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It is known that there are nonlinear wave equations with localized solitary wave

solutions. Some of these solitary waves are stable (with respect to a small perturbation

of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the

centre of momentum frame). In this paper we consider vector-valued solitary wave

solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these

spinning solitary waves under the influence of an externally imposed uniform magnetic

field. We find that the only stationary spinning solitary wave solutions have spin

parallel or antiparallel to the magnetic field direction.
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CHAPTER 1

Introduction

Stable localized solitary wave solutions of nonlinear wave equations are known to

exist (see [1], [3], [4], [5], [6], and [9]). In particular, the existence of stable solitary

wave solutions has been proven for certain nonlinear Klein-Gordon and Schroedinger

equations (see [3], [4], [6], and [9]) and in the case of a class of nonlinear Schroedinger

equations, have been shown to have nonzero spin (intrinsic angular momentum) (see

[6], [9]).

Consider the nonlinear Klein-Gordon equation (NLKG)

utt − ∆u = −→g (u) (1.1)

where u : R
3+1 −→ R

N with N even and the nonlinearity −→g : R
N −→ R

N is defined

by −→g (y) = h(|y|2)y, h : [0,∞) −→ R being a continuous function. We will examine

the Noether conserved quantity
−→
S [·], called spin, which results from the rotational

invariance of NLKG. This functional gives the angular momentum about the origin of

a solution u. The goal will be to find the spin of particular solitary waves (stationary

spinning solitary waves) when exposed to an external uniform magnetic field,
−→
B .

Equation (1.1) represents the case with no magnetic field, i.e. |−→B | = 0. It will be seen
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that for an arbitrary direction, d̂, NLKG will have rotational invariance about d̂ and

the solitary waves under study can have nonzero spin components in that direction.

However, when an external uniform magnetic field
−→
B is applied, the spin of these

stationary solitary waves is confined to a direction either parallel or antiparallel to

−→
B .

NLKG can be written compactly using relativistic index notation as

∂α∂αu = −→g (u). (1.2)

where for X = (x, y, z, t) we have Xα = (x1, x2, x3, t) = (x, y, z, t), Xα = (−x,−y,−z, t),

∂α = ( ∂
∂x1 ,

∂
∂x2 ,

∂
∂x3 ,

∂
∂t

) = ( ∂
∂x

, ∂
∂y

, ∂
∂z

, ∂
∂t

), and ∂α = (− ∂
∂x

,− ∂
∂y

,− ∂
∂z

, ∂
∂t

).

We model the imposition of an external uniform magnetic field of strength B =

|−→B | parallel to the z-axis by making the minimal-coupling substitutions ∂α �−→ ∂α −

σAα and ∂α �−→ ∂α − σAα into NLKG giving us

(∂α − σAα)(∂α − σAα)u = −→g (u) (1.3)
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where σ is a fixed N × N real skew-symmetric matrix with σ2 = −I and

−→
A =

B

2




−y

x

0

0




It will be assume throughout that B is small. This will allow us to simplify matters

by ignoring terms in (1.3) that involve B2.

It is important to note that the discussion here is not a quantum mechanical

one. Although many of the constructions have analogues in quantum mechanics, the

interpretations are different.

A word about notation. There are several places, mostly in chapter 2, where there

are two kinds of dot products. One kind is that between vectors in R
N and the other

between vectors in R
3. They will both be denoted by ·.
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CHAPTER 2

The Situation With No Magnetic Field

In this chapter the spin functional
−→
S [·] is found by applying Noether’s principle

(see [10]), and then it is shown that stationary spinning solitary wave solutions to

NLKG can have a nonzero spin component in any direction. We begin by finding

the Lagrange functional and then show this to be invariant under our definition of

rotation.

Define: H(s) =
∫ s
0 h(r)dr and G(y) = 1

2
H(|y|2), G : R

N −→ R (recall that h is the

continuos function such that −→g (y) = h(|y|2)y and h : [0,∞) −→ R). Then note the

following:

lim
ε→0

G(u + εv) − G(u)

ε
=

∂G(u + εv)

∂ε

∣∣∣∣∣
ε=0

=
1

2
h(|u + εv|2) ∂

∂ε
|u + εv|2

∣∣∣∣∣
ε=0

=
1

2
h(|u + εv|2) ∂

∂ε
(u + εv) · (u + εv)

∣∣∣∣∣
ε=0

= h(|u + εv|2)(v) · (u + εv)

∣∣∣∣∣
ε=0

= h(|u|2)v · u

= −→g (u) · v
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This result will be used when computing the Lagrangian.

Let

L(u) =
∫

R4

(
4∑

α=1

N∑
β=1

1

2
(∂αuβ)(∂αuβ) + G(u)

)
d3−→Xdt

=
∫

R4

(
1

2
|ut|2 − 1

2
|−→∇u|2 + G(u)

)
d3−→Xdt

where

−→
X =




x

y

z




.

Claim:L(u) is the Lagrange functional of utt − ∆u = −→g (u).

Taking the Frechet derivative, we get

DL(u)(v)

= lim
ε→0

1

ε

∫
R4

(
1

2
|ut + εvt|2 − 1

2
|−→∇(u + εv)|2 + G(u + εv)

− 1

2
|ut|2 +

1

2
|−→∇u|2 − G(u))d3−→Xdt

=
1

2
lim
ε→0

1

ε

∫
R4

(|ut|2 + ε2|vt|2 + 2εut · vt −
3∑

α=1

N∑
β=1

(∂αuβ)2 − ε2
3∑

α=1

N∑
β=1

(∂αvβ)2

− 2ε
3∑

α=1

N∑
β=1

(∂αuβ)(∂αvβ) + 2G(u + εv) − |ut|2 +
3∑

α=1

N∑
β=1

(∂αuβ)2 − 2G(u))d3−→Xdt

=
1

2

∫
R4

(2ut · vt − 2
3∑

α=1

N∑
β=1

(∂αuβ)(∂αvβ) + 2 lim
ε→0

G(u + εv) − G(u)

ε
)d3−→Xdt

=
∫

R4
(ut · vt −−→∇u · −→∇v + −→g (u) · v)d3−→Xdt
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Integrating ut · vt and
−→∇u · −→∇v by parts and assuming v −→ 0 as

−→
X

2
+ t2 −→ ∞,

gives

DL(u)(v) = −
∫

R4
(utt · v − ∆u · v −−→g (u) · v)d3−→Xdt

= −
∫

R4
(utt − ∆u −−→g (u)) · vd3−→Xdt

So DL(u) = 0 ⇐⇒ utt − ∆u = −→g (u).

For a function u : R
3+1 −→ R

N , denote a counterclockwise rotation of u about an

axis through the origin in R
3 through an angle θ by Tθu(

−→
X, t) and define it to be

Tθu(
−→
X, t) ≡ u(R−1

θ

−→
X, t)

where R−1
θ is a 3 × 3 (counterclockwise) rotation matrix. A matrix R is considered

to be a rotation iff RT R = I and detR = 1, and it can be shown that R is a rotation

iff R can be written as the exponential of a skew-symmetric matrix. Let

β1 =




0 0 0

0 0 −1

0 1 0




, β2 =




0 0 1

0 0 0

−1 0 0




, β3 =




0 −1 0

1 0 0

0 0 0




Then β1, β2, β3 form a basis for 3× 3 real skew-symmetric matrices and eaβ1 , eaβ2 ,
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eaβ3 are counterclockwise rotations about respectively the x-axis, y-axis and z-axis by

an angle a. In general, a rotation about a vector ai + bj + ck is given by eaβ1+bβ2+cβ3

where the angle of rotation is θ =
√

a2 + b2 + c3. Note that if d̂ is the unit vector in

the direction ai + bj + ck and
−→
β = (β1, β2, β3), then eaβ1+bβ2+cβ2 = eθd̂·

−→
β .

It is now shown that L is invariant under these rotations, i.e. L(Tθu(
−→
X, t)) =

L(u(
−→
X, t)) ∀θ ∀u.

L(Tθu(
−→
X, t)) = L(u(R−1

θ

−→
X, t))

=
∫

R4
(
1

2
|ut(R

−1
θ

−→
X, t)|2 − 1

2
|−→∇u(R−1

θ

−→
X, t)|2 + G(u(R−1

θ

−→
X, t)))d3−→Xdt

Let
−→
Z = R−1

θ

−→
X .Then

L(u(R−1
θ

−→
X, t)) =

∫
R4

(
1

2
|ut(

−→
Z , t)|2 − 1

2
|−→∇u(

−→
Z , t)|2 + G(u(

−→
Z , t)))(

1

detR−1
θ

)d3−→Z dt

=
∫

R4
(
1

2
|ut(

−→
X, t)|2 − 1

2
|−→∇u(

−→
X, t)|2 + G(u(

−→
X, t)))d3−→Xdt

= L(u(
−→
X, t))

⇒ L(Tθu(
−→
X, t)) = L(u(

−→
X, t)).

It will turn out that the conserved quantity
−→
S [u] involves in its integrand the

quantity Mu ≡ ∂
∂θ

u(R−1
θ

−→
X, t)

∣∣∣∣∣
θ=0

so we now find this. If d̂,
−→
β and

−→
X are as mentioned
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before, with d̂ = (l, m, n), l, m, nεR, then

d̂ · −→β = (l, m, n) · (β1, β2, β3)

= l




0 0 0

0 0 −1

0 1 0




+ m




0 0 1

0 0 0

−1 0 0




+ n




0 −1 0

1 0 0

0 0 0




=




0 −n m

n 0 −l

−m l 0




⇒ (d̂ · −→β )
−→
X =




0 −n m

n 0 −l

−m l 0







x

y

z




=




−ny + mz

nx − lz

−mx + ly




= d̂ ×−→
X

Define

Mu ≡ ∂

∂θ
u(R−1

θ

−→
X, t)

∣∣∣∣∣
θ=0

=
−→∇u(R−1

θ

−→
X, t) · ∂

∂θ
(R−1

θ

−→
X )

∣∣∣∣∣
θ=0

=
−→∇u(e−θd̂·

−→
β −→

X, t) · ∂

∂θ
(e−θd̂·

−→
β −→

X )

∣∣∣∣∣
θ=0
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= −−→∇u(e−θd̂·
−→
β −→

X, t) · e−θd̂·
−→
β (d̂ · −→β )

−→
X

∣∣∣∣∣
θ=0

= −−→∇u(
−→
X, t) · (d̂ · −→β )

−→
X

= −
(

∂u

∂x
(−ny + mz) +

∂u

∂y
(nx − lz) +

∂u

∂z
(−mx + ly)

)

= −−→∇u(
−→
X, t) · (d̂ ×−→

X )

So

L(Tθu) = L(u) ∀u∀θ

=⇒ ∂
∂θ

L(Tθu) = 0 ∀u∀θ

=⇒ DL(Tθu)( ∂
∂θ

Tθu) = 0 ∀u∀θ

=⇒ DL(u)(Mu) = 0 ∀u

⇐⇒
∫

R4
(utt − ∆u −−→g (u)) · (−→∇u(

−→
X, t)(d̂ ×−→

X ))d
−→
X

3
dt = 0 ∀u,

Note that all of the above is true regardless of whether or not u is a solution

of NLKG. The fact that the integral vanishes independent of u suggests that the

integrand has the form of a divergence. We will show that this integrand can be

written as a 4-divergence, that is, (utt − ∆u −−→g (u)) · (u(
−→
X, t)(d̂ ×−→

X )) = ∂tQ(u) +

−→∇ · −→P (u) with Q and
−→
P to be determined. If there exists such a Q and

−→
P and
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if u is a solution to NLKG, then ∂tQ(u) +
−→∇ · −→P (u) = 0. Integrating over R

3 and

assuming that
−→
P (u) vanishes at spatial infinity gives ∂t

∫
R3 Qd

−→
X

3
= 0 which implies

that
∫

R3 Qd
−→
X

3
is a conserved quantity. It is the Noether invariant corresponding to

the symmetry of L with respect to Tθ.

The integrand can be written as this divergence by working through it term by

term. The term utt · (−→∇u(
−→
X, t) · (d̂ ×−→

X )) gives ∂Q
∂t

and a part of the divergence.

utt · ux(−ny + mz) =
∂

∂t
(ut · ux(−ny + mz)) + ut · uxtny − ut · uxtmz

=
∂

∂t
(ut · ux(−ny + mz)) +

∂

∂x
(
1

2
ny|ut|2) − ∂

∂x
(
1

2
mz|ut|2)

=
∂

∂t
(ut · ux(−ny + mz)) +

∂

∂x
(
1

2
(ny − mz)|ut|2)

Similarly

utt · uy(nx − lz) =
∂

∂t
(ut · uy(nx − lz)) +

∂

∂y
(
1

2
(−nx + lz)|ut|2)

and

utt · uz(−mx + ly) =
∂

∂t
(ut · uz(−mx + ly)) +

∂

∂z
(
1

2
(mx − ly)|ut|2)

10



∴ utt · (−→∇u(
−→
X, t) · (d̂ ×−→

X ))

=
∂

∂t
(ut · (ux(−ny + mz) + uy(nx − lz) + uz(−mx + ly)))

+
∂

∂x
(
1

2
(ny − mz)|ut|2) +

∂

∂y
(
1

2
(−nx + lz)|ut|2) +

∂

∂z
(
1

2
(mx − ly)|ut|2)

=
∂

∂t
(ut · (ux(−ny + mz) + uy(nx − lz) + uz(−mx + ly)))

+
−→∇ ·

(
1

2
|ut|2




−ny + mz

nx − lz

−mx + ly




)

=
∂

∂t
(ut · (−→∇u · (d̂ ×−→

X ))) +
−→∇ · (1

2
|ut|2(d̂ ×−→

X ))

=
∂

∂t
(ut · (d̂ · (−→X ×−→∇u))) +

−→∇ · (1
2
|ut|2(d̂ ×−→

X ))

The remainder of the integrand, (−∆u−−→g (u)) · (−→∇u(
−→
X, t) · (d̂×−→

X )), gives the rest

of the divergence. So first we find (−∆u) · (−→∇u(
−→
X, t) · (d̂ ×−→

X )). Note that

−→∇ · (−−→∇u · (ux(−ny + mz))) = −∆u · (ux(−ny + mz)) −−→∇u · −→∇(ux(−ny + mz))

Which implies that

−∆u · (ux(−ny + mz))
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=
−→∇ · (−−→∇u · (ux(−ny + mz))) +

−→∇u · −→∇(ux(−ny + mz))

=
−→∇ · (−−→∇u · (ux(−ny + mz))) +

∂

∂x
(
1

2

−→∇u · −→∇u(−ny + mz))

+
−→∇u · (u−→∇(−ny + mz))

=
−→∇ · (−−→∇u · (ux(−ny + mz))) +

∂

∂x
(
1

2

−→∇u · −→∇u(−ny + mz))

since
−→∇u · (u−→∇(−ny + mz)) = 0. Similarly

−∆u · (uy(nx − lz)) =
−→∇ · (−−→∇u · (uy(nx − lz))) +

∂

∂y
(
1

2

−→∇u · −→∇u(nx − lz))

and

−∆u · (uz(−mx + ly)) =
−→∇ · (−−→∇u · (uz(−mx + ly))) +

∂

∂z
(
1

2

−→∇u · −→∇u(−mx + ly))

So,

−∆u · (−→∇u(
−→
X, t) · (d̂ · −→β )

−→
X )

=
−→∇ · (−−→∇u · (ux(−ny + mz) + uy(nx − ly) + uz(−mx + ly))

+
∂

∂x
(
1

2

−→∇u · −→∇u(−ny + mz)) +
∂

∂y
(
1

2

−→∇u · −→∇u(nx − lz))

+
∂

∂z
(
1

2

−→∇u · −→∇u(−mx + ly))

12



=
−→∇ · (−−→∇u · (−→∇u · (d̂ · −→β )

−→
X ) +

−→∇ · (1
2

−→∇u · −→∇u




−ny + mz

nx − lz

−mx + ly




)

=
−→∇ · (−−→∇u · (−→∇u · (d ×−→

X )) +
−→∇ · (1

2

−→∇u · −→∇u(d̂ ×−→
X ))

Finally,

−→∇ · (G(u)(d̂ ×−→
X ))

=
∂

∂x
G(u)(−ny + mz) +

∂

∂y
G(u)(nx − lz) +

∂

∂z
G(u)(−mx + ly)

=
1

2

∂

∂x
H(|u|2)(−ny + mz) +

1

2

∂

∂y
H(|u|2)(nx − lz) +

1

2

∂

∂z
H(|u|2)(−mx + ly)

=
1

2
(−ny + mz)h(|u|2) ∂

∂x
|u|2 +

1

2
(nx − lz)h(|u|2) ∂

∂y
|u|2

+
1

2
(−mx + ly)h(|u|2) ∂

∂z
|u|2

=
1

2
(−ny + mz)h(|u|2)2ux · u +

1

2
(nx − lz)h(|u|2)2uy · u

+
1

2
(−mx + ly)h(|u|2)2uz · u

= (−ny + mz)−→g (u) · ux + (nx − lz)−→g (u) · uy + (−mx + ly)−→g (u) · uz

= −→g (u) · (−→∇u · (d̂ ×−→
X ))

Adding all of these results gives

(utt − ∆u −−→g (u)) · (−→∇u(
−→
X, t) · (d̂ ×−→

X ))
−→
X

13



=
∂

∂t
ut · (d̂ · (−→X ×−→∇u)) −−→∇ · (1

2
|ut|2(d̂ ×−→

X )) +
−→∇ · (−−→∇u · (−→∇u · (d̂ ×−→

X ))

+
1

2
(
−→∇u · −→∇u · (d̂ ×−→

X )) +
−→∇ · (G(u)(d̂ ×−→

X ))

=
∂

∂t
ut · (d̂ · (−→X ×−→∇u)) +

−→∇ · (−1

2
|ut|(d̂ ×−→

X ) −−→∇u · (−→∇u · (d̂ ×−→
X ))

+
1

2

−→∇u · −→∇u(d̂ ×−→
X ) + G(u)(d̂ ×−→

X ))

∴ Q = ut · (d̂ · (−→X ×−→∇u))

So the conserved quantity is

S[u] =
∫

R3
ut · (d̂ · (−→X ×−→∇u))d3−→X

= d̂ ·
∫

R3
ut · (−→X ×−→∇u))d3−→X

and we define the spin functional

−→
S [u] ≡

∫
R3

ut · (−→X ×−→∇u)d3−→X

So if ê is a unit vector in R
3, we define the spin in the direction ê as the conserved

quantity ê · −→S [u]. Note that this functional provides the spin for any solution to

NLKG. If it is assumed that all boundary terms vanish whenever an integration by

parts is performed, it is relatively easy to verify by direct computation that d
−→
S
dt

= 0.

14



We will now look for standing-wave solutions of the form u(
−→
X, t) = etΩv(

−→
X ) where

Ω is the N × N skew-symmetric matrix with the 2 × 2 blocks




0 −ω

ω 0




along the main diagonal with ω ∈ R, and all other entries being zero. So Ω2 =

−ω2I, I being the N × N identity matrix. The function v(
−→
X ) = Ψ̂(X̂)w(r), where

w[0,∞) −→ R, with r = (x2 + y2 + z2)
1
2 , and Ψ̂ : R

3+1 −→ R
N is a unit-vector-valued

eigenfunction of the spherical Laplacian. The Laplacian ∆ can be decomposed into

radial and angular components:∆ = ∆R + 1
r2 ∆S where ∆R = ∂2

r + 2
r
∂r. The spherical

component, ∆S, is a second-order derivative operator with only angular derivatives,

that acts on real-valued functions defined on the unit sphere. It also acts on real-

valued functions defined on R
3, leaving the radial dependence unchanged. As shown

in [4], there exist unit-vector-valued eigenfunctions of ∆S in 3-space with any of the

eigenvalues µl = −l(l+1) where l = 0, 1, 2, , .... Given a nonnegative integer l, such an

eigenfunction Ψ̂ : S2 −→ SN−1 with eigenvalue µl exists provided that N ≥ 2l+1. So

∆SΨ̂ = −l(l+1)Ψ̂, where we extend the action of ∆S to vector R
N -valued functions by

allowing the operator to act componentwise. Thus the coordinate functions of Ψ̂ are

eigenfunctions of ∆S (see [2]). It is also shown in [4] that the variable w : [0,∞) −→ R

15



satifies the ordinary differential equation

∆Rw(r) − l(l + 1)

r2
w(r) + g(w(r))− ω2w(r) = 0.

For nonlinearities g of appropriate type (see [4]), there exist solutions w that are

exponentially decreasing far from the origin. Hence forth we assume g satisfies these

conditions.

For u(
−→
X, t) = etΩΨ̂(X̂)w(r)

−→
S [u] =

∫
R3

ut · (−→X ×−→∇u)d3−→X

=
∫

R3
ΩetΩw(r)Ψ̂(X̂) · (−→X ×−→∇)(etΩw(r)Ψ̂(X̂))d3−→X

=
∫

R3
ΩetΩw(r)Ψ̂(X̂) · etΩ(

−→
X ×−→∇)(w(r)Ψ̂(X̂))d3−→X

=
∫

R3
ΩetΩe−tΩw(r)Ψ̂(X̂) · (−→X ×−→∇)(w(r)Ψ̂(X̂))d3−→X

=
∫

R3
w(r)ΩΨ̂(X̂) · [w(r)(

−→
X ×−→∇)Ψ̂(X̂) + Ψ̂(X̂)(

−→
X ×−→∇)w(r)]d3−→X

Let êx, êy, êz, be the unit vectors along the x, y, and z axes respectively. Then since

(
−→
X ×−→∇)w(r) = [(y∂z − z∂y)êx − (x∂z − z∂x)êy + (x∂y − y∂x)êz]w(r)

= [yw′(r)∂zr − zw′(r)∂yr]êx − [xw′(r)∂zr − zw′(r)∂xr]êy
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+ [xw′(r)∂yr − yw′(r)∂xr]êz

= w′(r)[(y
z

r
− z

y

r
)êx − (x

z

r
− z

x

r
) + êy(x

y

r
− y

x

r
)êz]

= 0

we get

−→
S [u] =

∫
R3

w(r)ΩΨ̂(X̂) · [w(r)(
−→
X ×−→∇)Ψ̂(X̂)]d3−→X

=
∫

R3
w2(r)ΩΨ̂(X̂) · [(−→X ×−→∇)Ψ̂(X̂)]d3−→X

To illustrate, let us take l = 1. Then a corresponding eigenfunction of ∆S is

Ψ̂(X̂) ≡ 1

r




x

y

z

0

...




where the dots represent the other N − 4 entries which are all zero. To evaluate the

spin with this choice of Ψ̂ we first need to find ΩΨ̂(X̂) and (
−→
X ×−→∇)Ψ̂(X̂).
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ΩΨ̂(X̂) =
1

r




0 −ω 0 0 · · ·

ω 0 0 0 · · ·

0 0 0 −ω · · ·

0 0 ω 0 · · ·
...

...
...

...
. . .







x

y

z

0

...




=
ω

r




−y

x

0

z

...




(
−→
X ×−→∇)Ψ̂(X̂) =

1

r
[(y∂z − z∂y)êx − (x∂z − z∂x)êy − (x∂y − y∂x)êz]




x

y

z

0

...




=
1

r




zêy − yêz

−zêx + xêz

yêx − xêy

0

...
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And so

ΩΨ̂(X̂) · [(−→X ×−→∇)Ψ̂(X̂)] =
ω

r2




−y

x

0

z

...




·




zêy − yêz

−zêx + xêz

yêx − xêy

0

...




=
ω

r2
(−yzêy + y2êz − xzêx + x2êz)

=
ω

r2
((x2 + y2)êz − xzêx − yzêy)

Note that since the functions −xz and −yz are odd, their integrals over R
3 vanish,

which implies

−→
S [u] = ω

∫
R3

w2(r)

r2
((x2 + y2)êz − xzêx − yzêy)d

3−→X

= êzω
∫

R3

w2(r)

r2
(x2 + y2)d3−→X

> 0

if ω > 0. That there is a nonzero spin in the êz direction. If the solution u(
−→
X, t) =

etΩΨ̂(X̂)w(r) is rotated counter clockwise by 90o about the y-axis, the solution
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u(
−→
X, t) = etΩΨ̂(CX̂)w(r) results where

C =




0 0 −1

0 1 0

1 0 0




Since NLKG is invariant under rotations, this is also a solution. To find the spin we

find ΩΨ̂(CX̂) and (
−→
X ×−→∇)Ψ̂(CX̂) where

CX̂ =
1

r




−z

y

x




and

Ψ̂(CX̂) =
1

r




−z

y

x

0

...
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So

ΩΨ̂(CX̂) =
ω

r




0 −1 0 0 · · ·

1 0 0 0 · · ·

0 0 0 −1 · · ·

0 0 1 0 · · ·
...

...
...

...
. . .







−z

y

x

0

...




=
ω

r




−y

−z

0

x

...




(
−→
X ×−→∇)Ψ̂(CX̂) =

1

r
[(y∂z − z∂y)êx − (x∂z − z∂x)êy + (x∂y − y∂x)êz]




−z

y

x

0

...




=
1

r




−yêx + xêy

−zêx + xêz

zêy − yêz

0

...
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And so

ΩΨ̂(CX̂) · [(−→X ×−→∇)ĈΨ(X̂)] =
ω

r2




−y

−z

0

x

...




·




−yêx + xê2

−zêx + xêz

zêy − yêz

0

...




=
ω

r2
(y2êx − xyêy + z2êx − xzêz)

=
ω

r2
((y2 + z2)êx − xyêy − xzêz)

Note that since the functions −xz and −yz are odd, their integrals over R
3 vanish.

Thus, if ω > 0,

−→
S [u] = ω

∫
R3

w2(r)

r2
((y2 + z2)êx − xyêy − xzêz)d

3−→X

= êxω
∫

R3

w2(r)

r2
(y2 + z2)d3−→X

> 0

giving nonzero spin in the êx direction. Similarly by taking u(
−→
X, t) = etΩΨ̂(DX̂)w(r)
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where

D =




1 0 0

0 0 −1

0 1 0




we get a solution with nonzero spin in the êy direction.

By appropriate rotations, a solution to NLKG can be manufactured with a nonzero

spin in any direction.
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CHAPTER 3

The Spin Direction Of Stationary Solutions In A Uniform Magnetic Field

We now introduce an external uniform magnetic field. This will change the equation

of interest. However, it will be demonstrated that if this field is assumed to be

weak, some of the same stationary waves can be solutions to an equation which is an

approximation to the new one. The spin direction will be found to be either parallel or

antiparallel to the field. It should be noted here that in [6] the existence of complex-

valued solutions have been shown for a class of nonlinear Schrodinger equations (with

an external magnetic field) with the B2 term present (which we drop).

By making the minimal-coupling substitutions ∂α �−→ ∂α − σAα and ∂α �−→

∂α − σAα into NLKG we bring about

(∂α − σAα)(∂α − σAα)u = −→g (u) (3.1)
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which introduces the external uniform magnetic field,
−→
B . The vector potential

−→
A =

B

2




−y

x

0

0




is chosen so that
−→
B = Bẑ, the function −→g (u) is defined as before and σ is the N ×N

real skew-symmetric matrix with the 2 × 2 blocks




0 −1

1 0




along the main diagonal and zeros everywhere else. Expansion of (3.1) gives

∂α∂αu − 2σAα∂αu − AαAαu = −→g (u)

since the term ∂αAα = B
2
(−∂xy + ∂yx) = 0. It will be assumed that B � 1 and

since the solutions of interest have exponential decay far from the origin, the term

AαAα = −1
4
B2(x2 + y2) can be ignored. So the equation under study becomes

∂α∂αu − 2σAα∂αu = −→g (u)

25



or

utt − ∆u − Bσ(x∂y − y∂x)u = −→g (u) (3.2)

We now look for stationary solutions, u(
−→
X, t) = etΩv(

−→
X ), to (3.2) where Ω is an N×N

skew-symmetric matrix and we will require that Ω commutes with σ. Substituting

this form into (3.2) yields

Ω2etΩv(
−→
X ) − etΩ∆v(

−→
X ) − 2etΩσAα∂αv(

−→
X ) = etΩ−→g (v(

−→
X ))

⇒ Ω2v(
−→
X ) − ∆v(

−→
X ) − 2σAα∂αv(

−→
X ) = −→g (v(

−→
X ))

Next, we look for solutions where v(
−→
X ) = Ψ̂(X̂)w(r). Then

∆(Ψ̂(X̂)w(r)) = (∆R +
1

r2
∆S)(Ψ̂(X̂)w(r))

= ∆R((Ψ̂(X̂)w(r)) +
1

r2
∆S(Ψ̂(X̂)w(r))

= Ψ̂(X̂)∆Rw(r) +
1

r2
∆S(Ψ̂(X̂))w(r)

= Ψ̂(X̂)

(
∂2w

∂r2
+

2

r

∂w

∂r

)
+

1

r2
w(r)

(
−l(l + 1)Ψ̂(X̂)

)

=

(
w′′(r) +

2

r
w′(r) − l(l + 1)

r2
w(r)

)
Ψ̂(X̂)
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⇒ Ω2Ψ̂(X̂)w(r) −
(

∆Rw(r) − l(l + 1)

r2
w(r) + g(w(r))

)
Ψ̂(X̂)

−Bσ(x∂y − y∂x)Ψ̂(X̂)w(r) = 0

⇒ [Ω2Ψ̂(X̂) − Bσ(x∂y − y∂x)Ψ̂(X̂)]w(r)

−
(

∆Rw(r) − l(l + 1)

r2
w(r) + g(w(r))

)
Ψ̂(X̂) = 0

It will be shown that under certain conditions the equation

Ω2Ψ̂(X̂) − BσLzΨ̂(X̂) = ηΨ̂(X̂) (3.3)

results where η is some constant. This makes the ansatz result in a solution by

allowing Ψ̂ to factor out giving

(
∆Rw(r) − l(l + 1)

r2
w(r) + g(w(r))− ηw(r)

)
Ψ̂(X̂) = 0

⇒ w′′(r) +
2

r
w′(r) − l(l + 1)

r2
w(r) + g(w(r))− ηw(r) = 0

The solutions of this radial equation are studied in [3] and [4]. Equation (3.3) will

be achieved by expanding Ψ̂ into terms involving an orthonormal basis of C
N and

eigenfunctions of the spherical Laplacian.

The spin components of a solution u along the direction of the positive x and y
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axes are:

−→
S x[u] = êx · −→S [u] =

∫
R3

w2(r)ΩΨ̂(X̂) · [êx · (−→X ×−→∇)Ψ̂(X̂)]d3−→X

=
∫

R3
w2(r)ΩΨ̂(X̂) · [(y∂z − z∂y)Ψ̂(X̂)]d3−→X

and

−→
S y[u] = êy · −→S [u] =

∫
R3

w2(r)ΩΨ̂(X̂) · [êy · (−→X ×−→∇)Ψ̂(X̂)]d3−→X

=
∫

R3
w2(r)ΩΨ̂(X̂) · [(z∂x − x∂z)Ψ̂(X̂)]d3−→X

In order to evaluate these spin components, the action of y∂z − z∂y and z∂x −x∂z

on Ψ̂ must be found. As mentioned earlier, we will expand Ψ̂ into terms involving

an orthonormal basis of C
N and eigenfunctions of the spherical Laplacian, which will

also allow us to compute these actions. It is then shown that Sx + iSy may be nonzero

only when
−→
B = 0, that is Sx or Sy may be nonzero only when

−→
B = 0

As pointed earlier, each component of Ψ̂ is an eigenfunction of ∆S with the same

eigenvalue, and the possible eigenvalues of ∆S in 3-space are µl = −l(l + 1) where

l = 0, 1, 2, ... (see [2]). For each value of l, there are 2l + 1 linearly independent
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eigenfunctions of ∆S each with the common eigenvalue µl (see [2]). Let

−→
L ≡




y∂z − z∂y

−x∂z + z∂x

x∂y − y∂x




=
−→
X ×−→∇

Then ∆S =
−→
L

2
=

−→
L · −→L . Let Lx = y∂z − z∂y, Ly = −x∂z + z∂x and Lz = x∂y − y∂x

Then

LxLy = −xy∂2
z + xz∂y∂z + y∂x + yz∂z∂x − z2∂y∂x

LyLx = −xy∂2
z + yz∂x∂z + x∂y + xz∂z∂y − z2∂y∂x

⇒ [Lx, Ly] = LxLy − LyLx

= xz∂y∂z + y∂x − x∂y − xz∂z∂y

= Lz

Similarly [Ly, Lz] = Lx and [Lz, Lx] = Ly. If A, B and C are linear operators then

[A, BC] = [A, B]C + B[A, C]. Using this property of commutators gives
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[Lz , L
2
x] = [Lz , Lx]Lx + Lx[Lz , Lx]

= LyLx + LxLy

[Lz , L
2
y] = [Lz, Ly]Ly + Ly[Lz, Ly]

= −LxLy − LyLx

and

[Lz, L
2
z] = [Lz, Lz]Lz + Lz[Lz , Lz]

= 0

⇒ [Lz,
−→
L

2
] = 0. So L2 = ∆S and Lz have a common set of orthonormal eigen-

functions

ξ−l, ..., ξ−1, ξ0, ξ1, ..., ξl

and so we can write ∆Sξm = −l(l + 1)ξm. The corresponding 2l + 1 eigenvalues of Lz
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are

−il,−i(l + 1), ...,−i, 0, i, ..., i(l − 1), il

as shown in [7]. Note that since Lzξm = imξm implies Lz ξ̄m = −imξ̄m, we can take

ξ−m = ξ̄m. This collection of eigenfunctions span the space of all eigenfunctions of

∆S with eigenvalue −l(l + 1). So there exists −→α m ∈ C
N , −l ≤ m ≤ l, such that

Ψ̂(X̂) =
∑l

m=−l
−→α mξm(X̂).

Since Ω and σ are both real skew-symmetric matrices, then they are both normal,

i.e., Ω∗Ω = ΩΩ∗ and σ∗σ = σσ∗, where ∗ is the conjugate-transpose operation. By

hypothesis, Ω and σ commute. So there exists an orthonormal basis of C
N consisting

of vectors which are eigenvectors for both Ω and σ (see [8]). Let φ1, φ2, ..., φn be this

collection of eigenvectors. The eigenvalues of σ are ±i and so σφj = (−1)jiφj, and

Ωφj = λjφj, 1 ≤ j ≤ N , where λj is the (complex) eigenvalue corresponding to φj.

It follows that the λj are pure imaginary since

0 ≤ ‖Ωφj‖2 = 〈Ωφj|Ωφj〉

= 〈φj|Ω∗Ωφj〉

= −〈φj|Ω2φj〉

= −〈φj|λ2
jφj〉

= −λ2
j‖φ‖2
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⇒ λ2
j ≤ 0

i.e. λj is pure imaginary, and so let λj = iνj where νj ∈ R. So if iνn, iνm are distinct

eigenvalues of Ω, then 〈φn, φm〉 = 0, as the following proof shows:

Ωφn = iνnφn

⇒ 〈Ωφn, φm〉 = 〈iνnφn, φm〉

⇒ −〈φn, Ωφm〉 = iνn〈φn, φm〉

On the other hand Ωφm = iνmφm implies

〈φn, Ωφm〉 = 〈φn, iνmφm〉

⇒ 〈φn, Ωφm〉 = iνm〈φn, φm〉

⇒ 〈φn, Ωφm〉 = −iνm〈φn, φm〉

Adding the last two results

iνn〈φn, φm〉 − iνm〈φn, φm〉 = 0

⇒ i(νn − νm)〈φn, φm〉 = 0

⇒ 〈φn, φm〉 = 0
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Since Ωφj = iνjφj ⇒ Ωφj = −iνjφj, we can take φ2 = φ1, φ4 = φ3, ..., φN = φN−1.

Let us call ĵ the other index of the pair, that is let n̂ = n+1 if n is odd, and n̂ = n−1

if n is even. Hence {φ1, φ2, ..., φN} can be chosen to be an orthonormal basis of C
N

so that φn = φn̂.

We can now write Ψ̂(X̂) =
∑l

m=−l αmξm(X̂) =
∑l

m=−l

∑N
j=1 αjmφjξm(X̂), αjm ∈

C. Also

Ψ̂(X̂) =
l∑

m=−l

N∑
j=1

αjmφjξm(X̂)

=
l∑

m=−l

N∑
j=1

αĵ(−m)φjξm(X̂)

Since Ψ̂ is real, we require αĵ(−m) = αjm. Putting this expansion of Ψ̂(X̂) into (3.3)

gives

l∑
m=−l

N∑
j=1

[αjm(−ν2
j φjξm − B(−1)jiφjimξm − ηφjξm)] = 0

Thus for every j and m, either αjm = 0 or −ν2
j + (−1)jmB − η = 0

Define L+ = Lx + iLy . We know L+ξm = i
√

l(l + 1) − m(m + 1) ξm+1 with

L+ξm = 0 if m = l (see [7]). Using this definition, the direction of spin is found by

making the necessary substitutions into the quantity Sx + iSy:

