Functional Characterization of Mtnip/latd’s Biochemical and Biological Function

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Symbiotic nitrogen fixation occurs in plants harboring nitrogen-fixing bacteria within the plant tissue. The most widely studied association is between the legumes and rhizobia. In this relationship the plant (legumes) provides the bacteria (rhizobia) with reduced carbon derived from photosynthesis in exchange for reduced atmospheric nitrogen. This allows the plant to survive in soil, which is low in available of nitrogen. Rhizobia infect and enter plant root and reside in organs known as nodules. In the nodules the bacteria fix atmospheric nitrogen. The association between the legume, Medicago truncatula and the bacteria Sinorhizobium meliloti, has been studied in detail. Medicago ... continued below

Creation Information

Bagchi, Rammyani December 2013.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Bagchi, Rammyani

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Symbiotic nitrogen fixation occurs in plants harboring nitrogen-fixing bacteria within the plant tissue. The most widely studied association is between the legumes and rhizobia. In this relationship the plant (legumes) provides the bacteria (rhizobia) with reduced carbon derived from photosynthesis in exchange for reduced atmospheric nitrogen. This allows the plant to survive in soil, which is low in available of nitrogen. Rhizobia infect and enter plant root and reside in organs known as nodules. In the nodules the bacteria fix atmospheric nitrogen. The association between the legume, Medicago truncatula and the bacteria Sinorhizobium meliloti, has been studied in detail. Medicago mutants that have defects in nodulation help us understand the process of nitrogen fixation better. One such mutant is the Mtnip-1. Mtnip-1 plants respond to S. meliloti by producing abnormal nodules in which numerous aberrant infection threads are produced, with very rare rhizobial release into host plant cells. The mutant plant Mtnip-1 has an abnormal defense-like response in root nodules as well as defects in lateral root development. Three alleles of the Mtnip/latd mutants, Mtnip-1, Mtlatd and Mtnip-3 show different degrees of severity in their phenotype. Phylogenetic analysis showed that MtNIP/LATD encodes a protein belonging to the NRT1(PTR) family of nitrate, peptide, dicarboxylate and phytohprmone transporters. Experiments with Mtnip/latd mutants demonstrats a defective nitrate response associated with low (250 μM) external nitrate concentration rather than high (5 mM) nitrate concentration. This suggests that the mutants have defective nitrate transport. To test if MtNIP/LATD was a nitrate transporter, Xenopus laevis oocytes and Arabidopsis thaliana mutant plants Atchl1-5, defective in a major nitrate transporter AtNRT1.1(CHL1), were used as surrogate expression systems. Heterologous expression of MtNIP/LATD in X. laevis oocytes and Atchl1-5 mutant plants conferred on them the ability to take up nitrate from external media with high affinity, thus demonstrating that MtNIP/LATD was a high affinity nitrate transporter. Km for MtNIP/LATD was determined to be approximately160 μM in the X. laevis system and 113 μM in the Arabidopsis Atchl1-5 mutant lines thus supporting the previous observation of MtNIP/LATD being a high affinity nitrate transporter. X. laevis expressing the mutant Mtnip-1 and Mtlatd, were unable to transport nitrate. However X. laevis oocytes, expressing the less severe mutant allele Mtnip-3 were able to transport nitrate suggesting another role of the Mtnip/latd besides high affinity nitrate transport. Experimental evidence suggested that MtNIP/LATD might transport another substrate beside nitrate. MtNIP/LATD levels are regulated by phytohormones. Experiments performed with ABA (abscisic acid), IAA (indole acetic acid) and histidine as substrates in X. laevis system show that the MtNIP/LATD mRNA injected oocytes efflux IAA but do not transport histidine or ABA. When wild type A17 and mutant Mtnip-1 and Mtnip-3 plants, grown in the presence of different sources of nitrogen were screened in herbicide chlorate, a structural analog of nitrate, the A17 and Mtnip-3 mutant showed levels of susceptibility that was different from mutant Mtnip-1 lines. Evidence suggested that the amount of chlorate transported into the plants were regulated by the C:N status of the A17 and Mtnip-3 plants. This regulation was missing in the Mtnip-1 lines thus suggesting a sensor function of MtNIP/LATD gene.

Subjects

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • Nov. 15, 2016, 10:28 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 26

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bagchi, Rammyani. Functional Characterization of Mtnip/latd’s Biochemical and Biological Function, dissertation, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407822/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .