v A REST AP Hor Library Data

Jason Thomale & William Hicks | University of North Texas Libraries, User Interfaces Unit

We Wanted Access to our Catalog Data .. A Web-Based, RESTful API

We've long had plans for it. But is SQL access enough? We like REST because it’s the architectural style underlying the Web.

In the UNT Libraries’ User Interfaces SQL access can be slow — prohibitively We want to build Web applications that can take advantage of our bibliographic
Unit, we've wanted to experiment slow for most applications, especially data in a natively Web-based way: as crawlable, interlinked resources.

with our catalog data to try to build when querying bibliographic data.

new applications that better support Shelf-list B
elr-list browser

resource discovery. And, with RDA and ywhat about Sierra’s REST API? : 1L L=
BIBFRAME presenting models ripe for . Discovery —— | Bib MARC Application
experimentation, IIl released the.lr Application | <— |/bibs/1234 Imarc/1234
there’s no better THE LIBRARY IS REST API for Sierra l T
time than now. P ; in April of 2014,
\ but it doesn't meet N

But we're an = our needs, either. ltem Item ltem Shelflistitem
Innovative 3 ‘ o Why not? /items/5678 | |/items/5679 | |/items/5680 /locations/w4m/shelflistitems/5680
Anteriaces; inc. ILS APIs model ILS data. ee—— / ‘
ilyshop. Using ILS API ILS R

: ez ; sing s as-is restricts us to ltem Locator | — | Location Shelflistitems
Thismezns h.IStonca"y weve hadino concepts and conventions, built for a Servi <—— |/locations/w4m /locations/w4m/shelflistitems
programmatic access to the data in our \,or1d that uses MARC. We need the ervice
Integrated Library System (ILS). freedom to model and access our data

differently based on our particular

So we migrated from Millennium needs. And REST concepts are basically compatible with Linked Data concepts.
to Sierra. , Implementing new bibliographic data models using a REST API could serve as a
Sierra is lllI's new ILS, billed as being And we don’t want to be at our stepping stone toward serving bibliographic Linked Data, as BIBFRAME in JSON-
“open,” in theory. In practice, we do vendor’s mercy. LQ or somethipg else, without requiring additional infrastructure or affecting
at least now have some accessto our yjtimately, we have no control over our existing APl clients.
gl(a)ta, prin;arily through a read-only vendor’s APls. We can't ensure that

L interface. ; ; 1 . .

they will be as functional as we need. But - The Devil is in the Details

S() V\/ c Started BUlldlng Beyond the basics such as using nouns for resources and handling errors using
HTTP status codes, REST practices vary widely and are sometimes hotly debated.

It's a Python Django project with It's also an extensible REST API
three primary components: a builder, toolkit, and framework.
Base, an Exporter and an API.

Here are some details of our approach, some of which may affect how
“RESTful” it is, depending on whom you ask.

Currently we expose only a few

The Base contains data structures such resources, but nearly all 344 database
as models. views accessible to Sierra customers Data / Resource Modeling Hypermedia and
are modeled using the Django ORM. Approach HATEOAS

The Exporter performs scheduled data
i i i Creating a new type of export is as
extraction, transformation, and loading g yP P Start with few base resources. Extend

from Sierra to Solr and Redis. easyas modifying a Solr schema and with new resources based on needs.
extending the base Exporter class. To

start loading data, we just plug the
new class into the scheduler.

Use hal+json media type. Put URLs of
related resources in _links sub-object.

The API frontend, which uses the
Django REST Framework, serializes
data to / from Solr and Redis, handles

. : Limiting Fields
HTTP requests, and serves resources ~ We create new resources by extending Read / Write? g
to clients. For now we're mainly the Resource View and Serializer Returned
interested in building classes.

Mostly read-only (no write Not supported. Separate

JavaScript clients atop the Extensions can be bundled into access to ILS), but some resources are created if different
API, so we focus on JSON. Client pluggable Django apps. non-ILS fields are writable. Uses REST sets of fields are needed.
GET, PUT, and PATCH methods. Approach (Example: Iltems and
‘ ? No batch write operations (yet). Shelflistitems.)
Python Django
[Custom Apps] ool : - :
_— Visxgen:ng)g)ggiférs s I Filtering, .Sortllng, and Versioning
Interface : (Haystack, Pagination
Pysolr)
API App Supported. Filter, sort, and paginate Currently puttipg the versign in the
N Resource Views, Renderers, Parsers, and u “ lists of resources using URL query :JeRtirg.g.hle?/f/)l\i‘gs.igr):tensmns el
Serializers parameters. q .
Task
Queue Exporter App Pymarc
and Exporter Classes, Custom Tasks, Admin
S("é’;g:’;';‘r Interface Are these "best” practices? They're "best” for us insofar as they're
working for our needs, for now.
Base App
Custom Models & Model Managers
. 9
oo, Have You Builta REST API? Let’s Talk!
Celery Messages, SolrMarc
Workers Application Data
Record Data

Jason Thomale

Resource Discovery Systems Librarian
jason.thomale@unt.edu

