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A phenomenological study of solubility has been conducted using a combination of quantitative structure-
property relationship (QSPR) and principal component analysis (PCA). A solubility database of 4540
experimental data points was used that utilized available experimental data into a matrix of 154 solvents
times 397 solutes. Methodology in which QSPR and PCA are combined was developed to predict the missing
values and to fill the data matrix. PCA on the resulting filled matrix, where solutes are observations and
solvents are variables, shows 92.55% of coverage with three principal components. The corresponding
transposed matrix, in which solvents are observations and solutes are variables, showed 62.96% of coverage
with four principal components.

INTRODUCTION

The phenomenon of solubility has interested mankind for
thousands of years. Ancient Greeks tried to perceive why
wine is miscible with water while olive oil is not. Modern
science proposes rational explanations of the macroscopic
solubility phenomenon based on microscopic properties of
the matter. Statistical mechanics rigorously links these two
realms through a probabilistic treatment of particle en-
sembles. Further development of Kirkwood’s approach1 as
applied to nondissociating fluids resulted in a variety of
simulation techniques with the most popular of them being
molecular dynamics and the Monte Carlo method.2 Contem-
poraneous practical chemistry elaborated qualitative concepts
such as solvent polarity/nonpolarity, dipolarity, and proto-
philicity, which achieved quantitative realization in the form
of various solvent polarity scales. Most of these scales are
derived from spectral and electrical properties of substances,
chemical kinetics, and equilibrium data.3 Recently we have
commenced a general analysis of these issues using a
combination of chemometric techniques such as multilinear
regression analysis (MLR) and principal component analysis
(PCA).4

Our earlier efforts to use PCA to explain physicochemical
phenomena have been successful. In an application of the
PCA method to a chemical problem, we treated aromaticity
as a multidimensional entity and found that the magnetic
and structural components are orthogonal.5,6 In a more recent
study7 40 different polarity scales were treated as a set of

variables (descriptors) for 40 various solvents. The square
40 × 40 matrix formed was subjected to a diagonalization
procedure that partitioned the solvents into five groups and
the solvent scales into seven groups, according to the nature
of the solvent and the physical meaning of the polarity scales.

Other research groups have also used the PCA for the
classification of solvation-related physicochemical properties.
Fawcett and Krygowski8 investigated thermodynamic heats
of solution. Cramer9 studied the aqueous solubility of 114
chemicals along with other molecular properties. Chastrette
et al.10 performed a PCA analysis of 83 solvents with respect
to six empirical solvent scales and the semiempirically
derived highest occupied and lowest unoccupied molecular
orbital energies of each solvent.

All the above investigations expressed solvent properties
in terms of different optical and chemical reactivity features
(solvent scales) that are, generally speaking, not directly
related to solute-solvent interactions. A highly relevant scale
for a particular solvent would simply be free energies of
solvation of numerous substances by this solvent or, more
generally, mutual equilibrium solubilities of different sub-
stances in each other. To the best of our knowledge nobody
ever tried to address the general problem of solubility from
this point of view. In the framework of the current series of
papers we treat the general problem of solubility as a problem
of dimensionality, as a problem of structure-solubility
relationships, and last as a problem of solvent/solute clas-
sification. Two recorded principal component analyses of
solubility dealt with a rather limited number of experimental
only data, and no solvent/solute classification was suggested.
Dunn et al.11 analyzed a 6 solvents× 50 solutes data matrix
and found two principal components with the first one being
highly correlated with the isotropic surface area. A recent
study of gas-liquid partitioning coefficients carried out by
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Reta et al.12 over an 11 solutes× 67 solvents revealed two
relevant principal factors too. Two of the solvents were
selected as “test factors” because of their high correlations
with most of the experimental data.

To address the general problem of solubility in a uniform
and comprehensive manner, we have collected a huge body
of experimental equilibrium solubility data and formed a
matrix in which columns are solvents (variables of PCA)
and rows are solutes (objects of PCA). A transposed matrix
was also formed. Missing values of these matrices have been
predicted from QSPR analyses. Applying the well-developed
mathematical formalism of PCA, based on the matrix
diagonalization procedure, we derived principal components
(eigenvectors) of the matrices, which enable us to classify
and group solvents and solutes regarding to their chemical
nature.

The goal of the current work is to derive an intrinsic
dimensionality of the general solubility phenomenon and to
reveal important constitutional and structural factors respon-
sible for the solvation behavior of chemical entities. Such
analysis should be interesting and important both from the
theoretical and the applied points of view, because most
physiological and technological processes occur in solution,
and solvents exert strong influences on the rates and even
the outcome of these processes.13

SOLUBILITY VALUES AND COMPOUNDS IN THE
DATA MATRIX

All solubility values are expressed in the logarithmic form
of Ostwald solubility coefficients (logL).14 The Ostwald
coefficent is defined as the volume of saturating gas absorbed
by a volume of the pure solvent at the same temperature
and pressure of the measurements. The pure gaseous solute
serves as the reference state for the calculated values.15 Rows
and column are ordered according to the number of data
points that they contain, so the densest area of the matrix is
located in its upper left corner.

Our initial general solubility matrix of 145 solvents times
388 solutes as provided in the Supporting Information of a
previous publication14 has now been revised and extended.
First we excluded 13 solutes as follows: mono- and diatomic
compounds (helium, argon, neon, xenon, krypton, hydrogen,
nitrogen, oxygen, nitrogen oxide, and carbon monoxide),
tetramethyl tin, ferrocene, and fullerene. These exclusions
are due to the limited number of molecular descriptors that
can be calculated for the small (mono- and diatom) mol-
ecules, and because of semiempirical parametrization (AM116

is not parametrized for the tin and other heavy metals). For
22 solvents, fullerene represented the only solute with a
measured solubility. Consequently, those 22 solvents were
also eliminated. Additionally we included 31 new solvents
and 22 new solutes (Supporting Information SI-A). All
together we added 1030 experimental solubility values, which
led to a total of 4540 data points in the revised matrix. This
revised matrix (154 solvents and 397 solutes) is given as
Supporting Information SI-B.

METHODOLOGY

Our general methodological plan involves a combination
of the QSPR and PCA approaches for analysis of solubilities.
First, the QSPR method was used as a tool to fill the gaps

in the small solubility matrix. Then the small matrix was
analyzed by PCA, and the QSPR models were developed
for the principal components. Both approaches were com-
bined to predict the solubility for the remaining points in
the huge matrix. The filled solubility matrices were finally
analyzed using PCA. A detailed description of the methodol-
ogy for the development of the QSPRs has been given in
our previous publications.14,17

Principal component analysis(PCA) is one of the best-
known multivariate exploratory techniques extensively used
in different areas of chemistry.18-20 The PCA reveals internal
relations between characteristics of a class of compounds
(objects) and hence enables drastic reduction of the dimen-
sionality of the original raw data. This reduction is achieved
by transforming to a new set of variables, the principal
components, which are uncorrelated (orthogonal to each
other), and which are ordered so that the first few, with
descending importance, retain most of the variation in the
total set of original variables.

In PCA, the initial data matrix,D, is represented as the
inner product of two matrices (eq 1):

The row matrix R, named the score matrix, has the
dimensionalityr × n, wherer is the number of observations
(i.e., compounds) in the initial data set, andn is the number
of principal components (PC). The column matrixC, named
the loadings matrix, has the dimensionalityn × c, wherec
is the number of observable properties (variables) in the
initial data set.

PCA can be highly useful for data classification and pattern
recognition. In the two-dimensional plotting of a score vector
against another score vector, compounds with similar proper-
ties as reflected in those two score vectors, are clustered. In
the two-dimensional plotting of a loading vector against
another loading vector, the initial statistical properties
reflected in those two score loadings are clustered. The
number of PCs (scores, loadings) existing in characteristic
vector space can be equal to, or less than, the number of
variables in the data set. The first principal component is
defined as that giving the largest contribution to the respec-
tive PCA of linear relationship exhibited in the data. The
second component may be considered as the second best
linear combination of variables that accounts for the maxi-
mum possible of the residual variance after the effect of the
first component is removed from the data. Subsequent
components are defined similarly until practically all the
variance in the data is exhausted. Principal component
analysis for the current study was carried out with the
SIMCA-P version 9.0 program package.21

Parts 114 and 217 of the project “General Treatment of
Solubility” have been already published. Figure 1 describes
the complete strategy for the project in five steps.

Step 1. The QSPR models for the solubility of single
solutes in a range of solvents (“models for solvents”)14 and
also the QSPR models for specified solutes in single solvents
(“models for solutes”)17 using the general solubility matrix
(HM0) have been further developed and revised in the
present study. The newly developed QSPRs were used to
predict the missing values of thelogL for a so-called small

D ) RC (1)
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matrix, (SM0), with size 87 solvents× 91 solutes. The SM0
included only those solvents and solutes for which at least
15 experimental solubility values were available. Two small
matrices were obtained by predictinglogL values first
horizontally (using the “QSPR models for solutes”), denoted
as SM01, and second vertically (using the QSPR “models
for solvents”), denoted as SM02.

Step 2.The SM01 and SM02 matrices were merged into
one general small matrix (SM1) according to the following
rules:

(i) The predicted values within the prediction range were
selected. The prediction range is defined as(15% of the
distribution range of the experimental data points for each
model considered.

Figure 1. General treatment of solubility. *Initially considered as another possible way to fill HM0, but abandoned, as explained in the
text.
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(ii) If the predicted value was in range in both SM01 and
SM02, we used a model-weighted average of the two values,
as follows

whereX is the solubility value predicted using solute model
(horizontally), Y is the solubility value predicted by the
solvent model (vertically), andk is the appropriate statistical
coefficient of the QSPR model calculated by eq 3

wheren is the number of data points used in developing the
QSPR model,R2 is squared correlation coefficient for the
model, andN is the number of descriptors in the model. We
note that coefficientk as defined includes the model inflation
factor (MIF) used by Peterangelo et al.22 to evaluate
quantitative structure-activity relationships.

(iii) If the solubility value predicted from the solute model
was out of the range of experimental values, then the value
predicted from the solvent model was taken and vice versa.

(iv) If the predicted value was out of range for both the
solute and solvent models, then the solvents were ordered
according toET30 (the polarity scale with the largest number
of data points), and an average value of the solubility was
calculated by a “left-right three neighbor weighted average”
method we developed as defined by eq 5

where Xil is the left neighbor value andXir is the right
neighbor value. The first neighbor relative to the gap was
weighted with 3, the second one with 2, and the third one
(most distant from missing value) was weighted with 1. For
the cases for which experimental values of theET30 scale
were not available, the missingET30 values were predicted
by using a QSPR model developed forET30 polarity scale
by our group.23 The filled matrix, SM1, was transposed,
resulting into the respective matrix, SM2. At this stage, a
first PCA treatment was applied to the normal (SM1) and
transposed (SM2) small matrices. The data in SM1 and SM2
was normalized and centralized to give the data equal
importance.

Step 3. The so-called “backward procedure” for the
calculation oflogL using the results of the PCA treatment
(I) was applied (Figure 1). This procedure comprised the
following pathway:

(i) QSPR models were developed for the significant scores
(S), loadings (L), for the standard deviation (SD), and mean
of the each column of the matrix (Mh ), using the set of
theoretical molecular descriptors used in the step 1 for the
development of the QSPRs. In this procedure all the above-
mentioned factors and statistical parameters were defined as
properties and loaded into Codessa Pro.24 The corresponding

regression equations were developed using the best multi-
linear regression (BMLR) algorithm.25,26

(ii) A general equation given below, as eq 6, was next
used to calculatelogL values:

Step 4.The empty gaps in the general solubility matrix
HM0 were filled using either the revised solvent/solutes
QSPR models where the prediction was in range or the
appropriate form of the eq 6. The resultant matrix HM1
(397 solutes× 154 solvents) and its transposed matrix, HM2,
were developed, and the PCA treatment was applied in both
cases. To verify the accuracy of the prediction, the predicted
solubility values oflogL were compared statistically with
the experimental solubility values (seeResults and Discus-
sion).

Step 5. The last phase of this “General Treatment of
Solubility” project will analyze and discuss plots of the
factors scores and loadings in the frame of a general
classification of solutes and solvents for all matrices. A direct
comparison of these plots and an interpretation of the
physical meaning of the principal components will also be
attempted. Conclusions from step 5 and their discussion will
be reported in subsequent publications.

RESULTS AND DISCUSSION

Revision of the QSPR Models (Step 1).Significant
revisions in the previously reported QSPR models14,17 were
made for the following reasons: (i) new experimental
solubility data became available since our last QSPR
modeling, and this lead to the extension of the general
solubility matrix to 397 solutes× 154 solvents, as described
above; (ii) there were mistakes in the 3D structural repre-
sentation (used in ref 14) of nine of the compounds as
detailed in the Supporting Information (SI-C); (iii) 16
experimentallogL values were corrected in the general matrix
(see Supporting Information SI-D); (iv) new features imple-
mented into Codessa Pro were utilized: e.g. the BMLR
algorithm25-27 for the development of the QSPR models have
been added and the pool of calculated descriptors has been
increased with up to 40 hydrogen-bonding descriptors.

The QSPR were reconstructed for 87 solvents (vertical
series) and 91 solutes (horizontal series). For this, a common
descriptor pool for the solvents and solutes series was
developed. The initial descriptor pool calculated by Codessa
Pro consisted of 1101 theoretical molecular descriptors. In
depth analysis of this pool lead to a set of rules that
eliminated descriptors “inappropriate and irrelevant” for the
current modeling task. Descriptors were eliminated as
follows:

(i) 662 descriptors that are related to the specific atoms
are eliminated because not all compounds from the data set
include them. Examples are numbers of atoms, energy
partitioning terms, etc. The number of carbon atoms and
relative number of carbon atoms descriptors were retained
because they were applicable for most of the data series.
Only seven compounds out of 434 in the matrix do not
contain carbon atom.

(ii) 38 charge distribution related descriptors that were
derived from quantum-chemical calculations because Mul-

logL )
kXX + kYY

kX + kY
(2)

k ) n

(1 - R2)2N2
(3)

MIF ) 1

(1 - R2)
(4)

logL )
3(X1l + X1r) + 2(X2l + X2r) + X3l + X3r

12
(5)

logL ) ∑
i

(Si × Li)SD+ Mh (6)
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liken charge distribution scheme together with AM1 param-
etrization does not give correct estimates, in particular for
halogens. Therefore the charge distribution related descriptors
calculated according to Zefirov’s approach (on the basis of
electronegativities) were used instead.

(iii) 81 H-bonding descriptors based on quantum-chemical
calculations and that have Zefirov analogues;

(iv) 81 reactivity indexes that also relate to specific atoms;
(v) 3 Kier shape indexes of various order because they

cannot be calculated for molecules as H2S, H2O, NH3 and
CH4.

(vi) 9 moments of inertia descriptors because they have
excessively high values for small 3 atom structures;

(vii) and additionally 12 constitutional descriptors (number
of multiple bonds, number of rings, etc.) and 3 normal
vibration mode descriptors which were deemed not suf-
ficiently relevant.

All together 889 descriptors were excluded. The final
common descriptor pool thus consists of 212 whole molecule
descriptors: 8 constitutional, 91 electrostatic, 12 geometrical,
29 quantum-chemical, 35 thermodynamic, and 37 topological
descriptors. A detailed list of the descriptors used in this study
is given in Supporting Information SI-E.

During the development of models, of the total of 4540
experimental data points 52 were designated as major outliers
and were not used in development of QSPR models.

The solvent series had 15 outliers:haloperidol(142) from
the series of toluene (30), 1-propanol (45), 2-propanol (46);
piroxicam (144) from the series of dichloroethane (35),
ethanol (44), 1-pentanol (51), 1-octanol (59), acetone (76),
acetophenone (91), diethyl ether (104), and acetic acid (108);
benzoic acid(118) from the nitrobenzene (120) series;
4-nitroaniline (121) and4-nitro-N,N-dimethylaniline(147)
from the series of nitromethane (122); andphenanthrene(10)
from the carbon disulfide (161) series. The series of solutes
had the remaining 37 outliers:water (116) from the
following series 7, 24, 25, 29, 30, 31, 32, 34, 35, 42, 58, 65,
66, 92, 93, 119, 121, 134, 135, 142, 143, 164, 181, 185,
186, 188, 204, 288, 339, and 343 (see Supporting Information
SI-F); 1-octanol (59) from the trans-stilbene (2) series;
chloroform(92) andm-cresol (260) from the 2-butanone (70)
series;2-butanol(48) from the series of benzoic acid (118)
and 4-nitroaniline (121); and2-methyl-1-propanol(49) and
1-hexanol (55) from the series of 4-nitroaniline (121).
Inclusion of these points would create data series without a
normal distribution with the danger of leading to QSPRs that
could give false estimates due to chance correlations.

A general comparison between the new and previously
reported14,17 QSPR models is given in Table 1. As one can
see, the new models are statistically slightly better. Correla-

tion coefficients are on average more than 0.01 units better
in both cases. Also less descriptors are generally involved
in models.

The predicted Ostwald solubility values are all plotted
versus the corresponding experimental values for solvents
and solutes in Figures 2 and 3, respectively. The squared
correlation coefficient,R2 ) 0.996, shows a higher quality
of prediction for solutes by comparison with the models of
solvents (R2 ) 0.957). A comparison between those squared
correlation coefficients (Figure 2 for solvents models and
Figure 3 for solutes models) and the calculated average
values by taking into account all QSPR models (see
Supporting Information SI-G for solvents and SI-H for
solutes models) shows similarity with the series for solvents
(R2 ) 0.957 and 0.961) and a slight difference for the series
of solutes (0.996 and 0.920, respectively). An explanation

Table 1. Comparison of Performance of New and Previous QSPR Models

QSPR models with 2-5 parameters squared correlation coefficient,R2

no. of data
points 2 3 4 5 or more range average

average no. of
descriptors

prev now prev now prev now prev now prev now prev now prev now prev now

Solvents
3307 4183 3 22 22 47 18 13 26 5 0.837-0.998 0.868-0.998 0.955 0.961 4 3

Solutes
2409 3424 1 1 21 28 18 21 40 41 0.604-0.996 0.676-0.994 0.908 0.920 4 4

Figure 2. Predicted vs experimental solubility values for 87 solvent
series: y ) 0.9559x + 0.1878;R2 ) 0.9574 (4167 points).

Figure 3. Predicted vs experimental solubility values for 91 solute
series: y ) 0.9958x + 0.0203;R2 ) 0.9958 (3394 points).
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can be that the ranges of experimental values (i.e. ranges
where predictions are most accurate) for the solutes are
smaller in comparison with those for the solvents. The
average range (∆Range in Suppporting Information SI-I) for
the solute series is 2.1 solubility units and for the solvent
series 8.1 (Supporting Information SI-J). Obviously, due to
the narrower range, the QSPRs for solute series has much
smaller standard deviations (s2). The averages2 for solutes
is 0.032 and for solvents 0.2 (see Supporting Information
SI-I and SI-J). Although Figure 2 shows very good agreement
between predicted and experimental values, it includes 1
outlier. The deviating point is dimethyl-4-nitrophenyl thio-
phosphate (536) predicted with the QSPR model developed
for chloroform (92) solute.

The missinglogL values in the small matrix SM0 were
predicted (interpolated) (i) horizontally using QSPR models
for solutes resulting in the matrix SM01 and (ii) vertically
using QSPR models for solvents resulting in the matrix SM02

(see Figure 1).
Filling the Small Matrix - SM1 (Step 2).The matrices

SM01 and SM02 were merged into SM1 according to the
designated rules (see Methodology section, step 2). The final
filled SM1 matrix, with dimensions of 87 solvents and 91
solutes, consists of the following data points: (i) 3074
experimental (38.8%), (ii) 3011 model-weighted average (eq
2) of the two models (38.0%), (iii) 1134 interpolated
horizontally (14.3%), (iv) 482 interpolated vertically (6.1%),
and (v) 216 polarity scale (ET30) ordered and calculated by
“left-right three neighbor weighted average” (eq 5) of
solubility values (2.7%).

Figures 4 and 5 provide comparisons between the model-
weighted averages and predicted values of solvent/solute
series. The squared correlation coefficient for the predictions
from QSPRs of solvents series is 0.886 (see Figure 4), and
the squared correlation coefficient for the predictions of
solutes series is 0.856 (see Figure 5). As it can be seen, the
difference between the squared correlation coefficients is
quite small. TheR2 was expected to be better in the case of
the solvents. According to the eq 2 for the model-weighted
average, the defined model statistical coefficient (k) is very
highly affected by the correlation coefficient (R2) and by the
number of descriptors present in model (N) and therefore

the mean supposed to be closer to the predicted values that
are obtained from more significant model. In general, the
models for solvents show higher quality of statistical
characteristics (see Supporting Information SI-I and SI-J).
The models for solvents have averaged squared correlation

coefficient (R2) 0.961, while for the solutesR2 is 0.920. In
the solvent models, the average number of descriptors (Nh )
is 3.0, while in the models for solutes it is 4.4. In fact, the
linear correlations equations show clearly that solvent values
are closer to the mean values, the slope is almost 1, and the
intercept is very small. Figure 4 shows that the values for
solvents are normally distributed. At the same time the
solutes have a narrow range between 4.5 and 7 logarithmic
units of solubility (Figure 5). During the preparation of the
present manuscript, 289 additional experimental solubility
values were collected, and these have been used as an
external validation data set for SM1. In Figure 6 these
experimental values are plotted versus respective estimated
values with the correspondingR2 ) 0.882. The estimated
values for the validation set of 289 compounds are accept-
able. The 79 estimated values differ from the experimental
values between 0.5 and 1.5logL units, 27 estimated values
differ more than 1.5logL units. Seventeen out of those 27
values belong to the water series where seven estimates come
directly from the QSPR model for water, and 10 of them

Figure 4. Model weighted mean vs predicted solubility values for
87 solvent series:y ) 0.9456x + 0.1832; R2 ) 0.8865 (3011
points).

Figure 5. Model weighted mean vs predicted solubility values for
91 solutes series:y ) 0.8899x + 0.5237; R2 ) 0.8558 (3011
points).

Figure 6. External validation set: predicted vs experimental
solubility values:y ) 0.9532x + 0.3159;R2 ) 0.8815 (289 points).
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are calculated using model-weighted average (eq 2). This
clearly shows the complexity of the solubility process in
water.

Big differences of the estimated values of more than 3
logL units were noticed for the solubilities of diphenyl
sulfone (13), 4-hydroxybenzoic acid (102), 2-hydroxybenzoic
acid (145), and acetylsalicylic acid (543) between the solvents
1-propanenitrile (84) and 1-butanenitrile (85). The solubility
of any single solute would be expected to be quite similar
in analogous solvents. All these estimated solubility values
are calculated as model-weighted averages (eq 2). The
differences arise from the specific solvent models. Thus the
QSPR model for 1-butanenitrile gives low estimates for the
diphenyl sulfone, and the 1-propanenitrile models gives low
estimates for the three acids listed above. This is because
the 1-propanenitrile and 1-butanenitrile QSPR models are
based on a different solute set and thus involve different
descriptors. The 1-propanenitrile model includes topological
and electrostatic descriptors, and the 1-butanenitrile model
includes topological, quantum-chemical, and thermodynamic
descriptors (see Supporting Information SI-G).

The first principal component analysis(I, Figure 1) was
performed on both the normal (SM1) and transposed (SM2)
matrices. For the SM1 matrix (normal mode, 91 solutes×
87 solvents) the first three principal components cover
96.03% of the total variance. The contributions of the next
PCs are negligible as indicated by the measure of the quality
of prediction, Q2, which shows no improvement with
additional components. Information on the first 10 principal
components is given in Table 2. The PCA of SM2 matrix
(transposed mode, 87 solvents× 91 solutes) gives moderate
results. In this case the two first principal components cover
only 50.33% of the cumulative variance. The third and fourth
PCs have the contribution: 10.02% and 5.60%, respectively.
As one can see from Table 3, the contribution of the factors
becomes very small starting with the fifth PC and also the
Q2 value shows no improvement after the fourth component.

Calculating of logL Using “Backward Procedure” (Step
3). The “backward procedure” for the calculation oflogL

using the results obtained from PCA treatment (I, Figure 1)
as described in the previous chapter was applied. The
matrices of the values for the scores and loadings of each
considered principal component, and the standard deviations
and means, are given as Supporting Information in SI-K and
SI-L.

For the SM1 matrix , only the first, second, and third
principal components are considered to contribute signifi-
cantly to the solubility. Consequently, eight QSPR models
(Table 4 and Supporting Information SI-K-SI-M) were
built: 3 for the factors scores,Si, 3 for the factors loadings,
Li, 1 for standard deviation,SD, and 1 for the mean,Mh , where
i is the number of principal components. In total 35
theoretical molecular descriptors were involved in the eight
models derived and they belong to the following classes of
descriptors: constitutional (1), geometrical (2), topological
(7), electrostatic (15), thermodynamic (3), and quantum-
chemical (7) (see Table 5).

The best QSPR model (see Table 4) was obtained for the
first score (S1) with R2 ) 0.95 and contains two descriptors.
The respective model for the first loading (L1) with R2 )
0.69 includes six descriptors. The values of the first loading
(L1) vary in a very small range, from-0.99 to-0.87; only
water has-0.75 (see Table 4 and Supporting Information
SI-L), which shows that the influence ofL1 to the final results
is almost negligible. According to the percentage of cumula-
tive eigenvalues (see Table 2), the first principal component
covers 92.7% of total variance of solubility, with the first
score being by far the most important. The most significant
descriptor (i.e. that with the highestt-test value) in the two-
parameter model forS1 (see Table 4) is thegraVitation index
for all bonds(D17), defined by eq 7

wheremi andmj are the atomic masses of atomsi and j, rij

Table 2. 10 First Principal Components and the Percentage of the
Variance Covered for the Normal Matrix (Solutes× Solvents)

PC eigenvalue
%

total
cumulative
eigenvalue

cumulative
%

Q2

cumulative

SM1
1 80.679 92.735 80.679 92.735 0.924
2 2.172 2.496 82.851 95.231 0.946
3 0.692 0.795 83.543 96.026 0.952
4 0.440 0.505 83.982 96.532 0.952
5 0.330 0.380 84.313 96.911 0.950
6 0.297 0.341 84.609 97.252 0.951
7 0.238 0.274 84.848 97.526 0.949
8 0.215 0.247 85.062 97.773 0.948
9 0.202 0.232 85.264 98.005 0.948

10 0.149 0.171 85.413 98.176 0.945

HM1
1 134.513 87.346 134.513 87.346 0.871
2 4.884 3.171 139.397 90.517 0.899
3 3.125 2.030 142.522 92.547 0.917
4 2.521 1.637 145.044 94.184 0.932
5 1.139 0.739 146.182 94.923 0.937
6 0.789 0.513 146.972 95.436 0.940
7 0.658 0.427 147.629 95.863 0.943
8 0.520 0.338 148.149 96.201 0.943
9 0.465 0.302 148.614 96.502 0.943

10 0.411 0.267 149.026 96.770 0.944

Table 3. 10 First Principal Components and the Percentage of the
Variance Covered for the Transposed Matrix (Solvents× Solutes)

PC eigenvalue
%

total
cumulative
eigenvalue

cumulative
%

Q2

cumulative

SM2
1 23.432 26.933 23.432 26.933 0.233
2 20.358 23.400 43.789 50.332 0.390
3 8.716 10.019 52.505 60.351 0.486
4 4.870 5.598 57.376 65.949 0.526
5 3.101 3.565 60.477 69.514 0.526
6 2.403 2.763 62.880 72.276 0.517
7 2.175 2.499 65.055 74.776 0.507
8 1.870 2.149 66.925 76.925 0.503
9 1.706 1.961 68.631 78.886 0.494

10 1.512 1.738 70.142 80.624 0.478

HM2
1 41.744 27.106 41.744 27.106 0.205
2 29.333 19.047 71.077 46.154 0.396
3 13.848 8.992 84.924 55.146 0.470
4 12.040 7.818 96.964 62.964 0.526
5 7.108 4.616 104.072 67.580 0.557
6 6.150 3.993 110.222 71.573 0.596
7 4.063 2.638 114.285 74.211 0.607
8 3.702 2.404 117.987 76.615 0.606
9 3.307 2.147 121.294 78.762 0.621

10 2.506 1.628 123.800 80.390 0.632

D17 ) ∑
i<j

Nb mimj

rij
2

(7)
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is the interatomic distance between the atomsi and j, and
Nb is the number of chemical bonds in the molecule. The
gravitational index reflects the effective mass distribution
in the molecule and reflects intermolecular dispersion forces

in the bulk liquid media (i.e. D17 accounts simultaneously
both for the atomic masses and for their distribution within
the molecular space). The second descriptor is the hydrogen-
bonding donor charged surface area, HDCA(1), defined as

Table 4. QSPR Models for the Scores and Loadings of First Three PCs and Standard Deviation and Mean Value for SM1 Matrixa

eq QSPR models for principal components N n R2 R2
cv s2 F range

1 S1)1.73((0.0479)-0.00194((0.0000502)D17-0.163((0.0171)D7 91 2 0.952 0.948 0.0492 871-3.86-1.55
2 S2)2.06((0.143)-1.70((0.126)D30+0.0229 ((0.00209)D32-

115((10.9)D9-0.629((0.118)D23
91 4 0.885 0.864 0.1201 166 -2.85-1.91

3 S3)-2.19((0.152)+0.198((0.0122)D1+139((13.9)D9-0.123((0.0135)D3-
0.432((0.0556)D33-0.0590((0.0133)D4+0.000661((0.000269)D2

91 6 0.794 0.761 0.2209 53.9-1.47-3.02

4 L1)-0.605((0.0356)-0.209((0.0194)D20+0.000806((0.000125)D11-
0.107((0.0175)D15+0.102 ((0.0251)D35-0.0155((0.00399)D24-
0.207 ((0.0679)D6

87 6 0.691 0.655 0.0004 29.9-0.99- -0.75

5 L2)-1.23((0.247)-0.134((0.0150)D23-0.0106((0.00147)D5-
0.144((0.0203)D30+0.0405((0.00603)D28-6.92((1.35)D9

87 5 0.902 0.883 0.0026 150 -0.54-0.29

6 L3)-3.37((0.542)+3.55((0.564)D21+0.408((0.0691) D12-0.0421((0.00902)D34+
0.0101((0.00306)D31+ 0.00350((0.00119)D18-0.0656((0.0270)D30

87 6 0.674 0.592 0.0028 27.6-0.14-0.28

7 SD)3.14((0.142)-0.211((0.0216)D16+33.2((4.00) D13+0.0388((0.00516)D27-
0.148((0.0231)D29+ 0.0648((0.0136)D22-0.00778((0.00164)D14-
0.490((0.113)D8+0.0411((0.0109)D25-0.00914 ((0.00338)D3

87 9 0.763 0.701 0.0148 27.6 2.23-3.35

8 Mh )8.75((1.00)-61.0((6.36)D9+2.94((0.356)D12+ 0.00164((0.000367)D26-
0.0539((0.0130)D19+ 0.00921((0.00226)D10-0.0836((0.0240)D28

87 6 0.746 0.646 0.0419 39.2 3.12-5.66

a WhereN is the number of data points,n is the number of parameters in the model,R2 andR2
cv are the square of the correlation coefficient, and

cross-validation correlation coefficient, respectively,s2 represent the standard deviation, andF is the Fisher’s criterion.

Table 5. Descriptors and Their Occurrence Involved in the Models Presented in Table 4

ID descriptor name occurrence

Constitutional
D1 number of single bonds 1

Electrostatic
D2 1X BETA polarizability (DIP) 1
D3 count of H-donors sites (Zefirov PC) (all) 2
D4 difference (Pos- Neg) in charged part of charged surface area (Zefirov’s PC) 1
D5 DPSA3 difference in CPSAs (PPSA3-PNSA3) (Zefirov PC) 1
D6 FPSA2 fractional PPSA (PPSA-2/TMSA) (Zefirov PC) 1
D7 HA dependent HDCA-1 (Zefirov PC) (all) 1
D8 HA dependent HDCA-2 (Zefirov PC) (all) 1
D9 H-donors FCPSA (version 2) 4
D10 H-donors PSA (version 2) 1
D11 PNSA2 total charge weighted PNSA (Zefirov PC) 1
D12 polarity parameter (Zefirov) 2
D13 positively charged part of partial charged surface area (Zefirov’s PC) 1
D14 RNCS relative negative charged SA (SAMNEG*RNCG) (Zefirov PC) 1
D15 RPCG relative positive charge (QMPOS/QTPLUS) (Zefirov PC) 1
D16 WNSA3 weighted PNSA (PNSA3*TMSA/1000) (Zefirov PC) 1

Geometrical
D17 gravitation index (all bonds) 1
D18 shadow plane YZ 1

Quantum-Chemical
D19 HOMO- LUMO energy gap 1
D20 max bonding contribution of one MO 1
D21 max SIGMA-SIGMA bond order 1
D22 tot dipole of the molecule 1
D23 tot hybridization comp. of the molecular dipole 2
D24 tot molecular 2-center exchange energy 1
D25 tot molecular 2-center resonance energy 1

Thermodynamic
D26 thermodynamic heat of formation of the molecule at 300 K 1
D27 thermodynamic heat of formation of the molecule at 300 K/natoms 1
D28 translational entropy (300 K) 2

Topological
D29 average complementary information content (order 0) 1
D30 average information content (order 0) 3
D31 bonding information content (order 2) 1
D32 information content (order 1) 1
D33 Kier&Hall index (order 3) 1
D34 structural information content (order 0) 1
D35 topographic electronic index (all bonds) 1
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whereSD is the solvent-accessible surface area of H-bonding
donor H atoms, selected by threshold charge on hydrogen
atom. The summation in eq 8 is performed over all
simultaneously possible hydrogen bonding donor and ac-
ceptor pairs per solute molecule.24,27The combination of the
two descriptors (D17 and D7) evidently represents adequately
the intermolecular forces that influence the solubility process.
The gravitation index (D17) is related to the dispersion and
cavity-formation effects in liquids. The HDCA-1 (D7) is
related to the hydrogen-bonding ability of compounds.

The QSPR model for the first score (S1) is similar to a
previously reported good two-parameter boiling point (Tb)
model (R2 ) 0.95), where the gravitation index over all pairs
of atoms (GP) is taken into account as its cube root. The
second descriptor is related to the hydrogen bonding (HDSA-
2).28 We also noticed similarities with our previously reported
two-parameter QSPR models of vapor pressure, where the
graVitation index oVer all bonded atoms(GI) and the
hydrogen-bonding donor charged surface area(HDCA-2)
gives a linear correlation withR2 ) 0.88.29 Two-parameter
QSPR models for liquid viscosity (log η) also included the
same two descriptors (GI and HDCA-2) giving correlation
coefficientR2 ) 0.79 using 33730 andR2 ) 0.81 using 361
diverse organic molecules, respectively.27,31

For the transposed small matrix, SM2 (where the
solvents are observations and the solutes are variables), the
first four factors together cover only 65.95% of the informa-
tion. The measure of the quality of prediction,Q2, decreases
after the fourth PC that indicates that introducing a higher
number of PC into the PCA model is not appropriate (see
Table 3). Consequently, the second path (II, Figure 1) for
filling the huge matrix cannot be followed effectively and
was abandoned.

Filling the HM (Step 4). It is now demonstrated that the
PCA results obtained for the small matrix (SM1) can be
successfully extrapolated to the general matrix of solubility
(HM0). For this, the general matrix (HM0) was divided into
four virtual sectors: sector I, the upper left corner of the
matrix (91 solutes× 87 solvents), i.e. the small matrix
(SM0); sector II, the upper right corner (91 solutes× 67
solvents); sector III, the lower left corner (306 solutes× 87
solvents); and sector IV, the lower right corner (306 solutes
× 67 solvents). The gaps in the sectors I-IV of the HM0
are filled as follows:

(i) Sector I (SM0) was filled as described in previous
sections (step 2).

(ii) In sector II the missing values of the solubility were
predicted using the QSPR models for 91 solutes. From these
predicted values just 618 (10.1%) were out of the range of
the QSPR models.

(iii) Sector III was filled using 87 QSPR models for
solvents. Here, 4207 (15.8%) of the predicted values were
out of the range of the QSPR models.

(iv) The values out of range in sectors II and III were
replaced using the so-called backward procedure as described
in a previous section (step 3).

(v) Sector IV was completely filled using also the
backward procedure. The predictedlogL values were cor-
related with the respective experimental values to verify the

correctness of prediction. The correlation between experi-
mental and predicted values is with very good squared
correlation coefficient (R2 ) 0.997) for sector II as plotted
in Figure 7. The squared correlation coefficient is acceptable
(R2 ) 0.908) for sector III (see Figure 8). Also the predicted
values from the “backward procedure” and in the range

Figure 7. Predicted vs experimental solubility values for 91 solutes
series in sector II:y ) 1.0041x - 0.0427;R2 ) 0.9968 (357 points).

Figure 8. Predicted vs experimental solubility values for 87
solvents series in sector III:y ) 0.9092x + 0.3288;R2 ) 0.9082
(1109 points).

Figure 9. PCA backward estimated vs in the range predicted values
for sector II: y ) 0.9235x + 0.3659;R2 ) 0.9002 (5479 points).

D7 ) ∑
D

SD (8)
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predicted values from solute/solvent QSPR models were
compared. For sector II this gives a very good correlation
with R2 ) 0.900 and the corresponding plot is given in Figure
9. This comparison for sector III results in moderate
correlation (R2 ) 0.641) and is plotted in Figure 10. The
moderate result for sector III is due to the wide range of
different solutes that also form the biggest part of the HM0.

Further the HM1 was transposed into the corresponding
transposed matrix, HM2 (154 solvents× 397 solutes), and
the second PCA treatment (II) was applied for both matrices.
The corresponding eigenvalues of the 10 first principal
components for these two matrices are given in Tables 2
and 3. As it can be expectedly seen, increasement of the
matrix dimensionality will reduce the PCA revenue. The
cumulative percentage of the eigenvalue drops slightly from
96.03% to 92.55% for normal matrix and from 65.95% to
62.96% in case of transposed matrix. Results of the PCA
will be discussed in subsequent papers.

CONCLUSIONS

Developments in chemistry, technology, and drug design
require extensive analysis of existing data and frequently
estimations of values experimentally unavailable or unmea-
sured. Examples include the design and screening of real
and virtual combinatorial libraries, the analysis of ADME/
Tox (absorption, distribution, metabolism, elimination, and
toxicity) profiles in drug discovery process, and the optimi-
zation of process control in (chemical) technology. We
believe that the methodology and computational procedures
designed in this work are of general interest and applicable
to various large-scale quantitative structure-activity relation-
ship/quantitative structure-property relationship and data
mining problems in relevant areas.

The quantitative-structure property relationships and
principal component analysis combined into one methodol-
ogy have been used successfully to predict a large number
of solubility values. A total of 4540 experimental data points
was analyzed. The 178 QSPRs redeveloped for the densest
area of the data matrix (91 solutes× 87 solvents) with
covering a total of 3074 experimental values were successful
in the prediction of the remaining 4843 solubility values.
The PCA on the densest area of the data matrix, combined

with the 178 QSPR equations, were further used successfully
in filling the remaining of the 397× 154 data matrix. The
prediction procedure was validated with an external test set
of 289 experimental data points.

The proposed methodology, with its combination of
QSPRs and PCA, shows potential for the prediction of
numerous solubility values. The three principal components
from the fully filled data matrix where solutes are observa-
tions and solvents are variables describe 92.55% of the
variability. The PCA on the corresponding transposed matrix
results in only a moderate description of the variability. The
principal components that describe the variability in the data
matrix capture the contributions of the intermolecular disper-
sion forces, cavity formation forces, electrostatic forces, and
hydrogen bonding to the solvation free energy.
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Trinajstić, N.; Suzuki, T.; Schu¨ürmann, G. J. Prediction of liquid
viscosity for organic compounds by a quantitative structure-property
relationship.J. Phys. Org. Chem.2000, 13, 80-86.

(28) Katritzky, A. R.; Mu, L.; Lobanov, V. S.; Karelson, M. Correlation
of Boiling Points with Molecular Structure. 1. A Training Set of 298
Diverse Organics and Test Set of 9 Simple Inorganics.J. Phys. Chem.
1996, 100, 10400-10407.

(29) Katritzky, A. R.; Wang, Y.; Sild, S.; Tamm, T.; Karelson, M. QSPR
Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of
Water-Air Partition Coefficients.J. Chem. Inf. Comput. Sci.1998,
38, 720-725.

(30) Ivanciuc, O.; Ivanciuc, T.; Filip, P. A.; Cabrol-Bass, D. Estimation of
the Liquid Viscosity of Organic Compounds with a Quantitative
Structure-Property Model.J. Chem. Inf. Comput. Sci.1999, 39, 515-
524.
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