Characterization of Viscoelastic Properties of a Material Used for an Additive Manufacturing Method

PDF Version Also Available for Download.

Description

Recent development of additive manufacturing technologies has led to lack of information on the base materials being used. A need arises to know the mechanical behaviors of these base materials so that it can be linked with macroscopic mechanical behaviors of 3D network structures manufactured from the 3D printer. The main objectives of my research are to characterize properties of a material for an additive manufacturing method (commonly referred to as 3D printing). Also, to model viscoelastic properties of Procast material that is obtained from 3D printer. For this purpose, a 3D CAD model is made using ProE and 3D ... continued below

Creation Information

Iqbal, Shaheer December 2013.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 332 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chairs

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Iqbal, Shaheer

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Recent development of additive manufacturing technologies has led to lack of information on the base materials being used. A need arises to know the mechanical behaviors of these base materials so that it can be linked with macroscopic mechanical behaviors of 3D network structures manufactured from the 3D printer. The main objectives of my research are to characterize properties of a material for an additive manufacturing method (commonly referred to as 3D printing). Also, to model viscoelastic properties of Procast material that is obtained from 3D printer. For this purpose, a 3D CAD model is made using ProE and 3D printed using Projet HD3500. Series of uniaxial tensile tests, creep tests, and dynamic mechanical analysis are carried out to obtained viscoelastic behavior of Procast. Test data is fitted using various linear and nonlinear viscoelastic models. Validation of model is also carried out using tensile test data and frequency sweep data. Various other mechanical characterization have also been carried out in order to find density, melting temperature, glass transition temperature, and strain rate dependent elastic modulus of Procast material. It can be concluded that melting temperature of Procast material is around 337°C, the elastic modulus is around 0.7-0.8 GPa, and yield stress is around 16-19 MPa.

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • June 13, 2017, 12:19 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 332

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Iqbal, Shaheer. Characterization of Viscoelastic Properties of a Material Used for an Additive Manufacturing Method, thesis, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407787/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .