Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study

PDF Version Also Available for Download.

Description

Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT ... continued below

Creation Information

Lamichhane, Kiran December 2013.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 190 times , with 4 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Lamichhane, Kiran

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox model as increased embryonic hazard and reproduction cost as well as growth and maintenance costs. Furthermore, stress factor linearly increased not only with increasing chemical concentrations but also with exposure time. The DEBtox model establishes a cumulative life history consequence of multigenerational exposure to CBZ and SERT. This approach provides a tool to which to understand the effect of chemical to the individual organism and predict the population level effects in ecological risk assessment of the emerging contaminants.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • June 27, 2017, 11:19 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 190

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lamichhane, Kiran. Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study, dissertation, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407771/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .