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It is known that there are nonlinear wave equations with localized solitary wave
solutions. Some of these solitary waves are stable (with respect to a small perturbation
of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the
centre of momentum frame). In this paper we consider vector-valued solitary wave
solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these
spinning solitary waves under the influence of an externally imposed uniform magnetic
field. We find that the only stationary spinning solitary wave solutions have spin

parallel or antiparallel to the magnetic field direction.
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CHAPTER 1

Introduction
Stable localized solitary wave solutions of nonlinear wave equations are known to
exist (see [1], [3], [4], [5], [6], and [9]). In particular, the existence of stable solitary
wave solutions has been proven for certain nonlinear Klein-Gordon and Schroedinger
equations (see [3], [4], [6], and [9]) and in the case of a class of nonlinear Schroedinger
equations, have been shown to have nonzero spin (intrinsic angular momentum) (see
(6], [9])-

Consider the nonlinear Klein-Gordon equation (NLKG)

uy — Au = 7 (u) (1.1)

where v : R3*! — RY with N even and the nonlinearity ¢ : RV — R is defined
by G (y) = h(|y|*)y, h : [0,00) — R being a continuous function. We will examine
the Noether conserved quantity ?[], called spin, which results from the rotational
invariance of NLKG. This functional gives the angular momentum about the origin of
a solution u. The goal will be to find the spin of particular solitary waves (stationary
spinning solitary waves) when exposed to an external uniform magnetic field, B.
Equation (1.1) represents the case with no magnetic field, i.e. \?! = 0. It will be seen

1



that for an arbitrary direction, ci, NLKG will have rotational invariance about d and
the solitary waves under study can have nonzero spin components in that direction.
However, when an external uniform magnetic field B is applied, the spin of these
stationary solitary waves is confined to a direction either parallel or antiparallel to

B.

NLKG can be written compactly using relativistic index notation as

0%Oqu = 7 (u). (1.2)

where for X = (z,y, 2,t) we have X* = (2!, 2%, 23, t) = (2,9, 2, 1), Xo = (=1, —y, —2, 1),

|

)= (2, 2,2 2y and 9 = (=2, —2 —2 D)

Oy = (2 2, 0 0 0 0 0 _0 0
o ozl 9z27 937 Oz’ Oy oz’ Oy’ 0z’ Ot

o5}

t

We model the imposition of an external uniform magnetic field of strength B =
|§| parallel to the z-axis by making the minimal-coupling substitutions 0% — 0% —

c A% and 9, — 0, — 0 A, into NLKG giving us

(0% — 0 A) (0 — 0 As)u = T (u) (1.3)



where o is a fixed N x N real skew-symmetric matrix with ¢? = —I and

|

I
v | &
8

It will be assume throughout that B is small. This will allow us to simplify matters
by ignoring terms in (1.3) that involve B2

It is important to note that the discussion here is not a quantum mechanical
one. Although many of the constructions have analogues in quantum mechanics, the
interpretations are different.

A word about notation. There are several places, mostly in chapter 2, where there
are two kinds of dot products. One kind is that between vectors in RYY and the other

between vectors in R3. They will both be denoted by -.



CHAPTER 2

The Situation With No Magnetic Field

In this chapter the spin functional ?[] is found by applying Noether’s principle
(see [10]), and then it is shown that stationary spinning solitary wave solutions to
NLKG can have a nonzero spin component in any direction. We begin by finding
the Lagrange functional and then show this to be invariant under our definition of
rotation.

Define: H(s) = [5 h(r)dr and G(y) = $H(|Jy|?), G : RN — R (recall that h is the
continuos function such that ¢ (y) = h(|y|?)y and h : [0,00) — R). Then note the
following:

G(u+ ev) — G(u) 0G(u + ev)

e—0 € Oe

e=0

1
= 5h(|u + ev|2)%|u + ev]?

e=0

1 o O
= Qh(]u—l—ev] )a€(u+ev)-(u—|—ev)

e=0

= h(lu+ev]*)(v) - (u+ ev)

e=0

= h(ju]*)v-u

= )



This result will be used when computing the Lagrangian.

Let
4 N 1
:/ (ZZ§ (6°u®) (uu®) + (u))dg’fdt
rRY\ 51 5=1
1 5 1 =9 3
:/ ~fwl? = [Va)? + G(u) | PR dt
R4\ 2 2
where
A
Y: Yy
z

Claim:L(u) is the Lagrange functional of uy — Au = 7 (u).

Taking the Frechet derivative, we get

DL(u)(v)
RaR! , 1 )
= lim = | (Glu+ ev] —§y€(u+ev)\ + G(u+ ev)
]R4

e—0 €

1 1
— Gl + 5|ﬁ|2 — G(u))d*X dt

VBX dt

11 s o 3 N PR N .
= ihr%g (Jue® + v ]? 4+ 2eus - vp — > Y (Oau”)? — € ZZ(@ v
-0 e Jrl a=1p4=1 a=1p8=1
3 N 3 N
- 2 Z Z(aauﬂ)(aavﬁ) +2G (u+ ev) — Jug|* + Z S (0au%)? — 2G(w)d* X dt
a=1p=1 a=1p=1
= %/ (2u; - Ut—2223u —|—2hmG( ute ) Glu)

a=1 pg=1

= [ o=V Fot gl) o)X



2
Integrating u; - v; and YVu- Vo by parts and assuming v — 0 as X 12— 0,

gives

DL(u)(v) = — /Rz;(u“ v —Au-v—"79(u)- v)d?’Ydt

= — /R4(utt — Au— 7 (u)) - vd3X dt

So DL(u) = 0 <= uy — Au = 7 (u).
For a function u : R3*! — R¥, denote a counterclockwise rotation of u about an

axis through the origin in R through an angle 6 by T, gu(Y, t) and define it to be
Tgu(Y, t) = u(R;IY, t)

where R;' is a 3 x 3 (counterclockwise) rotation matrix. A matrix R is considered
to be a rotation iff R” R = I and detR = 1, and it can be shown that R is a rotation

iff R can be written as the exponential of a skew-symmetric matrix. Let

00 0 0 0 1 0 -1 0
=100 =11 5= 0 00| B=]1 0 0
01 0 10 0 0 0 0

Then 31, B2, B3 form a basis for 3 x 3 real skew-symmetric matrices and e®*, e%2



e are counterclockwise rotations about respectively the x-axis, y-axis and z-axis by
an angle a. In general, a rotation about a vector ai + bj + ck is given by ea%1+092+cfs
where the angle of rotation is 8 = v/a® + 0% + 3. Note that if d is the unit vector in
. . . . - af1+bB2+cBz 962'?
the direction ai + bj + ck and G = (B, B2, 3), then e =e )
It is now shown that L is invariant under these rotations, i.e. L(7 gu(Y,t)) =

L(u(X, 1)) V6 Vu.

L(Tu(X,t) = L(u(Ry'X,t))
_ /( lu (R X 1)) _—W’u Ry'X 02 + Gu(Ry' X 1)) X dt

Let Z = R;'X .Then

LRy X.0) = [ GlulZ.0F — 5IFu(Z,0F + Gu(Z, 0)()d Z

detR; "
= [ Ghu(R 0P~ SIFuX 0P + Gu(X )X de

= L(u(X,t)

L(Tyu(X, 1) = L(u(X 1))
It will turn out that the conserved quantity ?[u] involves in its integrand the

quantity Mu = Zu(R, X )| so we now find this. If d, 3 andX are as mentioned
6=0



before, with d = (I,m,n),l, m,neR, then

dﬁ) = (l,m,n)'(ﬁhﬁ%ﬁS)
00 O

=1lloo -1 |+ m

01 0

0 -n m

= n 0 -

-m 0
0 -n
:(dﬁ)?: n 0
—-m

—dxX

Define

Mu = %(R;Yt 4

= YVuR;'X,t)- RJY)

- _MFYt %

0 0

0

-1 0 0

—9d F?

6=0

—ny +mz
nr —lz

—mx + ly



_ _gu(e—edﬁﬁy7 £) - e—ﬂd'ﬁ(d- HX
— _Vu(X,)-d- 5%

6=0

ou ou ou
= — <£(—ny +mz) + a—y(n:z: —1z) + &(—mx + ly))

= —Vu(X,t) (dxX)
So

L(Tyu) = L(u) YuVvé
= 2 L(Tyu) =0 Yuve
= DL(Tyu)(%Tou) =0 Yuvh

=  DL(u)(Mu) =0 VYu

— A4(utt “Au— W) (VuX, ) dx X)dX dt =0 Vu,

Note that all of the above is true regardless of whether or not w is a solution
of NLKG. The fact that the integral vanishes independent of u suggests that the
integrand has the form of a divergence. We will show that this integrand can be
written as a 4-divergence, that is, (uy — Au — 7 (u)) - (u(?, t)(d x Y)) = 0,Q(u) +

V- ?(u) with @ and P to be determined. If there exists such a @ and P and



if u is a solution to NLKG, then 9,Q(u) + v - J_D)(u) = 0. Integrating over R® and
assuming that —P>(u) vanishes at spatial infinity gives 0, [ps Qd? = 0 which implies
3
that [ps Qd? is a conserved quantity. It is the Noether invariant corresponding to
the symmetry of L with respect to Tj.
The integrand can be written as this divergence by working through it term by

term. The term wuy - (ﬁu(?, t) - (d x Y ) gives at 9 and a part of the divergence.

0
U - Uz (—ny +mz) = g(ut-ux(—nijmz))+ut~umny—ut-ummz
0 0 1 ) 0 1
= a(ut-ux(—ny+mz))+%(§ny\ut\) %(sz\ut\)
0 0 1
= a4 ) + (g — ma)uf?)

Similarly

%(ut cuy(ne —1z)) + %(%(—nx + 12) |ug)?)

g - uy(ne —lz) =
and

0 01
s m ly) = (s (-ma 1) + (5 (ma = ) )

10



s (Vu(X,t) - (d x X))

0
= E(u (ug(—ny + mz) + uy(nr — 12) + u(—mz + ly)))
0,1 0,1 o 01 5
+o. (5 = mz)|u|*) + a—y(g(—”x +12)|uw]") + 5-(5 (ma = ly)ful)
0
= E(ut (ugp(—ny + mz) + uy(nr — 12) + u(—ma + ly)))
—ny +mz
1
+V - <§‘ut’2 nr —lz )
—max + ly
= Q(ut.(%-(dx XN+ V- ( \ut] (dx X))
= gt( (X xVu)+ V- ( \ut] (dx X))
The remainder of the integrand, (—Au — g'( ?u X, t) - (d x ?)), gives the rest
of the divergence. So first we find ( ﬁu X, t) - (d x Y)) Note that
YV (=Vu- (ug(—ny + m2))) = —Au - (ug(—ny +mz)) — Vu- V (ug(—ny +mz))

Which implies that

—Au - (uy(—ny + mz))

11



= ? —Vu- (uz(—ny + mz)) +ﬁu ? (—ny + mz))
= ? —Vu- (uz(—ny +mz2))) + a—x(avuﬁu(—ny—l—mz))
+Vu- (uv(—ny +mz))

= ? ?u —ny + mz)) 2€u Vu (—ny +mz))

o
since Vu - (uV (—ny + mz)) = 0. Similarly
“Au- (uy(ne —12)) = ¥ - (= ( z2>))+a%(%%-%(nx—zz>>
and
“Au- (ua(—mz 4 1y)) = ¥ - (= - (us(—ma + 1y))) + a%(%% T u(—ma + 1y))

So,

—Au- (Vu(X,t)-(d- 7)X)

ﬁ ﬁu (—ny + mz) + uy(nx — ly) + u(—mzx + ly))
(% lﬁ)u Vu(—ny + mz)) + a—y(iﬁu Nulnz —12))
(9 1
82 Qvu ﬁu (—mz + ly))

12



—ny +mz

= V(Y (Vu DXV -GV V| npors )
—mx + ly

V-V (Vu-(dx X) ﬁ.gwngm

Finally,
V - (G(u)(d x X))
0 0 0
= 8_G( u)(— ny—l—mz)—l—a G(u )(nx—lz)—l—a—G(u)(—mx—l—ly)
10 10 10
= Gy + )+ 5 () = 12) + 5 H () (o +
_ 1 SNCATIE N
= S+ ma(ul) gl + 50 — 12l 5
b (om -+ Iy h(fuf?) ol
5 (—ma + W)h([ul) 5-u
= %(—ny +mz)h(ju*)2u, - u + %(nx — 12)h(|u]*)2uy, - u
—I—%(—mx + Iy)h(|ul®)2u, - u

= (—ny+mz)7g(u) - uy + (nx —12)7 (u) - uy + (—mz +ly) g (u) - u,

= ?u dx)_())

Adding all of these results gives

(ugy — Au— 7 (u ﬁu?t dx)_()))?

13



= %ut (d- (X xVu)-V- (%\utﬁ(d x X))+ V- (=Vu-(Vu-(dx X))
%(% Vu-(dx X))+ V- (Gu)(dx X))
_ %ut (A (R x Fu) + V- (~gful(d x X) ~ Vu- (Vu-(d x X))

%% Vu(d x X) + Gu)(dx X))

2 Q=u-(d- (X x Vu))
So the conserved quantity is

Slu] = /R w-(d- (X x Vu) X
:(f/Rsut-(? X Vu))d?’)?

and we define the spin functional
S = / (X x Vu)X
R

So if € is a unit vector in R®, we define the spin in the direction é as the conserved
quantity é - ?[u] Note that this functional provides the spin for any solution to
NLKG. If it is assumed that all boundary terms vanish whenever an integration by

| o . . . g
parts is performed, it is relatively easy to verify by direct computation that <= = 0.

14



We will now look for standing-wave solutions of the form u(?, t) = emv(?) where

) is the N x N skew-symmetric matrix with the 2 x 2 blocks

along the main diagonal with w € R, and all other entries being zero. So Q? =
—w?I, T being the N x N identity matrix. The function v(?) = U(X)w(r), where
w[0, 00) — R, with r = (22 + %4 2%)2, and ¥ : B¥! — RY is a unit-vector-valued
eigenfunction of the spherical Laplacian. The Laplacian A can be decomposed into
radial and angular components:A = Ag + -5 Ag where A = 02 + 29,. The spherical
component, Ag, is a second-order derivative operator with only angular derivatives,
that acts on real-valued functions defined on the unit sphere. It also acts on real-
valued functions defined on R?, leaving the radial dependence unchanged. As shown
in [4], there exist unit-vector-valued eigenfunctions of Ag in 3-space with any of the
eigenvalues py = —I(I+1) where l =0, 1,2, .... Given a nonnegative integer [, such an
eigenfunction ¥ : $2 — SN¥~1 with eigenvalue y exists provided that N > 2/+1. So
AgW = —[(I41)¥, where we extend the action of Ag to vector RN-valued functions by

allowing the operator to act componentwise. Thus the coordinate functions of U are

eigenfunctions of Ag (see [2]). It is also shown in [4] that the variable w : [0, 00) — R

15



satifies the ordinary differential equation

For nonlinearities g of appropriate type (see [4]), there exist solutions w that are
exponentially decreasing far from the origin. Hence forth we assume ¢ satisfies these

conditions.

For u(?,t) = (X )w(r)

Sl = /Rsut.(?x%)d?’?

Let é,,éy, €, be the unit vectors along the z,y, and z axes respectively. Then since

(X x Vw(r) = [(yd. — 20,)é, — (20, — 20,)é, + (20, — ydy)éz|w(r)

= [yw'(r)0,r — zw'(r)0yr|é, — [xw'(r)0,r — zw'(r)0yr]éy

16



we get

g
=

(NQU(X) - [w(r)(X x V)I(X)]PX

g i

(X)X

=

w(MQP(X) - (X x V)

To illustrate, let us take [ = 1. Then a corresponding eigenfunction of Ag is

where the dots represent the other N — 4 entries which are all zero. To evaluate the

spin with this choice of ¥ we first need to find Q¥ (X) and (Y X ﬁ)\f/(f()

17



w 0 0 0 Y »’v

coo 1 w
WEX)=—10 0 0 -w E2 e
0 0 w O 0 z

(X x V)

=B

N 1 . R N
(X) = ~[wd: - 20,)és — (20: — 20,)8, — (10, — yOs)é.]

2€y — Ye,

—Zéx + xéz

S e

Y€y — TEy

18




And so

—y zey — Ye,
T —2€, + 1€,

Q) (X x DEXI= 5| 0 || ye—ue,
z 0

_ W . 24 . 24
= T—Q(—yzey +ye, —xzé, + x°€,)

W . . .
= 74—2((31:2 +yHe, — 126, — Yz€y)

Note that since the functions —zz and —yz are odd, their integrals over R3 vanish,

which implies

2
?[u] S 27“) (2* +y*)e. — wzé, — yzéy)di)’y
RS T
2
= ézw/ L (27’) (z? +y2)d3Y
RS T
> 0

if w > 0. That there is a nonzero spin in the é, direction. If the solution u(?, t) =

A ~

e (X)w(r) is rotated counter clockwise by 90° about the y-axis, the solution

19



w(X 1) = W (CX)w(r) results where

00 —1
C=101 0
10 0

Since NLKG is invariant under rotations, this is also a solution. To find the spin we

find Q¥(CX) and (7() X ﬁ)\if(CX) where

—z
N 1
CX =-
T y
T
and
—z
Y
A N 1
r
0

20



So

0 -1 0 0 —z —y
1 0 0 0 Y —z
A ~ w w
CX)=—10 0 0 -1 x ~1 0
0 0 1 0 0 z
N 1
(X x VWOX) = [0 — 20,)ex — (20 — 20,)8, + (20, — yDu)e:]

—YEyx + Ty

—2z€, + x€,

S |-

2ey — Ye,

21




And so

-y _yéx + l‘éQ
—z —2z€, + x€,
A s PN w
QU(OX)- (X x V)CUX)] = S| 0 || 2¢,-ve

T 0

= %(yQéx — zyé, + 22é, — x2é,)

w9 2\ 4 . A
= ﬁ((y + 2%)é, — xyé, — x2€,)

Note that since the functions —xz and —yz are odd, their integrals over R* vanish.

Thus, if w > 0,

S = w wQ(r)(

y* + 2%)é, — xyé, — xzéz)dgy

—~

r) (yQ + 22)(13)_()

2

|
>
8
&
T
g
ﬁ/-\

giving nonzero spin in the é, direction. Similarly by taking u(?, t) = e U (DX )w(r)

22



where

D={0o 0 -1

we get a solution with nonzero spin in the ¢, direction.
By appropriate rotations, a solution to NLKG can be manufactured with a nonzero

spin in any direction.
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CHAPTER 3

The Spin Direction Of Stationary Solutions In A Uniform Magnetic Field

We now introduce an external uniform magnetic field. This will change the equation
of interest. However, it will be demonstrated that if this field is assumed to be
weak, some of the same stationary waves can be solutions to an equation which is an
approximation to the new one. The spin direction will be found to be either parallel or
antiparallel to the field. It should be noted here that in [6] the existence of complex-
valued solutions have been shown for a class of nonlinear Schrodinger equations (with
an external magnetic field) with the B? term present (which we drop).

By making the minimal-coupling substitutions 0% — 0% — cA* and 0, ——

0y — 0A, into NLKG we bring about

(0% — 0 A™) (0 — 0 As)u = T (u) (3.1)

24



which introduces the external uniform magnetic field, B. The vector potential

|

I
2| &
8

is chosen so that B = B#, the function 7 (u) is defined as before and o is the N x N

real skew-symmetric matrix with the 2 x 2 blocks

along the main diagonal and zeros everywhere else. Expansion of (3.1) gives

0%0qu — 20 A%Oqu — A% Agu = ¢ (u)

since the term 9*A, = £(-8,y + d,2) = 0. It will be assumed that B < 1 and
since the solutions of interest have exponential decay far from the origin, the term

A*A, = —1B*(xz* 4+ y?) can be ignored. So the equation under study becomes

00t — 20 A%0qu = G (u)

25



or

U — Au — Bo (20, — yo,)u = g (u) (3.2)

We now look for stationary solutions, u(?, t) = emv(?), to (3.2) where Q2 is an N x N
skew-symmetric matrix and we will require that 2 commutes with . Substituting

this form into (3.2) yields

Q2emv(?) — e Au(X) - QetQUAa(?av(Y) = em?(v(Y))
= 0%0(X) — Av(X) = 204%0,0(X) = FTw(X))

Next, we look for solutions where U(Y) = U(X)w(r). Then

AF(Xu(r) = (Ap+ g As)(F(X)u(r)
= AR(E(X)w() + 5 AsF)u(r)

26



It will be shown that under certain conditions the equation

A A~ A A~

O?0(X) — BoL,W(X) = n¥(X) (3.3)

results where 7 is some constant. This makes the ansatz result in a solution by

allowing ¥ to factor out giving

(8r00) = " u0) 4 00) = o) 905 = 0

= () + 20/ ()~ D) 4 gla(r) — utr) = 0

The solutions of this radial equation are studied in [3] and [4]. Equation (3.3) will
be achieved by expanding ¥ into terms involving an orthonormal basis of CV and

eigenfunctions of the spherical Laplacian.

The spin components of a solution u along the direction of the positive x and y

27



axes are.

2MQB(X) - e, - (X x V)I(X)BX
NdPX

S

S
K>
=

T i

2 (X) - [(y0. — 20,)¥(

and

w2 (MQP(X) - e, - (X x V)T(X)BX

3

g — 5

W (MQU(X) - [(20, — 20,) V(X)X

3

In order to evaluate these spin components, the action of y0, — 20, and 20, — x0,
on ¥ must be found. As mentioned earlier, we will expand ¥ into terms involving
an orthonormal basis of CV and eigenfunctions of the spherical Laplacian, which will
also allow us to compute these actions. It is then shown that S, +14S, may be nonzero
only when B = 0, that is S, or S, may be nonzero only when B =0

As pointed earlier, each component of ¥ is an eigenfunction of Ag with the same
eigenvalue, and the possible eigenvalues of Ag in 3-space are y; = —I(I + 1) where

[ =0,1,2,... (see [2]). For each value of [, there are 2] 4+ 1 linearly independent

28



eigenfunctions of Ag each with the common eigenvalue p; (see [2]). Let

Y0, — 20,
—)
L=| 20,420, |=XxV
20y — YOy
Then Ag = f2 — T -T. Let L, =0, — 20y, Ly = —x0, + 20, and L, = 20, — y0,
Then
L,L, = —ayd®+ 20,0, + y0, + y20.0, — 20,0,
L,L, = —zy0? + y20,0, + x0y + 220,0, — 2283183;

= [L,,L,) = L,L,—L,L,

= 22040, + y0, — 20, — £20,0,

- L.

Similarly [L,, L.]| = L, and [L,, L,] = L,. If A, B and C' are linear operators then

[A, BC] = [A, B]C + B[A, C]. Using this property of commutators gives

29



= L,L,+ L,L,
[LZ, LZQ/] = [Lza Ly]Ly + Ly [Lza Ly]
= —L,L,— L,L,
and
[Lza Lg] = [Lza Lz]Lz + L. [Lz: Lz]
= 0
= [L,, f)Q] = 0. So L? = Ag and L, have a common set of orthonormal eigen-
functions
f—la ey 5—17 607 £17 sy fl

and so we can write Ag&,, = —l(l + 1),,,. The corresponding 2[ + 1 eigenvalues of L,

30



are

—il, —i(l+1), ..., —i,0,4, ..., i(1l — 1), il

as shown in [7]. Note that since L., = im&,, implies L,&,, = —imé,,, we can take
£ = &,. This collection of eigenfunctions span the space of all eigenfunctions of
Ag with eigenvalue —I(I + 1). So there exists @,, € C, — < m < [, such that
W(X) = Xhey T (X).

Since €2 and o are both real skew-symmetric matrices, then they are both normal,
ie., Q2°Q = QOQ* and o*c = o0*, where * is the conjugate-transpose operation. By
hypothesis,  and o commute. So there exists an orthonormal basis of CV consisting
of vectors which are eigenvectors for both 2 and o (see [8]). Let ¢1, ¢, ..., ¢, be this
collection of eigenvectors. The eigenvalues of ¢ are +i and so 0¢; = (—1)i¢;, and
Qo = \joj, 1 < j < N, where )\, is the (complex) eigenvalue corresponding to ¢,.

It follows that the A; are pure imaginary since

0<Q0° = (Q0;100;)
= (9;|0°Q0;)
= —(4;10%;)
= —(5|Xj¢;)

2 2
= =Ajlall
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=X < 0

i.e. )\; is pure imaginary, and so let \; = iv; where v; € R. So if iv,, iv,, are distinct

eigenvalues of €2, then (¢,, ¢,,) = 0, as the following proof shows:

:>_<¢n79¢m> = Z.Vn<¢n7¢m>

On the other hand Q¢,, = iv,,¢,, implies

(On, Qbm) = (Pn, iVimPm)
= <¢n7 Q¢m> = Em<¢m ¢m>
= <¢n7 Q¢m> = _iym<¢n7 ¢m>

Adding the last two results

iVn<¢na ¢m> - Z.Vm<¢na ¢m> - 0
= Z(Vn - Vm)<¢n7 (bm) = 0
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Since Q¢; = w;¢; = Qaj = —il/jaj, we can take ¢y = @, ¢y = P3, ..., ON = On_;.
Let us call j the other index of the pair, that is let i = n+1 if nis odd, and 1 = n—1
if n is even. Hence {¢1, ¢y, ..., on} can be chosen to be an orthonormal basis of CV
so that ¢, = ¢4.

We can now write U(X) = 3L amén(X) =X E;V:l @jm¢j§m(X)a Qjm €

C. Also

Since W is real, we require Qj(_m) = Qjm. Putting this expansion of ¥(X) into (3.3)

gives

l N

S N[y~ 06m — B(=1)i¢jimém, — ngim)] = 0

m=—[j=1

Thus for every j and m, either aj, =0 or —v7 4 (=1)'mB — 1 =0

Define Ly = L, +iL,. We know L.&, = iy/I(l+1) —m(m+1) & with
L&, =01if m =1 (see [7]). Using this definition, the direction of spin is found by

making the necessary substitutions into the quantity S, + .5y:

S, + 1S,
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€x /}R3 Uy - (Y X ?u)d?’Y + ié, /11@3 Uy - (Y X ?u)d?’Y
uy - (Lxu)d:g)—() +1 /R3 uy - (Lyu)dSY

e

v (Ly + Ly )ud®X

I
I
/}R3 . (L+u)d3?
I
I

e

w2 QU - (L, 0P X

l N
1

FndE, Y S bty I+ 1) —mlm + 1) %

n=—[1 k=1 m=-—1j=1
N

! N
Z Z Z Z “/k akn¢k£—n ajm§m+1¢j \/l [+ 1 (m+ 1) d3Y

n=—lk=1m=-1j=1

g: w21/j«@5n¢j§_n . ajm§m+1¢j\/l(l +1)—m(m+1) BX

n=—Ilm=-1j=1 R3

I -1 N 3

YN V;@;najm\/l(l +1)—m(m+1) /3 w2§n§m+1d3y
n=—Ilm=-[j=1 R

I -1 N

> Y Y vascn@myI+ 1) —m(m +1) /Rg W i d®X
n=—l m=-1 j 1

l )

Z Z Z Vs ozjnoz]m\/l I+1)—m(m+1) 5n(m+1)/ r?w?(r)dr
n=—lm=-1j=1 0

Z Z ViQj(m+1) ozjm\/l ((+1)—m(m+1) /OO r2w?(r)dr
m=—1j=1 0

Suppose that for particular values of m and j, a1y # 0 and aj, # 0. Then

v =n—(=1mB and —v = n — (=1)’(m + 1) B which implies B = 0. Thus if

B # 0 then S, + 1S, = 0. So when B # 0, the only allowable directions for nonzero

spin are along the magnetic field lines.

We now provide a simple example showing nonzero spin in a direction parallel to
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the B field, i.e. parallel to the z-axis. Let U(Y,t) = (X )w(r) with u : R3*! —

R* and where Q is a 4 x 4 skew-symmetric matrix of the form

0 -1 0 O
1 0 0 0
g =
0 0 0 -1
0 0 1 0
and
T
~ 11 Y
U =—
r
z
0
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We will subtitute the above form of €2 in (3.3) and it will be seen that we will be

able to find wy in terms of w;. So first find each of the terms in (3.3).

0?2 =
0 0 —w2 0
0 0 0 —wl
So
—w? 0 0 0 x
2
o 1 0 —w 0 0 Y
PH(X) = - '
,
0 0 —w? 0 z
0 0 0 -w]lo
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And so

1

—Y
1| =
;O

0
0 -1 0 O
1 0 0
0 O —1
0 O 0
—x
-y
0
0
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Now, substituting into (3.3)

—wix Bz T
2
—wiy By y
+ =
—w2z 0 2
0 0 0
(—wi+ B)z x
(—wi + By Y
s = 77
—w2z z
0 0

This gives us that w? = w? — B which implies wy = +v/w; — B and therefore

0 —w 0 0

w 0 0 0
0=

0 O 0 —Vw? — B

0 O w?—B 0

Using this form of € it is now shown that a solution of the form u()?),t) =

e 20 (X )w(r) has nonzero spin parallel to the direction of the magnetic field. The
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component of spin parallel to B is

Now,

v

S, [u]

=

= ?[u] és
= /. W QU(X) - LY (X)X
0 —w 0 0
w 0 0 0
0 0 0 —Vw?— B
0 0 Vw’—B 0
—wy ~y
wr xr
0 0
(Vw? — B)z 0
y* + %)
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it w > 0. So
S.u] = / w—w(l‘2 + y2)d32
R

which is nonzero if w # 0.
Note that since S, [u] does not involve B, we could have set B = 0 at the begining
of this example and we would then have a solution with a nonzero spin parallel to

the z-axis in the absence of a magnetic field.
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CHAPTER 4

Precessing Solutions

The solutions examined so far have their axis of rotation parallel to the uniform mag-
netic field. In order to generalize the results, we now investigate possible precessing
solutions in the uniform magnetic field. It will be seen that precessing solutions to
3.2 of the same ansatz as before will have spin parallel or antiparallel to the magnetic
field direction. This implies that there are no precessing solutions, since the spin does
not lie along the axis of rotation.

Let u(?,t) — U (X)w(r)be a solution to 3.2. A precessing solitary wave is
obtained by first tilting one of the form u(?, t) = XU (X)w(r). It can be tilted by
rotating about say the y-axis, through some angle #. This is achieved by multiplying

the X in the argument of 0 by the rotation matrix

cos 0 sinb

—sinf@ 0 cosf

The argument of ¥ then becomes
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cos@ 0 sind T xcosl + zsind

<
—
Bty
I
| =
o
[
o
<
Il
S| =

Y

—sind 0 cosf —x8inf + zcosl

I\

Since NLKG is invariant under rotations, if em\i/(f()w(r) is a solution to 3.2, then
s0 is €W (T, ' X)w(r), that is, tilting a solitary wave solution of this form only results
in another of the same form. Thus to examine possible precessing solutions, we need
only set a solitary wave of the type U(Y,t) = 2 (X)w(r) precessing about the

z-axis. This is done by multiplying the argument of U by the 3 x 3 rotation matrix

cosut  sinut 0
R;tl = —sinut cosut 0

0 0 1

e*MtM

where
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and p is the rate of precession. So precessing solitary waves take on the form u(?, t) =
em\i/(R;th Jw(r). We now proceed as in chapter 3. We wish to see if there are any
precessing solutions to 3.2 with the above ansatz and then to find their direction of
spin. Many of the things that will be need were discussed in chapter 3 and so they
are stated here again.

We are looking for solutions to uy — Au — Bo (20, — yd,)u = ¢ (u) (i.e. we are
assuming B < 1) which have the form U(Y,t) = em\i/(R;th)w(r). The matrix
R is as mentioned above, © is an N x N skew-symmetric matrix and as before,
we require it to commute with o. ¥ is the unit-vector-valued eigenfunction of the
spherical Laplacian with eigenvalues py = —I(I 4+ 1) where [ = 0,1, 2, .... The variable

w0, 00) — R is exponentially decreasing far from the origin and satifies the ordinary

differential equation

Apo(r) ~ D) 1 gw(r) - ) = 0 (4.0
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Recall that Ag and L, have a common orthonormal set of eigenfunctions £ 4, ..., £ 1, &, &1, ...&
where Agé,, = —I(l + 1)&, and L.&,, = im&,, and we can take £_,, = &,,. So there
exists @,, € CV, —1 <m <1, such that U(R}X) =Y @&n(X). Also, Q and
o have a common set of eigenvectors which form an orthonormal basis of CV which we
call ¢1, ga, ..., ¢,. The corresponding eigenvalues of o are +i, and so o¢; = (—1)7ig;
and the corresponding eigenvalues of {2 are iv; where v; € R, and so Q¢; = iv;¢;,
1 < j < N. The ¢; can be chosen so that ¢, = G104 = Ggy .y dn = Oy, and
the notation ¢, = ¢ is used where 7 = n + 1 if n is odd, and 2 = n — 1 if n is
even. Thus ¥ may now be written as the expansion \TI(R;tIX) = T mbm(X) =
S Z;V:l &jm¢j§m(X), ajm € C. We proceed as in chapter 3 by substituting into

A

uy — Au — Bo (20, — y0,)u = ¢ (u). Taking U(Y, t) = em\i/(R;th)w(r) we get

ut(Y,t)
= Qem\il(e*“tMX)w(T) + emv\i/(e*“tMX) . (—,uM)e*“tMXw(r)
= QMU (e M X )w(r) + (—pMT)eM V(e M X) - e M Xaw(r)
0 -1 0 Vi U(e M X)
= QMU (e M X)w(r) —pe™ | 1 0 0 || Vob(e M)

0 0 0 Vol (e=HtM X)
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cosut  sinut 0 x

—sinut cosut 0 Y w(r)

reosut + ysinut
—xsinut + ycosut w(r)
2
= QMU (e M X )w(r) + pe™((zcospt + ysinut) V¥ (e #M X)
—(—xsinut + ycos,ut)ﬁg\if(e’“tMX))w(r)

A ~

= QMU (e M X)w(r) 4+ pe (L, ¥(X))

efuth(w(T)

= QMW (e M X)w(r) 4+ pe (L W) (e M X )w(r)

A A

= Qu(X,t)+ pLu(X,t)

Using this result gives

un (X, 1)

= Q2 (e ™M X)w(r) + 2uQe® (L 0) (e M X w(r) + p2e™ (Lo0) (e ™M X )w(r)
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= Q%u(X,t) 4 2QuL.u(X,t) + p? Lu(X, t)w(r)
If both € and W are both time dependent, then (3.2) takes on the form
QPuy — 2uQL.u + p?L2u — Au— BoLu — g (u) =0 (4.2)
With w(X,t) = em\il(R;th)w(T) this is

QMW (R} X )w(r) — 2puQe™ L (W(R} X)) w(r) + p2e™ L2(U (R X))w(r) —

AU (R, X)w(r)) — Boe™ L.(¥ (R, X))w(r) — (™ V(R X)w(r)) = 0
Now,

Au = AEHI(R

s A [0Pw 20w 1 A
\D(Ruth) <W + ;5>+ﬁw(7’) <—l(l + 1)\I}(Rut1X)>>

mg 2 I(l+1)

w"(r) + ;w’(r) -

w(r)) ()
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and

Li(U(RG X)) = (Lo +iLy)(U(R,X))
= (L +iLy)(W(e MM X))
= L (U(e™MX)) +iL, (U(e "M X))
= (yd. — 20,)(W(e "M X)) + i(—2d. + 20,) (e M X))
= V(e MX) - (yd. — 20,)(e "M X)

+iV U (e MM XY - (=20, + 20,) (e MM X)

—zsinut zcospit

- ?\i/(e*“tMX') . zcosut + iﬁ\i/(e’“tM)A() | —zsinut
y —x

iz(cospt + isinut)

= V(e ™MX) | _s(cosput + isinpt)
Y — T
12

_ v\il(e_“tMX)ei“t . .
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1z
= MV (e MY - s

et (y — ix)

Since
LoU(X) = (L, +iL,)¥(X)
= L,U(X)+iL,¥(X)
= (yd. — 20,)U(X) + i(—x0. + 20,)¥(X)
= V(X)) (0. — 20,)X +iVU(X) - (—20. + 20,) X
0 z
= VX)) | _, | +iVIX) | ¢
Y -z
12
= v‘i’(j() —Zz
Yy —ix
then

L.(¥(R, X)) = e L. (¥)(R,, X)

ut
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Substituting into (4.2) gives us

>y (%mm%j)&m(mw(r) + 20004 (263) (L) () u0(r)

m=—1j=1

205 (L2Em) (X)(r) = @& (X) Aruw(r) + =—5=0m;€m(X (1)

~ Boagméy (L) (D)ulr) - g(w(r))ajmasjfmo%)): 0

! N
= 2 D Amdi&m(X) <(—V? + 2pmy; — p*m?® + B(=1)m)w(r) — Agw +

m=—1j=1

For each j,m we require either a;,, = 0 or (v; — um)* — B(=1)Ym) = n, where 7
is a positive constant independent of 7 and m. We want to know if there are any
precessing solutions that have nonzero spin components not parallel to the B field.
This is done by examining the vector S, + ¢S, and using the result just found. First
substitute the expansion of U into this expression and use the results found earlier

for ut(Y, t) and the actions of L, and L on 0.

S, + S,

_ éx/Rsut.(X} X ?’u)d?’Yﬂ'éy/RSut.(X* x V)X
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/RBut (L ud?’Y—l—Z/ t-(Lyu)d3Y

ug - (Ly +1Ly) ud3X

S

R3

ug - (Lyu) dgj()

S

R3

200 + pL, V) - (Lo 1) d*X

ewt/ <Z Zak”¢k Zl/k§ —i—usz ))

n=—1 k=1

\

( S bt I+ 1) — m(m + 1)> P

m=—1j=1
zut/ < Z Z &kn¢k€ l/k - ,LLn))
n=—l k=1
( 3 Za]mgmﬂcp]w L+ 1) —m(m+ 1)) BX
m—fl] 1

N -1 N

MY S S S [ wadiE )

n=—lk=1m=-1j=1

Qb1 dyiJl(L+1) —m(m + 1) X
S S [ w6 (v — n)
n=—lm=-1[j=1

Qi1 0 1L+ 1) —m(m +1) &*X

[ -1 N
e DY Aman@im (v — p(m + 1))

n=—Ilm=-1j=1

I+ 1) —m(m+1) / W € dX

-1 N

zut Z Z Z&](m—i-l)&]m M(m—i_ 1))
n=—Ilm=-1j=1
VI +1) = m(m + 1) Gumany /O " (r)dr

-1 N

[ Y 3 oennlt; — nlm -+ D)D)

m=—1j=1

20
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If &j(ms1)jm # 0, then a1y # 0 and oy, # 0.

Now if oj(mi1) # 0, then (4.1) and (4.2) imply

(vj — p(m +1))* = B(=1)/(m +1)) =n

= v} = 2uu(m+1) + p*(m+ 1) = B(=1)/(m + 1) =7 (4.4)

and a;j,, # 0 implies

= I/J2 —2u;pum + p’m? — B(=1)’m =17 (4.6)

Subtracting (4.6) from (4.4) yields

2ujp — 2mp® — p® + B(—=1) =0

Note that if © = 0, then this problem reduces to what was done in chapter 3, and

Sy + 1S, = 0. So assume from here on that ;¢ # 0. Solving the above equation for v;
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gives

Substituting this into (4.5) gives 7.

<_u (2m+1) — B(—l)j—um>2—B(—1)jm
(iu i~ BE1Y) ~B(-1pm

= (,u — 21 B(—1)! + B> — 44> B(—1)"m)
w2

1 .
— 4—u2(u4 —2B(2m + 1)(—1)7 4 + B?)

This result will needed shortly.

We wish to have |¥|? = 1 independent of X. From [2] it is known that the &’s
can be chosen so that 3, |€(X)[> = 1 independent of of X. However in order for
for U2 = > Tin0mEn (X X)&m(X) to be independent of X, we insist that the
coefficient of £, (X )fm( ) vanishes for n # m. That is we require >=; @;, 0 = Gpn-
Then [ W] = 50,0 @jntjmn(X)€m(X) = Tin Onnn(X)n(X) = T, [€X)F = 1

and this is independent of X.
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Let

ONm

If S, + 45, is to be nonzero, we need for some j = jo and some m = mg < 1 — 1,
that ajym, # 0 and Qjy(mg+1) 7 0. Since 33| @jn@jm = Gy, then [a]y, is orthogonal
to [@]mer1- So there must be another value of j, say j = ji, (j1 # jo) for which
Qjime 7 0 and j, (me+1) 7 0. It is now shown that this forces S, + ¢S, = 0, giving us
a contradiction. So suppose ajom, 7# 0, Qjome+1) 7 0, and ajmg 7# 0, &, (mg+1) 7 0
and the ansatz for the form of u produces a solution. Then this results in the four

equations

(vgy — pmo)? — B(~1Ymq = 1 (47)
(3o — ilmo + 1)) — B(~1P*(my + 1)) = 1 (4.8)
(v, — pmo)? — B(~1Ymo = 1 (4.9)
(v, — (o +1))? = B(=1Y (my + 1)) = 1 (4.10)

(where, recall, 7 is a constant independent of j and m). As already shown, from (4.7)
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and (4.8)

1 .
n= 4—/ﬂ(u4 —2B(2mg + 1)(=1)"u* + B?)

and (4.9) and (4.10) give

1 .
n= 472(“4 —2B(2mo + 1)(=1)" i + B?)

If (—1)% # (—1)7*, then two different values of i result, and there is no solution of the
ansatz form. Thus it must be true that (—1)’° = (—1)7*, from which it follows that

= v;, and thus v; = &~ (u*(2m + 1) — B(—1)7). Thus every j; for which a;,,, # 0

v; 5

jo
and o, (my1) # 0 has vj, = v;,. So in the formula for S, + S, the common factor
of v; — p(m + 1) can be taken out of the sum over j. The sum over j then reduces
to the inner product of [, and [a],41. Since these are orthogonal, S, + S, = 0.
So there are no solutions with the ansatz for the form of v which have nonzero spin
components in a direction not parallel to the magnetic field. This implies that there
are no precessing solutions since any nonzero spin components would not lie along
the axis of rotation.

We have examined certain vector-valued solitary wave solutions to a nonlinear
Klein-Gordon equation. Since the equation was seen to be invariant under rotations,

we were able to find a functional which gave the Noether conserved quantity (which

we call spin) for solutions to NLKG. The existence of solitary wave solutions with
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nonzero spin in any prescribed direction was then shown. When an external uniform
magnetic field is applied, the only solutions to NLKG had spin parallel or antiparallel
to the magnetic field. It should be noted that the solutions examined were in space-
time R3>™! and were restricted to positive integral values of values of [. Futher work
needs to be done to examine the existence of solitary wave solutions in general space-

time RV*! and for half-integral values of [.
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