Studies on the Porphyrin and Phthalocyanine Modified on Sno2 Photoelectrochemical Cells

PDF Version Also Available for Download.

Description

The world is facing a tough challenge regarding fulfilling human energy needs. Scientists are motivated to find alternative ways to the fossil fuel at a lower cost with little or no environmental pollution. Among the available renewable resources, the solar energy is an alternative energy to fossil fuel. Scientists are engaged in mimicking the photosynthesis to create the new energy devices such as dye sensitized solar cells. The fundamental theory and properties of the dye sensitized solar cells is given in the first chapter. In this research, the application of the different methods for surface alteration of SnO2 with water ... continued below

Creation Information

Lin, Chunyu December 2013.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 160 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Lin, Chunyu

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The world is facing a tough challenge regarding fulfilling human energy needs. Scientists are motivated to find alternative ways to the fossil fuel at a lower cost with little or no environmental pollution. Among the available renewable resources, the solar energy is an alternative energy to fossil fuel. Scientists are engaged in mimicking the photosynthesis to create the new energy devices such as dye sensitized solar cells. The fundamental theory and properties of the dye sensitized solar cells is given in the first chapter. In this research, the application of the different methods for surface alteration of SnO2 with water soluble porphyrins and phthalocyanine is studied. Using optical absorbance and steady state fluorescence studies, the formation of porphyrins and phthalocyanine discuss on the SnO2 surface is shown. Moreover, the different results of photoelectrochemical cells are show on chapter 2 to understand the porphyrin and phthalocyanine modified on SnO2 as electron injector. In summary, the application porphyrin and phthalocyanine of dimers as a broad band capturing photosensitized dye is discussed.

Subjects

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • Nov. 16, 2016, 4:02 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 160

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lin, Chunyu. Studies on the Porphyrin and Phthalocyanine Modified on Sno2 Photoelectrochemical Cells, thesis, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407761/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .