Laura Waugh
Repository Librarian for Scholarly Works
laura.waugh@unt.edu
Overview

- Brief History
- Submissions & Workflow
- Copyright & Publishers
- Open Access
- Questions & Answers
Links

UNT Digital Library
http://digital.library.unt.edu

UNT Scholarly Works
http://digital.library.unt.edu/scholarlyworks
Brief History
Brief History

- Launched Fall 2010
- Research on best practices
- Faculty feedback
- Starting slow
Brief History

- First uploads
 - ~60 items
 - Grew to 200
 - Grew to 500
 - Grew to 1500+
Brief History

- Metadata modification
- Resource types
- Authors from multiple institutions
- Source
Reference Beyond the Desk: Nontraditional Modes of Reference

Creator (Author): Thomsett-Scott, Beth
University of North Texas

Original Creation Date: April 15, 2011

Description: This presentation discusses virtual reference services in libraries. The topics include virtual reference systems, with examples of what other institutions have adopted, collaborative virtual reference services with examples, and how reference librarians away from their desk and even off campus have developed new referencing services.

Degree:
Department: Libraries

Physical Description: 50 p.

Language(s):
- English

Subject(s):

Keyword(s): virtual reference systems | reference services | librarians

Source: Texas Library Association (TLA) Annual Conference, 2011, Austin, Texas, United States

Contributor(s):
- Organizer of meeting: Texas Library Association (TLA)

Partner: UNT Libraries
Submissions & Workflow
Submissions & Workflow

Who can submit:

- Faculty, staff, and *students
 - Theses and dissertation materials
 - Conference materials
 - Published items
Submissions & Workflow

Submission Methods:

- Email (PDF, Word, PowerPoint)
- Flash Drives
- Interdepartmental mail
- Copy of a C.V.
- Picking it up
Submissions & Workflow

Check permissions first!

- Normalize the file formats
 - JPEG
 - PDF
 - Other version – if applicable
Prediction of Toxicity, Sensory Responses and Biological Responses with the Abraham Model

This book chapter discusses the prediction of toxicity, sensory responses and biological responses with the Abraham model.

Creator(s):
- Acree, William E. (William Eugene)
- Grubbs, Laura M.
- Abraham, M. H. (Michael H.)

Creation Date: February 10, 2012

Usage:
- Total Uses: 3
- Past 30 days: 3
- Yesterday: 0
Item is available in multiple formats. Choose one below.

Read this Article

<table>
<thead>
<tr>
<th>Number of items:</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filetype:</td>
<td>.jpg (image)</td>
</tr>
</tbody>
</table>

Download this Article

<table>
<thead>
<tr>
<th>Number of items:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filetype:</td>
<td>.pdf (file)</td>
</tr>
</tbody>
</table>

Download this Article

<table>
<thead>
<tr>
<th>Number of items:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filetype:</td>
<td>.doc (file)</td>
</tr>
</tbody>
</table>
Mathematical correlations for describing enthalpies of solvation of organic vapors and gaseous solutes into ionic liquid solvents

MATHENTICAL CORRELATIONS FOR DESCRIBING ENTHALPIES OF SOLVATION OF ORGANIC VAPORS AND GASEOUS SOLUTES INTO IONIC LIQUID SOLVENTS

Laura M. Grubbsa, William E. Acree, Jr.a, and Michael H. Abrahamb

a Department of Chemistry, 1155 Union Circle Drive \#305070, University of North Texas, Denton, TX 76203-5017 (USA)

b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK)

Abstract

Previously reported ion-specific equation coefficients for the Abraham general solvation model are updated using recently published enthalpy of solution data for organic solutes dissolved in room temperature ionic liquids (RTILs). Reported for the first time are equation coefficients for 1-hexylxoxymethyl-3-methylimidazolium, 1,3-dihexylxoxymethylimidazolium, 3-methyl-N-butylpyridinium, \textit{tris}(pentafluoroethyl)trifluorophosphate, and tetraacyanoborate ions. In total 12 sets of cation-specific and 10 sets of anion-specific equation coefficients have been determined
Submissions & Workflow

- Create the metadata record
- Qualified Dublin Core
- Involves some research
Subject

Library of Congress Subject Headings
- Education, Higher—Digital libraries

Primary Source

Coverage

Source

Conference
- American Library Association Annual Conference, 2011, New Orleans, Louisiana, United States

Citation

Citation information related to the source item
Name authority controls

- Name App
 - http://digital2.library.unt.edu/name/
 - Library of Congress authorities
 - VIAF
JNT Name App is for reference, disambiguation and storage of name records used by the UNT Digital Collections.

Total Record Count

- Personal Names: 2,389
- Organization Names: 416
- Event Names: 4
- Software Names: 0
- Total Names: 2,809
Acree, William E. (William Eugene)

Authorized: Acree, William E. (William Eugene)

Name Type: Personal

URI: http://digital2.library.unt.edu/name/nm0000381

Biographical Info:

Affiliations

- University of Missouri-Rolla: Alumnus (1975)
- University of Missouri-Rolla: Alumnus (1977)
- University of Missouri-Rolla: Alumnus (1981)
- Phillips Petroleum Co: Research Associate (1980)
- University of Kansas: Research Associate (1980-1981)
- University of Kansas: Instructor (1981-1982)
- Kent State University: Faculty (1982-1988)
- Kent State’s Liquid Crystal Institute: Faculty (1985-1988)
- University of North Texas: Faculty (1988-)

Subject Areas

- Chemistry

Links:

- ![Internal](http://digital2.library.unt.edu/name/nm0000381)
- ![UNT Faculty Profile](https://faculty.unt.edu/editprofile.php?pid=2006)
- ![VIAF](http://viaf.org/viaf/92554693)
- ![LOC](http://id.loc.gov/authorities/names/n83178609)

Publishes As:

- Acree, William E., Jr.
- Acree, Bill

Alternate Formats

- [MADS/XML](#)
- [JSON](#)
Basic Info

Name: Acree, William E. (William Eugene)

Please use the general reverse order: LAST, FIRST

Normalized name: acree william e william eugene

NACO normalized form of the name

Name type: Personal

Must be one of 4 types

Biography

Affiliations

- *University of Missouri-Rolla:* Alumnus (1975)
- *University of Missouri-Rolla:* Alumnus (1977)
- *University of Missouri-Rolla:* Alumnus (1981)
- *University of Kansas:* Research Associate (1980-1981)
- *University of Kansas:* Instructor (1981-1982)
- *Kent State University:* Faculty (1982-1988)
- *Kent State’s Liquid Crystal Institute:* Faculty (1985-1988)
- *University of North Texas:* Faculty (1988-)

Compatible with MARKDOWN

Misc Options

Record status: Active

Merged with:
Every publisher, organization, journal, and entity differs on policy

SHERPA/ROMEO

http://www.sherpa.ac.uk/romeo/
Copyright & Publishing

- Corresponding with publishers
- Building rapport
- Managing permissions
Copyright & Publishing

- **Pre-print**
 - Authors’ initial, submitted version of the article before peer-review

- **Post-print**
 - Authors’ version of the article after accepted, peer-review, and revisions but before publishing

- **Published version**
 - Publisher-generated, final published version with typesetting and logos
DEVELOPMENT OF ABRAHAM MODEL CORRELATIONS FOR SOLVATION

CHARACTERISTICS OF LINEAR ALCOHOLS

*Department of Chemistry, 1155 Union Circle Drive #305070, University of North Texas, Denton, TX 76203-5017 (USA)

bDepartment of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK)

Abstract

Data have been compiled from the published literature on the partition coefficients of solutes and vapors into the anhydrous linear alcohols (methanol through 1-heptanol, and 1-decanol) from both water and from the gas phase. The logarithms of the water-to-alcohol partition coefficients (log P) and gas-to-alcohol partition coefficients (log K) were correlated with the Abraham solvation parameter model. The derived correlations described the observed log P and log K values to within average standard deviations of 0.14 and 0.12 log units, respectively. The predictive abilities of the each correlation were assessed by dividing databases into a separate training set and test set.
Development of Abraham model correlations for solvation characteristics of linear alcohols

Laura M. Sprungera, Sai S. Achia, Racheal Pointera, Brooke H. Blake-Taylora, William E. Acree Jr.b,*, Michael H. Abrahamb

aDepartment of Chemistry, 1155 Union Circle Drive #303070, University of North Texas, Denton, TX 76203-5017, USA
bDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

\textbf{ABSTRACT}

Data have been compiled from the published literature on the partition coefficients of solutes and vapors into the anhydrous linear alcohols (methanol through 1-heptanol, and 1-decanol) from both water and from the gas phase. The logarithms of the water-to-alcohol partition coefficients ($\log P$) and gas-to-alcohol partition coefficients ($\log K$) were correlated with the Abraham solvation parameter model. The derived correlations described the observed $\log P$ and $\log K$ values to within average standard deviations of 0.14 and 0.12 log units, respectively. The predictive abilities of the each correlation were assessed by dividing databases into a separate training set and test set.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The solubility of crystalline solutes in both neat organic solvents and mixtures has received considerable attention in recent years due to the important role that solubility plays in the manufacture of new chemical materials and pharmaceutical products. For newly synthesized compounds, supply is often very limited and there is

and for processes involving solute transfer from the gas phase to a condensed phase

$$\log K = c + eE + sS + aA + bB + iI$$

The dependent variables in Eqs. (1) and (2) are the logarithm of the solute's water-to-organic solvent partition coefficient, $\log P$, and...
Copyright & Publishing

- Authors’ rights
 - SPARC Author Addendum
 - Creative Commons
 - http://creativecommons.org/licenses/
Open Access
Open Access

- Open Access
- Greater access
- Wider dissemination
- Increased citations
- Lower price barriers
Open Access

- $5.8 million of our $6.5 million budget is spent on subscriptions
- Includes print, electronic periodicals, and databases
- Publishers increase 6%-8% per year
Video on open access explained:

http://www.youtube.com/watch?v=L5rVH1KGBCY
Blog post on open access:
http://blogs.berkeley.edu/2013/04/08/open-access-explained/
Questions & Answers

laura.waugh@unt.edu