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This dissertation addresses the delicate problem of establishing the statistical mechanical 

foundation of complex processes. These processes are characterized by a delicate balance of 

randomness and order, and a correct paradigm for them seems to be the concept of sporadic 

randomness.  First of all, we have studied if it is possible to establish a foundation of these 

processes on the basis of a generalized version of thermodynamics, of non-extensive nature. A 

detailed account of this attempt is reported in Ignaccolo and Grigolini (2001), which shows that 

this approach leads to inconsistencies. It is shown that there is no need to generalize the 

Kolmogorov-Sinai entropy by means of a non-extensive indicator, and that the anomaly of these 

processes does not rest on their non-extensive nature, but rather in the fact that the process of 

transition from dynamics to thermodynamics, this being still extensive, occurs in an 

exceptionally extended time scale. Even, when the invariant distribution exists, the time 

necessary to reach the thermodynamic scaling regime is infinite.   In the case where no invariant 

distribution exists, the complex system  lives forever in a condition intermediate between 

dynamics and thermodynamics.  This discovery has made it possible to create a new method of 

analysis of non-stationary time series which is currently applied to problems of sociological and 
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CHAPTER 1

Introduction

This disseratation is devoted to the study of complex systems. A widely accepted

idea, the one adopted also in this work, of “complexity” is that of a balance between

“order” and “randomness” (the first first, alone, being “simple” because totally pre-

dictable, and the second, alone, being simple, for the opposite reason: that of being

totally unpredictable). Many of the properties that are thought to characterize com-

plex system, such as cooperative behavior, adaptability, ...., are linked to the interplay

of order and randomness.

In the present my focus will be on modeling complexity and characterizing (mea-

suring) it. the first part of the original work of this thesis consist in the description

and characterization [1, 2, 3] of a model of complexity through the adoption of an

intermittent dynamical model based on the Manneville Map. The intermittency char-

acterizing the model proposed is the fact that the phase space of this system is char-

acterized by two regions: one of deterministic motion and one of random motion. A

trajectory moving in the phase space will explore both region in an intermittent way,

making this dynamical system an ideal candidate for modeling complexity. Moreover

I shall use this model to generate a diffusion process and I shall discuss its properties.

The second part of the original work of this thesis is dedicated to the characterization

of the complexity of a “real” complex system. The one responsible for the teen birth

phenomenon, analyzed here under the form of the time series of the daily number

of births due to teenage mothers in the state of Texas [4, 5]. This last topic seems

disconnected from the first one, but it is not so. In fact since the pioneering work of

Hurst [6], the characterization of times series stemming from complex system is done,

using the time series itself to generate a diffusion process.

The outline of this work is the following. Chapter 2 is dedicated to the discussion

of different kinds of diffusion processes and their derivation within dynamical systems

1



or within important probabilistic models such as, the Continuous Time Random Walk

(CTRW). Chapter 3 is dedicated to the description of the different methods of charac-

terizing complexity. The first part of this chapter is dedicated to important concepts,

like the Kolmogorov-Sinai entropy (KS entropy) and the Algorithm Information Con-

tent (AIC) that can be used to characterized the complexity of the trajectories of a

dynamical system. The second part of Chapter 3 is dedicated to the analysis of

complexity of diffusion process: the fundamental notion of “scaling” is discussed and

the methodology to detect it, as well. Finally Chapter 4 and Chapter 5 contain the

original work of this thesis in the order above described, and Chapter 6 is dedicated

to the concluding remarks.
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CHAPTER 2

Diffusion Processes and the Continuous Time Random Walk (CTRW)

This chapter is dedicated to the exposition of some fundamental issues in Sta-

tistical Mechanics such as Diffusion Processes and CTRW. The exposition will be,

by no mean, exhaustive (Diffusion Process and CTRW are the subjects of several

books). Only, what is strictly pertinent for understanding the work of this thesis is

discussed. I shall start introducing (Sec. 2.1) the Brownian Motion (BM) and its

connection (Sec. 2.2) with one of the most important theorem of probability theory,

the Central Limit Theorem (CLT). Sec. 2.3 is dedicated to introduce the dynamical

approach to diffusion processes, In Sec. 2.4 the Generalized Liouville Equation (GLE)

is derived, establishing a connection between the theory of dynamical systems and

diffusion processes. This is done using the Projection Method (PM) technique and

what is commonly denoted as the density “picture” or Liouville “picture”, namely a

description of the dynamical system in terms of the motion of a density of trajectories

in the phase space of the system. The next three sections are dedicated to anomalous

diffusion, namely, any departure from BM, focusing our attention on the variance of

the diffusion process (Sec. 2.5) and specifically introducing two important types of

anomalous diffusion, the Fractional Brownian Motion (FBM) (Sec. 2.6) and the so

called Lévy process (Sec. 2.7). Finally the last section is a brief review of the CTRW

and in particular of two kinds of walk denoted as Asymmetric Jump Model (AJM)

and Symmetric Velocity Model (SVM) because of their relevance for the results of

Chap. 4 .
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2.1 Brownian Motion (BM): the Fick’s law

Brownian motion provides some of the most spectacular evidence, on the “macro-

scopic” scale, for the discrete or atomic nature of the matter on the “microscopic”

scale. The collisions with the molecules of the fluid in which the Brownian particle

is immersed, make the motion of the Brownian particle erratic when looked under

a microscope. This kind of motion was observed by the biologist Robert Brown in

1827 in one of his experiment [7]. In 1855 A. Fick [8] on the basis of Fourier’s heat

conduction equation, derived the diffusion equation (nowadays referred to as Fick’s

law) and in 1905 A. Einstein [9] connected the diffusion coefficient D of the Fick’s law

to the atomic properties of the Brownian particles, to the fluid dynamic properties

of the medium in which the particles move and to the temperature T of the fluid, as

well.

Without entering in the details of Fick’s derivation of the diffusion equation, it is

interesting to notice that this law can be derived from the law of mass conservation1

∂

∂t
ρ(x, t) = −∇ · j(x, t), (2.1)

where ρ is the fluid density in the position x at time t. In fact the assumption

that, to a first approximation, the current j is proportional to the gradient of the

concentration

j(x, t) = −∇ρ(x, t), (2.2)

leads, immediately, to the Fick’s law

∂

∂t
p(x, t) = D∇2p(x, t). (2.3)

Notice the change of symbol from ρ to p. This is to indicate the “probabilistic” nature

of the assumption of Eq. (2.2). Let us consider for simplicity the one dimensional

case of Eq. (2.3)
∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t). (2.4)

1Let us imagine, for example, an experiment where a drop of ink diffuses in water.

4



It is straightforward to prove that

p(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
, (2.5)

where, without loss of generality the average value of the variable x is fixed to be

null. Moreover the standard deviation σ(t) obeys to the following equation

σ(t) =
√

2Dt
1
2 . (2.6)

Therefore the BM2 is characterized by a probability density function (pdf) p(x, t) that

is a Gaussian function spreading in time. The spreading “speed” can be measured by

the variance of the process that, as indicated by Eq.(2.6), increase linearly in time.

2.2 The Central Limit Theorem (CLT)

The Central Limit Theorem and its generalization, the Generalized Central Limit

Theorem described in Sec. 2.7, are the fundamental theorems in probability theory

used to develop the theoretical arguments of this work. These theorems are based on

the concept of Infinitely Divisible Variable (IDV) and Infinitely Divisible Distributions

(IDD). A stochastic variable Y , is an IDV if for any integer N , it can be represented

by a sum of identically distributed stochastic variables Xj (j = 1, 2, . . . , N)

Y =
N∑

j=1

Xj. (2.7)

The distribution function3 FY (Y ) of an IDV is an IDD. A distribution function is an

IDD if and only if, for any integer N , its characteristic function4 fY (k) is the Nth

2Here the uni-dimensional case is used for simplicity. In the three dimensional case, using isotropic
properties, Eq. (2.4) is obeyed by the variable R =

√
x2 + y2 + z2.

3Given a stochastic variable y with probability density function p(y) the corresponding distribu-

tion function is defined by Fy(y) =
y∫
−∞

p(y
′
)dy

′
.

4The characteristic function of a stochastic variable y with probability density function p(y) is

defined as fy(k) =
+∞∫
−∞

p(y)eikydy.

5



power of some characteristic function fX(k, 1/N). Thus fY (k) = [fX(k, 1/N)]N . The

importance of the IDDs is that limiting distribution can only belong to this class.

The CLT rests on the following statement;

• Central Limit Theorem

Given the sum YN of N independent identically distributed (iid) stochastic vari-

ables Xj with finite mean < X > and variance σ2
X . Let SN be defined as

SN = YN−N<X>

σX

√
N

and FSN
(s) be the respective distribution function.

Then FS(s) = limN→+∞ FSN
(s) is a IDD even if the variables YN and Xj may

not be.

Moreover the characteristic function fS(k) is a Gaussian.

A rigorous proof can be found in [10]. Here I give, just, a simple intuitive expla-

nation. Since

SN =
YN −N < X >

σX

√
N

, (2.8)

and YN is the sum of N iid stochastic variables, SN itself is a sum of N iid stochastic

variable, namely,

SN =
N∑

j=1

sj sj =
Xj− < X >

σX

√
N

. (2.9)

Therefore, it is possible to write for the characteristic function fSN
(k) as follows

fSN
(k) =

 +∞∫
−∞

pSN
(s)eiksds

N

, (2.10)

where pSN
(s) is the pdf of the variable s defined in Eq. (2.9).

Using the fact that the stochastic variable s has zero mean and unit standard

deviation, Eq.(2.10) can be approximated as

fSN
(k) ≈ 1− k2

2N
+ o(k2) (2.11)
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and using the property

lim
N→+∞

(1 +
x

N
)N = ex, (2.12)

the characteristic function fS(k) reads

fS(k) = e−
k2

2 . (2.13)

From this equation, the pdf pS(s) is derived making the anti Fourier transform of

fS(k). Finally considering the CLT “valid” for a given Ñ > N , the following expres-

sion for the pdf of the variable YN is obtained:

P (YN) =
1√

2πσXN
exp

(
−(YN −N 〈x〉)2

2σ2
XN

)
N > Ñ. (2.14)

According to this equation the pdf is a Gaussian function whose mean value moves

according the law < YN >= N < X > and whose standard deviation increases

according to the prescription σYN
∝ N

1
2 . These properties are the same of those

characterizing the pdf of the BM.

2.3 Dynamic Approach to Diffusion

The last two sections have been dedicated to the derivation of Fick’s Law ( with a

simple probabilistic argument ) and the connection between the BM and the CLT.

This section will be dedicated instead to a dynamic approach to diffusion process.

In order to connect diffusion processes and dynamical systems, it is convenient to

express the result of the CLT can through a differential equation. In fact the sum

(Eq. (2.7)) of iid stochastic variables can be seen as the solution of

ẋ = ξ, (2.15)

where ξ is a stochastic variable, delta correlated, whose pdf, p(ξ), has its second

moment finite. In fact the solution of Eq. (2.15), selecting for simplicity 0 as initial

7



time, is

x(t) =

∫ t

0

ξ(t
′
)dt

′
+ x(0), (2.16)

that is the continuous time version, doing the simplification of choosing the initial

condition x(0) = 0, of the Eq. (2.7).

At this stage the connection with the theory of dynamical systems can be done,

imagining an isolated physical system where ξ is one of the variables describing it. The

stochastic or stochastic-like behavior of ξ is due to the interaction with the remaining

variables describing the system. In this sense, the subsystem described by these

variables is called the “bath” and the variables itself, the bath variables. The bath

can be composed by a large (an Avogadro number for example) or by a small number

of variables. The interactions between the variable ξ and the bath variables and

those among the bath variables can be either of deterministic (Hamiltonian system)

or random nature. The dynamic of an isolated system described by d variables5 is,

formally, obtained solving the following differential equation

Ẋ = F (X) , (2.17)

where X is a vector, whose components are x1, x2, . . . , xd, the dot representing the

derivative with respect to time and the d-dimensional vector F containing the infor-

mation relative to the mutual interactions. This means that Fj(x1, . . . , xd) describes

how the variation in time of the j-th variable depends on itself and on the other

variables. In order to establish a connection with Eq. (2.15), I will consider the

dynamical system described by the following variables

X = (x, ξ, b1, b2, . . . , bn) = (x, ξ, b) . (2.18)

The variable ξ is coupled to a bath, described by the variables bi, and the variable x

collects the fluctuations of the variable ξ. The dynamics of such a system is described

5d can be in principle infinite
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by the following couple of equations

Ẏ = F (Y ) (2.19)

ẋ = ξ, (2.20)

where Y = (ξ, b). The vector F (Y ) describes the interactions among the bath vari-

ables b and between the bath variables and ξ. The two equations above can be written,

in a concise way, as

Ẋ = FTOT (X), (2.21)

where FTOT = (ξ, F (Y )).

2.4 Diffusion Process: the Density Equation

The Fick’s law Eq. (2.4) is a Master Equation (ME), an equation for the evolution

of a pdf. Many different kinds of master equations are used in literature to explain

diffusion processes different from BM (see for example [11] and reference therein).

A dynamical approach to diffusion process rests on the derivation of a ME starting

from the description of Eq. (2.17). This can be done, using the so called the Liouville

Picture.

2.4.1 Liouville Picture

The Liouville Picture (or Density Picture) consists of studying, not the evolution of

a single trajectory in the phase space given an initial condition X0 at the time t = t0,

but rather how an “ensemble” of different initial condition, described by a density

function ρ(X, t0), evolves as a function of time in the phase space of the system, if

the dynamic of a single trajectory is described by Eq. (2.17). Therefore the goal of

this approach is to solve the following differential equation (the Liouville equation)

∂

∂t
ρ(X, t) = L ρ(X, t), (2.22)

where L is an operator, known as the Liouville operator, acting on the density ρ(x, t).

9



It is a well known result that given F , of Eq (2.17), the Liouville operator L is

defined by the following relation

L ρ(X, t) = −∇ · (F ρ(X, t)) . (2.23)

Moreover, for isolated system, if the dynamic is deterministic (Hamiltonian) then the

volume (V =
∫
dX ρ(x, t0)) of the phase space is conserved under the action of the

Liouville operator (Liouville theorem), namely

∂

∂t

∫
dx ρ(x, t) =

∫
dx L ρ(x, t) = 0, (2.24)

where the integration is performed through all the phase space and the symbol dx

stands for dx1 . . . dxd.

2.4.2 PM

Generally, when solving the Liouville Equation (Eq. (2.23)), only the behavior some

of the degrees of freedom, those considered relevant or those that can be measured

experimentally, is of interest. The PM, introduced independently by H. Mori ([12, 13])

and R. Zwanzig ([14, 15]), permits the extraction of the desired information. In order

to illustrate this method I will adopt the following simplified notation:

ρ = ρ(X, t). (2.25)

The explicit dependence on one of the two parameters X or t will be used only if it

necessary for a better understanding. Eq. (2.22) of the previous Section, now, reads

∂

∂t
ρ = Lρ. (2.26)
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Then, two projection operators are introduced6, P and Q, such that P+Q = I, where

I is the identity operator. Moreover, the following reduced densities are defined

ρ1 = Pρ (2.27)

ρ2 = Qρ = (I − P )ρ. (2.28)

Using the projectors P and Q, Eq. (2.26) is split in two equations relative to reduced

densities ρ1 and ρ2, obtaining

∂

∂t
ρ1 = PL (ρ1 + ρ2) (2.29)

∂

∂t
ρ2 = QL (ρ1 + ρ2) . (2.30)

If ρ1 is the reduced density relative to the variables considered relevant, then Eq.

(2.30) is solved getting

ρ2(t) =

∫ t

0

e
QL

“
t−t

′”
QLρ1(t

′
)dt

′
+ eQLtρ2(0) (2.31)

and substituting this results in Eq. (2.29), the following differential equation for the

evolution of ρ1 is obtained

∂

∂t
ρ1(t) = PLρ1(t) +

∫ t

0

PLeQL
“
t−t

′”
QLρ1(t

′
)dt

′
+ PLeQLtρ2(0). (2.32)

This last equation is what is called the GLE for the reduced density ρ1. Unlike

Eq. (2.3) (for example), Eq. (2.32) is not a “bona fidae” ME, since the evolution

of the part of interest ρ1 depends explicitly from the initial condition of the system

through the last term of the r.h.s..

6an operator P is a projection operator if it satisfies P 2 = P .
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2.4.3 GLE for a Diffusion Process

It is time to apply the PM formalism to the system described by the variables defined

in Eq. (2.18) and subject to the law of motion of Eq. (2.21), to see if it is possible

to obtain a result compatible with BM (Fick’s law) and the CLT. The corresponding

Liouville Equation of the whole system is

∂

∂t
ρ(x, ξ, b, t) = L ρ(x, ξ, b, t), (2.33)

where

L = ξ
∂

∂x
+∇ · F (2.34)

The variable of interest is x, since it is the diffusing variable. Therefore, the PM

technique, is used to find the equation driving the evolution of the reduced density

σ(x, t) =

∫
dξdb ρ(x, ξ, b, t), (2.35)

where db stand for db1 . . . dbn and, as initial condition for the density ρ, the following

ρ(x, ξ, b, 0) = σ(x, 0)ηeq.(ξ.b), (2.36)

with ηeq.(ξ.b) being the equilibrium distribution of the system described by Eq. (2.19).

This means that, before the fluctuations of the variable ξ are collected through Eq.

(2.20), this system is thermalized to a temperature T and then isolated. The operator

that associates to the density ρ the reduced density σ through the integration of Eq.

(2.35) is not a projector and it is not possible to identify σ with ρ1 of Eq. (2.32). In

order to use the PM, the following definition of P is adopted

P ρ(x, ξ, b, t) = ηeq.(ξ.b)

∫
dξdb ρ(x, ξ, b, t) = ηeq.(ξ.b)σ(x, t). (2.37)
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It is straightforward to prove that P is a projector and applying Eq. (2.32), one

obtains

ηeq(ξ, b)
∂

∂t
σ(x, t) = PL [σ(x, t)ηeq(ξ, b)]

+

∫ t

0

PLeQL
“
t−t

′”
QL

[
σ(x, t

′
)ηeq(ξ, b)

]
dt

′
(2.38)

+ PLeQLt [ρ(x, ξ, b, 0)− σ(x, 0)ηeq(ξ, b)] .

This, seemingly complicated, equation can be simplified. The adoption of the

initial condition of Eq.(2.36) makes the last member of the r.h.s. of Eq.(2.38) vanish.

Another simplification comes from an explicit evaluation of the first term of the r.h.s.

of this equation. Using Eq.(2.34) it is possibel to write

PL [σ(x, t)ηeq(ξ, b)] = −P
(
ξ
∂

∂x

)
[σ(x, t)ηeq(ξ, b)]

− P ∇ · (F [σ(x, t)ηeq(ξ, b)]) (2.39)

and using the definition of P (Eq. (2.37))

PL [σ(x, t)ηeq(ξ, b)] = −ηeq.(ξ, b)

∫
dξdb

(
ξ
∂

∂x

)
[σ(x, t)ηeq(ξ, b)]

− ηeq.(ξ, b)

∫
dξdb ∇ · (F [σ(x, t)ηeq(ξ, b)]) . (2.40)

The second integral in the r.h.s. of this equation vanishes because the equilibrium

density ηeq(ξ, b) is, by definition, invariant under the application of Liouvillian (∇·F )

driving the motion of the variables ξ and b. Therefore Eq.(2.40) becomes

PL [σ(x, t)ηeq(ξ, b)] = ηeq(ξ, b)
∂

∂x
σ(x, t)

∫
dξdb ξ ηeq(ξ, b). (2.41)

The integral in the r.h.s of Eq.(2.41) is the definition of mean value (< ξ >) of the

variable ξ. Without loosing generality, this mean value can be set equal to zero. In

this way also the first term of the r.h.s. of Eq. (2.38) can be set to zero and the

13



differential equation describing the evolution of the density σ(x, t) can be written as

∂

∂t
σ(x, t) =

1

ηeq(ξ, b)

∫ t

0

PLeQL
“
t−t

′”
QL

[
σ(x, t

′
)ηeq(ξ, b)

]
dt

′
. (2.42)

2.4.4 Derivation of Fick’s law from a Deterministic Picture

Eq. (2.42) is the generalized Liouville equation corresponding to the “trajectory”

approach of Eq. (2.17). In deriving it, a “smart” choice of initial condition has been

made (Eq. (2.36)) and, without loss of generality, null average for the fluctuation ξ

has been assumed. Now, in order to see under which condition the Fick’s law can

be derived from within an Hamiltonian picture, the assumption that the interaction

described by Eq. (2.17) is a deterministic one, has to be made.

As a consequence of the Liouville theorem (Eq. (2.24)), one can substitute the

first L inside the integral of Eq. (2.42) with the operator −ξ ∂
∂x

and use the expression

for L given by Eq.(2.34), to obtain

L
[
σ(x, t

′
)ηeq(ξ, b)

]
= −ηeq(ξ, b) ξ

∂

∂x
σ(x, t

′
). (2.43)

Therefore Eq. (2.42) can be written as

∂

∂t
σ(x, t) =

1

ηeq(ξ, b)

∫ t

0

Pξ
∂

∂x
e

QL
“
t−t

′”
ηeq(ξ, b) Qξ

∂

∂x
σ(x, t

′
)dt

′
. (2.44)

The second Q in the integral of Eq. (2.44) becomes equivalent to the identity operator

because of the earlier assumption that the mean value of the variable ξ vanishes, and

of the definition of the projector P (Eq. (2.37), as well. Therefore, using the fact

that the operator ∂
∂x

commutes with the Liouvillian L

∂

∂t
σ(x, t) =

∫
dξdb

∫ t

0

ξe
QL

“
t−t

′”
ξ ηeq(ξ, b)

∂2

∂x2
σ(x, t

′
)dt

′
. (2.45)

Finally, defining

K(t) =

∫
dξ db ξ eQLt ξ ηeq(ξ, b), (2.46)
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Eq. (2.45) can be written as

∂

∂t
σ(x, t) =

∫ t

0

K(t− t
′
)
∂2

∂x2
σ(x, t

′
)dt

′
. (2.47)

The function K(t) of Eq. (2.46), represents a memory kernel (a correlation), since

to know σ(x, t) at a given time t (Eq. (2.47)) it is necessary to know what happened

at time previous to t. In order to recover Fick’s law the memory kernel must be

integrable, namely ∫ +∞

0

K(t)dt = T < +∞. (2.48)

In fact, in this case T can be regarded as a measure of the length of the correlations,

in the sense that the kernel is a Dirac’s delta (the correlation lost) after a time t� T .

With this assumption, one can do the, so called, Markov approximation and write

Eq. (2.47) as

∂

∂t
σ(x, t) =

(∫ +∞

0

K(t)dt

)
∂2

∂x2
σ(x, t). (2.49)

This last equation is equivalent to the Fick’s law, once the coefficient D of Eq. (2.4)

is identified with the integral of the memory kernel K(t)

2.4.5 Trajectory vs. Density Approach

The density approach, just described, is considered to be equivalent tot the trajectory

approach. In other words, taking an ensemble of trajectories and making each of

them evolve with Eq. (2.21) (trajectory approach), or describing the ensemble of

trajectories with a density ρ and making it evolve with the using the Liouville equation

(density approach) is thought to lead to the same results. In Sec. 4.4.2, I will

consider, briefly, how this equivalence is broken if the diffusion process is generated

by a dichotomous variable.

15



2.5 Anomalous Diffusion

The term anomalous diffusion is generally used to indicate any kind of diffusion that

depart from BM. Historically since the introduction of the rescaled range analysis by

Hurst,[6] and [16] a way of monitoring if a given diffusion process was anomalous,

was to monitor if the standard deviation of the process grew differently from that of

BM, namely

σ(t) ∝ tH , (2.50)

where H 6= 0.5. The parameter H is usually denoted as Hurst exponent. In Sec.

3.4 different techniques to assess if a diffusion process is anomalous are examined. In

this section the technique, above introduced, of monitoring the standard deviation

is adopted. I will show how a departure from H = 0.5 is connected to an infinitely

extended correlation of the variable ξ (see Eq. (2.15)) generating the diffusion. If

this correlation is persistent (positive) then H ∈]0.5, 1[, while in the case on anti-

persistent (negative) correlation H ∈]0, 0.5[. The first condition is addressed to as

superdiffusion the last one as subdiffusion.

The standard deviation σ of Eq. (2.50) is evaluated, adopting the “trajectory”

approach of Eq. (2.15) of Sec. 2.3 and an ensemble of statistically independent

trajectories ξ(t) is considered. Therefore, using Eq. (2.16), the average position of a

trajectory at time t is

< x(t) >=

∫ t

0

< ξ(t
′
) > dt

′
+ x(0), (2.51)

where the symbol < . . . > denotes the average over the ensemble. In a similar way,

the average square displacement reads

< x2(t) > =

∫ t

0

dt
′
∫ t

0

dt
′′
< ξ(t

′
)ξ(t

′′
) >

+ 2x(0)

∫ t

0

dt
′
< ξ(t

′
) > + (x(0))2 . (2.52)

Now, using Eqs. (2.51) and (2.52), is possible to obtain, for the square of the standard
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deviation σ(t), the following expression

σ2(t) =

∫ t

0

dt
′
∫ t

0

dt
′′
<
(
ξ(t

′
)− < ξ >

)(
ξ(t

′′
)− < ξ >

)
>, (2.53)

which can be reduced, playing with the dominion of integration of the double integral

and assuming a stationary condition, the integrand depends only on the absolute

value of the difference t
′ − t

′′
, to

σ2(t) = 2

∫ t

0

dt
′
∫ t

′

0

dt
′′
< (ξ(0)− < ξ >)

(
ξ(t

′′ − t
′
)− < ξ >

)
> . (2.54)

Finally, multiplying and dividing the integrand of this equation by the following

quantity (< ξ2(0) >)7, the time dependence of the variance can be written as

σ2(t) = 2 < ξ2(0) >

∫ t

0

dt
′
∫ t

′

0

dt
′′
Φξ(t

′′
), (2.55)

where Φξ(t) is the autocorrelation function of the variable ξ.

How the property of the correlation function are connected to those of the standard

deviation is the argument of the rest of this section.

2.5.1 Ordinary Diffusion: H = 0.5

The standard deviation increases like the BM in the following cases. If

Φξ(t) = δ(t), (2.56)

then using Eq. (2.55) it is straightforward to prove that

σ(t) =
√

2 < ξ2(0) >× t
1
2 . (2.57)

If, instead,

Φξ(t) = e−
t
τ , (2.58)

7Assuming that this quantity is finite.
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one obtains

σ(t) =
[
2 < ξ2(0) >

[
τt − τ 2 + τ 2e−

t
τ

]] 1
2
, (2.59)

and therefore for t� τ only the first term inside the parenthesis counts and therefore

σ(t) ∝ t
1
2 in this limit.

More in general an increase of the variance like the BM is obtained, whenever

there is a finite correlation time, that is, whenever the following condition is satisfied

0 <

∫ +∞

0

Φξ(t)dt = τ < +∞. (2.60)

In fact the derivative with respect to time of Eq. (2.55) is

d

dt
σ2(t) = 2 < ξ2(0) >

∫ t

0

Φξ(t
′
)dt

′
, (2.61)

which, using Eq. (2.60), becomes, for t� τ ,

d

dt
σ2(t) = 2 < ξ2(0) > τ (2.62)

2.5.2 Superdiffusion: 0.5 < H < 1

An autocorrelation function that is integrable leads to an Hurst exponent of 0.5.

What happens when the autocorrelation function is not integrable? For example, an

autocorrelation function Φξ(t) of the type t−β with 0 < β < 1. As stated before

superdiffusion means that

σ2(t) ∝ t2H 0.5 < H < 1. (2.63)

Differentiating with respect to time both sides of Eq. (2.61), one obtains

d2

dt2
σ2(t) = 2 < ξ2(0) > Φξ(t). (2.64)
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A comparison between this result and the second derivative in time of Eq. (2.63),

leads to

2H (2H − 1) t2H−2 ∼ t−β (2.65)

and, therefore,

β = 2− 2H. (2.66)

This relationship indicates that to a value of β in the interval ]0, 1[, corresponds a

Hurst exponent in the interval ]1, 0.5[.

2.5.3 Subdiffusion: 0 < H < 0.5

Eq. (2.65) can be used, in order to see which asymptotic behavior for the autocorrela-

tion function Φξ(t) is compatible with the subdiffusive regime. With H in the interval

]0, 0.5[ the possible values of the parameter β are in the interval ]1, 2[. Therefore the

autocorrelation is integrable, but at the same time is negative in value. In fact the

factor 2H (2H − 1) of Eq. (2.65) is negative in the interval of H considered. Since for

t = 0 the autocorrelation function has to assume value 1 a possible model for Φξ(t)

can be the following:

Φξ(t) = (1 + ε) e−γt + ε

(
T

T + t

)β

. (2.67)

Fig. 2.1 shows the typical behavior of a function described by Eq. (2.67). The

integral of the correlation function depends on the parameter ε in the following way

τ =

∫ +∞

0

Φξ(t)dt =
1 + ε

γ
− εT

β − 1
, (2.68)

while the square of the standard deviation is, using Eqs. (2.55) and (2.67),

σ2(t) = 2 < ξ2(0) >

(
1 + ε

γ
− εT

β − 1

)
t

+ 2 < ξ2(0) >
1 + ε

γ2

(
e−γt − 1

)
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Figure 2.1: The correlation function Φξ(t) of Eq. (2.67) (full line) and the constant
of zero value (dashed line). Here ε = 0.1, γ = 1, T = 50 and β = 1.5.
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+ 2 < ξ2(0) >
T 2ε

(2− β)(β − 1)

[(
T + t

T

)2−β

− 1

]
. (2.69)

The leading term of Eq. (2.69), as t→∞ is the linear one, unless the condition

1 + ε

γ
=

εT

β − 1
, (2.70)

applies. This condition implies τ = 0. Therefore if this equation is not satisfied, the

standard deviation σ increases as t
1
2 . The subdiffusion grow of the standard deviation

is possible only in the case when Eq. (2.70) is valid, since the last term of the r.h.s.

of Eq. (2.69) becomes the dominant.

2.6 Fractional Brownian Motion (FBM)

The FBM is a generalization of the ordinary BM, introduced by Mandelbrot [17].

It is a kind of diffusion process that rests on a Gaussian pdf, but, differently, from

the BM the scaling parameter is not 0.5: δ ∈]0, 0.5[ or δ ∈]0.5, 1[. The result of the

previous section shows how the FBM is connected with the autocorrelation function

of the fluctuating variable.

2.7 Lévy Processes and The Generalize Central Limit Theorem (GCLT)

The GCLT [18, 19], generalizes the CLT for the sum of iid stochastic variables whose

pdf has infinite variance. This generalization is due to the French mathematician

Paul Lévy, who finds [18] the most general form for the limiting pdf of the sum of iid

stochastic variables. For the purpose of this work the content of the GCLT can be

expressed as follows:

• Definition

A pdf P(x) is said to be stable if, ∀a1 > 0, b1, a2 > 0, b2 there are a > 0, b such

that the equation:

P (ax+ b) = P (a1x+ b1) ∗ P (a2x+ b2) (2.71)
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holds (where the symbol ∗ means convolution).

• Theorem

For the pdf P (x) be a limit distribution for the sum of iid stochastic variables,

it is necessary and sufficient to be stable.

• Theorem

For the pdf P (x) to be stable it is necessary and sufficient for its characteristic

function, P̂ (k), to be of the form

P̂ (k) = eıγk−b|k|α[1+ıβ k
|k|ω(k,α)], (2.72)

where γ is any real number, b ≥ 0, 0 < α ≤ 2, −1 ≤ β ≤ 1 and

ω(k, α) =

{
tan πα

2
if α 6= 1

2
π

log[k] if α = 1.

The index γ 6= 0 corresponds to a spatial translation (it is equivalent to say that

the pdf P (x) has a non vanishing mean), while the index β characterizes the degree

of asymmetry of the pdf P (x), since

1− β

1 + β
= lim

L→+∞

R(−L)

1−R(L)
, (2.73)

where

R(L) =

L∫
−∞

P (x)dx. (2.74)

Considering, therefore, a symmetric P (x) with zero mean, Eq. (2.72) reduces to

P̂ (k) = e−b|k|α . (2.75)

For α = 2, Eq. (2.75) becomes a Gaussian function. The GCLT includes the Gaus-

sian as a special case of admissible limiting distribution of the sum of iid stochastic

variables. In fact, the CLT of Sec. 2.2 shows that the Gaussian distribution is the
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limiting distribution of the sum of iid stochastic variables with finite variance. The

case α 6= 2 is, instead, the limiting distribution in the case of infinite variance. In

particular the parameter α can be connected to the behavior for big values of the pdf

p(x) of the iid stochastic variables that are summed, namely if

p(| x |) ∼ 1

| x |µ
| x |→ +∞ µ ∈]1, 3[, (2.76)

then α = µ− 1.

Finally, it is interesting to study the asymptotic properties of P (x). For simplicity,

only the case where γ = 0 and β = 0 is treated, but the results are valid also in the

general case. Therefore, making the inverse Fourier transform of Eq. (2.75) the

following expression for P (x) is obtained

P (x) =

+∞∫
0

dk cos(kx) e−bkα

, (2.77)

and, after some algebra:

P (x) =
αb

πxα+1

+∞∫
0

dz zα−1 sin z e−b( z
x)

α

. (2.78)

In the limiting case of | x |→ +∞ the exponential inside the integral of Eq. (2.78)

can be considered equal to 1. Therefore

P (| x |) ≈ αb

π | x |α+1

+∞∫
0

dz zα−1 sin z | x |→ +∞. (2.79)

Finally [20]

P (| x |) ≈ αb

π | x |α+1
sin

πα

2
Γ(α) | x |→ +∞, (2.80)
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where Γ is the well known, Gamma function. Eq. (2.80) shows that symmetric Lévy

distribution with zero mean are characterized by slow decaying power-law tails

P (| x |) ∝ 1

| x |α+1
| x |→ +∞. (2.81)

2.8 CTRW

Hereby I will present, for simplicity, and continuity with what done in the previous

sections, the one dimensional CTRW. The CTRW is a stochastic process where the

length of a given jump made by the walker, as well the waiting time elapsing between

two successive jumps are drawn from a pdf w(x, t), referred to as the jump pdf.

Starting from w(x, t), the following quantities are defined: the jump length pdf

λ(x) =

+∞∫
0

dt w(x, t) (2.82)

and the waiting time pdf

ψ(t) =

+∞∫
−∞

dx w(x, t). (2.83)

Usually the jump length and the waiting time are independent random variables,

[21, 22, 23, 24, 25, 26, 27], and therefore

w(x, t) = λ(x) ψ(t). (2.84)

In some cases, [28, 29, 30], the jump length and the waiting time between jumps are

coupled and therefore

w(x, t) = p(x|t) ψ(t) or w(x, t) = p(t|x) λ(x), (2.85)

In a given time span the walker can only travel by a limited distance (p(x|t)) or, vice

versa, a jump of a certain length involves a time cost (p(t|x)). The coupled condition

is a more “physical” condition, since it introduce a limitation for the distance that
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the walker can cover in a given amount of time. This kind of CTRW is called as

“walk” in a proper sense, while the decoupled CTRW is know as “flight”, in the sense

that there is no particular limitation (apart from that given by the jump length pdf

λ(x)) in the distance that the walker can cover in a given amount of time.

2.8.1 Formal Solution of the Flight CTRW

In the case of a “flight”, in order to find the pdf, P (x, t), of being in the position x

at a time t, it is convenient to introduce two functions. The first one is the function

Ψ(t), the probability of not leaving a given position up to a time t. Ψ(t) is related to

the jump pdf w(x, t) through the following relation

Ψ(t) =

+∞∫
t

dt
′

+∞∫
−∞

dx w(x, t‘) =

+∞∫
t

dt
′
ψ(t

′
). (2.86)

The second function is Q(x, t), the probability of arriving at the position x exactly at

the time t and to stop before making another jump. For this function the following

recursive relation holds

Q(x, t) =

+∞∫
−∞

dx
′

t∫
0

dt
′
Q(x− x

′
, t− t

′
) w(x

′
, t

′
) + δ(t)δ(r). (2.87)

Finally, P (x, t) is connected to Ψ(t) and Q(x, t) by

P (x, t) =

t∫
0

dt
′
Q(x, t− t

′
) Ψ(t

′
). (2.88)

The Fourier (x→ k) and Laplace (t→ s) transform of Eq. (2.88) is

P (k, s) =
Ψ(s)

1− w(k, s)
, (2.89)
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that can be written, using Eqs.(2.85) and (2.86), as follows

P (k, s) =
1− ψ(s)

s

1

1− λ(k)ψ(s)
. (2.90)

2.8.2 CTRW and Fick’s Law

The Fick’s law (Eq. (2.4)) can be derived also from within the framework of the

CTRW. In fact, considering a waiting time pdf ψ(t) with finite mean (τ) and a

symmetric jump length pdf λ(x) with finite variance (σ2) then for large times (t →
+∞↔ s→ 0)8 and large value of the position of the walker (x→ +∞↔ k → 0), it

is possible to write

ψ(s) ≈ 1− τs (2.91)

λ(k) ≈ 1− σ2k2. (2.92)

Plugging these results in Eq. (2.90), one gets the following asymptotic expression for

P (k, s)

P (k, s) ≈ 1

s+Dk2
D =

σ2

τ
, (2.93)

which is the Laplace and Fourier transform of (Eq. (2.4)).

2.8.3 The Asymmetric Jump Model (AJM)

The authors of [32] study a case where λ(x) = δ(x − 1). In these cases the walker

after waiting in a given position for a random time t, drawn from a given pdf ψ(t),

moves one step ahead. It can be proven [32] that if the waiting times does not have

a finite variance then anomalous diffusion emerge. In fact the asymptotic expression

( x → +∞ ↔ k → 0 and t → +∞ ↔ s → 0 ) for P (k, s) is compatible with the

(Lévy) expression of Eq. (2.72).

This model is important because it is simple and can be applied to many situations.

8Clues on the behavior at large times of a function f(t) studying the behavior of its Laplace trans-
form in a neighborhood of s = 0, can be obtained only in particular circumstances (see Tauberian
theorems in [31]).
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In fact, if for a ny given event the walker makes a step, then the waiting time pdf

characterizes the temporal distance between an event and the next one and p(x, t) can

be interpreted as the probability of having x events in a time span t. This model, with,

ad hoc, definitions of events, has been successfully applied to model the heartbeat,

allowing a distinction between sick9 and healthy patients [33]. Moreover, it has been

connected [34] to the multi fractals properties of the heart beat [35].

2.8.4 The Symmetric Velocity Model (SVM)

Let us now introduce a model, the one used in Chap. 4, where the jump length and

the waiting time between jumps are connected. In this model the walker moves by a

constant speed in the positive or negative direction for a given amount of time, after

which stops and chooses, randomly, a new direction and a new sojourn time. The

SVM [36, 37, 38]. is described by the waiting time pdf ψ(t) in a given state of the

velocity (+1 for the positive direction of the x axis and −1 for the negative direction)

and by the conditional pdf

p(x | t) =
1

2
δ(| x | −t), (2.94)

expressing the fact that after the end of a phase of uniform motion in one direction

(δ(|x| − t)), the walker decides randomly (the factor 1
2
) a new direction of motion.

Using Eq. (2.94) is possible to write for the jump pdf w(x, t) the following expression

w(x, t) =
1

2
δ(| x | −t) ψ(t). (2.95)

Following the same arguments used in Sec. 2.8.1, the function Ψ(x, t) is defined as

the probability to pass, starting from the origin, in the location x at a time t in a

single motion event (no halts to decide a new random direction). The connection

9In [33] patients with congestive heart failure are compared to the healthy ones.
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between Ψ(x, t) and w(x, t) is the following

Ψ(x, t) =
1

2
δ(| x | −t)

+∞∫
t

dt
′
ψ(t

′
). (2.96)

Finally making use of the probability Q(x, t) of Eq. (2.87), the pdf (p(x, t)) of being

in the position x at a time t is

p(x, t) =

∫
dx

′

t∫
0

dt
′
Q(x− x

′
, t− t

′
) Ψ(x

′
, t

′
), (2.97)

whose Fourier and Laplace transform reads

P (k, s) =
Ψ(k, s)

1− w(k, s)
. (2.98)

The SVM has important practical application. DNA sequences ([39, 40, 41], among

many others) can be thought as a string of + or − (according if a purine or a pyrim-

idine is found in the sequence). The diffusion process produced by this string (the so

called DNA walk) is just an example of SVM.
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CHAPTER 3

Kolmogorov-Sinai Entropy, Algorithmic Complexity and Scaling

This chapter is devoted to discuss the notions of Kolmogorov-Sinai (KS) entropy

(Sec. 3.1), that one of Algorithmic Information Content (AIC) and Computable

Information Content (CIC) and Scaling for a diffusion process. I will show how KS,

IAC and CIC are connected to the theory of dynamical systems and how they are

used to to define the concept of Information Complexity (Sec.3.2). Regarding the

notion of Scaling of a diffusion process, the focus will be on its detection and the

practical application of this concept to the analysis of time series. As for the previous

chapter, only the fundamental concepts necessary to understand the original work of

this dissertation (Chap. 4 and Chap. 5) will be illustrated.
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3.1 KS Entropy, Lyapunov Exponent and Pesin Theorem

The concept of KS entropy Consider a sequence of symbols ωi of length L (i =

1, 2, . . . , L) drawn from analphabet S1, S2, . . . , SM of M letters and select an integer

n < L as the length of a window that we move through the sequence of symbols. In

principle, having available an infinitely long sequence and a computer with enough

memory and computer time, for any sequence of symbols (ω0, ω1, . . . ωn−1) possible

inside a window of length n, we can evaluate the probability p(ω0, ω1, . . . ωn−1) that

this sequence occurs in the window. The n-th order Shannon entropy is given by

H(n) = −
∑

ω0ω1...ωn−1

p(ω0, ω1, . . . ωn−1) ln(p(ω0, ω1, . . . ωn−1)). (3.1)

H(n) is a measure [42] of the average “uncertainty” in predicting the (n + 1)-th

symbol following any given portion of n symbols of the sequence ωi. The KS entropy

of the symbolic sequence is defined as the rate at which the “uncertainty” of Eq. (3.1)

grows with respect to the size n of the portion of the sequence considered, namely

hKS = lim
n→∞

H(n)

n
. (3.2)

This quantity represents the complexity of the symbolic sequence: the greater1 the

hKS, the greater the complexity. The problem of the definition of Eq. (3.2), is that

hKS is hardly computable, since the possible combinations of M different symbols

(letters) inside a window of length n are Mn and, therefore, to have a good numerical

evaluation of H(n), a sequence of length L� Mn is needed. Nevertheless the KS is

very popular in the scientific community, the reason being the Pesin theorem [43, 44]

that affords a practicable criterion to evaluate the KS entropy, in the specific case

where the symbolic sequence is generated by a well defined dynamic law.

1The maximum value possible for a sequence done with an alphabet of M letters is lnM , that
corresponds to the fact the all the possible different combinations of the M symbols considered, are
equiprobable. This being the situation of maximum uncertainty.
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3.1.1 KS Entropy for Dynamical Systems

In the following, the term “dynamical systems” refers to systems whose evolution

(the evolution of the variables that describe the system) is given by

xn+1 = Π xn, (3.3)

where the vector x is the vector containing all the variables necessary to describe the

system, n is the discrete time and Π : X → X (X is the phase space of the system)

is the operator (map) responsible for the dynamic. The description of the dynamic

in terms of Eq. (3.3) has a general validity, since systems (the Hamiltonian ones, for

example) described in terms or differential equations can always put in the form of

Eq. (3.3) if integrated at regular interval of times.

In order to define the KS entropy of a dynamic system, it is necessary to express

the dynamics via a symbolic sequence. For this purpose a partition {A} of the phase

space is done, namely the phase space is divided in disjoint subsets. Then to each

of these subsets is associated a symbol, so that the evolution of a trajectory starting

from a given point x is translated into a symbolic sequence, simply recording in which

subset of the partition {A} the trajectory is at any time step. In this way to every

point of the phase space is associated a symbolic sequence. Therefore, Eq. (3.1),

defines the nth order Shannon entropy H(n, x, {A}) associated with the trajectory

starting from x as

H(n, x, {A}) = −
∑
ωn

px,{A}(ωn) ln(px,{A}(ωn)), (3.4)

where ωn denotes the sequence of symbols ω0ω1 . . . ωn−1 and the notation px,{A}(. . .)

makes explicit the dependence of the probability from the initial condition and the

partition chosen. Using this equation and Eq. (3.2), the KS entropy hKS(x, {A})
relative to the trajectory of initial condition x, given the partition {A} is defined as

hKS(x, {A}) = lim
n→∞

H(n, x, {A})
n

. (3.5)
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Usually an “ensemble” of initial conditions is chosen, defining, therefore, a mea-

sure µ in the phase space. Integrating the function hKS(x, {A}) all over the phase

space with respect to the measure µ and taking the supremum over all the possible

partitions, one obtains the KS entropy of the map Π with respect to the measure µ:

hKS(µ) = sup
{A}

hKS(µ, {A}), (3.6)

where

hKS(µ, {A}) =

∫
hKS(x, {A})dµ. (3.7)

The supremum over all the possible partitions can be rather cumbersome to evaluate

for practical purposes. An important simplification can be done using the concept

of generating partition. A generating partition is a partition of the phase space X

such that the identification between a trajectory of the phase space and the relative

symbolic sequence is a one to one application. This means that a symbolic sequence

built up with such a partition identify an unique initial point x in the phase space.

It can be shown [45] that the quantity defined in Eq. (3.7) takes its maximum value

for this kind of partition and, therefore, it is not necessary to use all the possible

partitions and find the supremum in order to evaluate hKS(µ).

Finally, if the system admits an invariant natural measure2 and it is ergodic, then

quantity hKS(x, {A}) is independent of x. Moreover, the existence of an invariant

natural measure (µeq.), serves the purpose of uniquely defining the KS entropy of the

map Π as the KS entropy of Eq. (3.6), evaluated with respect to µeq.. This quantity

is the KS entropy of the dynamical system described by a map Π (if the conditions

of ergodicity and existence of an invariant measure are satisfied).

2by natural invariant measure is intended the measure defined by the equilibrium density distri-
bution ρeq.(x), that is the distribution reached under the action of Π starting by “almost” any initial
distribution. The meaning of “almost”, is that distributions having a support in invariant (under
the action of Π) sets of zero measure must not be considered (for example we exclude distributions
like a δ of Dirac in a fixed point of the map).
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3.1.2 Lyapunov Exponents

The Lyapunov Exponent, in the simple case of uni dimensional maps (the multidimen-

sional case can be generalized easily) and for differentiable functions Π(x), establish

the rate of exponential departure of two nearby trajectories. The absolute distance

∆(n) of two trajectories, initially infinitesimally close (∆(0) = ε), after n iterations

of the map Π can be written as

∆(n) = ε

∣∣∣∣dΠn(x)

dx

∣∣∣∣
x=x0

. (3.8)

The notation | . |x=x0 indicates that the dericative is evaluated in x = x0 and that, at

the same time, the modulus is taken. Using the chain rule, Eq. (3.8) can be written

as

∆(n) = ε

j=n−1∏
j=0

∣∣∣∣dΠ(x)

dx

∣∣∣∣
x=xj

, (3.9)

where xj represents the j-th iterated starting from x0. Finally, supposing an expo-

nential departure, one can write

∆(n) = ε

j=n−1∏
j=0

∣∣∣∣dΠ(x)

dx

∣∣∣∣
x=xj

= ε eλ(x0,n)n. (3.10)

The coefficient λ(x0, n) is the rate of exponential departure relative to the initial

condition x0, after n iterations of the map. The Lyapunov coefficient is defined as

the limiting value, if it exists, of the coefficient λ(x0, n) as the number of iterations

goes to infinity, namely

λ(x0) = lim
n→+∞

1

n

j=n−1∑
j=0

ln

∣∣∣∣dΠ(x)

dx

∣∣∣∣
x=xj

. (3.11)

If the system is ergodic, then the coefficient λ(x0) is independent of the particular

initial condition chosen and an unique Lyapunov coefficient, λ, of the map is defined.

A Lyapunov coefficient strictly positive is the signature of chaotic motion, a strictly
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negative one represents a exponential convergence and a null one implies a departure

(or a convergence) that is less than exponential. In the d-multidimensional case, it is

possible to define a set of Lyapunov exponents, one for each, possible, independent

direction of motion of a trajectory. A chaotic system is, then, one for which at least

a strictly positive Lyapunov exponent exists.

3.1.3 Pesin Theorem

The one dimensional version of the Pesin theorem3 prescribes that the if the map Π

is ergodic and has an invariant natural measure dµeq = ρeq(x)dx, then:

hKS = λ =

∫
ln

∣∣∣∣dΠ(x)

dx

∣∣∣∣ dµeq, (3.12)

where hKS is the KS entropy of the map with respect to the natural invariant measure

and λ is the Lyapunov coefficient of the map Π. The multidimensional version, of

the same theorem, states that the KS entropy is the sum of all positive Lyapunov

coefficients, namely

hKS =
∑

j,λj 6=0

λj. (3.13)

3.2 AIC, CIC and the Information Complexity

Another form of complexity measure (the Information Complexity) is discussed and

its connection with the KS entropy is explored.

3.2.1 AIC and CIC

Given a set of symbols (alphabet) A and a finite sequence of such symbols (symbolic

sequence) ω, the quantity of information I(ω) contained in ω is defined 4 as the length

of the smallest binary program p that, given as input to a computer C, gives as output

3for the exact condition that the map Π has to satisfy in order for the Pesin theorem to apply
see [43],[46] and [47].

4Here I illustrate the main idea with arguments, intuitive but as close as possible to the formal
definition (for further details, see [48] and related references).
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(C(p)) the sequence itself. The quantity of information is, also, called Algorithmic

Information Content (AIC) of the sequence ω. Formally,

IAIC(ω,C) = min{|p| : C(p) = ω}, (3.14)

where |p| indicates the length, in bits, of the program p. From this point of view,

the shortest program p which outputs the sequence ω is a sort of optimal encoding

of the sequence itself. Unfortunately, this coding procedure cannot be performed on

a generic sequence by any algorithm: the Algorithmic Information Content is not

computable by any algorithm [49].

Another measure of the information content of a finite string can also be defined

by a loss-less data compression algorithm Z satisfying some suitable properties (see

[48] for details). The quantity of information of the symbolic sequence ω is considered

to be the length of the compressed sequence Z(ω), namely,

IZ (ω) = |Z(ω)| . (3.15)

The advantage of using a compression algorithm lies in the fact that, this way, the

information content IZ (ω) turns out to be a computable function. For this reason

IZ (ω) is called Computable Information Content (CIC) and. from now on, the

notation ICIC (ω) will be used for it.

3.2.2 Information Complexity and Entropy of an Information Source

An important quantity that can be defined using the quantity of information, accord-

ing to the AIC or CIC procedure, of a sequence is the complexity K5 of the sequence

itself. Given an infinite symbolic sequence, ω, the complexity K (ω) is defined as fol-

lows

K(ω) = lim sup
n→∞

I(ωn)

n
, (3.16)

5For the complexity K will be used , the same notation used for the quantity of information.
Therefore KAIC and KCIC will denote, respectively, the case in which the complexity K is defined
using IAIC or ICIC .
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where ωn is the sequence obtained taking the first n elements of ω. The meaning of

Eq. (3.16) is straightforward: the complexity K(ω) of an infinite symbolic sequence

ω is the average information I contained in a single digit of ω. Moreover, it is worth

noting how Eq. (3.16) is similar to Eq. (3.2).

Finally, considering the set of all infinite sequences Ω, given the alphabet A,

and equipping it with a probability measure µ, the couple (Ω, µ) is created. This

couple can be viewed as an information source, provided that µ is invariant under the

natural shift map σ, which acts on a symbolic sequence ω = (ωi) (i ∈ N ) as follows:

σ(ω) = ω̃ where ω̃i = ωi−1 ∀i ∈ N+. The entropy, relative to the measure µ, hµ of the

information source (Ω, µ) can be defined as the expectation value of the complexity:

hµ =

∫
Ω

K(ω) dµ . (3.17)

If I (ω) = IAIC (ω) or I (ω) = IZ (ω), under suitable assumptions on Z and µ, hµ

turns out to be equal to the Shannon entropy.

3.2.3 Information Complexity and Dynamical Systems

The goal of this section is that of defining the complexity6 of a trajectory of a dy-

namical system, starting from a given position x of the phase space X. Following

the same argument of Sec. 3.1.1, a partition {A} of the phase space is done and the

trajectory is translated into a symbolic sequence ωx. In this way, using Eq. (3.16),

the complexity of the trajectory, given the partition, is

K(x, {A}) = lim sup
n→+∞

I(ωn
x)

n
. (3.18)

In order to have a quantity independent of the partition adopted, all the possible

partition are considered and

K(x) = sup
{A}

K(x, {A}). (3.19)

6As for the other definitions and concepts of this Chapter, here is reported the main idea in an
intuitive way and as close as possible to the rigorous definitions. These can be find in [3]
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Then, in analogy with Eq. (3.7), the phase space X is equipped with a measure µ

and the complexity of the map Π relative to the measure µ defined as

K(µ) =

∫
X

K(x)dµ. (3.20)

It can be shown [48] that for an ergodic map Π, having an invariant natural measure

µeq., the complexity K(µeq.) is equivalent to the KS entropy.

Before concluding this section, some results [50] regarding an one dimensional

map in the interval [0, 1] (some of this results will be used in the next Chapter).

For this purpose, it is convenient to express the separation of two nearby trajectories

(one starting from the position x and another one starting from the position x + ε,

as defined by Eq. (3.8), in a more general way, as follows

∆(n) = εf(x, n). (3.21)

Then, given a partition {A} of the phase space, for almost all the points x, the

information content (AIC or CIC) is

I(ωn
x , {A}) ∼ ln |f(x, n))| . (3.22)

The following relationships show the behavior of the function I(ωn
x , {A}) for different

kind of functions f(x, n)

f(x, n) ∼ eλn ⇒ I(ωn
x , {A}) ∼ nλ

f(x, n) ∼ np ⇒ I(ωn
x , {A}) ∼ p lnn

f(x, n) ∼ eλnp ⇒ I(ωn
x , {A}) ∼ λnp
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3.3 Scaling and Complexity in Time Series

Let us go back to the BM of Sec. 2.1 and recall that, in the one dimensional case,

the pdf for the walker to be at the position x at a time t is

p(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
. (3.23)

The above p(x, t) can be written in the form

p(x, t) =
1

tδ
F (

x

tδ
), (3.24)

where

F (y) =
1

4πD
exp

(
−y2

)
δ = 0.5. (3.25)

Every diffusion process whose pdf p(x, t) that can be put in the form of Eq. (3.24)

is said to be a “scaling” diffusion process and the parameter δ is addressed as the

“scaling” parameter. A Lévy diffusion process is one where the function F (y) of

Eq. (3.24) has a Fourier transform, the one described by Eq. (2.72) and for scaling

parameter the value δ = 1
α
, while for the FBM (Sec. 2.6) the function F (y) is a

gaussian but the scaling parameter δ is different from the value 0.5 of ordinary BM.

A diffusion process satisfying the scaling condition is “invariant” under the fol-

lowing “self-affine” transformation acting on the variable x and t:

t 7→ t
′
= kt (3.26)

x 7→ x
′
= kδx, (3.27)

where k > 0 is a real valued parameter. In fact, it is straightforward to see that if the

scaling condition of Eq. (3.24) applies then the pdf relative to the rescaled (through

Eqs. (3.26) and (3.27)) variables satisfies the following condition

p(x
′
, t

′
) =

1

kδ
p(x, t). (3.28)
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Therefore, a part from the factor 1
kδ due to the conservation of the norm, the “self-

affine” transformation, described above, leaves unchanged the pdf of the diffusion

process. In other words, the diffusion process described in term of the rescaled vari-

ables x
′

and t
′

ceases to be a diffusion and becomes a “stationary” process, in the

sense that the pdf does not depend anymore explicitly from the time. Thus, the

scaling condition has to be considered a “thermodynamic” condition, meaning that

the process has reached an equilibrium condition. In general the scaling condition

is not a property of the early stage of a diffusion process (it takes time to reach

equilibrium), for this reason, the transitional regime in referred as a regime of transi-

tion from “dynamics” to “thermodynamics” (using the parallel with isolated system

evolving toward equilibrium). For example for the sum of many iid stochastic vari-

ables the limiting distribution is reached asymptotically (in the sense that the sum of

many variables is needed for the GCLT to be realized ). Moreover there are diffusion

processes for which the condition of scaling never applies or where the transition to

the scaling condition is infinitely extended. This last case is the case of the diffusion

process discussed in the next chapter. Let us discuss, now, some of the techniques of

analysis used in literature to study a diffusion process and in particular to asses if it

satisfies the scaling condition.

A paradigm often used for complexity in the field pf time series analysis, is that

a time series stemming from a complex system has to result in in a diffusion process

satisfying the scaling condition, just discussed, and departing from BM. Therefore a

scaling parameter δ 6= 0.5 is taken as evidence of complexity. The next Section is

therefore dedicated to different methods used to detect and measure the scaling of a

diffusion process.

3.4 Methods for Scaling Detection in Time Series

By time series is meant a sequence of values ξ1, ξ2, . . . , ξN (the data to be analyzed).

The connection between diffusion process and time series analysis is a straightforward
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one: the values ξj can be used to produce, by summation, a diffusion process, namely

x(t) =
t∑

j=1

ξj t = 1, 2, . . . , N. (3.29)

This equation is just the discrete time version of Eq. (2.16). But a statistical approach

to a diffusion process is based on the possibility of having an ensemble of statistically

equivalent trajectories taken from exact replica of the system examined. How to

create this ensemble if one has only a single realization (usually this is the most

common case when analyzing a time series)? To solve this problem the overlapping

windows technique is introduced. If t is a discrete time in the interval [1, N ], N−t+1

different diffusion trajectories (number of members in the ensemble) are defined in

the following way

xk(t) =
k+t∑
j=k

ξj, k = 1, 2, . . . , N − t+ 1. (3.30)

This corresponds to initiating a “window” (interval) of length t at the data point k,

and to aggregating all the data in the sequence ξj inside the window. This procedure

is shared by all the methods discussed in the following.

Second Moment (SM) Analysis

The SM analysis is based on evaluating the standard deviation of the diffusion process

σ(t) =
[
< {x(t)− x̄(t)}2 >

] 1
2 , (3.31)

where x̄(t) ≡< x(t) > and < . . . > denotes the average over the ensemble of realiza-

tions of diffusion trajectories. If the time series fluctuations have zero mean value,

the quantity x̄(t) vanishes and (3.31) can be written as

σ(t) =

[∫ ∞

−∞
x2p(x, t)dx

] 1
2

, (3.32)
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which is, in fact, the square-root of the second moment of the distribution.

Therefore the standard deviation of Eq. (3.31) is evaluated, a time domain satis-

fying the condition

σ(t) ∝ tδsm ⇔ ln [σ(t)] ∝ δsm ln(t). (3.33)

is searched. Then, in the time domain for which Eq.(3.33) is fulfilled, the standard

deviation “rescales” with the scaling parameter7 δsm. The fact that the standard

deviation satisfies the condition of Eq. (3.33) does not automatically imply, that

the scaling condition is satisfied. Due to the property of the Gaussian function, the

equivalence between the scaling condition of the standard deviation and that of the

pdf, is true in the case of BM or FBM. In the case of the Lévy processes introduced

in Sec. 2.7, instead, the standard deviation is not defined (being infinite), but the

pdf satisfies the scaling condition. Finally in the case of the diffusion relative to the

SVM, considered in the next Chapter, the scaling condition for the pdf is not satisfied

, while the standard deviation rescales.

Multiscaling (MS) Analysis

The MS analysis is a generalization of the SM analysis. In fact (3.31) is replaced by

the expression

σq(t) = [< |x(t)− x̄(t)|q >]
1
q , (3.34)

where q is a real number. It is evident that (3.31) is recovered from (3.34) by setting

q = 2. In case of fluctuations with zero mean value, Eq. (3.34) reads:

σq(t) =

[∫ ∞

−∞
|x|qp(x, t)dx

] 1
q

. (3.35)

If the scaling condition of (3.24) holds, it is possible to express (3.35) as

σq(t) = Bqt
δ, (3.36)

7Here for uniformity of notation with the following sections, the symbol H is not adopted to
indicate the scaling parameter of the standard deviation.
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where

Bq =

[∫ ∞

−∞
|y|qF (y)dy

] 1
q

. (3.37)

When the scaling condition applies: ζ (q) = δq, for all the values of q for which

the corresponding fractional standard deviation σq(t) is finite. In the case of FBM,

ad example,

σq(t) ∝ tδ ∀q ∈]− 1,+∞), (3.38)

while for a Lévy process, characterized by the index α (see Sec. 2.7)

σq(t) ∝ t
1
α ∀q ∈]− 1, α[. (3.39)

The way this analysis is applied to a generic time series, as for the SM analysis,

rests on looking for a time domain where the q-th fractional standard deviation σq(t)

rescales with exponent ζ(q), or equivalently

[σq(t)]
q ∝ tqζ(q) ⇔ ln [σq(t)]

q ∝ qζ(q) ln t. (3.40)

The quantity ln [σq(t)]
q as a function of the time t is plotted in a log-log scale and a

check is done to establish if a straight line results. In this case, the slope (δms) “can”

indicate the presence of a scaling conditon with parameter δ = δms. In fact if the

scaling condition of Eq. (3.24) sussists, then the MS analysis is expected to results

in a straight line, while the reverse is not necessarily true.

In the ideal case where divergent moments are involved, as pointed out earlier, the

analysis should be limited to values of q smaller than a given qmax. In practice, the

calculation could be performed for the entire range of values from q = −1 to q = ∞8,

since real data are of finite length and, therefore, have no divergent moments.

8In reality the behavior of σq(t) for very high value of q, q > 10 for example, cannot be trusted
because they are dominated by rare events and therefore subject to the problem of lack of statistics.
Therefore, only the fractional standard deviations relative to the range of value from q = −1 to
q ≈ 10 is used, when dealing with real data.
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Diffusion Entropy (DE) Analysis

The rationale behind the adoption of DE analysis is that, if the pdf of the diffusion

process satisfies (3.24), then, regardless of the pdf shape, the Shannon entropy of this

density satisfies the following relationship

S(t) = −
∫ ∞

−∞
p(x, t) ln [p(x, t)] dx = A+ δ ln(t), (3.41)

where A is a constant defined by

A = −
∫ ∞

−∞
F (y) ln [F (y)] dy, y =

x

tδ
. (3.42)

Therefore the scaling condition of Eq. (3.24) can be detected by searching for the

linear dependence of the entropy of Eq.(3.41) on a logarithmic time scale.

In practice, the numerical procedure necessary to evaluate the pdf requires that

the x-axis be divided into cells of a given size, that, in principle, might also depend on

the cell position on the x-axis. The criterion of assigning to each cell the same size is

adopted, but the size is allowed to be time-dependent, with the symbol ∆ (t) denoting

it at a time t. Finally, ∆ (t) must be chosen so as to lead to a fair approximation of

p (x, t), through the histogram relation

p (xj, t) ≈
Pj

∆ (t)
. (3.43)

Here p (xj, t) is the histogram at the value xj, the midpoint of the j-th cell, at time t

and Pj is the fraction of the total number of trajectories found in this cell at time t.

The rationale behind the choice of a time-dependent size for the cell has to do with

obtaining a good estimate of the pdf from the histogram. At early times, when the

trajectories are close together, a constant ∆ is adequate to estimate the ratio Pj/∆.

As the trajectories diffuse apart, however, either more trajectories are needed, or a

larger ∆ is needed, to provide a reasonable estimate for this ratio. To ensure that Eq.

( 3.43) is satisfied at any time, the standard deviation of the diffusion process, σ (t),

is evaluated and the cell size is chosen to be a fraction of the standard deviation,
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∆ (t) = εσ (t) where 0.1 ≤ ε ≤ 0.2. There is some sensitivity to the choice of ε, but in

the proper range of values in which Eq. (3.43) is satisfied, the diffusion entropy

S (t) = −
∫ ∞

−∞
p(x, t)ln [p(x, t)] dx ≈ −

∑
j

Pj lnPj + ln ∆ (t) (3.44)

is insensitive to the particular fraction of the standard deviation adopted.

As stated before for the MS analysis, the validity of Eq. (3.24) implies a linear

growth of the DE in a logarithmic time scale, but the vice versa is not guaranteed.

Therefore, it is convenient to denote the slope of the linear dependence on the loga-

rithm of time of the DE, with the symbol δde.

Direct Assessment Scaling (DAS)

The DAS analysis is based of the invariance under the “self-affine” transformation

described by Eqs. (3.26) and (3.27) for a pdf satisfying the condition of scaling given

by (3.24). In fact, given any two times t2 and t1, with t2 > t1, the pdf at time t2

coincides with the pdf at time t1 if the following procedure is adopted: the scale of

the variable x is “squeezed” by a factor R = [t1/t2]
δ, simultaneously the scale of the

distribution intensity is “enhanced” by the factor 1/R. The DAS analysis consists

exactly of this procedure of “squeezing” and “enhancing” aimed at establishing the

invariance of the pdf by a scaling transformation. Since this method uses directly the

meaning of scaling, a positive results for the DAS is a proof that the such condition

is satisfied.

The reader might wonder why even apply the three procedure described before

(SM, MS and DE analysis), since the DAS analysis is the only that can afford an

unambiguous result for detecting the scaling parameter. The reason is that the detec-

tion of the scaling parameter, if it exists, through the DAS analysis, would necessitate

many trials before its discovering. The adoption of the DAS becomes useful after the

DE and MS methods are applied since these method can give a “fast” clue on the

possible candidate as scaling parameter.
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CHAPTER 4

Complexity as a Balance between Order and Randomness

In this chapter I will discuss a model of “complexity” that has been adopted by

our research group as a result of mine and my colleagues efforts. In particular the

connections between this ”idea” of complexity and the Information complexity of

Sec. 3.2.2 will be explored. Moreover this model will be used to generate a diffusion

process, whose “complexity” is studied in terms of the notion of scaling of Sec. 3.3.

A complex system is one whose dynamics shows an interplay of determinism and

randomness. The best models to describe our notion are the, so called, intermittent

models like the Manneville map, where, as described in Sec. 4.1, a trajectory moving

in the phase space will experience, in an intermittent way, deterministic and random

motion. The balance between this two kinds of motion (the balance between order

and randomness) can be measured and can be tuned in one way or in the other,

changing a parameter. In Sec. 4.2 will be discussed how quantities like the natural

invariant measure and the Lyapunov exponent change as the balance between order

and randomness is changed. In Sec. 4.3, the Information complexity (see Sec. 3.2.2)

of the Manneville Map is evaluated. In particular, it will be shown how depending

from the balance between order and randomness, the quantity of information (see

Sec. 3.2.3) contained by a trajectory can show a linear increase, or a less than linear

increase. The latter property being connected to the absence of an invariant measure

and to a balance between order and randomness, in favor of the former: a condition

that the authors of [51] call “sporadic randomness”. Finally, in Sec. 4.4, a generalized

version of the Manneville map will be used to generate, dynamically, the SVM diffu-

sion process of Sec. 2.8.4. It will be demonstrated that, also the cases in which the

randomness is not sporadic (according to the definition of [51]) can lead to an anoma-

lous diffusion and characterized by a departure from the scaling condition. Finally,

the connection between this lack of scaling and the break down of the equivalence

between the trajectory and density approach will be, briefly, addressed.
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4.1 The Manneville Map as Prototype of Complexity
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x n
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z = 1.7
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d
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Figure 4.1: The Manneville (full line) map for z = 1.7.. The vertical dashed line
at d ≈ 0.59 divides the phase space in Laminar and Chaotic region. Shown in the
picture also the Identity transformation (oblique dashed line).

The Manneville Map [52] , see Fig. (4.1), reads

xn+1 = Φ(xn) Φ(x) = x+ xz mod 1, (4.1)

where z ≥ 1 is a real number. The phase space of the Manneville Map is the interval

[0, 1], the fixed points are 0 and 1 and both of them are repeller. The parameter d

satisfying

d+ dz = 1, (4.2)

divides the phase space in two parts (vertical dashed line of Fig. (4.1)). The “Laminar

46



region” the “Chaotic region”, [0, d[ and ]d, 1] respectively.

The motion of a trajectory1 in the phase space is an “intermittent” one. In fact

the trajectory will spend some time in the Laminar region of the phase space before

jumping in the Chaotic one and after some time going back to the Laminar region,

and so on. The rationale for the terms Laminar and Chaotic is the following. The

motion of a trajectory inside the Laminar region is a “slow” one, since the function

Φ(x) (z ≥ 1) of Eq. (4.1) is tangent to x in x = 0 and, therefore, the departure from

this repeller requires an elevated number of iterations. This process of slow departure

from the repeller is called “Laminar” motion. In the Chaotic region, instead, Φ(x)

is not tangent to x in x = 1 and the departure from the repeller is a “fast” one. As

result of this slow and fast motion a trajectory will spend more time in the Laminar

region than in the Chaotic one.

Let us, now, define in a more rigorous way the intermittent properties of the

Manneville map, described above. For this purpose, the following quantities are

introduced. The waiting time distribution (wtd) ψMM(n) in the Laminar region, that

is a statistical measure of how many iterations are needed by a trajectory to leave

this region of the phase space, and the local departure ζMML(n, x0) and ζMMC(n, x0)

of two nearby trajectories (as defined in Sec. 3.1.2) inside the Laminar region and

the Chaotic one, respectively2.

4.1.1 The Wtd Inside the Laminar Region

As stated before, after a trajectory leaves the Laminar region, it remains for few

steps in the Chaotic region before being injected back. The process of injection back

is uniform, regardless the value of the parameter z. In fact following a trajectory

for an extended period of time and recording only the position at which it reenters

the Laminar region, gives as result an uniform distribution of such positions. This

property is used to adopt a continuous time model with the same characteristics as

that of the Manneville map, for which the calculations are easy to carry on. This

1by trajectory is meant a sequence {xn} , n = 0, 1, 2, . . . of iterates of the map starting from the
initial condition x0. The parameter n can be regarded as a “time”.

2n is the number of iterations and x0 a given point inside the Laminar or the Chaotic region.
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model, hereby called the Continuous Time Intermittent Model (CTIM), describes the

evolution of the position x of an imaginary walker forced to move in the interval [0 : 1]

according to the following rules

dx

dt
= xz x < 1 (4.3)

x = random ∈]0 : 1[ x = 1, (4.4)

where z ≥ 1 as in the Manneville Map. The motion described by this couple of

equations is the following: given an initial condition x0 ∈]0 : 1[, the walker will move

using the prescription of Eq. (4.3) until reaching the position x = 1 after a time

t0. At this point it is injected back, instantaneously, to a position x1 ∈]0 : 1[ chosen

randomly and uniformly, and again it will move towards 1 using Eq. (4.3) and it will

reach it after a time t1, and so on. The properties of a trajectory created in this way

are “equivalent” to those of a trajectory of the Manneville Map. In fact Eq. (4.3) is

the continuous time approximation in the region xn close to zero of Eq. (4.1), and,

therefore, the motion according to its prescription is a good simulation of the motion

of a trajectory in the laminar region of the Manneville map. While the motion inside

the Chaotic region is reduced, in the CTIM model, to the process of instantaneous,

random and uniform, injection back to the interval ]0 : 1[.

The wtd ψCTIM(t) of the waiting times t0, t1, . . . can be evaluated. The connection

between ψCTIM(t) and ψMM(n) is the following: for big values of n, it can be regarded

as a continuous parameter3 and the asymptotic properties (t → ∞) of ψCTIM(t) are

the same as those of the wtd ψMM(n) as n→∞. This is so, because large values of

the waiting time t are obtained in the CTIM model when the injection back happens

to be very close to zero, that is, the region where Eq. (4.3) is a good approximation

of Eq. (4.1). To evaluate ψCTIM(t), Eq. (4.3) must be solved, first, with a given

initial condition x̃

x(t) =
[
x̃1−z + (1− z)t

] 1
1−z , (4.5)

3From now on, the symbol t will be adopted instead of n when considering very large values of
n.
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and using this solution is possible to evaluate the time t at which the trajectory,

starting from the point x̃, reaches 1, thereby obtaining

t =
1

(1− z)
×
(
1− x̃1−z

)
. (4.6)

Finally, using the above result and the fact that the relationship between the pdf

relative to the process of injection back p(x̃) and the wtd ψCTIM(t) is

ψCTIM(t) = p(x̃)

∣∣∣∣dx̃dt
∣∣∣∣ , (4.7)

with p(x̃) = 1 in our case, one reaches the conclusion that

ψCTIM(t) = [1 + (z − 1) t]
z

1−z . (4.8)

It is useful to introduce the parameters µ and T , defined as follows

µ =
z

z − 1
T =

1

(z − 1)
, (4.9)

in term of which ψCTIM(t) becomes

ψCTIM(t) =
(µ− 1)T µ−1

(T + t)µ . (4.10)

The parameters µ and T control two fundamental properties of the wtd. These are

the behavior of ψCTIM(t) for t→∞

ψMM(t) = ψCTIM(t) ∝ 1

tµ
t→∞, (4.11)

and the mean waiting time4,

< t >=

∫ +∞

0

t ψ(t) dt =
T

µ− 2
. (4.12)

4A generalization of the CTIM consists in using ẋ = kxz with k ≥ 1. This allows having different
mean times, keeping µ unchanged.
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In the case of z = 1 making properly the limit in all the equations used one gets

ψ(t) = e−t < t >= 1. (4.13)

Finally, regarding the Chaotic region it can be shown easily that wtd is, independently

from the value of the parameter z, an exponential since Eq.(4.1) can, for the purpose

of evaluating the wtd, be approximated linearly.

The following table shows how the change of the parameter of the Manneville map

z influences (Eqs. (4.9) and (4.11)) the asymptotic properties of the wtd ψMM(t).

z µ ψMM(t) as t→∞ mean time standard deviation
1 +∞ exp(−t) finite finite

]1, 1.5[ ] +∞, 3[ t−µ finite finite
[1.5, 2[ [3, 2[ t−µ finite infinite
[2,+∞[ [2, 1[ t−µ infinite infinite

Table 4.1: The asymptotic property, the mean value and the standard deviation of
the wtd ψMM(t) as a function of the parameter z.

The values of the parameter z = 1 (µ = +∞), z = 1.5 (µ = 3) and z = 2 (µ = 2)

are particular since they signal, respectively, the transition from an exponential wtd to

a power law wtd, the transition from finite to infinite fluctuations around the average

waiting time and the transition from a finite to an infinite mean waiting time.

Finally, let us discuss, briefly, the statistical characterization of the waiting times

in the Chaotic region. it can be shown easily that the wtd in the Chaotic region is,

independently from the value of the parameter z, an exponential since Eq.(4.1) can,

for the purpose of evaluating the wtd, be approximated linearly.

4.1.2 Departure of Two Nearby Trajectories Inside the Laminar and the Chaotic

Region

In this Section, the following quantities will be evaluated:

ζMML(n, x0) = lim
∆(0)→0

∆(n)

∆(0)
(4.14)
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ζMMC(n, x0) = lim
∆(0)→0

∆(n)

∆(0)
, (4.15)

where x0 and x0 +∆(0) are two starting points chosen inside either the Laminar (Eq.

(4.14)) or the Chaotic (Eq. (4.15)) region, and ∆(n) is the distance, after n iteration

of the map. Clearly n cannot be as large as wished because both trajectories must

be inside the same region5. In order to find ζMML(n, x0), the CTIM approximation

is used and the correspondent function ζCTIM(t) evaluated. Using Eq. (4.5) for the

two initial positions x0 and x0 + ∆(0), one gets

x(t) =
[
x1−z

0 + (1− z)t
] 1

1−z (4.16)

x(t) =
[
(x0 + ∆(0))1−z + (1− z)t

] 1
1−z (4.17)

and evaluating the difference between this two expression in the limit ∆(0) → 0, is

possible to obtain

ζCTIM(t) =
[
1− (z − 1)xz−1

0 t
] −z

z−1 . (4.18)

In the case z = 1 Eq. (4.18) becomes

ζCTIM(t) = et. (4.19)

The function ζCTIM(t) can be considerate a good approximation of ζMML(n, x0) when

x0 is close to zero. This power law behavior, a part from the case z = 1, of the

departure of two nearby trajectory is what characterize the motion of a trajectory

inside the Laminar region.

For the behavior of ζMMC(n, x0) instead, using the same argument adopted in the

previous section to derive the wtd in the Chaotic region, an exponential is obtained.

This is the reason why the interval ]d, 1] of the phase space is called the Chaotic

region.

5This exclude those parts of the phase space such that the application of the map result in a
jump from the Laminar to the Chaotic region and vice versa: the aim here is to give an idea of what
is meant by “slow” motion in the Laminar region and “fast” motion in the Chaotic region.
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4.1.3 The Balance Between Order and Randomness

It can be explained, now, why the Manneville map can be considered as a prototype of

complexity as balance of order and randomness. This is so because the phase space

of the map is divided in two parts: the Laminar region, characterized by a power

law departure (see Eq. 4.18) of nearby trajectories and therefore by “predictability”,

(in the sense that an error on the initial condition is propagated slowly) and the

Chaotic region characterized by an exponential departure of nearby trajectories and

therefore by “unpredictability”. In this sense order and randomness must be thought

the motion of trajectory in the phase space is “deterministic” until the trajectory

stays in the Laminar part of the phase space, with the excursion in the Chaotic part

being a short period of “random” motion.

The relative strength between this two kinds of motion is measured by the wtd

(ψMM(t)) in the laminar region, which measures for how much time the motion of a

trajectory is “deterministic”. This wtd characterizes, therefore, the balance between

order and randomness. Eqs. (4.8), (4.9) and (4.10) and the table 4.1 show how this

balance is controlled by the parameter z (µ). As z goes from 1 (µ = +∞) to +∞
(µ → 1), the systems move from a condition of total randomness to one of total

determinism. Finally, for the CTIM the words “determinism” and “randomness”

have a literal meaning.

4.2 Invariant Measure, Approach to Equilibrium and the Lyapunov Coefficient

This Section is dedicated to the evaluation of the invariant measure and the Lyapunov

coefficient of the Manneville map and how they change, when the parameter z is

changed. Moreover, it will be discussed, in the case where an invariant measure

exists, how fast the corresponding equilibrium density ρeq(x, t) is reached, starting

from a given initial density ρ(x, 0).
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4.2.1 Invariant Measure

In order to estimate the invariant measure of the Manneville map is convenient to use

the CTIM, discussed in the previous section, and the corresponding GLE (see Sec.

2.4.3)
∂

∂t
ρ(x, t) = − ∂

∂x
(xzρ(x, t)) + C(t). (4.20)

The first term of the r.h.s. of this equation corresponds to the deterministic mo-

tion described by Eq. (4.3) and the second term of the r.h.s., the function C(t),

corresponds to the process of random and uniform6 process of injection back in the

Laminar region described by Eq. (4.4). Using the normalization condition

1∫
0

ρ(x, t)dx = 1, (4.21)

one finds that C(t) is the the value of the density ρ(x, t) in x = 1, namely

C(t) = ρ(1, t). (4.22)

In order to get the expression for the equilibrium distribution, the l.h.s. of Eq. (4.20)

is set to 0 and t→ +∞, so that the following expression is derived

ρeq(x) =
C

xz−1
C = lim

t→+∞
C(t). (4.23)

For z < 2 ρeq(x) exists and can be normalized, obtaining

ρeq(x) =
2− z

xz−1
. (4.24)

The fact that there is no equilibrium distribution for z ≥ 2 is not surprising, since for

these values of the parameter the mean value of the wtd (Eq. (4.12)) is infinite (see

also table 4.1). In this case any initial distribution will tend to concentrate inside

6Note how the function C depends only from the time t and not from the position x in the
interval [0, 1].
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the Laminar region, but no equilibrium is reached. For the real Manneville map, in

the case z ∈ [1, 2[, Eq. (4.24) is valid7 only in the region where the approximation

leading to Eq. (4.3) is a good one. Outside this region the ρeq(x) of the Manneville

map can be considered constant.

4.2.2 Lyapunov Coefficient

Sec. 4.1.1 was limited to the study of the departure of two nearby trajectories inside

the Laminar or the Chaotic region. Hereby, this restriction is lifted so that the tra-

jectories are free to move in the entire phase space, in order to evaluate the Lyapunov

coefficient.

In the case, where an invariant measure exists (z ∈ [1, 2[), the Lyapunov coefficient

λ is different from zero [1, 51]. The value of λ can be estimated, using the Pesin

theorem (Eq. (3.12)) to write

λ(z) =

∫ t

0

ln(1 + zxz−1)ρeq(x)dx, (4.25)

with Eq. (4.24) for ρeq(x). Moreover, a fair approximation of the integral in the r.h.s.

of the above equation, is the following expression

λ = (z) (2− z) ln 2. (4.26)

In the case where no invariant measure exists, z > 2, the Lyapunov coefficient is null.

Fig. 4.2 shows the results of the numerical evaluation of the Lyapunov coefficient

(Eq. (3.11)), the results of the numerical integration of Eq. (4.25) and the function

λ(z) defined in Eq. (4.26). The last two quantities are practically indistinguishable,

while a small discrepancy is observed with numerical evaluation directly from the

map. This is due to the fact that the expression of Eq. (4.24) for the equilibrium

density is not the exact solution.

The behavior of the Lyapunov coefficient for different values of the parameter z,

7Numerically, a fair agreement is found till x ≤ 0.2 for all the value of z for which an equilibrium
distribution exists.
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Figure 4.2: The Lyapunov coefficient λ as a function of the parameter z. The dots
denotes the results of numerical evaluation, the full line and the dotted line, coinciding
in this scale, denote respectively the results of the numerical integration of Eq. (4.25)
and the function λ(z) of Eq. (4.26).
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can be understood in terms of the property of the wtd in the Laminar region. In fact

a trajectory, during its motion in the phase space, jumps back and forth between the

Laminar region (where the departure of wo nearby trajectory is a power law) and the

Chaotic region (where the departure of two nearby trajectory is exponential ). If the

mean waiting time in the Laminar region is finite, for time much large than this mean

value the overall motion of the trajectory can be considered as chaotic, therefore λ 6=).

Moreover as z → 2 the mean time tends to diverge, this is interpreted as a less intense

chaotic motion z → 2 7→ λ → 0. Finally when the threshold z = 2 is reached and

passed, with the mean waiting time in the Laminar region being infinite, the overall

motion ceases to be chaotic λ = 0. In this particular condition, it can be proved [51],

that the departure of two nearby trajectories become a stretched exponential.

4.2.3 Approach to Equilibrium

A formal solution of Eq. (4.20), can be obtained using the method of characteristics

(for details on the method, the interested reader can look at Ref. [53], which adopts

the same method to solve a problem quite similar to that here under study) and reads

ρ(x, t) =

∫ t

0

C(τ)

[(α(t− τ)− 1)xz−1]µ
dτ

+ ρ(
x

[(α(t)− 1)xz−1]T
, 0)× 1

[(α(t)− 1)xz−1]µ
, (4.27)

where

α(t) ≡ 1 + (1− z)t (4.28)

and the parameter T and µ are those defined in Eq. (4.9). While for the function

C(t) the following expression is obtained

C(t) =

∫ t

0

C(τ)

(α(t− τ))µ
dτ + ρ(

1

(α(t))T
, 0)

1

(α(t))µ
. (4.29)

Now, Eqs. (4.27) and (4.29) will be used to monitor the regression to the equilib-

rium distribution for the CTIM, (for the real Manneville map the qualitative behavior
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will be the same). Therefore, only the case where z ∈ [1, 2[ is considered and, for

simplicity, the initial condition is chosen to be the uniform distribution in the interval

]0, 1[. Finally, the following quantity is defined

λ(t, z) ≡
∫ t

0

ln(1 + zxz−1)ρ(x, t)dx. (4.30)

The quantity λ(t, z) is a sort of time dependent Lyapunov coefficient, in the sense

that: t → +∞ ⇒ λ(t, z) → λ(z). Clearly the asymptotic behavior of λ(t, z) is a

reflection of the asymptotic regression to equilibrium of the density ρ(x, t). Using the

simplification C(t) ≈ 2 − z when t is big enough (see Eqs. (4.23) and (4.24)) and

plugging Eq. (4.27) into Eq. (4.30), one obtains

λ(t, z) ≈
∫ 1

0

2− z

xz−1

[
1− ((α(t)− 1)xz−1)−β

]
× ln(1 + zxz−1) dx. (4.31)

Differentiating this equation with respect to time and evaluating the resulting integral

with the method of integration by parts, leads to (as t→ +∞)

λ(t, z) ≈ λ(z) + t−
1

z−1 . (4.32)

This asymptotic power law behavior is the same of that of the fraction of trajec-

tories that, still, has to leave the Laminar region for the first time. In fact the initial

distribution is the uniform one in the interval ]0, 1[, therefore there is an infinite num-

ber of trajectories all of them, initially, inside the Laminar region. In an infinitesimal

time dt a fraction dR of this trajectories will reach x = 1 to be injected back in a

random and uniform way. A simple relation connects these infinitesimal quantities:

dR

dt
=
dx

dt
. (4.33)

The interval dx containing the trajectories that reach x = 1 in a time dt, can be found

using Eq. (4.5). Solving Eq. (4.33) one finds, for the fraction R of trajectories that
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still have to leave the Laminar region (]0, 1[) once, the following expression:

R(t) =
1

[1 + (z − 1)t]
1

z−1

, (4.34)

Therefore the regression to equilibrium is driven by the process of first exit from the

Laminar region. This is due to the fact that the process of injection back in the

laminar region, is a random one, after a trajectory is injected back it has lost all

memory of its starting position. This last consideration is valid also in the case of a

generic initial density ρ(x, 0) different from the uniform one. What can be different

is the power law index characterizing the regression since it strongly depends on the

initial condition.

4.3 KS Entropy and Information Complexity of the Manneville Map

Using the theory of Sec. 3.1, Sec. 3.2 and the results of Sec. 4.2, is possible to

build the following table for the dependence of the KS entropy and the “quantity of

information” of a generic trajectory of the Manneville map:

z µ KS entropy I(ωn
x), {A}

[1, 2[ [+∞, 2[ ≈ z(2− z) ln 2 ∝ n
2 2 0 ∝ n

ln n

]2,+∞[ ]2, 1[ 0 ∝ n
1

z−1

Table 4.2: The KS entropy and the increase of “quantity of Information” I(ωn
x), {A}

contained in a trajectory starting at x for a given a partition {A}, as functions of the
parameter z (µ).

The KS entropy and “quantity of Information” successfully discriminate the values

of the parameter z for which an invariant measure exists, from those for which there

is no invariant distribution. The former are those for which a positive KS exists and

for which the information contained in a trajectory increase linearly with the length

of the trajectory itself. The latter are those characterized by vanishing KS entropy

and an increase of the information contained in a trajectory less than linear.
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Finally it must be stressed that using the CTIM, one can reach the same results,

looking at the function C(t) defined in Eq. (4.29). In fact, this function is the

evolution in time of the value of the density at x = 1 (Eq. (4.22)), and, in the

CTIM, when a trajectory reaches x = 1, it is randomly and uniformly injected back.

Therefore the function C(t) can be thought as a rate of random events per unit of

time and make sense to integrate this quantity to obtain the “number” of random

events up to a time t

K(t) =

t∫
0

C(t
′
)dt

′
. (4.35)

In the case of the existence of the invariant measure the rate C(t) is constant (C(t) =

2−z from Eqs. (4.23) and (4.24)) and K(t) increase linearly in time, while in the non

stationary case z > 2 the rate decrease in time (C(t) ∼ t−
z−2
z−1 see [1]) and K(t) has

an increase less than linear (K(t) ∼ t
1

z−1 ) and for z = 2, K(t) = t
ln t

. In other words

the function K(t) behaves exactly has the “quantity of information” I(ωn
x), {A}.

4.4 Dynamic Approach to the SVM Diffusion

In this Section a slightly improved version of the CTIM8 is used to create a dynamical

model for the SVM diffusion an the properties of such a diffusion, studied.

Following the discussion of Sec. 2.3, a dynamical system described by two vari-

ables: y and ξ is created. As a result of the coupling with y, the variable ξ fluctuates

and its fluctuations are collected by a new variable x, via Eq. (2.15). The variable

ξ represents, in the case of the SVM, the state of the velocity of the walker (moving

forward or backward) and therefore it is a dichotomous stochastic variable (without

any loss of generality one can set the only two possible values of ξ to be +1 or −1).

The final model that will be adopted, is a ”specular” version of the CTIM. This is

done, in order to reproduce the dichotomous property of ξ, namely, as in [56], with

the extension of the phase space of the CTIM to be the interval [0, 2]. In this phase

8A generalization of the CTIM and not of the Manneville Map is adopted, because the latest is
analytically solvable and as shown in the sections previous to this, it has the same property of the
Manneville map.
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space a trajectory will move according the following prescription: If the trajectory is

in the left (right) part [0, 1[ (]1, 2]) of the interval, then it moves forward (backward)

the point y = 1, with a dynamic described by Eq. (4.3). After reaching this point the

trajectory has equal probability of being, instantaneously, injected back uniformly in

the left or right part. Then, to the variable ξ is assigned a value +1 (−1) if at the time

t the trajectory x(t) is in the left (right) part of the phase space. Finally, in order

to create the a diffusion process, one need to consider infinitely many trajectories in

the phase space, and since a stationary process is desired, an ensemble of trajectories

distributed accordingly the equilibrium distribution of this model, to which we refer

as the Generalized CTIM (GCTIM), must be selected. This equilibrium distribution

exists only for the value of the parameter z, of Eq. (4.3), inside the interval [1, 2[.

In fact, as seen in Sec. 4.2.1, Eq. (4.24) defines the equilibrium distribution for the

CTIM and for, obvious reason, that one of the GCTIM in the left part of the phase

space ([0, 1[), while in the right part of the phase space (]1, 2]), due to the symmetry

of the model, the equilibrium distribution is the mirror image of that one of the left

part.

Let us, now, discuss, the property of the diffusion process created in this way.

At the beginning all the diffusing trajectories are positioned at the origin x = 0 and

all the corresponding trajectories in the phase space of the GCTIM are distributed

according to the equilibrium distribution. As the diffusion process starts, the diffusing

trajectories will split in two parts, the one moving to the right and the one moving

to the left, both of them with constant speed and, therefore, these peaks are called

ballistic. But, as soon as, this peaks take form they start loosing ”population”, this is

due to the fact that the corresponding trajectories in the phase space of the GCTIM

are undergoing the process of random injection back in one of the two Laminar regions.

In fact if a trajectory reaches y = 1 from the left (right), it has 50% of probability

of being injected back in the right (left) Laminar region, the corresponding diffusing

trajectory will abandon the left (right) ballistic peak to move backwards to x = 0.

Clearly after a diffusing trajectory leaves a ballistic peak will never be able to go back.

The overall picture of the diffusion process, created in this way, is that one of two

ballistic peaks moving one to the left and one to the right, with a decaying intensity
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and, as a result of this, an increase of population in between the peaks. Therefore it

is necessary, in order to characterize this kind of diffusion, to quantify the decay of

the population of the ballistic peaks and the shape of the pdf p(x, t), in between.

• Population of the ballistic peaks

This problem is, first, addressed in the simplified case where every time a trajec-

tory of GCTIM reach y = 1, it is injected back in the Laminar region opposite to

the one from which is coming. In term of the diffusing trajectory, these implies

that no coin tossing is involved to decided the new direction of motion, the new

direction is always the opposite of the previous one. This model is also know as

the Two State SVM, or the Alternate Sign (AS) case. With this simplification,

the population of the left or of right peak PAS(t) (they are the same due to the

symmetry of the problem) is just the fraction of the trajectories in the phase

space of the GCTIM, who still has to reach y = 1 from the left or from the right

Laminar region, namely

PAS(t) =

ỹ(t)∫
0

ρeq(y) dy, (4.36)

where ỹ(t) is the initial condition in the interval [0, 1[ corresponding to an arrival

time in y = 1 equal to t. Using, Eq. (4.5),

ỹ(t) = [1− (1− z)t]
1

1−z , (4.37)

and performing the integration in Eq. (4.36), with the help of Eq. (4.37) and

the relationship between z and µ given by Eq. (4.9), one finds

PAS(t) =

(
T

T + t

)µ−2

. (4.38)

This important result can be obtained using the ergodicity of the GCTIM.

Instead of performing an integral over the equilibrium distribution ρeq(y), a

single trajectory y(t) in the phase space of the GCTIM and the corresponding
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fluctuating function ξ(t) are considered. The ergodic condition tell us that the

trajectory y(t) will visit in its motion different region of the phase space with

a frequency proportional to the invariant natural measure of the region. The

function ξ(t) as, stated before, is the velocity of walker of the SVM and in the,

AS case, its evolution in time consists of alternating regions of opposite value

+1 and −1, which duration is dictated by the wtd in the laminar region ψ(t).

Thereby, to evaluate the integral of Eq. (4.36), the population of right (left)

ballistic peak one must select a window of length t, move it through all the

sequence of values of ξ and count the fraction of times this window is contained

in one single region of +1 (−1). This way of proceeding leads to

PAS(t) =
1

τ

+∞∫
t

(t
′ − t)ψ(t

′
)dt

′
, (4.39)

where < τ > is the mean value of ψ. The expression of Eq. (4.39) connects the

function PAS(t) with the wtd in the laminar Region ψ(t), and it can be used to

derive the peaks’ population P (t) in the case of our interest, where the walker

chooses its new direction of motion randomly, a case that will be addressed, from

now on, as the Random Sign case (RS). The RS case can always be expressed as

an AS case, if the wtd ψ(t) is replaced by “effective” wtd ψeff (t), which Laplace

transform ψ̃eff (s) is connected [36] with the Laplace transform of the original

wtd, through

ψ̃eff (s) =
ψ̃(s)

2− ψ̃(s)
. (4.40)

Therefore Eq. (4.39) can be used also in the RS case, if the “effective” wtd is

adopted. Finally, let us discuss, how in the RS case, the peaks’ population is

connected with the correlation function Φξ(t) of the variable ξ. The correlation

function can be evaluated using the equilibrium distribution or adopting one

62



single trajectory. In this last case Φξ(t) reads

Φξ(t) = lim
T→+∞

T∫
0

ξ(t
′
)ξ(t

′
+ t) dt

′
. (4.41)

This means that in order to evaluate the correlation function, one must move

a window ot size t along the sequence ξ(t). Such a procedure makes it possible

to write the r.h.s. of Eq. (4.41) as follows,

Φξ(t) = pSLR
++ + pSLR

−− + pDLR
++ + pDLR

−− − p+− − p−+, (4.42)

where ps1,s2 is the probability that, moving a window of size t across the sequence

ξ(t), the value of the variable ξ at the initial and the final position, of such a

window, are s1 and s2 respectively, while the superscript SLR (same laminar

region) indicates the fact that between the initial and the final position of the

moving window the same symbol is encountered. The superscriptDLR, instead,

indicates the fact that at least a change of symbol happened in between the

initial and final position. Due to the random choice of the new direction of

motion, adopted by the walker, in the RS case, pDLR
++ = pDLR

−− = p+− = p−+ and

pSLR
++ = pSLR

−− , and, using the same arguments that leads to Eq. (4.39), one finds

for the correlation function:

Φξ(t) = 2pSLR
++ =

1

τ

+∞∫
t

(t
′ − t)ψ(t

′
)dt

′
. (4.43)

Therefore, in the case of our interest (the RS case)

P (t) =
1

τ

+∞∫
t

(t
′ − t)ψeff (t

′
)dt

′
(4.44)

Φξ(t) =
1

τ

+∞∫
t

(t
′ − t)ψ(t

′
)dt

′
. (4.45)
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and finally, using Eq. (4.40) after, a tedious, calculation

P (t) = Φξ(t) t→ +∞. (4.46)

• p(x, t) in between the peaks.

What is the pdf, that is created, as time goes on, in between the two ballistic

peaks by the trajectories that abandoned the two peaks? Again, it is possible

to use the single trajectory approach and a window of size t moving across the

sequence ξ(t). Following the prescription of Eq. (2.16), a summation of all

the values of ξ founded inside a given window is made. If, inside, a window

the walker has decided N times which direction to choose (that is if the corre-

sponding trajectory in the phase space of the GCTIM has escaped the laminar

region N times), then sum Σ of ξ inside this window9 can be written has

Σ =
N∑

j=1

sjτj, (4.47)

where τj are the time duration of each laminar phase and sj can be +1 or −1

in a random fashion. Let us recall, that each of the times tj is a stochastic

variable, since the process of injection back in the laminar region is random,

and that all of them have the same pdf, the wtd in the Laminar region of Eq.

(4.10). Therefore the sum of Eq. (4.47), is the sum of iid stochastic variables

and the CLT (Sec. 2.2) or GCLT (Sec. 2.7) can be applied. Asymptotically

(t → +∞) the wtd of Eq. (4.10) is a power law t−µ, therefore the pdf of the

central part (the one in between the two ballistic peaks) of the SVM diffusion

becomes, at large times, a Gaussian if µ ∈]3,+∞] and a Lévy distribution of

index α = 1
µ−1

if µ ∈]2, 3[. Thereby, for the overall pdf p(x,t) in the limit of

9Eq. (4.47) is valid if the window considered is composed by exactly N laminar regions. Anyway,
the argument used to derive the asymptotic from for the pdf inside the ballistic peaks can be applied
also in the cases where Eq. (4.47) does not apply.
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large times, the following expression can be derived

p(x, t) = Θ(t− | x |)pLα(x, t) +
1

2
δ(| x | −t)Φξ(x, t), (4.48)

where Θ(·) denotes the Heaviside step function and pLα(x, t) is a Lévy distri-

bution of index α (the case α = 2 being the Gaussian distribution).

4.4.1 Scaling Properties, if Any, of the SVM Diffusion

In this section, the MS analysis is applied to the SVM diffusion process in order to see

if a scaling regime, for same value of the index µ, exists. Using Eqs. (3.34) and (3.35)

and the asymptotic expression for the pdf (p(x, t)), one finds, for the q-th fractional

standard deviation [σq(t)]
q, the following asymptotic expression

[σq(t)]
q = A tqδ +B tq−(µ−2), (4.49)

where A and B are two positive constants and δ = 1
α

is the scaling parameter of the

the pdf pLα(x, t). The first term of the r.h.s. of Eq. (4.49) represents the contribution

of the central part of the pdf, while the second term is the contribution due to the

ballistic peaks. Let us recall the reader that the MS analysis rests on looking for each

fractional standard deviation the scaling exponent ξ(q) such that

[σq(t)]
q ∝ tξ(q). (4.50)

Thus, according to the value of the parameter µ of the wtd in the Laminar region

(Eq. (4.10)), the following results apply:

• µ = +∞
In this case the wtd ψ is an exponential and also the peaks’s population decays

as an exponential (Eq. (4.46)). Thus the contribution of the ballistic peaks to

the q-th fractional standard deviation becomes irrelevant, with respect the one

due to the central part, for any given q. Moreover the asymptotic expression
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for the pdf of the central part is a Gaussian distribution. Thus,

ξ(q) = 0.5× q ∀q > −1 (4.51)

and the diffusion process satisfies the scaling condition with δ = 0.5.

• µ ∈ [3,+∞[

In this case the pdf in the central part tends, asymptotically, to a Gaussian

distribution, but the peaks’ population decay as a power law of index µ − 2,

thus the second term of the r.h.s. of Eq. (4.49) is not negligible, and

ξ(q) = 0.5× q − 1 < q < 2µ− 4 (4.52)

ξ(q) = q − (µ− 2) ∀q ≥ 2µ− 4 (4.53)

No scaling condition is, therefore, reached.

• µ ∈]2, 3[

In this case the pdf in the central part tends, asymptotically, to a Lévy distri-

bution and as in the previous case the contribution of the ballistics peaks to the

q-th fractional standard deviation cannot be neglected. The expression for the

exponents ξ(q) is:

ξ(q) =
1

µ− 1
− 1 < q < µ− 1 (4.54)

ξ(q) = q − (µ− 2) q > µ− 1, (4.55)

indicating the absence of the scaling condition. Fig. (4.3) shows the behavior of

the ξ(q) in this last case. The agreement with Eqs. (4.54) and (4.55) is perfect.

In conclusion one can say that a part from the case where the wtd in the Laminar

region is exponential, the scaling condition never applies. This is so, because, in

this case, the Laminar motion becomes a Chaotic motion and, in this sense, the

exponential case is equivalent to the absence of any order. As soon as order comes

into play, there is a departure from an exponential wtd, the wtd becomes, in fact, a
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Figure 4.3: The exponent ξ(q) as a function of q. Here µ = 2.5 The change of slope
happens at q = 1.5 as predicted by Eqs. (4.54) and (4.55).

67



power law. Even a small amount of order breaks down the scaling condition. This is

so because the amount of order is reflected by the way the population in the ballistic

peaks decay (Eq. 4.46). The ballistic peaks are responsible for a faster spreading than

the spreading taking place inside the central part. Thus, if they do not decay fast

enough (in an exponential fashion), they will dominate the high fractional moment,

making evident that some form of “order” is present. Finally, moving the balance

between order and randomness in favor of the first one, even the diffusion process

inside the ballistic peaks undergoes a transition, from ordinary (Gaussian pdf ) to

anomalous (Lévy pdf). This is the case where µ ∈]2, 3[.

The lack of scaling above discussed, is very peculiar, since it is stemming from a

stationary process (the initial distribution was the equilibrium distribution for GC-

TIM), and not from a non stationary one. Therefore, this diffusion process is said to

be characterized by “aging”, precisely for the lack of a scaling condition. in fact the

validity of the condition of Eq. (3.24), implies the impossibility of determining the

age of the diffusion process (for how much time the diffusion process has been taking

place), whereas in our case, using the peaks’ population (Eq. (4.44)), the distance

between the two peaks and the parameter b, obtained from the Fourier transform of

pLα(x, t) (Eq. (2.75)), it is possible to evaluate the “age” of the process.

4.4.2 The Conflict Between Trajectories and Densities

Let us now discuss, in some details the breakdown of the equivalence between the

trajectory and the density approach, anticipated in Sec. 2.4.5. First of all, one has

to write [56] the GLE relative to the GCTIM for the reduced density σ(x, t) relative

to the diffusing variable x.

∂

∂t
σ(x, t) =< ξ2 >

t∫
0

Φξ(t− t
′
)
∂2

∂x2
σ(x, t

′
) dt

′
, (4.56)

where < ξ2 > indicates the variance of the fluctuating variable ξ and Φξ(t) is its

correlation function ( Eq.(4.41)). If the wtd in the Laminar region ψ(t) is an ex-

ponential, then also Φξ(t) is an exponential and Eq. (4.56) is the “telegrapher’s”

68



equation, whose asymptotic solution is a Gaussian distribution. This solution is also

the solution of the trajectory approach, as indicated by the arguments of the previous

section and in particular by Eq. (4.51). In the power law case [57] the asymptotic

solution still satisfies the scaling condition of Eq. (3.24). The scaling parameter is

δ = 0.5 for µ ∈]3,+∞[ (since the asymptotic solution is a Gaussian distribution),

while it is δ = 4−µ
2

for µ ∈]2, 3[. Both these results are in contrast with the result of

the trajectory approach as indicated by Eqs. (4.52), (4.53), (4.54) and (4.55).

An explanation of this, surprising breakdown, can be addressed, comparing the

moments (the even moments, since the odd ones are null for the SVM diffusion)

of the distributions relative to the case of the density approach and to the case of

the trajectory approach. For the density it can be shown [57], that the following

expression applies

< xn(t) >dens∝
t∫

0

dtn

tn∫
0

dtn−1 . . .

t2∫
0

dt1Φξ(t2− t1)Φξ(t4− t3) . . .Φξ(tn− tn−1) (4.57)

while for the trajectories, using the same argument of Sec. 2.5 one finds

< xn(t) >traj∝
t∫

0

dtn

tn∫
0

dtn−1 . . .

t2∫
0

dt1 < ξ(t1)ξ(t2) . . . ξ(tn) >, (4.58)

where in both Eqs. (4.57) and (4.58) the times are ordinated tj+1 > tj, Φξ(tj − tj−1)

is the correlation function of the variable ξ and < ξ(t1)ξ(t2) . . . ξ(tn) > is the n

times correlation function of the variable ξ. The source of disagreement relies on the

conditions, under which

< ξ(t1)ξ(t2) . . . ξ(tn) >= Φξ(t2 − t1)Φξ(t4 − t3) . . .Φξ(tn − tn−1) (4.59)

is true. For n = 2 Eq. (4.59) is trivially true, regardless ot the expression of ψ(t). Let

us examine, for example, the case n = 4. Using the same arguments involved in the

derivation of Eq. (4.42), the condition of Eq. (4.59) can be written in the following
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way

p(12 ∩ 34) = p(12)p(34), (4.60)

where the p(a∩b) denotes the probability that the conditions a and b are both “true”

and the condition ij means that the moving a window of length tj − ti along the

sequence ξ(t), the initial and the final position of such a window are found in the

same laminar region (there is no decision made by the walker regarding which new

direction of motion to take). Eq. (4.60) can be generalized to the case of the 2n-th

order, as follows

p(12 ∩ 34 ∩ . . . ∩ (2n− 1)2n) = p(12)p(34) . . . p((2n− 1)2n). (4.61)

Therefore, for the case of the density the events ij are, always, considered as indepen-

dent, while for the trajectories these events are in principle not independent. This is

the “nature” of the discrepancy between trajectories and density.

In the case of an exponential wtd in the Laminar region (ψ(t)), Eqs. (4.59), (4.60)

and (4.61) are all satisfied [56]. Therefore, the moments of Eq. (4.57) are and Eq.

(4.58) are identical for all the values of n, thereby explaining the perfect agreement

in the exponential case between trajectory and density (in both case the asymptotic

pdf is a Gaussian distribution and the scaling condition is satisfied). In the case of

a power law wtd, instead Eqs. (4.59), (4.60) and (4.61) are satisfied only for n = 2,

and Eq. (4.57) and Eq. (4.58) will induce different moments as described in Eqs.

(4.52) and (4.53), or, Eqs. (4.54) and (4.55), depending from the value of the power

law index µ.
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CHAPTER 5

Complexity and Non-stationarity in Time Series

This chapter is dedicated to the discussion of the important issue of detecting com-

plexity in time series ( a sequence {ξj} j = 1, 2, . . . , N of seemingly fluctuating

numbers), in particular when the time series to be analyzed is not stationary. The

kind of non-stationarity examined is that relative to the presence of two kind of biases.

A “slow” change in the mean value of the fluctuations (“slow” in the sense that the

time scale of the change of the average is much larger then the time scale relative to

the fluctuations around the average itself) and a periodic change of the mean value.

In Sec. 5.1 and Sec. 5.2 is discussed, with the help of computer generated time series,

how the presence of this biases, can lead to misleading conclusion regarding the com-

plexity of the time series analyzed and, consequently, how to eliminate these effects

and being able of studying the complexity of the unbiased fluctuations. In the final

section (Sec. 5.3) of this chapter, the results of the previous two sections are applied

to data of great sociological interest, the teen birth data (the daily number of births,

in the whole state of Texas, due to a teenage mother in a span (from 1964 to 1999)

of 36 years), in order to discover the real complexity of this sociological process.
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5.1 Computer-Generated Data: Effects of a Slow Component

In this Section is addressed the problem of non stationary condition due to a slow

change of the average of the fluctuations. The methodology (DE,SM,MS and DAS

analysis), described in Sec. 3.4 will show, how the presence of the slow changing

bias has the effect of hiding the real complexity of the unbiased fluctuations. The

information about the complexity can be recovered, only after a proper detrending of

the bias.

Hereby, computer genrated time series are used to illustrate the effects of the bias

and how to eliminate the bias, as well. Adopting a discrete-time picture, so that the

time series to analyze reads as follows:

ξj = ST
j + ζj. (5.1)

The function ζj represents a stationary stochastic process (a noise). In particular

for the numerical simulations of this Section, ζj is selected to be a gaussian noise

(GN) of zero average and standard deviation σ = 12 (the theoretical results discussed

in the following sections do not depend from the choice of correlated or uncorrelated

noise). A diffusion process, generated by this variable alone, yields a scaling condition

with scaling parameter δ = 0.5 and no “complexity”. The function ST
j , instead, is

the one responsible for the slow change of the average of the fluctuating variable ζ,

therefore, from now on, it will be addressed as the slow component. The parameter

T indicates the time scale at which changes in the value of the function ST
j happen.

For our computer simulations, three different kind of slow components (see Fig. 5.1)

are used, all of them with zero mean: a linear drift with a small slope, SLT
j , a

slowly changing continuous function, SCT
j , and a step function, SST

j . The choice of

a standard deviation σ = 12 for the GN, makes the intensity of the noise component

comparable to the intensity of the slow components SCT
j and SST

j , and predominant

if compared to that of the SLT
j component. Moreover the length of all the time series

considered will be of 13149: that of the real data (teen birth data) analyzed in Sec.

5.3.
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Figure 5.1: The three different slow components adopted. From the top to the bottom
frame: step function, continuous smooth function and straight line with a small slope.
The initial value of the straight line is −2 and the final, at a time t = 13149, is 2.

5.1.1 Diffusion Entropy (DE) and Second Moment (SM) Analysis

The application of DE and the SM analysis to the computer-generated sequences of

Eq. (5.1) is shown in Figs. 5.2 and 5.3. In both figures the top, middle and bottom

frame refer to SST
j , SCT

j and SLT
j , respectively. Each frame shows both the results

relative to the whole time series and the results obtained when the two components

are considered separately.

As far as the slow components SST
j and SCT

j are considered, Fig. 5.2 shows that

at short times the DE generated by the time series of Eq. (5.1), is different from both

the DE of the slow component and the DE of the GN component. This is explained

by the fact that the slow component and GN have comparable intensities. Thus, it is
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evident that their joint action generates a faster spreading of the pdf and therefore a

faster entropy increase. At long times the joint action of the two components yields

the same effects as the slow component alone. This is due to the fact that the slow

component generates ballistic diffusion, which is faster than the simple BM diffusion

generated by the GN alone.

A different behavior appears with the slow component SLT
j . In this case, the

short-time behavior is dominated by the noise component. This dominance by the

noise occurs because the intensity of this component is smaller than the noise inten-

sity. However, even in this case the long-time behavior is dominated, as explained

earlier, by the slow component. This is a remarkable property, because in this case

a mere visual inspection of the time series is not sufficient to reveal the presence of

a bias, which is hidden by very large fluctuations. In any event, the adoption of the

DE method yields a large scaling exponent that one might erroneously attribute to

highly correlated fluctuations. This is an effect that must be taken into account when

analyzing real time series.

The SM analysis reveals properties similar to those emerging from the DE analysis,

the only relevant difference is that the convergence to the steady condition of the slow

component alone is much faster than in the corresponding case of the DE analysis.

It is worthwhile to discuss this result in detail. Let us define σtot(t) as the total

standard deviation, at a time t, of the diffusion process relative to the sum of the

slow component and the noise. Under the assumption that the individual components

of the signal of Eq. (5.1) are mutually independent, one writes

σ2
tot(t) = σ2

slow(t) + σ2
noise(t) = σ2

slow(t)

[
1 +

σ2
noise(t)

σ2
slow(t)

]
. (5.2)

The SM analysis rests on evaluating the increase with time of the logarithm of the

standard deviation. With some elementary algebra, it is possible to write Eq. (5.2)

as

log [σtot(t)] = log [σslow(t)] +
1

2
log

[
1 +

σ2
noise(t)

σ2
slow(t)

]
. (5.3)
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Figure 5.2: The diffusion entropy, S(t), as a function of time t, in a logarithmic scale.
Each frame shows three different curves, concerning noise, solid line, slow component
, dashed line, and sum of noise and slow component, dotted line. As far as the slow
component is concerned, from the top to the bottom frame are shown the results
concerning SST

J , SCT
J , and SLT

J .

When the noise standard deviation is smaller than the slow component standard devi-

ation, namely, σnoise(t) � σslow(t), using the Taylor series expansion of the logarithm.

one finds

log [σtot(t)] ≈ log [σslow(t)] +
1

2

σ2
noise(t)

σ2
slow(t)

. (5.4)

Therefore, when σnoise(t) � σslow(t) the leading contribution of the SM analysis is

the logarithm of the slow component standard deviation, and the next expansion

term is the square of the ratio of the noise standard deviation to the slow component

standard deviation. In the case of diffusion entropy the numerical results indicate
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Figure 5.3: The logarithm of the standard deviation, ln(σ(t)), as a function of time t,
in a logarithmic scale. Each frame contains a set of three curves, the full line referring
to the noise alone, the dashed line to the slow component alone and the dotted line
to the sum of slow component and noise. From the top to the bottom frame these
sets of curves refer to SST

J , SCT
J and SLT

J , respectively.

that a plausible expression to use is

Stot(t) = Sslow(t) +O

[
σnoise(t)

σslow(t)

]α

, (5.5)

with α < 2. In fact, the numerical results illustrated in the frames of Fig. 5.2

corresponding to SCT
j and SST

j reveal that the diffusion entropy is more sensitive to the

noise component than is the SM analysis. For a deeper understanding of the diffusion

created by the superposition of the noise and the slow component is necessary the

use of the multiscaling analysis.
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5.1.2 Multiscaling (MS) Analysis
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S
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1*log(x)+3.4

Figure 5.4: The diffusion entropy S(t) as a function of time t, in logarithmic scale.
The squares denote the time series corresponding only to the slow component SST

j and
the triangles denote the slow component SST

j plus noise. Two straight lines suggest
that in the time range from 10 to 100 the former and the latter curves correspond to
δ = 0.86 and δ = 1, respectively.

Fig. 5.4 shows that in the long-time limit, t > 100, the DE produced by the time

series resulting from the sum of noise and slow component SST
j coincides with the

DE generated by the slow component alone that increases with a slope equal to 1.

This asymptotic property has already been discussed. Our goal here is to shed light

on the convergence to the long-time scaling of the whole time series, with the help

of multiscaling analysis. To accomplish this goal, one must divide the time range,

explored by the DE analysis, into three time regions: times smaller than 10 (early
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stage of the diffusion process), times between 10 and 100 (middle stage of the diffusion

process) and times from 100 to 1000 (later stage of the diffusion process). Fig. 5.5

shows the results of the multiscaling analysis applied to the two time series in Fig.

5.4, for each of these three time regions.
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Figure 5.5: The exponent ξ(q) as a function of the parameter q. The squares and the
triangles denote the results of the MS analysis applied to the slow component alone
and to the the sum of the slow component and noise, respectively. The three frames
refer, from the top to the bottom to the short-time region, between 1 and 10, the
middle-time region, between 10 and 100, and the large-time scale, between 100 and
and 1000.

The three frames of Fig. 5.5, from bottom to top refer to the early, the middle and

the later stage of the diffusion process, respectively. The squares denote the numerical

results relative to the slow component alone, the triangles denote the numerical results

concerning the sum of slow component and noise and the dashed line corresponds to
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a straight line of slope 1, as expected for a diffusion process with a ballistic scaling.

Moving from the bottom to the top, one can notice that the agreement between

triangles and squares tend to increase. At the top, there is an almost complete

equivalence throughout the whole q-region explored. Moreover, in the early and

middle region the disagreement between triangles and squares tend to increase upon

increasing q. This means that the difference between the two cases becomes more

and more significant at larger and larger distances. The presence of noise tends to

slow down the distribution broadening.

To understand the influence of the GN on the slow component, one must notice

that the position of any of the diffusing trajectories can be written at time t as

x(t) = xslow(t) + xnoise(t), (5.6)

where the contributions to x(t) are separated into the slow component and noise,

respectively. Now, since the noise has a vanishing mean, there is 50% probability

that the absolute value of x(t) is increased by the presence of the noise and 50% that

it is decreased. When the absolute value of x(t) is raised to a power of q larger than 1,

the half with positive increment contribute to the q-th moment with a greater weight

than the other half. So, at any given time, the presence of the noise component

makes the q-th moments , with q > 1, larger than in the case without noise, namely,

the larger q, the larger the discrepancy. At long times, the moments of the two

distributions, those with and without noise, must coincide. As earlier pointed out,

this occurs, because the noise component has slower diffusion. Consequently, the

moments of the distribution with noise undergo a slower increase than the moments

of the distribution without noise.

5.1.3 Direct Assessment Scaling (DAS)

Finally, the DAS method is used to shed light on the apparently confusing situation

emerging from the use of DE, SM, and MS analysis. As seen in the earlier in this

Section, the DE suggests that δ = 0.86 might be a reasonable measure of scaling,

thereby suggesting the existence of pronounced cooperation in the system under study.

79



The MS method, on the contrary, suggests that the ballistic scaling, δ = 1, is a

more appropriate representation of the system complexity, at least in the long-time

regime. Using the DAS one discovers that neither of these two conditions is a proper

representation of the system dynamics. Previously, three distinct time regimes, short,

intermediate and long have been studied. Now, just the intermediate time regime,

ranging from 10 to 100 is explored. This choice is dictated by the fact that the

deviation from a straight line in the middle frame of Fig. 5.5 suggests that the DE

prediction of δ = 0.86 is questionable.

The DAS method, namely, the squeezing and enhancing technique, is applied

assuming for the scaling parameter δ, the values 1, 0.86 and 0.6. The corresponding

results are illustrated in the top, middle and bottom frames of Fig. 5.6, respectively.

The adoption of δ = 1 leaves the tail and the peak positions unchanged. However, the

peak intensity (in particular the intensity of the central peak) is not invariant. This

lack of invariance of the peaks means that δ = 1 is an acceptable scaling parameter for

the skeleton of the pdf and its tail, but not for the peak′s intensities. The adoption of

δ = 0.86, as suggested by the DE analysis, is satisfactory for both peak intensities and

position. However, this scaling property is limited to the central part of the histogram.

The middle frame of Fig. 5.6 shows that the choice of the scaling parameter indicated

by DE has difficulty with the side portions of the histogram. In fact, the peak at

x = −200 is annihilated by the adoption of the DAS method. Finally, last panel, the

scaling parameter δ = 0.6 turns out to be unsatisfactory everywhere.

In summary, the scaling parameter δ = 0.86 emerging from DE analysis depicted

in Fig. 5.4 does not reflect the true scaling of the computer-generated process. Fig

5.6 indicates that the scaling δ = 0.86, afforded by DE, refers to the central part

of the distribution, whereas the sides of the histogram are more satisfactorily repre-

sented by the scaling δ = 1. This anomalous scaling is not the effect of correlated

fluctuations, rather it is the consequence of the non-stationary effects produced by

the slow component superposed on the GN with our computer-generated data.
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Figure 5.6: The DAS analysis of the time series given by the sum of the slow compo-
nents SST

j plus the GN. The middle-time region, defined in Sec. 5.1.3 is considered.
On the axis of the ordinates, ρ (x), is the plot of the histograms produced by adopting
different squeezing and enhancing transformations, described in Sec. 3.4 , to assess
to what extent the various histograms coincide. The three frames refer, from top to
bottom, to DAS analysis with the scaling parameter, δ = 1, 0.86 and 0.6, respectively.
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5.1.4 Detrending the Slow Component

The results establish that a slow component can produce misleading effects that have

to be removed in order to detect the scaling properties of stationary fluctuations. In

order to do this the slow component must be removed. In the following two distinct

detrending methods, the “step smoothing” and “wavelet smoothing“.

Step Smoothing

The “step smoothing” procedure consists of dividing the time series into non-overlapping

patches of length equal to the characteristic time T : the average value inside each

patch is evaluated and subtracted from the data. In other words, this procedure

consists of approximating the slow component with a step function of the same kind

as that of the top frame of Fig.5.1. The details of the procedure are as follows. Start

from Eq. (5.1) and create the new variable Xj, the sum of the variable ζ inside the

j-th patch, namely,

Xj =

k<(j+1)T∑
k=jT

ξk j = 0, 1, 2, .., P, (5.7)

where P is the number of patches of length T in the time series. To make explicit the

contribution to Xj of the two components (the slow and the random) of the variable

ξj one can define

Rj =

k<(j+1)T∑
k=jT

ζk j = 0, 1, 2, ..., P (5.8)

Aj =

k<(j+1)T∑
k=jT

ST
k j = 0, 1, 2, ..., P (5.9)

and therefore

Xj = Aj +Rj. (5.10)
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If it happens that in any single patch the second term of the right-hand side of Eq.

(5.10) is negligible compared to the first term, this equation can be used to evaluate

the average of the slow component and consider it as a fair approximation to the slow

component inside each patch. Moreover, the noise component has zero mean. Thus,

the most probable value for Rj is zero, and the error associated with this prediction

is given by the standard deviation σRj
, therefore Rj = 0 ± σRj

. Then, using the

definition given by Eq.(5.8), the following approximation is applied

σRj
≈ σ0T

δsm , (5.11)

where σ0 is the standard deviation of the variable ζ and the exponent δsm is a number

between 0 and 1. If the scaling condition (Eq. (3.24)) applies, this exponent is the

scaling coefficient, that is, δsm = δ. If the scaling condition does not apply δsm can

represent the scaling parameter of the standard deviation. In the case where not even

the standard deviation rescales, this exponent represents its mean slope in a log-log

plot versus the time. Finally, with the help of Eq. (5.11) one can state that Xj ≈ Aj

when

σ0T
δsm � |aj|T ⇒ σ0 � |aj|T 1−δsm , (5.12)

where aj is the average amplitude of the slow component in the j-th patch, and, with

this equation holding true,

aj ≈
Xj

T
. (5.13)

Fig. 5.7 shows the results of this detrending procedure for the three time series

with the three slow components of Fig. 5.1, with characteristic time T = 365 and

with GN as the noise component. The slow components SST
j and SCT

j (top and

middle frame of Fig. 5.7) are fairly well reproduced, while the result for the slow

component SLT
j (bottom frame of Fig. 5.7) is poor. The reason for this behavior is

that the first two cases satisfy the condition of Eq. (5.12) while the last one does not.

In fact, in the last case the absolute value of the average, |aj|, relative to the j-th

patch is considerably smaller than σ0, the intensity of the GN.
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Figure 5.7: The step smoothing technique of Section 5.1.4 at work. The dashed line
indicates the results of the step smoothing procedure, and with the full line the slow
component to derive. From the top to the bottom frame is represented the case where
the slow component are SST

j ,SCT
j and ST T

j , respectively .
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Wavelet Smoothing

As suggested by the name, the “wavelet smoothing” is based on the adoption of

the wavelet transformation [58, 59]. Therefore, let us discuss briefly the detail of

this transformation before explaining the detrending procedure itself. The wavelet

transformation is close in spirit to the Fourier transformation, but has a significant

advantage. The Fourier transformation decomposes a time series into a superposition

of oscillating modes, each of which lasts forever. The wavelet transformation decom-

poses the time series into “notes” or wavelets [59], localized in time and in frequency.

Formally, the wavelet transform f̃(s, t) of the function f(u) is defined as follows

f̃(s, t) ≡
∫ +∞

−∞
du |s|−pψ∗(

u− t

s
)f(u), (5.14)

where the symbol ψ∗ denotes the complex conjugate of the wavelet ψ(u). The wavelet

ψ(u) is a filter function satisfying the particular condition, known as the “admissibility

condition” [58, 59]. The parameters s, t and p, are real numbers. Equation(5.14)

shows the advantages of the wavelet transformation in resolving local features of

the time series. In fact, the wavelet transformation rests on a convolution of the

signal with the wavelet rescaled, through the use of the parameter s, and centered on

u = t. Therefore the parameter s localizes the frequency domain and the parameter

t localizes the time domain.

In this case, the discrete version of the wavelet transformation, known as the

Maximum Overlap Discrete Wavelet Transform (MODWT) is used. The MODWT

gives birth to a decomposition of the signal in terms of “approximations” and “details”

relative to different time scales. Consider the integers N and K. The former is

the length of the series under study and K is the greatest number satisfying the

condition 2K < N . In this condition one can consider K different time scales, given by

21, 22, . . . , 2K . Then, starting from the smallest time scale, the wavelet transformation

is used to divide the original time series S into two components

S = A1 +D1. (5.15)
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The component A1 contains features having a characteristic time scale greater than

21, since a local average of the time series over all time scales inferior to 21 has been

performed. Therefore the component A1, often referred as “approximation”, is a “21-

smooth” function, in the sense that A1 can be considered a slow changing function

with respect the time scale 21. The component D1, on the other hand, contains

all the features of the time series with a characteristic time scale less than 21 and

therefore is called the “detail”. The partitioning procedure described above can then

applied to the approximation A1, splitting it into the functions A2 and D2. The latter

two functions represent, respectively, the features of the time series with time scales

greater than 22 and those features with a time scale less than 22, but greater than

21, that have already been removed. Clearly, at the k-th step of this procedure, with

k < K, the decomposition reads

S = Ak +Dk +Dk−1 + . . .+D1, (5.16)

with Ak representing the smooth time series referring to the time scale 2k and Dj,

with 1 < j < k, the detail of time series with the time scale located in the interval

[2k−1, 2k].

This decomposition of a time series through the wavelet transform, can be used in

order to detrend the slow component of Eq. (5.1). In fact, If T is the characteristic

time of the slow component, a good approximation is given by the j-th wavelet

approximation (the one relative to scale 2j), where j is such that 2j is as close as

possible to the time T (T = 365, so both j = 8 and j = 9 are good choices). This

is so, because the wavelet transformation, as explained above, acts as a filter on

the contributions corresponding to time scales smaller than the time scale examined.

Therefore the detrending procedure, referred by us as the wavelet smoothing, rests

on eliminating the component corresponding to the T -time scale from the data.

The wavelet smoothing is, now, applied to the three time series that have been

analyzed, in Fig. 5.7, by means of the step detrending procedure. It is made the

choice of using the Daubechies wavelet number 1 and 8, denoted by us as db1 and db8,
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respectively1 and the scale 29 = 512 is adopted. The results of the wavelet smoothing

are shown in Fig. 5.8 for the wavelet db1, and in Fig. 5.9 for the wavelet db8. In

both cases, the results are very similar to what obtained with the step procedure (the

two methods are qualitatively equivalent). This means that the wavelet method very

satisfactorily reproduces both the SST
j and SCT

j (top and middle frame) components,

but it turns out to be as inaccurate as the step detrending method, when applied to

the SLT
j component (bottom frame). Finally, the slow components obtained with

this method partially retain the feature of the particular kind of wavelet adopted

(the wavelet db1 is a square wave and this feature is clearly reproduced in the slow

components of Fig. 5.8) . This is a consequence of the convolution in the integral of

Eq. (5.14).

The Effects of the Detrending Procedure

It is, now, possible to check if after applying the detrending procedures, above de-

scribed, one can successfully recover the statistical properties of the noise component

of Eq. (5.1) (This is a crucial step of our approach to the search of the complexity of

a given process). In the case of the computer-generated time series analyzed in this

section, one expect, after the detrending procedure, to recover the scaling δ = 0.5 of

the diffusion generated by the GN. For brevity, the only results shown are those rela-

tive to the DE analysis on the detrended sequences obtained with the step smoothing,

Fig. 5.10, and wavelet smoothing, Fig. 5.11 (wavelet db1) and Fig. 5.12 (wavelet

db8) procedure, for all the three kind of slow components used so far, SST
j , SCT

j and

SLT
j . In all three cases the detrending procedure works very well, if the saturation

taking place at long times is ignored. The saturation effect is a consequence of the

detrending procedures adopted and has the, unwanted, property of limiting our abil-

ity of monitoring, for an extended period of time, the diffusion process generated by

the noise component of Eq. (5.1) alone.

Let us give an explanation of this effects for both the detrending procedures

1In literature many kind of functions as been used as wavelet ψ(u) in Eq. (5.14), according to
the needs of the authors. As far as the wavelet smoothing is involved, there is no particular reason
to chose a particular kind of wavelet, since the results are qualitatively the same.
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Figure 5.8: The wavelet smoothing technique of Section 5.1.4 with the wavelet db1,
at work. The dashed line indicates the results of the wavelet smoothing procedure,
and the full line the slow component to derive. From top to bottom, the frames refer
to the case where the slow component are SST

j , SCT
j and ST T

j , respectively.
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Figure 5.9: The wavelet smoothing technique of Section 5.1.4 with the wavelet db8,
at work. The dashed line indicates the results of the wavelet smoothing procedure,
and the full line the slow component to derive. From top to bottom, the frames refer
to the case where the slow component are SST

j , SCT
j and ST T

j , respectively.
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adopted. Starting with the step smoothing, it is possible to show that with the

help of Eq. (5.13), the detrended time series (variable ξ̃) is obtained from the original

time series according to the following prescription

ξ̃k = ξk −
∑

j

(
Πj

k

Xj

T

)
, (5.17)

where Πj
k is the characteristic function of the j-th patch. Using Eqs. (5.1) and (5.10),

it is possible to write

ξ̃k = ζk + ST
k −

∑
j

(
Πj

k

Aj

T

)
−
∑

j

(
Πj

k

Rj

T

)
. (5.18)

The reader must recall, that different diffusing trajectories are created using the

method of overlapping windows. According to this method, the position occupied at

time t by the m-th trajectory, denoted by Γξ̃(m, t), is given by

Γξ̃(m, t) =
k=m+t−1∑

k=m

ξ̃k. (5.19)

The right-hand side of Eq. (5.18) is the sum of four contributions, and, correspond-

ingly, the right-hand side of Eq. (5.19) can be expressed as the sum of four terms.

These terms are, with, obvious notations, Γζ(m, t), ΓST (m, t), ΓA(m, t) and ΓR(m, t).

Therefore one can write, for Γξ̃(m, t), the following expression

Γξ̃(m, t) = Γζ(m, t) + ΓST (m, t)− ΓA(m, t)− ΓR(m, t). (5.20)

At this point it is possible to explain the reason for the saturation effect. In fact,

when the index m denotes the beginning of a patch and t = T , the function Γξ̃(m, t),

being the sum of ξ̃ within the patch, vanishes (see the definition of Rj and Aj in Eq.

(5.8)). For values of m denoting a position different from the first site of a patch, the

quantity Γξ̃(m, t) can assume non-vanishing values. However, the above mentioned

constraint establishes an upper bound on Γξ̃(m, t), thereby reducing the spreading of
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diffusion process. Fig. 5.10 shows that the reduction of the diffusion process is already

significant at times smaller than T . Consequently, the step detrending procedure

successfully detrends for only a limited range of times, which can be estimated to be

t < T
3
.
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Figure 5.10: The diffusion entropy, S(t), as a function of time t, in a logarithmic
time scale. The triangles denote the results of the DE analysis applied to the series
produced only by the noise component. The dashed line refers to the DE applied
to the sum of noise and slow component. The dotted line denotes the results of the
detrending procedure. From top to bottom the three frames refer SST

j , SCT
j and

SLT
j , respectively. The detrending method used is the step smoothing procedure

The wavelet method yields saturation effects for similar reasons. In fact, using the

wavelet method the j-th approximation (2j >∼ T ) is detrended, and this approximation

is obtained through a filtering process averaging all the components with a time scale

smaller than 2j. Therefore, this procedure is similar to the step smoothing, and the
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Figure 5.11: The diffusion entropy, S(t), as a function of time t, in a logarithmic
time scale. The triangles denote the results of the DE analysis applied to the series
produced only by the noise component. The dashed line refers to the DE applied
to the sum of noise and slow component. The dotted line denotes the results of the
detrending procedure. From top to bottom the three frames refer SST

j , SCT
j and

SLT
j , respectively. The detrending method used rests on the wavelet db1.
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Figure 5.12: The diffusion entropy, S(t), as a function of time t, in a logarithmic
time scale. The triangles denote the results of the DE analysis applied to the series
produced only by the noise component. The dashed line refers to the DE applied
to the sum of noise and slow component. The dotted line denotes the results of the
detrending procedure. From top to bottom the three frames refer SST

j , SCT
j and

SLT
j , respectively. The detrending method used rests on the wavelet db8.
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ensuing saturation effects have the same origin.

Finally, it is noteworthy to point out that the step smoothing is slightly more

effective than the wavelet db8 smoothing in the case of the step component SST
j ,

while in the case of the continuous component SCT
j it is the other way around. In

fact, the nature of the two signals SST
j and SCT

j is such that the step smoothing

is naturally the best “fit” for SST
j and the db8 wavelet smoothing is naturally the

best one for SCT
j . Therefore, in the case of the step smoothing acting on SCT

j ,

the detrending process is not so successfull and its effect occur before saturation,

becoming thus visible. The same argument applies to the db8 wavelet smoothing

acting on SST
j , thereby explaining why the db1 wavelet smoothing does not produce

excellent results when applied to both SST
j and SCT

j (top and middle frame of Fig.

5.12). Finally, in the case of the SLT
j all the detrending procedures do not work

effectively, given the fact that in this case the noise intensity is much greater than

the slow-component intensity.

5.2 Computer-Generated Data: Effects of a Periodic Component

The task of this section is similar to the of the previous one, but, now, a periodic bias

is considered. How this bias affects the detection of the complexity of the unbiased

fluctuations has been discussed extensively in [3, 60], here the focus will be in how to

detrend the periodic (not present [3, 60]) bias. Following the scheme adopted in the

previous section, a time series of the kind is considered

ξj = ΦT
j + ζj, (5.21)

where ΦT
j is a periodic function, of period T , denoted as the periodic component,

satisfying the relation
k<(j+1)T∑

k=j

Φk = 0 ∀j. (5.22)

and ζ a stationary stochastic process. For the numerical simulation ζ is selected to

be a GN, while Φj is chosen to be a sine wave (see Fig. 5.13 with a period T = 365:
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to simulate, for example, an annual periodicity as that found in the teen birth data

of Sec. 5.3.

As for the bias studied in the previous section, the presence of the seasonal com-

ponent has the effect of “masking” the scaling properties of the diffusion process

stemming from the variable ζ, by producing additional spreading. However, due to

the fact that the external bias is periodic, the additional spreading undergoes regres-

sion to the initial condition at times that are an integer multiple of the period T .

This yields an alternating sequence of increasing and decreasing spreading phases.

For this reason the diffusion effect caused by the periodic component has been called

the “accordion” effect.

For a convenient explanation of the “accordion” effect, let us study the variable

Γξ(j, t). As in the previous section, the quantity t is the length of the window (or

diffusion time) and j is the initial position of the sliding window. In the present case

Γξ(j, t) reads

Γξ(j, t) =

k=j+t−1∑
k=j

(
ΦT

k + ζk
)

= ΓΦT (j, t) + Γζ(j, t). (5.23)

By noticing that

t = nT + τ, (5.24)

with n being a given integer depending on t and τ, a real number between 0 and T ,

and by using (5.22), one obtains

Γξ(j, t) = ΓΦT (j + nT, j + nT + τ) + Γζ(j, t). (5.25)

Now, with t and therefore τ fixed, as the index j runs along the sequence the function

ΓΦT (j + nT, j + nT + τ) repeats itself every T steps and inside this time period the

function assumes a maximum and a minimum value. The difference between these two

extremes is a measure of the spreading due to the seasonal component. It is evident

that if τ = 0, that is, if t is a multiple of the period T , the “seasonal” spreading

is zero. With τ increasing, the spreading increases, but then it has, eventually, to

decrease since for τ = T the initial condition must be recovered. Using (5.23) or
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(5.25) it is evident that if one wants to know the scaling property of the diffusion

relative to the variable ζ alone, has to look at the diffusion relative to the variable ξ

only at times t that are multiples of the period T , since for these times, the following

identity is satisfied

Γξ(j, t) = Γζ(j, t) (5.26)

throughout the whole sequence. So, in principle, there would be no reason to process

the data in any way in order to retrieve the desired information on the variable

ζ. One might, in fact, limit him/herself to studying the behavior of the DE or

SM at times that are a multiple of T . However, when dealing with real data, the

limitation on the number of data points available and the excessive magnitude of T

limits the accuracy of the observation of times that are multiples of the time period.

For example if the number of data is 13149 and T = 365 (the case study in the

sequel), then the saturation effect, due to lack of statistics, affects the DE or SM

already at times smaller than 2T . Therefore if one wants insight into the properties

of the diffusion process of the noise component, before any saturation takes place, the

periodic component must be detrended from the time series.

Let us proceed with the detrending in this case. Consider a time series whose

length is NT , N being an integer. In other words, the sequence is assumed to have

a length which is a multiple of the time period T . Now, one defines

Σξ(j) =
N−1∑
m=0

ξj+mT = NΦj +
N−1∑
m=0

ζj+mT (5.27)

for all the values of j ∈ [0, T ], or, in a more concise notation,

Σξ(j) = NΦj + Σζ(j) j ∈ [0, T ] . (5.28)

Eq. (5.28) can be used to evaluate the periodic component Φj if Σζ(j) � NΦj. Using

the same argument as that adopted earlier for the detrending of the slow component,

it can be establish the condition for operating successfully the detrending procedure

96



is

σ0N
δ � NΦT

j ⇔ σ0 � ΦT
j N

1−δ, (5.29)

that is equivalent to

ΦT
j ≈

Σξ(j)

N
. (5.30)

There is a significant difference with respect to the case of the slow changing bias

addressed before. In this case the detrended data do not show any saturation effect.

In fact

ξ̃j = ζj −
1

N

N−1∑
m=0

ζj+mT , (5.31)

does not vanish if the sum of ξ̃j is carried out over a patch.

Fig. 5.13 illustrates the results of a test done with a periodic function and a

computer-generated sequence having GN. The first frame of Fig. 5.13 shows the peri-

odic component used and the one resulting from the detrending procedure described

above, the agreement is good. The second frame depicts the diffusion entropy applied

to the sequence with both noise and periodic component, to the sequence with only

the noise component and to the sequence derived from the detrending procedure.

The agreement between the DE applied to the original noise and the DE applied to

the detrended sequence is impressive, and, as expected, there is no indication of a

saturation effect.

5.3 The Teen Birth Data

This section is dedicated to show the approach illustrated in the earlier sections in

action on the teen birth phenomenon. The daily number of births to teenager mothers

in the whole state of Texas from 1964 to 1999 (the teen birth data) is analyzed . These

data are illustrated in Fig. 5.14. A closer look to the data reveals immediately an

annual periodicity. It has been pointed out [61] that this kind of periodicity is related

to the natural annual cycle of a woman’s fertility. Therefore the power spectrum of

the teen birth data is evaluated. The results are illustrated in Fig.5.15. In addition
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Figure 5.13: Top frame: The periodic component as a function of the linear time.
The full lines denotes the real component and the squares the results of a procedure
based on the use of Eq.(5.30). Bottom frame: diffusion entropy S(t) as a function
of time t in a logarithmic time scale. The triangles denotes the result of the DE
analysis applied to the noise component alone. The full line illustrates the result
of the DE analysis applied to the time series stemming from the sum of noise and
periodic component. The dashed line refers to the the results of the DE applied to
the signal resulting from the detrending procedure.
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Figure 5.14: The daily number of births from a teenager mother in the whole state
of Texas, from the 1st January 1964 (j = 1) to the 31 st December 1999 (j = 13149).
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to the expected annual periodicity, there are also exist a six month, a one week and

a half-week component. The weekly periodicity can be related to the practice of

delaying or anticipating the birth in order to have less births on the weekend. It is

important to point out that in addition to seasonal cycles one has to consider another

important feature of the teen birth data. This is the fact that the annual average of

births changes, sensibly, during the 36 year span considered. For example, starting

from the year 1989, j > 9000 in Fig. 5.14, there is a steady increase. On the basis

of these remarks, a reasonable attempt at describing the teen birth data is based on

the assumption that the numbers of births per day {ξj} are given by the following

expression:

ξj = Φyear
j + Φweek

j + Sj + S + ζj. (5.32)

where S is the mean value of the data, Φyear
j and Φweek

j are respectively an annual

and a weekly periodic component satisfying the condition of zero mean, Sj is a slow

changin bias and ζjis an uncorrelated random variable with zero mean and fixed

variance σζ . The assumption that all the components of the right-hand side of Eq.

(5.32) are independent of one another is made and, therefore, following Sec. 5.1, the

function Sj is called the ”slow component”.

The main goal of the following sections, is to verify the validity of (5.32) as a

model of the teen birth phenomenon and to detect the correlation properties of the

fluctuation ζ.

5.3.1 Processing the Teen Birth Data: Detrending the Slow Component

In the previous sections of this chapter have been studied cases of time series where

to a stationary noise is added, either a slow component (Eq. (5.1) of Sec. 5.1),

either a periodic one (Eq. (5.21) of Sec. 5.2) separately , and it has been discussed

how to remove these influences. In the teen birth data, however, presents a more

complicated situation, since both biases are superposed on the random fluctuations

in the number of births, and in addition there are two periodic components rather

than one. Therefore some care must be used in applying the detrending procedures

discussed in Sec. 5.1 and Sec. 5.2. Let us consider, first, the case of a time series
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were, in addition to a slow component, a periodic is present. In this case the two

detrending procedures do not commute: detrending the periodic component prior to

the detrending of the slow component Sj, would lead to a distorted periodic bias,

while the opposite is possible if the function Sj is constant for an interval of time

equal, at least, to the time period of the periodic component. With two or more

periodic components in the data, the function Sj has to be assumed constant for a

time interval equal to the smallest common multiple of the time periods of the periodic

components. The teen birth data show a yearly and a weekly periodicity added to the

slow component Sj and considering that a year is equivalent to “almost” 52 weeks,

one can take the length of a year as the smallest common multiple of the two periods

of these two periodic components. Therefore the scale 29 is adopted for the wavelet

detrending procedure (here, it is made use of the Daubechies wavelet number 8 (db8))

and the characteristic time T = 365 for the step detrending procedure. In this last

case, using the fact that both Φyear
j and Φweek

j have a zero mean, one can write for

the sum of the variable ξ inside the j-th patch of length 365 (366 in a the leap year)

Xj =

k=bj+365∑
k=bj

ξk ≈
k=bj+365∑

k=bj

ζk +

k=bj+365∑
k=bj

Sk, (5.33)

where bj is the index of the time series relative to the first January of the j-th (starting

from the year 1964) year. Eq. (5.33) allows an approximation of the slow compo-

nent Sj with a step function of step length 365 (366 in a the leap year). Fig. 5.16

shows both the slow components obtained with the wavelet smoothing and the step

smoothing. It is easy see that these are the SST
j and SCT

j of Fig . 5.1.

Before proceeding further, an important question to address is whether the com-

ponent Sj can really be considered slow with respect the time scale T = 365, when

the step smoothing procedure is adopted, or the time scale T = 29 = 512, when

the wavelet smoothing procedure is adopted. Sj has to be considered fairly smooth

because Sj represent a sort of daily average number of the births. This numbers

depend on the daily total teen population, which, in turns, depends on the number

of births occurring from 13 to 19 years earlier, and so on. Moreover one has to take
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Figure 5.16: The slow component Sj as a function of time j. The full and dashed
lines denote the result produced by the step smoothing of Section 5.1.4 and by the
wavelet smoothing of Section 5.1.4, with wavelet db8, respectively.
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into account social factors such as immigration or change of policy. therefore, it is

plausible to assume the time scale relative to the interplay of all these factors to be

of the order of one year.

To strengthen these argument a study the annual moving average is made. The

annual moving average is defined by

Γ(j, 365) ≡ 1

365

k=j+365−1∑
k=j

ξk ≈
1

365

k=j+365−1∑
k=j

Sk +
1

365

k=j+365−1∑
k=j

ζk, (5.34)

where j goes from 1 to (13149 − 365 + 1). Using the fact that ζ is a noise whose

average intensity is null, one can write, following the arguments exposed in Sec. 5.1.4,

Γ(j, 365) =
1

365

k=j+365−1∑
k=j

Sk. (5.35)

with the condition that

σj × 365δsm−1 � 1

365

k=j+365−1∑
k=j

Sk. (5.36)

The expression Eq. (5.35) for the annual moving average Γ(j, 365) affords interesting,

though indirect, information on the behavior of function Sj. The top frame of Fig.

5.17 shows the function Γ(j, 365). It is evident that Γ(j, 365) is not dominated by

the noise (it is a smooth function). Therefore the approximation leading to Eq. 5.35

is a good one. In the bottom frame of Fig. 5.17 the annual moving average of the

data is compared with the corresponding quantities provided by the slow components

determined with both the step and the wavelet smoothing. Both methods yield

results in good agreement with the the annual moving average applied to the real

data. Therefore, it is plausible to think that this slow component is a real property

of the data that ought to be detrended in order to determine the genuine complexity

of the time series.
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Figure 5.17: The annual moving average of Eq.(5.34). The full line indicate the result
of the numerical analysis applied to the data, as they are. The dashed line denotes
the the annual moving average applied to the slow component determined by the step
smoothing method. The dotted line denotes the the annual moving average applied
to the slow component determined by the wavelet smoothing.
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5.3.2 Processing the Teen Birth Data: Detrending the Periodic Components

After detrending the slow component one can proceed to detrending the two periodic

components. As in the case of the arguments yielding Eqs. (5.33) and (5.34), the

fact that one year is almost a multiple of one week simplifies our efforts. In fact when

Eq. (5.27) is applied to detrend the year periodicity, virtually no weekly contribution

enters into play. Therefore the yearly is detrended first and the weekly component

after. The top frame of Fig. 5.18 shows the evaluated yearly periodicity. It can

noticed a sudden drop in the number of births in the correspondence of the 4th of

July (= 186), the 1st of September (j = 245) and the 24th and 25th of December

(j = 359 and j = 360). Moreover there is no appreciable difference between the

results of the two different recipes, used to detrend the slow component, in both

the top and the bottom frame. The bottom frame shows the power spectrum after

detrending the yearly component, with only the weekly periodicity remaining.

Now, the weekly periodicity can be detrended. Fig. 5.19 illustrates the corre-

sponding results. The top frame shows the evaluated weekly periodicity, with the

number 1 representing Monday, 2 Tuesday, and so on. As expected, on the weekend

there is a significant drop in the number of births. The bottom frame illustrates the

power spectrum of the detrended signal. It is surprising that the power spectrum still

shows a sign of a week component. The reason for this unexpected effect is that the

result is based on the implicit assumption that the weekly component is the same

throughout all the years: an incorrect assumption. Therefore it is made an attempt

to evaluate the weekly component year by year, to see if, in so doing no sign of weekly

periodicity on the power spectrum is left. Fig (5.20) shows that the conjecture of a

weekly periodicity changing during the years is correct. In fact the bottom frame

shows no signs of weekly periodicity. Note that the ordinate scale is smaller than the

scale of the previous figures by a factor of 10. The top frame shows the intensity of the

weekly component through the years. This intensity increases and this phenomenon

becomes especially significant in the last ten years.
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j of the teen birth data. The
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Figure 5.20: Effect of detrending weekly periodicity year by year. The three top
frames illustrate how the weekly periodicity changes over the years, from 1964 to
1999. For each year seven values are reported corresponding to the seven days of
the week, from Monday to Sunday. The squares and the full line denote the results
stemming from the step detrending method and from the wavelet decomposition,
respectively. The bottom frame is the power spectrum of the detrended data.
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5.3.3 Processing the Teen Birth Data: The Fluctuations

Finally, the diffusion entropy analysis (DEA) is applied to the data with all possible

forms of bias, seasonal and demographic, detrended. Fig.5.21 shows that the first

ten days are characterized by δde = 0.58 and that immediately before the saturation

regime, caused by the detrending procedure, in the time region between 10 and 80,

an even larger value of scaling index, δde = 0.67, emerges. Do these parameters

correspond to a proper realization of the scaling definition of Eq. (3.24)? To answer

this question the DAS and the MS are applied to both time regions. Figs 5.22, 5.23

and 5.24 show the DAS in the time region of the first ten days, with δde = 0.5,

δde = 0.57 and δde = 0.67, respectively. The same time region is analyzed in Fig

5.25 by means of the MS method. These figures indicate clearly that δde = 0.57 can

be considered a genuine scaling parameter. The top frame of Fig. (5.26) shows the

results of the DAS in the region where δde = 0.67. The result of the DAS applied to

the time series stemming from the step detrending procedure is virtually equivalent

to that of the wavelet procedure. For simplicity in Fig(5.26) only the case of the

wavelet detrending procedure is reported. The result is that δde does not correspond

to a satisfactory realization of Eq. (3.24).

On the basis of these results, one would be tempted to conclude that the scaling

δ = 0.57 is genuine and δ = 0.67 is not. However, to be as rigorous as possible, one

has to discuss, first, the intriguing issue of the difference between real and genuine

scaling. By real is meant a scaling corresponding to a realization of Eq. (3.24). By

genuine is meant a scaling reflecting the cooperative properties of the process under

study. It cannot be ruled out the possibility that the scaling δ = 0.67 is real, but not

genuine. In fact, since the length of the time series of the teen birth data is 13149,

several artificial sequences are generated, with the same length, with the algorithmic

prescription that Ref. [62] proposes to build up fractional Brownian motion, with

H = 0.67. This corresponds to a real scaling with δ = 0.67. Then the DAS is applied

to the same time region where the real data yield δde = 0.67. The results are reported

in the bottom frame of Fig(5.26) and should be compared to top frame, illustrating

the analysis of the real data. The results of the artificial sequences as ”good” or as
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”bad” as those of the real data. On the basis of this, one cannot dismiss the possibility

that δ = 0.67 is essentially real scaling.

Would the scaling also be genuine? Here there are two different eventualities. The

first is that the genuine fluctuations remaining after detrending are a generalization

of the dynamic model proposed years ago in Ref. [63]. This model, the Copying Mis-

take Map (CMM), assumes that the time series is generated by a composite of two

mechanisms. The first, adopted with larger probability, is a prescription generating

uncorrelated fluctuations, and the second, applying with a much smaller probabil-

ity, is a prescription generating correlated fluctuations, and consequently a diffusion

process faster than the uncorrelated component. In the large time scale regime the

second component dominates the diffusion process, thereby producing a crossover

from normal to anomalous scaling. If one replaces the random component with fluc-

tuations characterized by anomalous scaling, weaker than the second component, a

crossover from a scaling larger than the ordinary to an even larger scaling is expected.

This might be the model behind the results illustrated in Fig. 5.21. In this case the

scaling δ = 0.67 would be genuine as well as real. However, one cannot rule out the

possibility that the effect is not genuine. This effect might be due to the presence of

a residual contribution of the slow component that would generate in the long-time

regime a diffusion faster than that produced by the correlation stemming from the

genuine complexity of the process under study, in the same way as the generalized

CMM model would do. However, in this case the effect might be real or not, but it

would not be genuine.

With all these caveats in mind, the following conclusion can be reached. The

scaling δ = 0.57 is both real and genuine, while a definite conclusion about the

scaling δ = 0.67 can not be reached.
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Figure 5.21: The DE of the detrended data. The squares denotes the results of the
DE analysis on the data detrended with the step smoothing (top frame), and wavelet
smoothing (bottom frame).

112



0

0.01

0.02

0.03

0.04

-60 -40 -20 0 20 40 60

ρ(
x)

x

0

0.01

0.02

0.03

0.04

-60 -40 -20 0 20 40 60

ρ(
x)

x
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Figure 5.24: The DAS at work in the time region from 1 to 10. The squares denote
the pdf rescaled with δ = 0.67 for the data detrended with the step smoothing ( top
frame ) and with the wavelet smoothing (bottom frame), the dashed line correspond
to the pdf at time t = 1. The overlap between squares and dashed line is bad in
particular in the central part of the pdf

115



-2

0

2

4

6

0 2 4 6 8 10

ξ(
q)

q

0.57*x

-2

0

2

4

6

0 2 4 6 8 10

ξ(
q)

q

0.57*x

Figure 5.25: The MS at work in the time region from 1 to 10. The squares denote
the results for the data detrended with the step smoothing (top frame) and with the
wavelet smoothing (bottom frame), the dashed line correspond to a straight line of
slope of 0.57.

116



0

0.003

0.006

0.009

-250 -200 -150 -100 -50 0 50 100 150 200

ρ(
x)

x

0

0.003

0.006

0.009

0.012

-200 -150 -100 -50 0 50 100 150 200

ρ(
x)

x
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CHAPTER 6

Concluding Remarks

This thesis yields two important results. The first one is the scaling breakdown of

the SVM diffusion process, created using the GCTIM intermittent dynamical model.

This departure from the scaling condition is a signature of the interplay between order

and randomness and as a “dramatic” consequence also for the equivalence between

the density and trajectory approach for the description of dynamical systems.

The second result of this thesis has to do with the search of complexity in the

case of a real process of sociological interest, the teen birth phenomenon. I found

that the existence of either periodic or non-periodic biases can create the impression

of a high complexity that actually does not exist. I have developed a new procedure

to detrend biases that is competitive with the wavelet analysis and finally, measured

the genuine complexity of the system. What about this resulting complexity and the

complexity of living system introduced in the first part of this thesis? The analysis

carried out by us seems to yield to the conclusion that this complexity is a form of

FBM. Apparently, this discover seems to lead to a different model of complexity with

respect to the earlier one. However I can not rule out the possibility that the model

described in Chapter 4 is somewhat related to the dynamic derivation of the FBM,

since this is still an open question.
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[60] P. Allegrini, P. Grigolini, P. Hamilton, L. Palatella, G. Raffaelli and M. Virgilio,
in Emergent Nature, Ed. M.M. Novak, World Scientific, pp. 173, 2002.

121



[61] N. Scafetta, P. Grigolini, P. Hamilton, B. J. West, submitted to Phys. Rev. E.

[62] J. Feder, fractals Plenum Press, New York 1988.

[63] P. Allegrini, M. Barbi,P. Grigolini and B.J. West, Phys. Rev. E 52, 5281 (1995).

[64] P. Allegrini, M. Buiatti, P. Grigolini and B. J. West, Phys. Rev. E 57, 4558
(1998).

122