Sx + iSy
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= êx

∫
R3

ut · (−→X ×−→∇u)d3−→X + iêy

∫
R3

ut · (−→X ×−→∇u)d3−→X

=
∫

R3
ut · (Lxu)d3−→X + i

∫
R3

ut · (Lyu)d3−→X

=
∫

R3
ut · (Lx + iLy)ud3−→X

=
∫

R3
ut · (L+u)d3−→X

=
∫

R3
w2ΩΨ̂ · (L+Ψ̂)d3−→X

=
∫

R3
w2

l∑
n=−l

N∑
k=1

iνkαknφkξn ·
l∑

m=−l

N∑
j=1

αjmξm+1φji
√

l(l + 1) − m(m + 1) d3−→X

=
l∑

n=−l

N∑
k=1

l−1∑
m=−l

N∑
j=1

∫
R3

w2(−iνk)αknφk̂ξ−n · αjmξm+1φji
√

l(l + 1) − m(m + 1) d3−→X

=
l∑

n=−l

l−1∑
m=−l

N∑
j=1

∫
R3

w2νĵαĵnφjξ−n · αjmξm+1φj

√
l(l + 1) − m(m + 1) d3−→X

=
l∑

n=−l

l−1∑
m=−l

N∑
j=1

νĵαĵnαjm

√
l(l + 1) − m(m + 1)

∫
R3

w2ξnξm+1d
3−→X

=
l∑

n=−l

l−1∑
m=−l

N∑
j=1

νĵαj(−n)αjm

√
l(l + 1) − m(m + 1)

∫
R3

w2ξ−nξm+1d
3−→X

=
l∑

n=−l

l−1∑
m=−l

N∑
j=1

νĵαjnαjm

√
l(l + 1) − m(m + 1) δn(m+1)

∫ ∞

0
r2w2(r)dr

=
l−1∑

m=−l

N∑
j=1

νĵαj(m+1)αjm

√
l(l + 1) − m(m + 1)

∫ ∞

0
r2w2(r)dr

Suppose that for particular values of m and j, αj(m+1) �= 0 and αjm �= 0. Then

−ν2
j = η − (−1)jmB and −ν2

j = η − (−1)j(m + 1)B which implies B = 0. Thus if

B �= 0 then Sx + iSy = 0. So when B �= 0, the only allowable directions for nonzero

spin are along the magnetic field lines.

We now provide a simple example showing nonzero spin in a direction parallel to
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the
−→
B field, i.e. parallel to the z-axis. Let u(

−→
X, t) = etΩΨ̂(X̂)w(r) with u : R

3+1 −→

R
4 and where Ω is a 4 × 4 skew-symmetric matrix of the form




0 −ω1 0 0

ω1 0 0 0

0 0 0 ω2

0 0 −ω2 0




σ =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




and

Ψ̂ =
1

r




x

y

z

0
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We will subtitute the above form of Ω in (3.3) and it will be seen that we will be

able to find ω2 in terms of ω1. So first find each of the terms in (3.3).

Ω2 =




−ω2
1 0 0 0

0 −ω2
1 0 0

0 0 −ω2
2 0

0 0 0 −ω2
2




So

Ω2Ψ̂(X̂) =
1

r




−ω2
1 0 0 0

0 −ω2
1 0 0

0 0 −ω2
2 0

0 0 0 −ω2
2







x

y

z

0




=




−ω2
1x

−ω2
1y

−ω2
2z

0
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LzΨ̂(X̂) =
1

r
(x∂y − y∂x)




x

y

z

0




=
1

r




−y

x

0

0




And so

σLzΨ̂(X̂) =
1

r




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0







−y

x

0

0




=
1

r




−x

−y

0

0
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Now, substituting into (3.3)




−ω2
1x

−ω2
1y

−ω2
2z

0




+




Bx

By

0

0




= η




x

y

z

0




=⇒




(−ω2
1 + B)x

(−ω2
1 + B)y

−ω2
2z

0




= η




x

y

z

0




This gives us that ω2
2 = ω2

1 − B which implies ω2 = ±√
ω1 − B and therefore

Ω =




0 −ω 0 0

ω 0 0 0

0 0 0 −√
ω2 − B

0 0
√

ω2 − B 0




Using this form of Ω it is now shown that a solution of the form u(
−→
X, t) =

etΩΨ̂(X̂)w(r) has nonzero spin parallel to the direction of the magnetic field. The
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component of spin parallel to
−→
B is

Sz[u] =
−→
S [u] · ê3

=
∫

R3
w2ΩΨ̂(X̂) · LzΨ̂(X̂)d3−→X

Now,

ΩΨ̂(X̂) · LzΨ̂(X̂) =
1

r2




0 −ω 0 0

ω 0 0 0

0 0 0 −√
ω2 − B

0 0
√

ω2 − B 0







x

y

z

0



· Lz




x

y

z

0




=
1

r2




−ωy

ωx

0

(
√

ω2 − B)z



·




−y

x

0

0




=
ω

r2
(y2 + x2)

≥ 0
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if ω > 0. So

Sz[u] =
∫

R3

w2

r2
ω(x2 + y2)d3−→X

which is nonzero if ω �= 0.

Note that since Sz[u] does not involve B, we could have set B = 0 at the begining

of this example and we would then have a solution with a nonzero spin parallel to

the z-axis in the absence of a magnetic field.
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CHAPTER 4

Precessing Solutions

The solutions examined so far have their axis of rotation parallel to the uniform mag-

netic field. In order to generalize the results, we now investigate possible precessing

solutions in the uniform magnetic field. It will be seen that precessing solutions to

3.2 of the same ansatz as before will have spin parallel or antiparallel to the magnetic

field direction. This implies that there are no precessing solutions, since the spin does

not lie along the axis of rotation.

Let u(
−→
X, t) = eΩtΨ̂(X̂)w(r)be a solution to 3.2. A precessing solitary wave is

obtained by first tilting one of the form u(
−→
X, t) = eΩtΨ̂(X̂)w(r). It can be tilted by

rotating about say the y-axis, through some angle θ. This is achieved by multiplying

the X̂ in the argument of Ψ̂ by the rotation matrix

T−1
θ =




cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ




The argument of Ψ̂ then becomes
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T−1
θ X̂ =

1

r




cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ







x

y

z




=
1

r




xcosθ + zsinθ

y

−xsinθ + zcosθ




Since NLKG is invariant under rotations, if eΩtΨ̂(X̂)w(r) is a solution to 3.2, then

so is eΩtΨ̂(T−1
θ X̂)w(r), that is, tilting a solitary wave solution of this form only results

in another of the same form. Thus to examine possible precessing solutions, we need

only set a solitary wave of the type u(
−→
X, t) = eΩtΨ̂(X̂)w(r) precessing about the

z-axis. This is done by multiplying the argument of Ψ̂ by the 3 × 3 rotation matrix

R−1
µt =




cosµt sinµt 0

−sinµt cosµt 0

0 0 1




= e−µtM

where
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M =




0 −1 0

1 0 0

0 0 0




and µ is the rate of precession. So precessing solitary waves take on the form u(
−→
X, t) =

eΩtΨ̂(R−1
µt X̂)w(r). We now proceed as in chapter 3. We wish to see if there are any

precessing solutions to 3.2 with the above ansatz and then to find their direction of

spin. Many of the things that will be need were discussed in chapter 3 and so they

are stated here again.

We are looking for solutions to utt − ∆u − Bσ(x∂y − y∂x)u = −→g (u) (i.e. we are

assuming B � 1) which have the form u(
−→
X, t) = eΩtΨ̂(R−1

µt X̂)w(r). The matrix

R−1
µt is as mentioned above, Ω is an N × N skew-symmetric matrix and as before,

we require it to commute with σ. Ψ̂ is the unit-vector-valued eigenfunction of the

spherical Laplacian with eigenvalues µl = −l(l + 1) where l = 0, 1, 2, .... The variable

w[0,∞) −→ R is exponentially decreasing far from the origin and satifies the ordinary

differential equation

∆Rw(r) − l(l + 1)

r2
w(r) + g(w(r))− ηw(r) = 0 (4.1)
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Recall that ∆S and Lz have a common orthonormal set of eigenfunctions ξ−l, ..., ξ−1, ξ0, ξ1, ...ξl

where ∆Sξm = −l(l + 1)ξm and Lzξm = imξm and we can take ξ−m = ξm. So there

exists −→α m ∈ C
N , −l ≤ m ≤ l, such that Ψ̂(R−1

µt X̂) =
∑l

m=−l
−→α mξm(X̂). Also, Ω and

σ have a common set of eigenvectors which form an orthonormal basis of C
N which we

call φ1, φ2, ..., φn. The corresponding eigenvalues of σ are ±i, and so σφj = (−1)jiφj

and the corresponding eigenvalues of Ω are iνj where νj ∈ R, and so Ωφj = iνjφj,

1 ≤ j ≤ N . The φj can be chosen so that φ2 = φ1, φ4 = φ3, ..., φN = φN−1 and

the notation φn = φn̂ is used where n̂ = n + 1 if n is odd, and n̂ = n − 1 if n is

even. Thus Ψ̂ may now be written as the expansion Ψ̂(R−1
µt X̂) =

∑l
m=−l

−→α mξm(X̂) =

∑l
m=−l

∑N
j=1 αjmφjξm(X̂), αjm ∈ C. We proceed as in chapter 3 by substituting into

utt − ∆u − Bσ(x∂y − y∂x)u = −→g (u). Taking u(
−→
X, t) = eΩtΨ̂(R−1

µt X̂)w(r) we get

ut(
−→
X, t)

= ΩeΩtΨ̂(e−µtM X̂)w(r) + eΩt−→∇Ψ̂(e−µtM X̂) · (−µM)e−µtM X̂w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) + (−µMT )eΩt−→∇Ψ̂(e−µtM X̂) · e−µtM X̂w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) − µeΩt




0 −1 0

1 0 0

0 0 0







−→∇1Ψ̂(e−µtM X̂)

−→∇2Ψ̂(e−µtM X̂)

−→∇3Ψ̂(e−µtM X̂)
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·




cosµt sinµt 0

−sinµt cosµt 0

0 0 1







x

y

z




w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) − µeΩt




−−→∇2Ψ̂(e−µtM X̂)

−→∇1Ψ̂(e−µtM X̂)

0




·




xcosµt + ysinµt

−xsinµt + ycosµt

z




w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) + µeΩt((xcosµt + ysinµt)
−→∇2Ψ̂(e−µtM X̂)

−(−xsinµt + ycosµt)
−→∇2Ψ̂(e−µtM X̂))w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) + µeΩt(LzΨ̂(X̂))
∣∣∣
e−µtM X̂

w(r)

= ΩeΩtΨ̂(e−µtM X̂)w(r) + µeΩt(LzΨ̂)(e−µtM X̂)w(r)

= Ωu(X̂, t) + µLzu(X̂, t)

Using this result gives

utt(
−→
X, t)

= Ω2eΩtΨ̂(e−µtM X̂)w(r) + 2µΩeΩt(LzΨ̂)(e−µtM X̂)w(r) + µ2eΩt(LzΨ̂)(e−µtM X̂)w(r)
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= Ω2u(X̂, t) + 2ΩµLzu(X̂, t) + µ2L2
zu(X̂, t)w(r)

If both eΩt and Ψ̂ are both time dependent, then (3.2) takes on the form

Ω2utt − 2µΩLzu + µ2L2
zu − ∆u − BσLzu −−→g (u) = 0 (4.2)

With u(
−→
X, t) = eΩtΨ̂(R−1

µt X̂)w(r) this is

Ω2eΩtΨ̂(R−1
µt X̂)w(r) − 2µΩeΩtLz(Ψ̂(R−1

µt X̂))w(r) + µ2eΩtL2
z(Ψ̂(R−1

µt X̂))w(r) −

∆(eΩtΨ̂(R−1
µt X̂)w(r)) − BσeΩtLz(Ψ̂(R−1

µt X̂))w(r) −−→g (eΩtΨ̂(R−1
µt X̂)w(r)) = 0

Now,

∆u = ∆(eΩtΨ̂(R−1
µt X̂)w(r))

= eΩt(∆R +
1

r2
∆S)(Ψ̂(R−1

µt X̂)w(r))

= eΩt(∆R(Ψ̂(R−1
µt X̂)w(r)) +

1

r2
∆S(Ψ̂(R−1

µt X̂)w(r)))

= eΩt(Ψ̂(R−1
µt X̂)∆Rw(r) +

1

r2
∆S(Ψ̂(R−1

µt X̂))w(r))

= eΩt

(
Ψ̂(R−1

µt X̂)

(
∂2w

∂r2
+

2

r

∂w

∂r

)
+

1

r2
w(r)

(
−l(l + 1)Ψ̂(R−1

µt X̂)

))

= eΩt

(
w′′(r) +

2

r
w′(r) − l(l + 1)

r2
w(r)

)
Ψ̂(R−1

µt X̂)
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and

L+(Ψ̂(R−1
µt X̂)) = (Lx + iLy)(Ψ̂(R−1

µt X̂))

= (Lx + iLy)(Ψ̂(e−µtM X̂))

= Lx(Ψ̂(e−µtMX̂)) + iLy(Ψ̂(e−µtM X̂))

= (y∂z − z∂y)(Ψ̂(e−µtM X̂)) + i(−x∂z + z∂x)(Ψ̂(e−µtM X̂))

=
−→∇Ψ̂(e−µtM X̂) · (y∂z − z∂y)(e

−µtM X̂)

+i
−→∇Ψ̂(e−µtM X̂) · (−x∂z + z∂x)(e

−µtM X̂)

=
−→∇Ψ̂(e−µtM X̂) ·




−zsinµt

zcosµt

y




+ i
−→∇Ψ̂(e−µtM X̂) ·




zcosµt

−zsinµt

−x




=
−→∇Ψ̂(e−µtM X̂) ·




iz(cosµt + isinµt)

−z(cosµt + isinµt)

y − ix




=
−→∇Ψ̂(e−µtM X̂)eiµt ·




iz

−z

e−iµt(y − ix)
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= eiµt−→∇Ψ̂(e−µtM X̂) ·




iz

−z

eiµt(y − ix)




Since

L+Ψ̂(X̂) = (Lx + iLy)Ψ̂(X̂)

= LxΨ̂(X̂) + iLyΨ̂(X̂)

= (y∂z − z∂y)Ψ̂(X̂) + i(−x∂z + z∂x)Ψ̂(X̂)

=
−→∇Ψ̂(X̂) · (y∂z − z∂y)X̂ + i

−→∇Ψ̂(X̂) · (−x∂z + z∂x)X̂

=
−→∇Ψ̂(X̂) ·




0

−z

y




+ i
−→∇Ψ̂(X̂) ·




z

0

−x




=
−→∇Ψ̂(X̂) ·




iz

−z

y − ix




then

L+(Ψ̂(R−1
µt X̂)) = eiµtL+(Ψ̂)(R−1

µt X̂)
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Substituting into (4.2) gives us

l∑
m=−l

N∑
j=1

eΩt

(
αjm(Ω2φj)ξm(X̂)w(r) + 2µαjm(Ωφj)(Lzξm)(X̂)w(r)

+µ2αjmφj(L
2
zξm)(X̂)w(r) − αjmφjξm(X̂)∆Rw(r) +

l(l + 1)

r2
αjmφjξm(X̂)w(r)

−Bσαjmφj(Lzξm)(X̂)w(r) − g(w(r))αjmφjξm(X̂)

)
= 0

⇒
l∑

m=−l

N∑
j=1

αjmφjξm(X̂)

(
(−ν2

j + 2µmνj − µ2m2 + B(−1)jm)w(r) − ∆Rw +

l(l + 1)

r2
w(r) − g(w(r))

)
= 0 (4.3)

For each j, m we require either αjm = 0 or (νj − µm)2 − B(−1)jm) = η, where η

is a positive constant independent of j and m. We want to know if there are any

precessing solutions that have nonzero spin components not parallel to the
−→
B field.

This is done by examining the vector Sx + iSy and using the result just found. First

substitute the expansion of Ψ̂ into this expression and use the results found earlier

for ut(
−→
X, t) and the actions of Lz and L+ on Ψ̂.

Sx + iSy

= êx

∫
R3

ut · (−→X ×−→∇u)d3−→X + iêy

∫
R3

ut · (−→X ×−→∇u)d3−→X
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=
∫

R3
ut · (Lxu)d3−→X + i

∫
R3

ut · (Lyu)d3−→X

=
∫

R3
ut · (Lx + iLy)ud3−→X

=
∫

R3
ut · (L+u)d3−→X

=
∫

R3
w2(ΩΨ̂ + µLzΨ̂) · (L+Ψ̂)d3−→X

= eiµt
∫

R3
w2

(
l∑

n=−l

N∑
k=1

αknφk(iνkξn + µLzξn)

)

·
(

l∑
m=−l

N∑
j=1

αjmξm+1φji
√

l(l + 1) − m(m + 1)

)
d3−→X

= eiµt
∫

R3
w2

(
l∑

n=−l

N∑
k=1

αknφkξ−n(νk − µn)

)

·
(

l∑
m=−l

N∑
j=1

αjmξm+1φj

√
l(l + 1) − m(m + 1)

)
d3−→X

= eiµt
l∑

n=−l

N∑
k=1

l−1∑
m=−l

N∑
j=1

∫
R3

w2αknφk̂ξ−n(νk − µn)

·αjmξm+1φji
√

l(l + 1) − m(m + 1) d3−→X

= eiµt
l∑

n=−l

l−1∑
m=−l

N∑
j=1

∫
R3

w2αĵnφjξ−n(νĵ − µn)

·αjmξm+1φj

√
l(l + 1) − m(m + 1) d3−→X

= eiµt
l∑

n=−l

l−1∑
m=−l

N∑
j=1

αj(m+1)αjm(νĵ − µ(m + 1))

√
l(l + 1) − m(m + 1)

∫
R3

w2ξnξm+1d
3−→X

= eiµt
l∑

n=−l

l−1∑
m=−l

N∑
j=1

αj(m+1)αjm(νĵ − µ(m + 1))

√
l(l + 1) − m(m + 1) δn(m+1)

∫ ∞

0
r2w2(r)dr

= eiµt
∫ ∞

0
r2w2(r)dr

l−1∑
m=−l

N∑
j=1

αj(m+1)αjm(νĵ − µ(m + 1))
√

l(l + 1) − m(m + 1)
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If αj(m+1)αjm �= 0, then αj(m+1) �= 0 and αjm �= 0.

Now if αj(m+1) �= 0, then (4.1) and (4.2) imply

(νj − µ(m + 1))2 − B(−1)j(m + 1)) = η

⇒ ν2
j − 2νjµ(m + 1) + µ2(m + 1)2 − B(−1)j(m + 1) = η (4.4)

and αjm �= 0 implies

(νj − µm)2 − B(−1)jm = η (4.5)

⇒ ν2
j − 2νjµm + µ2m2 − B(−1)jm = η (4.6)

Subtracting (4.6) from (4.4) yields

2νjµ − 2mµ2 − µ2 + B(−1)j = 0

Note that if µ = 0, then this problem reduces to what was done in chapter 3, and

Sx + iSy = 0. So assume from here on that µ �= 0. Solving the above equation for νj
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gives

νj =
1

2µ
(µ2(2m + 1) − B(−1)j)

Substituting this into (4.5) gives η.

η =

(
1

2µ
(µ2(2m + 1) − B(−1)j − µm

)2

−B(−1)jm

=

(
1

2µ
(µ2 − B(−1)j

)2

−B(−1)jm

=
1

4µ2
(µ4 − 2µ2B(−1)j + B2 − 4µ2B(−1)jm)

=
1

4µ2
(µ4 − 2B(2m + 1)(−1)jµ2 + B2)

This result will needed shortly.

We wish to have |Ψ̂|2 = 1 independent of X̂. From [2] it is known that the ξ’s

can be chosen so that
∑

n |ξ(X̂)|2 = 1 independent of of X̂. However in order for

for |Ψ̂|2 =
∑

j,m,n αjnαjmξn(X̂)ξm(X̂) to be independent of X̂, we insist that the

coefficient of ξn(X̂)ξm(X̂) vanishes for n �= m. That is we require
∑

j αjnαjm = δmn.

Then |Ψ̂|2 =
∑

j,m,n αjnαjmξn(X̂)ξm(X̂) =
∑

m,n δmnξn(X̂)ξm(X̂) =
∑

n |ξ(X̂)|2 = 1

and this is independent of X̂.
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Let

[α]m




α1m

...

αNm




If Sx + iSy is to be nonzero, we need for some j = j0 and some m = m0 ≤ l − 1,

that αj0m0 �= 0 and αj0(m0+1) �= 0. Since
∑N

j=1 αjnαjm = δmn, then [α]m0 is orthogonal

to [α]m0+1. So there must be another value of j, say j = j1, (j1 �= j0) for which

αj1m0 �= 0 and αj1(m0+1) �= 0. It is now shown that this forces Sx + iSy = 0, giving us

a contradiction. So suppose αj0m0 �= 0, αj0(m0+1) �= 0, and αj1m0 �= 0, αj1(m0+1) �= 0

and the ansatz for the form of u produces a solution. Then this results in the four

equations

(νj0 − µm0)
2 − B(−1)j0m0 = η (4.7)

(νj0 − µ(m0 + 1))2 − B(−1)j0(m0 + 1)) = η (4.8)

(νj1 − µm0)
2 − B(−1)j1m0 = η (4.9)

(νj1 − µ(m0 + 1))2 − B(−1)j1(m0 + 1)) = η (4.10)

(where, recall, η is a constant independent of j and m). As already shown, from (4.7)
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and (4.8)

η =
1

4µ2
(µ4 − 2B(2m0 + 1)(−1)j0µ2 + B2)

and (4.9) and (4.10) give

η =
1

4µ2
(µ4 − 2B(2m0 + 1)(−1)j1µ2 + B2)

If (−1)j0 �= (−1)j1, then two different values of η result, and there is no solution of the

ansatz form. Thus it must be true that (−1)j0 = (−1)j1 , from which it follows that

νj0 = νj1 and thus νj = 1
2µ

(µ2(2m + 1) − B(−1)j). Thus every j1 for which αj1m �= 0

and αj1(m+1) �= 0 has νj0 = νj1 . So in the formula for Sx + iSy the common factor

of νj − µ(m + 1) can be taken out of the sum over j. The sum over j then reduces

to the inner product of [α]m and [α]m+1. Since these are orthogonal, Sx + iSy = 0.

So there are no solutions with the ansatz for the form of u which have nonzero spin

components in a direction not parallel to the magnetic field. This implies that there

are no precessing solutions since any nonzero spin components would not lie along

the axis of rotation.

We have examined certain vector-valued solitary wave solutions to a nonlinear

Klein-Gordon equation. Since the equation was seen to be invariant under rotations,

we were able to find a functional which gave the Noether conserved quantity (which

we call spin) for solutions to NLKG. The existence of solitary wave solutions with
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nonzero spin in any prescribed direction was then shown. When an external uniform

magnetic field is applied, the only solutions to NLKG had spin parallel or antiparallel

to the magnetic field. It should be noted that the solutions examined were in space-

time R
3+1 and were restricted to positive integral values of values of l. Futher work

needs to be done to examine the existence of solitary wave solutions in general space-

time R
N+1 and for half-integral values of l.
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