Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

PDF Version Also Available for Download.

Description

This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over ... continued below

Creation Information

Ayeh, Eric December 2013.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 72 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ayeh, Eric

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors are shown to be suboptimal when compared to the energy detector and the estimator-correlator.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2013

Added to The UNT Digital Library

  • Nov. 8, 2014, 11:56 a.m.

Description Last Updated

  • Nov. 15, 2016, 10:27 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 72

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ayeh, Eric. Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks, dissertation, December 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc407740/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .