i∈ω in W with the following properties:

1. For each pair x, y ∈ Mi, dist(x, y) > Di(1 − ε).

2. For each x ∈ W, ∃y ∈ Mi, such that dist(x, y) ≤ Di(1 + ε).

3. The following collection of sets are all pairwise disjoint:

{φiDj (Mj) : j ≥ 1, |i| ≤ t}

Proof. This will be done by generating marker sets (M̂i, Di) with the previous lemma and

adjusting the points by no more than (Di · ε). Let M̂1 =
⋃N

i=1 T̂i be chosen as in the previous

lemma for the distance D1. Now let T1 = T̂1. Note that {φiD1(T1) : |i| ≤ t} are all pairwise

disjoint since points in T1 are at least 10 · t ·D1 + 1 apart. Suppose that sets T1, T2, · · · , Tl−1

have been chosen which satisfy the following properties:

1. {φiD1(Tj) : 0 < j ≤ l − 1, |i| ≤ t} are all pairwise disjoint. Let

B =
⋃

0<j≤(l−1)

⋃
|i|≤t

φiD1(Tj).
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2. Each x ∈ Ti is a right shift by no more than (D1 · ε) of a point in T̂i.

Claim 6.3. For each point x̂ ∈ T̂l there exists a α < (D1 · ε) such that

{φα+iDn(x̂) : |i| ≤ t} ∩ B = ∅.

Proof. For each point x̂ ∈ T̂l,

|{φs(x̂) | 0 ≤ s ≤ D1} ∩ B| ≤ 2(
2t + 1

1 − ε
)

This is true since all pairs of points in T =
⋃l−1

u=1 Tu are at least D1 · (1 − ε) apart and we

have 2t + 1 translations of this set T in B. Thus

|{φs(x̂)|0 ≤ s ≤ D1 · ε} ∩ (
⋃

|i|≤2t+1

φiD1(B))| ≤ 2
(2t + 1)2

1 − ε
.

Since (D1 · ε) > 2 (2t+1)2

1−ε
the above claim is true.

For each x̂ ∈ T̂l, let s(x̂) be the least s satisfying the claim. Let Tl = {φs(x̂)(x̂) | x̂ ∈ T̂l}

and M1 =
⋃N

i=1 Ti. Note that {φiD1(M1) : |i| ≤ t} are all pairwise disjoint. Now we can

inductively adjust the rest of the M̂n in a similar manner also avoiding {φiDj(Mj) : |i| ≤
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t, 1 ≤ j < n} Suppose that M1, · · · , Mn−1 have been chosen satisfying the claim. Let

B =
⋃

0<j<n

⋃
|i|≤t

φiD1(Mj).

Notice for any set C ∈ 2 Z×Z and distance D with the property x, y ∈ C implies

dist(x, y) > D · (1 − ε)

it follows that

|{φs(x̂)|0 ≤ s ≤ Dn · ε} ∩ (
⋃
|i|≤t

φiDn(C))| ≤ (
Dn

D(1 − ε)
+ 1)(2t + 1) < Dnε.

Hence for each x̂ ∈ M̂n

|{φs(x̂)|0 ≤ s ≤ Dn · ε} ∩ (
⋃
|i|≤t

φiDn(B)) |≤ 2(2t + 1)2(
n−1∑
i=1

(
Dn

Di(1 − ε)
+ 1))

For each point x̂ ∈ M̂n let k(x̂) be the least integer such that we can translate x̂ to the right

by k(x̂) < (Dn · ε) producing Mn = {φk(x̂)(x̂) | x̂ ∈ M̂n} such that {φiDn(Mn) : |i| ≤ t}

are pairwise disjoint and each is disjoint from B. Note that x̂ → k(x̂) is continuous thus it

follows that Mn is clopen in W.. M̂n had the properties that:

1. For each pair x, y ∈ M̂n, dist(x, y) > Dn.
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2. For each x ∈ W, ∃y ∈ M̂n, such that dist(x, y) ≤ Dn.

We have translated each point of M̂n to the right by no more than Dn · ε therefore Mn has

the following properties:

1. For each pair x, y ∈ Mn, dist(x, y) > Dn(1 − ε).

2. For each x ∈ W, ∃y ∈ Mn, such that dist(x, y) ≤ Dn(1 + ε).

This will generate marker sets (Mi, Di)i∈ω with the properties:

1. For each pair x, y ∈ Mi, dist(x, y) > Di(1 − ε).

2. For each x ∈ W, ∃y ∈ Mi, such that dist(x, y) ≤ Di(1 + ε).

3. The following are all pairwise disjoint:

{φiDj (Mj) : |i| ≤ t, j ≥ 1}

Now the above procedure producing clopen marker sets in W can be used with t = 3 and

the further stipulation that n! divides Dn. This means we can write each marker set as the

union of basic open sets in 2 Z intersected with W. Thus the marker sets (Mi, Di)i∈ω can

be extended to all of 2 Z and remain open in 2 Z. The extended marker sets would have the

following properties:
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1. For each n,

(a) For each pair x, y ∈ Mn, dist(x, y) > Dn(1 − ε).

(b) For each x ∈ W, ∃y ∈ Mn, such that dist(x, y) ≤ Dn(1 + ε).

2. The following sets are all pairwise disjoint :

M1, φ
D1(M1), φ

−D1(M1), φ
2D1(M1), φ

−2D1(M1), φ
3D1(M1), φ

−3D1(M1),

M2, φ
D2(M2), φ

−D2(M2), φ
2D2(M2), φ

−2D2(M2), φ
3D2(M2), φ

−3D2(M2),

. . . ,

Mk, φ
Dk(Mk), φ

−Dk(Mk), φ
2Dk(Mk), φ

−2Dk(Mk), φ
3Dk(Mk), φ

−3Dk(Mk),

. . .

[This is true in the extension since each of these sets are open and W is dense.]

3. Each Mi is relatively clopen in W.

4. n! divides Dn.

For each n ∈ ω define the following intervals if they exist. For each a ≤ n, we can define the

triple (Ia, k
a
1 , k

a
2) as follows, provided (Ia, k

a
1 , k

a
2) have not been defined at an earlier stage:
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1. Let k̂a
1 be the least integer k such that

0 ≤ k < 3Da, φ−k(x) �[−10Dn,10Dn]⊆ Ma,

provided that such a k exists.

2. Let k̂a
2 be the least integer k such that

0 ≤ k < 3Da, φk(x) �[−10Dn,10Dn]⊆ Ma,

provided that such a k exists.

3. If both k̂a
1 and k̂a

2 exist and (Ia, k
a
1 , k

a
2) has not been defined at an earlier stage, let

ka
1 = k̂a

1 , k
a
2 = k̂a

2 , Ia = x �[−ka
1 ,ka

2 ] .

We can define the following function f : 2 Z → ωω by: f(x)(n) is the integer that codes the

following information:

Type I. For each interval Ia defined at the nth stage code the following:z

(a) Ia.

(b) a.

(c) The translation of the right endpoint of Ia−1 to the right endpoint of Ia, if Ia−1

exists by the nth stage.
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(d) The translation of the right endpoint of Ia to the right endpoint of Ia+1, if Ia+1

exists by the nth stage.

Type II. The lexicographically least cyclic permutation of s where s is defined in the following

manner: Let ln be the maximum of 0 and the integers ka
1 determined by the nth stage

and rn to be the maximum of 0 and the integers ka
2 determined by the nth stage. Now

define sn = (s0, . . . , spn−1) to be the shortest substring of un(x)
.
= x �[−(ln+Dn),rn+Dn] so

that sn is a potential period of un. That is un occurs as a substring of s∗n, where s∗n is

determined by repeating infinitely many copies of sn in both directions.

Type III. The following pair of integers ân, b̂n defined by the following:

(a) a−1 = b−1 = 0

(b) Let kn be the integer 0 ≤ kn < pn such that x � [−kn, pn − kn − 1] = sn.

(c) an = (ln + Dn − kn) mod (pn).

(d) bn = ln + Dn.

We will let ân = an − an−1 and b̂n = bn − bn−1. Notice that an is the distance from the left

boundary of un(x) to the first start of a ‘period’ sn and bn is the distance of x to the left

boundary of un(x).

To define f(x)(n) we need to consider x �[−14Dn,14Dn] only. Thus, this process will produce

a continuous function. Also for x ∈ W, n ∈ ω f(x) will eventually code the interval In by

some stage.
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Claim 6.4. If x ∈ W and xET y then f(x)E0f(y).

Proof. The disjointness property of the marker sets and their translations implies that for any

z ∈ 2 Z, k ∈ Z there is at most one pair (n, i) ∈ ω × {0, 1, 2, 3} such that φ±i·Dn+k(z) ∈ Mn.

Suppose x ∈ W and xET y. Now, if xET y there exists an integer k0 such that φk0(x) = y

without loss of generality suppose k0 > 0. Now for any n ∈ ω,

{φt(x) | |t| ≤ 3Dn} − {φt(y) | |t| ≤ 3Dn} = {φ−3Dn+t(x) | 0 ≤ t < k0}.

Thus by the above property for some N ∈ ω, for all m ≥ N ,

({φk(x) : |k| ≤ 3Dm} ∩ Mm) ⊆ ({φk(y) : |k| ≤ 3Dm} ∩ Mm).

Similarly it follows that for some M ∈ ω, for all m ≥ M ,

({φk(y) : |k| ≤ 3Dm} ∩ Mm) ⊆ ({φk(x) : |k| ≤ 3Dm} ∩ Mm).

Thus there exists a N0 such that for all m ≥ N0,

({φk(x) : |k| ≤ 3Dm} ∩ Mm) = ({φk(y) : |k| ≤ 3Dm} ∩ Mm).

This implies for each m ≥ N0 that f(x) and f(y) are eventually at some stage coding the
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same interval for Im . Let N1 ≥ N0 be a stage so that for all a ≤ (N0 +1) the interval Ia has

been defined by the N th
1 stage. Note: for all m > N1 both f(x) and f(y) will be defining

the same intervals Ia for the mth stage with the same links to Ia−1 and Ia+1. Thus for all

m > N1, f is coding the same Type I information for both x and y.

Now we need to show that f(x) and f(y) will also eventually code the same Type II

information. Let L be the maximum length of uN1(x), uN1(y). Choose B ≥ N1 such that

for all n ≥ B, dist(x, Mn) > L and dist(y, Mn) > L. To see this can be done, note since

the marker sets and their translates are disjoint there can be only finitely many within L of

either x or y. Let N2 ≥ N1 be a stage where IB has been defined. Now for all stages n ≥ N2

it follows that un(x) = un(y). This implies for all n ≥ N2, f(x)(n) and f(y)(n) are coding

the same Type II information.

We will now show f(x) and f(y) will also eventually code the same Type III information.

Now we know for all n ≥ N2 it follows that un(x) = un(y). Thus for all n ≥ N2 it follows

that an(x) = an(y) and bn(x) = bn(y) − v where πv(x) = y. This implies that for all

n > N2 we have that ân(x) = ân(y) and b̂n(x) = b̂n(y). Thus for all n > N2 we have that

f(n)(x) = f(n)(y).

Claim 6.5. If x ∈ W and f(x)E0f(y) then xET y.

Proof. Suppose x ∈ W and f(x)E0f(y). This implies that there is an M such that for all

m > M, fm(x) = fm(y). Thus there is some integer N such that for m ≥ N , Im(x) = Im(y)

and these intervals are linked to Im−1, Im+1 in the same way for both x and y. Now since

67



the marker sets are disjoint, and on the free part we do define all Im, by the disjointness

property of the marker sets it follows that the right (left) endpoints of these intervals are of

unbounded distances from x. This means that the intervals {Im}m≥1 and their links deter-

mine the equivalence class of x. In fact, any tail of {Im}m≥1 and their links will determine

the equivalence class of x. Thus xET y.

Claim 6.6. If x ∈ 2 Z is periodic with a period length c and N ≥ c then for any string s of

length d ≤ c if u
.
= x � [−N, N ] occurs as a substring of s∗ then the length of s must be c,

and s is a period of x.

Proof. First note the following simple fact. If t, u, v ∈ 2<ω such that t = u∧v = v∧u then

there exists w ∈ 2<ω and positive integers l, k such that u is k copies of w and v is l copies

of w. This follows from an induction argument on the length of the longer of u and v.

Suppose d < c and u
.
= x � [−N, N) occurs as a substring of t∗ where t has length

d < c. Noteu = s∧s where s is a period of x. Without loss of generality we can assume

t = x � [−N,−N + d − 1]. Let m = c mod d and u = (t0, . . . , tm−1) and v = (tm, . . . , td−1).

Note t = u∧v. Since s∧s is a substring of t∗ it follows by looking at the second copy of s

that s extends v∧u and thus v∧u = u∧v. By the above simple fact it follows that u and v

are both some number of copies of a string w, hence s is also. This contradicts the period

length of x being c since s∗ET w∗.

Claim 6.7. If x ∈ 2 Z is periodic and xET y then f(x)E0f(y).
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Proof. Suppose x ∈ 2 Z is periodic and xET y. Choose N0 such that DN0 is greater than

three times the period of x. There could be no points from the MN0 marker set that are ET

equivalent to x or y since this would put points within DN0 of each other in MN0 . Thus for

both x and y there is no Type I information coded by f from stages N0 and beyond. So it

suffices to show the Type II information agrees for all stages past some point. This follows

directly from Claim 6.6. Now we need to show the Type III information agrees for all stages

past some point. The fact that x and y are periodic means there exists some N greater than

the period length of x such that for all n ≥ N there are no Mn markers. Thus there exists

some N1 > N such that for all n ≥ N1 it follows that b̂n(x) = b̂n(y) = Dn − Dn−1. Note

also since the period of x divides Dn that ân(x) = 0, likewise ân(y) = 0 since y has the

same period as x. Therefore for all n ≥ N1 we have that f(n)(x) codes the same Type III

information as f(n)(y). Thus f(x)E0f(y).

Claim 6.8. If x ∈ 2 Z is periodic and f(x)E0f(y) then xET y.

Proof. Now both x and y are periodic with the same period (i.e. there exists some finite

length string s such that xET s∗ and yET s∗) thus xET y.

Claim 6.9. The function f is one-to-one.

Proof. We will first show that in the case x is periodic f(x) = f(y) ⇔ x = y. Suppose

f(x) = f(y) and x is periodic. Note this implies that yET x, thus y is also periodic. And

x and y have the same length period c. The Type III information codes that for all n,
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ân(x) = ân(y) and b̂n(x) = b̂n(y) which implies that an(x) = an(y) and bn(x) = bn(y). Thus

from Type III-(c),(d) it follows that kn(x) ≡ kn(y)modpn hence kn(x) = kn(y). Let N0 be

sufficiently large so that for all n ≥ N0 we have that sn is of length pn = c thus xET s∗n and

x � [−kn, pn − kn − 1] = y � [−kn, pn − kn − 1]. Thus x = y

Now suppose x is aperiodic and f(x) = f(y). This implies that xET y. It has already

been shown that for some N0 for all n ≥ N0 we have that un(x) = un(y). Furthermore

f(x) = f(y) implies bn(x) = bn(y). Thus for each n ≥ N0 we have that

y ∈ Nx�[−(ln+Dn),rn+Dn]
(also x ∈ Ny�[−(ln+Dn),rn+Dn]

).

This implies that x = y since Dn → ∞. Thus f is one-to-one.
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