Titanium Boride Formation and Its Subsequent Influence on Morphology and Crystallography of Alpha Precipitates in Titanium Alloys

PDF Version Also Available for Download.

Description

Over the last two decades there has been an increased interest in understanding the influence of trace boron additions in Ti alloys. These additions refine the prior β grain size in as-cast Ti alloys along with increasing their modulus and yield strength due to the precipitation of TiB. TiB also acts as a heterogeneous nucleation site for α precipitation and has been shown to influence the α phase morphology. B is completely soluble in liquid Ti but has a negligible solubility in both body centered cubic β and hexagonal close packed α phases of Ti. Thus, during solidification of hypoeutectic ... continued below

Creation Information

Nandwana, Peeyush December 2013.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 372 times , with 13 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Nandwana, Peeyush

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Over the last two decades there has been an increased interest in understanding the influence of trace boron additions in Ti alloys. These additions refine the prior β grain size in as-cast Ti alloys along with increasing their modulus and yield strength due to the precipitation of TiB. TiB also acts as a heterogeneous nucleation site for α precipitation and has been shown to influence the α phase morphology. B is completely soluble in liquid Ti but has a negligible solubility in both body centered cubic β and hexagonal close packed α phases of Ti. Thus, during solidification of hypoeutectic B containing alloys, B is rejected from β into the liquid where it reacts with Ti to form pristine single crystal whiskers of TiB. Despite a substantial amount of reported experimental work on the characterization of TiB precipitates, its formation mechanism and influence on α phase precipitation are still not clear. The current work is divided into two parts – (i) understanding the mechanism of TiB formation using first principles based density functional theory (DFT) calculations and (ii) elucidating how TiB influences the α phase morphology and crystallography in titanium alloys using electron microscopy techniques. TiB exhibits anisotropic growth morphology with [010] direction as its predominant growth direction and displays a hexagonal cross section with (100), (101), and (10) as the bounding planes. A high density of stacking faults has been experimentally observed on the (100) plane. The present study, by using DFT based nudged elastic band (NEB) calculations, elucidates for the first time that the diffusion of B through TiB is via an interstitial-assisted mechanism as opposed to vacancy-assisted mechanism hypothesized in literature. This one dimensional interstitial-assisted diffusion results in the anisotropic growth of TiB. In addition, the energetics of TiB- α interfaces was calculated to understand the hexagonal cross-section of TiB. The intimate mixing of B27 and Bf structures and their co-existence with stacking faults has been explained by calculating the interfacial energy of B27/Bf interfaces along with stacking fault formation energy. The boride precipitates have also been shown to modify the morphology of α phase from lath like to more equiaxed like. However, the influence of TiB on the crystallography of α precipitation has not been explored in great detail. The present study will clearly demonstrate, for the first time, the influence of various alloying elements present in the titanium alloy, on the resulting effect of B addition on α morphology and its crystallography in Ti alloys. Thus, the influence of B addition on α precipitation in two classes of commercial Ti alloys, i.e. β alloys and α + β alloys have been explored. It has been found that TiB nucleated α can either become equiaxed by a loss of Burgers orientation relationship (OR) with β or can retain the lath morphology in case of alloys containing a combination of Ti, Al and Mo.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 11, 2014, 7:32 a.m.

Description Last Updated

  • April 10, 2017, 9:20 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 1
Past 30 days: 13
Total Uses: 372

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nandwana, Peeyush. Titanium Boride Formation and Its Subsequent Influence on Morphology and Crystallography of Alpha Precipitates in Titanium Alloys, dissertation, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407855/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .