Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

PDF Version Also Available for Download.

Description

Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package ... continued below

Creation Information

Ho, YeeHsien December 2013.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 263 times , with 4 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chairs

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ho, YeeHsien

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package to predict the temperature evolution during laser processing. The thermal histories predicted by the model are used to evaluate the cooling rates and solidification rate and the associated changes in the microstructure. The surface energy of laser surface modification samples can be calculated by measuring the contact angle with 3 different standard liquid (D.I water, Formamide, and 1-Bromonaphthalen). The bio-wettability of the laser surface modification samples can be conducted by simulated body fluid contact angle measurement. The results of SEM, 3D morphology, XRD, and contact angle measurement show that the grain size and roughness play role for wetting behavior of laser processing Mg samples. Surface with low roughness and large grain size performs as hydrophilicity. On the contrast, surface with high roughness and small grain size performs as hydrophobicity.

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • Nov. 16, 2016, 4:02 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 263

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ho, YeeHsien. Laser Surface Modification on Az31b Mg Alloy for Bio-wettability, thesis, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407788/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .