COMPARING OUTCOME MEASURES DERIVED FROM FOUR RESEARCH DESIGNS
INCORPORATING THE RETROSPECTIVE PRETEST

Kim Nimon

Dissertation Prepared for the Degree of
DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS
August 2007

APPROVED:

Jeff M. Allen, Major Professor
Michael Beyerlein, Minor Professor
Jessica Li, Committee Member
Robin K. Henson, Interim Chair of the Department of Technology and Cognition
M. Jean Keller, Dean of the College of Education
Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies
Nimon, Kim, *Comparing outcome measures derived from four research designs incorporating the retrospective pretest*. Doctor of Philosophy (Applied Technology and Performance Improvement), August 2007, 80 pp., 11 tables, 2 illustrations, references, 82 titles.

Over the last 5 decades, the retrospective pretest has been used in behavioral science research to battle key threats to the internal validity of posttest-only control-group and pretest-posttest only designs. The purpose of this study was to compare outcome measures resulting from four research design implementations incorporating the retrospective pretest: (a) pre-post-then, (b) pre-post/then, (c) post-then, and (d) post/then. The study analyzed the interaction effect of pretest sensitization and post-intervention survey order on two subjective measures: (a) a control measure not related to the intervention and (b) an experimental measure consistent with the intervention. Validity of subjective measurement outcomes were assessed by correlating resulting to objective performance measurement outcomes.

A Situational Leadership® II (SLII) training workshop served as the intervention. The Work Involvement Scale of the self version of the Survey of Management Practices Survey served as the subjective control measure. The Clarification of Goals and Objectives Scale of the self version of the Survey of Management Practices Survey served as the subjective experimental measure. The Effectiveness Scale of the self version of the Leader Behavior Analysis II® served as the objective performance measure.

This study detected differences in measurement outcomes from SLII participant responses to an experimental and a control measure. In the case of the experimental measure, differences were found in the magnitude and direction of the validity coefficients. In the case of the control measure, differences were found in the magnitude of the treatment effect between groups.
These differences indicate that, for this study, the pre-post-then design produced the most valid results for the experimental measure. For the control measure in this study, the pre-post/then design produced the most valid results. Across both measures, the post/then design produced the least valid results.
TABLE OF CONTENTS

Page

LIST OF TABLES..v

LIST OF ILLUSTRATIONS.. vi

TRADEMARK ACKNOWLEDGEMENTS... vii

Chapter

1. INTRODUCTION ..1
 Background
 Need for the Study
 Theoretical Framework
 Purpose of the Study
 Research Questions and Null Hypotheses
 Limitations
 Delimitations
 Definition of Terms
 Summary

2. LITERATURE REVIEW ..14
 Introduction
 Retrospective Pretest in Pretest-Posttest Designs
 Pretest Sensitization and Order Effects
 Memory Distortion
 Summary

3. METHODS ..27
 Research Design
 Population
 Sample
 Instrumentation
 Data Collection
 Data Analysis
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Research Design per Group</td>
<td>27</td>
</tr>
<tr>
<td>2.</td>
<td>Group by Program Cross-tabulation</td>
<td>29</td>
</tr>
<tr>
<td>3.</td>
<td>Score Reliability Estimates</td>
<td>43</td>
</tr>
<tr>
<td>4.</td>
<td>Analysis of Variance Between SMP-SCTL Thentest Scores by Group</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>SMP-SEXP Score Validity Estimates</td>
<td>45</td>
</tr>
<tr>
<td>6.</td>
<td>Missing Values Analysis</td>
<td>46</td>
</tr>
<tr>
<td>7.</td>
<td>Descriptive Statistics for Study Variables</td>
<td>47</td>
</tr>
<tr>
<td>8.</td>
<td>Levene’s Test Results – SMP-SCTL Score Variance Between Groups</td>
<td>48</td>
</tr>
<tr>
<td>9.</td>
<td>Levene’s Test Results – SMP-SEXP Score Variance Between Groups</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Results of Split-plot ANOVA and Simple Effect Tests on SMP-SCTL Scores</td>
<td>51</td>
</tr>
<tr>
<td>11.</td>
<td>Results of Split-plot ANOVA and Simple Effect Tests on SMP-SEXP Scores</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

1. Estimated Marginal Means of SMP-SCTL .. 51
2. Estimated Marginal Means of SMP-SEXP .. 55
TRADEMARK ACKNOWLEDGEMENTS

<table>
<thead>
<tr>
<th>Trademark</th>
<th>Acknowledgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader Behavior Analysis II®</td>
<td>Leader Behavior Analysis II is a registered trademark of Blanchard Training and Development, Inc. (Escondido, CA).</td>
</tr>
<tr>
<td>Situational Leadership® II</td>
<td>Situational Leadership is a registered trademark of the Center for Leadership Studies (Escondido, CA). Blanchard Training and Development, Inc. created the Situational Leadership® II model.</td>
</tr>
<tr>
<td>SPSS®</td>
<td>SPSS is a registered trademark of SPSS, Inc. (Chicago, IL).</td>
</tr>
<tr>
<td>Task Cycle®</td>
<td>Task Cycle is a registered trademark of The Clark Wilson Group (Silver Spring, MD).</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Background

Over the last 5 decades, the retrospective pretest has been used in behavioral science research to battle key threats to the internal validity of posttest-only control-group and pretest-posttest designs. Citing studies conducted by Deutsch and Collins (1951), Sears, Maccoby, and Levin (1957), and Walk (1956), Campbell and Stanley (1963) recommended supplementing posttest-only control-group designs with a retrospective pretest to validate pre-intervention equivalence of experimental and control groups. Almost 2 decades later, Howard, Ralph, et al. (1979) proposed extending pretest-posttest designs by adding the retrospective pretest to moderate the confounding effect of experience limitation. Referencing segments of the Howard, Ralph, et al. work 2 decades later, evaluators (e.g., Lamb & Tschillard, 2005; Martineua, 2004; Raidl et al., 2004), suggested replacing the traditional pretest in pretest-posttest designs with the retrospective pretest as a practical and valid means to determine program outcomes, mitigating the effects of experience limitation, pretest sensitization, maturity, and mortality.

While the retrospective pretest is cited as a technique to moderate key threats to the internal validity of research designs related to program evaluation (Klatt & Taylor-Powell, 2005), the validity of measurements based on the retrospective pretest is often questioned (e.g., Hill & Betz, 2005; Lamb, 2005; Schwarz, in press). The most common and encompassing issue relating to participants’ retrospective accounts is memory distortion (Nimon & Allen, 2007). This is of particular concern when retrospective accounts are used to measure changes in knowledge, skills, or attitudes because individuals may distort their personal recall of pre-intervention behavior to generate an impression of improvement even when no such change
occurs (Ross & Conway, 1986). Conversely, participants may generate an impression of stability even when change occurs, particularly if it is socially desirable (Pearson, Ross, & Dawes, 1992).

To manage the error associated with memory distortion, a robust design incorporating the then test includes a control condition (Sprangers & Hoogstraten, 1989) or an external variant (Umble, Upshaw, Orton, & Matthews, 2000) to provide concurrent validity of retrospective measures. One of the most common techniques to provide concurrent validity of measures based on retrospective accounts is to correlate resultant gain scores to an objective measure of change (Nimon & Allen, 2007). However, the task of analyzing gain scores yields both a perceived and potential threat to the external validity of related research designs. Because simplified formulas, assuming parallelism in pretest and posttest measures, present the reliability of gain scores in their most unfavorable light (Williams & Zimmerman, 1996), gain scores are perceived by some psychometric traditionalists as being inherently unreliable (Zumbo, 1999). Therefore, robust research designs examining the concurrent validity of retrospective measures using gain scores should assess their reliability with formulas that consider the unique statistical properties (e.g., standard deviation, reliability) of both scores (e.g., pretest, posttest) contributing to the latent measure of change.

Need for the Study

Consistent with demand for accountability, designs incorporating the retrospective pretest have gained prominence as a method for measuring self-reporting change (Klatt & Taylor-Powell, 2005). Although the tool has gained momentum in behavioral science practice and research, there is a need to examine the relationship between research design choice and measurement outcomes (Klatt & Taylor-Powell, 2005; Nimon & Allen, 2007).
Within the two distinct designs proposed by Howard, Ralph, et al. (1979) and contemporary evaluators (e.g., Lamb & Tschillard, 2005; Martineau, 2004), there are various ways in which the retrospective pretest is included and formatted. In particular, Klatt and Taylor-Powell (2005) noted two retrospective pretest administration techniques: (a) in conjunction with the posttest as a single questionnaire and (b) separately from the posttest with two questionnaires. Users of the retrospective pretest must therefore determine whether or not to include a traditional pretest in their designs as well as choose between administering one or two post-intervention questionnaires. The fully nested combination of choices results in four research designs: (a) pre-post-then, (b) pre-post/then, (c) post-then, (d) post/then (see Definition of Terms).

While citing studies (Sprangers & Hoogstraten, 1989; Terborg & Davis, 1982) that examined the effects of pretest sensitization and post-intervention survey order, literature (Babcock, 1997; Klatt & Taylor-Powell, 2005; Nimon & Allen, 2007) provides limited information to indicate how the research designs impact measurement outcomes. A critical review of the studies cited also indicates that many studies focused on the results of statistical significance analyses and did not report the results of power, practical significance, or concurrent validity tests. Furthermore, the studies focused either on the main effect of pretest sensitization or post-intervention survey order and thereby missed the opportunity to test for an interaction effect. Therefore, there is a need to compare measurement outcomes from four designs incorporating the retrospective pretest (pre-post-then, pre-post/then, post-then, post/then). This study will not only inform researchers and practitioners who are considering how to incorporate the retrospective pretest, but it will also fill a gap in the literature by examining the interaction effect of pretest sensitization and post-intervention survey order.
Theoretical Framework

Five theories relating to the validity of post-intervention measurements in retrospective pretest designs provided the framework for this study. The foundation of this study is response-shift theory, because it argues for the validity of thentest measures. Opposing the theory of response-shift are theories of personal recall and impression management. Contributing to the theoretical validity of posttest and thentest measurements are Schwarz’s (1996, 1999) theory based on Grice’s (1975) maxims of conversation and Sprangers and Hoogstraten’s (1989) theory relating to pretest sensitization. All these theories relate to the validity of post-intervention measurements in retrospective pretest designs. As such, it is not clear which theory is more valid for a particular occasion of test (Norman, 2003). Therefore, they collectively provided the theoretical framework for the questions posed in this study.

Response-Shift Theory

As a proponent of the theory, Howard (1980) suggested that response-shift occurs when an experimental intervention changes the subject’s evaluation standard with regard to the dimension measured by the self-report instrument. Golembiewski, Billingsley, and Yeager (1976) extended Howard’s explanation by including changes in values or conceptualization. Similarly, Sprangers and Schwartz (2000) suggested that response-shift results from a change in the meaning of one’s self-evaluation of a target construct as a result of (a) a change in the respondent’s internal standards of measurement (i.e., scale recalibration), (b) a change in the respondent’s values (i.e., the importance of component domains constituting the target construct), or (c) a redefinition of the target construct (i.e., reconceptualization). Howard’s definition of response-shift theory serves as a foundational element for the present study because
the extent to which the three components of response-shift (i.e., standards, values, conceptualization) are distinct or interconnected is still unknown (Sprangers & Schwartz, 2000).

Personal Recall Theory

The theory of personal recall opposes the theory of response-shift because it presumes that retrospective measures of initial states are reconstructed in concert with individuals’ implicit theories of stability or change (Pearson et al., 1992). For example, if individuals are expecting to experience a change in knowledge, skills, or attitudes as a result of an intervention, personal recall theory suggests that these individuals will reconstruct their initial state so as to indicate a treatment effect (i.e., a practical difference between posttest and retrospective measures), even when no such change occurs (Ross, 1989). Similarly, Ross noted that, if individuals are operating under the theory of stability, personal recall theory suggests that these individuals will reconstruct their initial state so as to indicate a lack of treatment effect (i.e., no practical difference between posttest and retrospective measures), even when a change occurs.

Impression Management Theory

The theory behind impression management is similar to personal recall theory. The difference is that, under the theory of impression management, participants reconstruct their retrospective measures so as to present themselves in the most favorable manner (Pearson et al., 1992). For example, subjects in attitude-change experiments may present a façade of consistency by reporting past attitudes that are similar both to their present opinion and to the views expressed in experimental communications designed to alter their attitudes. Similarly, participants in improvement programs may believe that the appearance of improvement will
please the leader. In this case, they may moderate their initial states to generate an impression of improvement.

Grice’s Maxims of Conversation

Grice (1975) theorized that cooperative conversation is guided by a set of tacit assumptions that can be expressed in the form of four maxims: (a) maxim of manner, (b) maxim of relation, (c) maxim of quantity, and (d) maxim of quality. The maxim of manner asks speakers to make contributions such that they can be understood by their audience. The maxim of relation enjoins speakers to make contributions relevant to the aims of the ongoing conversation. The maxim of quantity charges speakers to make contributions as informative as is required, but not more informative than is required. The maxim of quality requests speakers not to say anything they believe to be false or for which they lack sufficient evidence.

Relating Grice’s (1975) maxims of conversation to research design, Schwarz (1996, 1999) theorized that respondents rely on the tacit assumptions that govern the conduct of conversation in everyday life to infer the pragmatic meaning of a survey item. Of the assumptions that govern conversation and survey item interpretation, the maxim of relation is pertinent to this study.

Drawing from Grice’s (1975) maxim of relation, Schwarz (1996, 1999) argued that subjects use contextual information in interpreting survey items, relating the item to the context of an ongoing exchange. More specifically, Schwarz inferred that subjects consider the content of adjacent items in the process of interpreting a question’s intended meaning. This study extends Schwarz’s theory by suggesting that arranging thentest and posttest questions side-by-
side may signal to participants that change is expected to occur and thereby influence post-intervention measurement outcomes.

Pretest Sensitization

The theory behind pretest sensitization is that for some types of knowledge, skills, or attitudes, pretests change subjects’ responsiveness to the experimental variable (Campbell & Stanley, 1963). As it relates to retrospective pretest designs, Sprangers and Hoogstraten (1989) theorized that the pretest could have an influence on posttest and thentest measures.

Purpose of the Study

The purpose of this study was to compare outcome measures resulting from four research design implementations incorporating the retrospective pretest: (a) pre-post-then, (b) pre-post/then, (c) post-then, and (d) post/then.

The study analyzed the interaction effect of pretest sensitization and post-intervention survey order on two subjective measures: (a) a control measure not related to the intervention and (b) an experimental measure consistent with the intervention. Validity of subjective measurement outcomes were assessed by correlating results to objective performance measurement outcomes.

A Situational Leadership® II (SLII) training workshop served as the intervention. The Work Involvement Scale of the self version of the Survey of Management Practices Survey served as the subjective control measure (SMP-SCTL). The Clarification of Goals and Objectives Scale of the self version of the Survey of Management Practices Survey served as the subjective
experimental measure (SMP-\text{EXP}). The Effectiveness Scale of the self version of the Leader Behavior Analysis II® (LBAII-SEF) served as the objective performance measure.

Research Questions and Null Hypotheses

1. Is there a difference in measurement outcomes, derived from SLII training participants’ responses to a control measure, among four retrospective pretest design groups?

\textit{Ho1}_A: \text{There is no statistically significant interaction between group and occasion, as measured by posttest and thentest responses to the SMP-S\text{CTL}.}

\textit{Ho1}_B: \text{There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-S\text{CTL}.}

\textit{Ho1}_C: \text{There is no statistically significant simple effect of group at the thentest occasion, as measured by the SMP-S\text{CTL}.}

\textit{Ho1}_D: \text{There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP-S\text{CTL}.}

\textit{Ho1}_E: \text{There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP-S\text{CTL}.}

\textit{Ho1}_F: \text{There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP-S\text{CTL}.}

\textit{Ho1}_G: \text{There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP-S\text{CTL}.}

2. Is there a difference in measurement outcomes, derived from SLII training participants’ responses to an experimental measure, among four retrospective pretest design groups?

\textit{Ho2}_A: \text{There is no statistically significant interaction between group and occasion, as measured by posttest and thentest responses to the SMP-S\text{EXP}.}

\textit{Ho2}_B: \text{There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-S\text{EXP}.}

\textit{Ho2}_C: \text{There is no statistically significant simple effect of group at the thentest occasion, as measured by the SMP-S\text{EXP}.}

\textit{Ho2}_D: \text{There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP-S\text{EXP}.}
There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP-SEXP.

There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP-SEXP.

There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP-SEXP.

Limitations

1. This research examined participants’ perceived leadership effectiveness and their ability to apply SLII concepts to case study scenarios. This research makes no claim as to participants’ ability to transfer such skills to the workplace.

2. Although workshops were selected that provided the same training material and that were facilitated by a certified trainer, the researcher did not control for differences that may have occurred in the execution of the training program. These differences could have affected how participants responded to post-intervention survey instrumentation.

3. Research design group may not be the only factor influencing differences in participants’ scores. Other factors, including distractions at home or work and measurement error, may have influenced the results obtained.

Delimitations

1. Demographics were not considered as variables in this study beyond that of ensuring that participants met the criteria of the workshop and served in a leadership role.

2. This study focused on individuals participating in a SLII training program conducted in the United States.
3. This study tested two specific order effects: (a) posttest administered in conjunction with a thentest according to the Howard, Ralph, et al. (1979) recommendations and (b) posttest administered separate and before the thentest similar to Terborg and Davis’s (1992) study.

4. This study incorporated a control condition by conducting parallel analyses on control and experimental measures, following the examples provided by Levinson, Gordon, and Skeff (1990) and Skeff, Stratos, and Bergen (1992).

5. This study was limited to self-report measures and performance tests completed by training workshop participants. The study did not incorporate surveys of leadership effectiveness or performance from participants’ superiors, subordinate, or peers.

Definition of Terms

Between-subjects factor: An independent variable representing different groups of subjects (Maxwell & Delaney, 2004).

Box M: A statistic used to test for homogeneity of covariance matrices (Maxwell & Delaney, 2004).

Experience limitation: The phenomenon of subjects having only a partially developed conceptualization of the dimensions along which they are asked to report about themselves (Aiken & West, 1990).

Implicit theory: A set of individual beliefs regarding the inherent stability of an attribute as well as a set of general principles concerning the conditions likely to promote personal change (Ross & Conway, 1986).

Impression management: The phenomenon of subjects distorting self-report measures in order to present themselves in the most favorable manner possible (Pearson et al., 1992).
Leader Behavior Analysis II® (LBAII): Set of instruments based on the SLII model (Blanchard, Hambleton, et al., 2004). The LBAII Self (LBAII-S) provides self-report measures of an individual’s leadership style, flexibility, and effectiveness. The LBAII Other (LBAII-O) provides a measure of an individual’s leadership style, flexibility and effectiveness from the perspective of the individual’s peer, subordinates, or superiors (Zigarmi, Edeburn, & Blanchard, 1997).

Pairwise comparison: All possible comparisons when testing the differences between means for multiple groups (Hinkle, Wiersma, & Jurs, 2003).

Personal recall: The process of individuals noting their prior status on an attribute in question by characterizing the past different from or the same as present. The process may also involve an individual’s implicit theories in guiding the construction of past attributes (Ross & Conway, 1986).

Post/then: A posttest design incorporating a retrospective pretest in which the posttest and thentest are administered with a single questionnaire.

Posttest-pretest gain scores: Scores produced by subtracting pretest scores from posttest scores.

Posttest-thentest gain scores: Scores produced by subtracting thentest scores from posttest scores.

Post-then: A posttest design incorporating a retrospective pretest in which the posttest and thentest are administered as two separate questionnaires.

Pre-post/then: A pre-post design supplemented by a retrospective pretest in which the posttest and thentest are administered with a single questionnaire.
Pre-post-then: A pre-post design supplemented by a retrospective pretest in which the posttest and thentest are administered as two separate questionnaires, with the posttest administered before the thentest.

Pretest-posttest: A design that includes three phases: (a) administration of a pretest measuring the dependent variable, (b) implementation of the experimental treatment, and (c) administration of a posttest that measures the dependent variable again (Gall, Gall, & Borg, 2003).

Pre-then-post: A pre-post design supplemented by a retrospective pretest in which the thentest and posttest are administered as two separate questionnaires, with the thentest administered before the posttest.

Response-shift: A statistically significant difference between a traditional pretest and a retrospective pretest (Norman, 2003).

Retrospective pretest design: A research design incorporating the retrospective pretest. Encompasses pre-post-then, pre-post/then, post-then, and post/then designs.

Retrospective pretest: A pretest administered post-intervention, asking subjects to recall their behavior prior to the intervention (or treatment) (Howard, Ralph, et al., 1979).

Simple effect: Individual effect of a factor at a single level of another factor (Maxwell & Delaney, 2004).

Situational Leadership® II (SLII): A process for developing people based on a relationship between an individual’s development level on a specific goal or task and the leadership style that the leader provides (Blanchard, 1994, p. 3).
Sphericity: An assumption in repeated measures designs that the variance at each measurement occasion is equal (K. Roberts, personal communication, July 5, 2004).

Split-plot ANOVA: A factorial design with at least one between-subjects and one within-subjects factor (Maxwell & Delaney, 2004).

Survey of Management Practices (SMP): Set of scales that measure managerial competencies on 11 skills and 12 attributes (Wilson, 2006). The set includes the self version (SMP-S) and the other version (SMP-O). The self version and other version are identical except for syntax (Morrison, McCall, & Devries, 1978).

Thentest: A synonym for retrospective pretest (Umble et al., 2000).

Within-subjects factor: An independent variable representing the occasion of repeatedly measuring variable(s) across the same subjects (Maxwell & Delaney, 2004).

Summary

This chapter provided background on the evolution of the retrospective pretest and identified a need to compare measurement outcomes derived from four research designs incorporating the retrospective pretest. It also provided a theoretical framework and presented the purpose of the proposed study. Finally, the chapter outlined research questions, hypotheses, and assumptions that formed the basis of the proposal. Chapter 2 reviews existing literature related to the study.
CHAPTER 2

LITERATURE REVIEW

Introduction

This literature review begins with an overview of the Howard, Ralph, et al. studies, as they are often cited in contemporary retrospective pretest literature (e.g., Hill & Betz, 2005; Lamb, 2005; Schwarz, in press). It also highlights the particulars of a compendium of studies incorporating the retrospective pretest across a multitude of designs and variables. Finally, in support of the research questions posed, the chapter describes research that examined the effects of pretest sensitization, post-intervention survey order, and memory distortion in a retrospective pretest design. This chapter does not cover the broader scope of literature relating retrospective survey item design to participant response, because factors such as the specificity of questions, length of recall periods, and question lengths were held constant across all four research design groups.

Retrospective Pretest in Pretest-Posttest Designs

Howard, Ralph, et al. (1979) laid the foundation for the evolution of the retrospective pretest when they observed paradoxical findings in a self-report evaluation of an Air Force communication skills training program aimed at reducing dogmatism. After employing a traditional pretest-posttest design (n = 704) and finding an apparent increase in dogmatism following the workshop, Howard, Ralph, et al. interviewed workshop participants and found that, as a result of attending the workshop, participants changed their perceptions of their initial levels of dogmatism.
Subsequently, Howard, Ralph, et al. (1979) replicated the first study, employing a thenetest measure. In this second study \((n = 247)\), participants were divided into two groups. Group 1 completed a traditional pretest and posttest. Following the intervention, Group 2 members provided concurrent thenetest and posttest responses to each item in the self-report survey. Howard, Ralph, et al. found that a significantly greater number of Group 2 members reported becoming less dogmatic following the workshop than Group 1 members. The researchers suggested that for self-report measures, a post/then design might yield more accurate changes scores than a pretest-posttest design.

In a third study, Howard, Ralph, et al. (1979) randomly assigned women \((n = 51)\) who scored “feminine” on the Bern Sex-Role Inventory (Bem, as cited in Howard, Ralph, et al., 1979) to control or experimental groups. The experimental groups were designed to promote androgyny by fostering the development of skills typically stereotyped as masculine. In order to monitor the effectiveness of these groups, self-report and objective measures of assertiveness, sex-role orientation, and attainment of individual goals were obtained. All groups completed pretests, posttests, and thenests, thus allowing generation of post-pre and post-then change scores to be compared to objective measures of change. The effects of response shift were evident for treatment subjects but not for the control group. Similar to the prior studies described, post-pre analyses demonstrated minimal treatment effects, whereas post-then analyses produced statistically and practically significant treatment effects. Most important to the aim of the study, objective measures of change correlated more highly with post-then self-report measures of change than with the post-pre self-report index, adding concurrent validity to the claim that retrospective judgment is more valid when treatment changes participants’ perception of their prior state.
In the last study, Howard, Ralph, et al. (1979) analyzed changes in levels of helping skills for students taking a semester-long course. In this study, participants ($n = 51$) were divided into three groups: (a) pretest-posttest, (b) post/then, and (c) pre-post/then. In addition to participants completing all testing required for the group to which they were assigned, they conducted half-hour interviews with volunteer clients before and after the course. Judges’ ratings of the interviews and post-then comparisons found significant treatment effects, whereas post-pre comparisons failed to show overall treatment effects. After completing posttests and thentests, subjects in the pre-post/then group recalled their pretest ratings. Mean memory ratings were almost identical to pretest ratings, but statistically significantly different from thentest ratings, suggesting that the response-shift effect reflected something more than mere systematic memory distortions.

Based on the work of Howard, Ralph, et al. (1979), Howard (1980) suggested that pretest-posttest designs be augmented with thentests to mitigate the effect of experience limitation. In describing the post-intervention procedure, Howard, Ralph, et al. stated:

First, they were to report how they perceived themselves to be at present (Post). Immediately after answering each item in this manner, they were to answer the same item again, this time in reference to how they now perceived themselves to have been just before the workshop was conducted (Then). Subjects were instructed to make the Then response in relation to the corresponding Post response to insure that both responses would be made from the same perspective. (p. 5)

Since Howard’s (1980) recommendations, the retrospective pretest has been used to measure bias in self-report measures involving a broad range of cognitive, attitudinal, and skill-based variables (Nimon & Allen, 2007). However, not all studies have employed procedures recommended by Howard, Ralph, et al. (1979). The appendix identifies a representative set of studies employing the retrospective pretest, denoting the variables measured and the research designs employed.
Pretest Sensitization and Order Effects

Babcock (1997) and Nimon and Allen (2007) cited two studies (Sprangers & Hoogstraten, 1989; Terborg & Davis, 1982) that examined the effects of pretest sensitization and post-intervention survey order in a research design incorporating the retrospective pretest. Sprangers and Hoogstraten conducted two experiments: (a) the first to examine the effect of pretest sensitization and (b) the second to examine the effect of differences in post-intervention survey administration. Terborg and Davis’s study implemented multiple research designs to examine pretest sensitization and order effects.

Pretest Sensitization

Using a sample of 37 hospital employees required to participate in a communication skills training program, Sprangers and Hoogstraten (1989) conducted a Solomon four-group design to test the effect of administering a self-report pretest. Groups 1 and 3 received treatment. Groups 2 and 4 served as controls, receiving the intervention after the experiment. Groups 1 and 3 were administered a pretest, posttest, and thentest. Groups 2 and 4 were administered a posttest and thentest. The study’s post-intervention procedures deviated from the Howard, Ralph, et al. (1979) recommendations. Subjects first completed all posttest items conventionally, and then while keeping the posttest in front of them, reported how they now perceived themselves to have been prior to training. All four groups completed an objective measure, post-intervention.

Analyzing the treatment factor on the objective posttest and self-report posttest scores indicated that the intervention was not successful. As it related to the research question, results indicated that the pretest significantly affected the self-report posttest and thentest scores. Conversely, the data indicated no pretest effect on objective posttest scores. Sprangers and
Hoogstraten (1989) concluded that administering a pretest produces specific effect and suggested researchers not interested in detecting the occurrence of response-shift discard the pretest in favor of the thentest. However, this conclusion was reached without the benefit of establishing the concurrent validity of group posttest or thentest scores.

In Terborg and Davis’s (1982) study, two groups of subjects were compared to determine whether a pretest impacted posttest or thentest scores. Both groups completed an unenriched task. Following an unenriched task, Group 1 \((n = 12)\) was administered the Job Diagnostic Survey (JDS) to determine the overall motivating potential score (MPS) of their job. MPS pretest scores were not collected from Group 2 \((n = 8)\). Ten days later, both groups performed an enriched task and then completed a posttest/thentest questionnaire. The posttest and thentest items were administered according to the Howard, Ralph, et al. (1979) procedures as a single questionnaire. Comparison of the two groups showed no difference in MPS scores for either the posttest or thentest ratings. Terborg and Davis concluded that pretests did not prime subjects or make certain aspects of an intervention more salient.

It is important to note that the results of the statistical significance tests may have been a function of power. A posthoc power analysis indicates that, even if the standardized mean difference between the groups was as great as .80, the researchers had less than a 50% chance of detecting a statistically significant difference (see Cohen, 1988, Table 2.4.1). In addition to the issue of sample size, the standard deviations of the MPS scores may have affected the power of the \(t\) tests performed. Although Terborg and Davis (1982) noted that the means for Groups 1 and 2 were, respectively, 104.19 and 75.81 for the posttest measure and 31.57 and 12.66 for the thentest measure, they did not report associated standard deviations. However, it is possible that the standard deviations of the posttest and thentest MPS scores negatively impacted power,
because the mean and standard deviation of the pretest MPS score for Group 1 were, respectively, 20.96 and 20.75. Of further note, the effectiveness of the intervention was not reported nor were concurrent validities of group posttest or thentest scores established.

Post-Intervention Survey Order

To address the question of whether administration of the thentest independent of the posttest affects ratings, Sprangers and Hoogstraten (1989) conducted a second experiment involving 58 dental students who participated in the experiment as part of their university training. Students were divided into six groups, with the first three groups receiving the intervention and the remaining groups serving as no-treatment controls. All groups were administered a self-report pretest and a behavioral posttest. With the exception of Groups 2 and 5, the posttest and thentest were administered according to the “test-after-test procedure.” While the authors cited no reference for the test-after-test procedure, they contrasted their administration to the recommendations set forth in Howard, Ralph, et al. (1979) as follows:

Subjects first completed all posttest items conventionally and, while keeping the posttest in front of them, reported how they now perceived themselves to have been prior to the training. The instruction stated, just as in Howard’s work, that subjects were to answer each retrospective item in relation to the corresponding posttest item, starting with Item 1. (p. 149)

The researchers, subsequently, indicated that participants in Groups 2 and 5 completed the thentest prior to the posttest. However, they did not indicate whether the participants kept the thentest in front of them while completing the posttest or completed the instruments separately.

Comparing the means of Groups 1 and 4 against the means of Groups 2 and 5 indicated that order factor did not affect self-report posttest or thentest scores (Sprangers & Hoogstraten, 1989). Comparing the means of Groups 1, 2, 4, and 5 indicated that the interaction of the
treatment factor and the order factor did not affect self-report posttest or thentest scores. Based on these comparisons, the researchers concluded that the administration order of the posttest and thentest seems arbitrary.

It is important to note that Sprangers and Hoogstraten (1989) neglected to report their findings within the context of the size of their sample or the effectiveness of the treatment. In particular, they omitted reporting whether the treatment factor affected self-report posttest or thentests scores. Of further note, concurrent validities of group posttest or thentest scores were not established nor were descriptive statistics reported.

As part of Terborg and Davis’s (1982) study previously described, selected comparisons between thentest and posttest scores were conducted as the researchers employed variations of the retrospective pretest design: (a) pre-post/then, (b) pre-then-post, and (c) pre-post-then. Comparing thentest scores between the pre-post/then ($n = 12$) and pre-post-then ($n = 9$) groups yielded no statistical difference. Comparing posttest scores between the pre-post/then and pre-then-post ($n = 9$) groups yielded no statistical difference. Comparing posttest scores between pre-then-post and pre-post-then groups yielded no statistical difference. Comparing thentest scores between pre-then-post and pre-post-then groups yielded no statistical difference. The researchers concluded that the retrospective pretest design was not sensitive to order effects. In particular, they noted that asking for posttest ratings did not significantly impact thentest ratings. Similarly, they indicated that asking for thentest ratings did not significantly impact posttest ratings. While these conclusions were presented in the context of an effective intervention, the researchers did not establish concurrent validity of group posttest or thentest scores. It is also important to note that the results of the statistical significance tests may have been a result of an insufficient sample size and large standard deviations of MPS scores.
Memory Distortion

Irrespective of the work of Howard, Ralph, et al. (1979) indicating that response-shift reflects something more than mere systematic memory distortions, the most commonly cited threat to the validity of thentest measurements is the effect of memory on the retrospective process (Nimon & Allen, 2007). While the term lacks consensus among investigators as to the criteria that define memory distortion in retrospective pretests (Babcock, 1997), a review of the literature reveals two theoretically and empirically tested interpretations: (a) personal recall and (b) impression management.

Personal Recall

Norman (2003) presented two studies (Ross & Conway, 1986; Sprangers & Hoogstraten, 1989) to demonstrate how the process of interpreting personal recall can lead to opposite conclusions regarding the validity of retrospective measures. In Sprangers and Hoogstraten’s study, subjects’ retrospective accounts corresponded with an objective measure and are presumed by Norman to be supported by implicit theories of change and stability. In Conway’s study, subjects’ retrospective measures did not correspond to objective measures of change and were presumed to be distorted by implicit theories of change. Note that the attachment of implicit theory as being right or wrong required an external referent in both studies. These studies lend support for the claim of Umble et al. (2000) that outcome measures based on retrospective pretest designs should be validated by an objective measure.

Retrospective measures validated by implicit theories. In 1989, Sprangers and Hoogstraten conducted two experiments. In both experiments, subjects enrolled in a
communication skills course were divided into experimental and control groups. The key differences between the two experiments were the effectiveness of the intervention and its impact on the retrospective measures (Norman, 2003). The program in the first experiment was deemed ineffective because no statistically significant difference was found between the experimental and control groups’ subjective and objective post-intervention measures. Similarly, no response-shift was detected in the first experimental treatment subgroup because the test and pretest scores were not statistically or practically significantly different. The program in the second experiment was deemed effective because no statistically and practically significant differences were found between experimental and control groups’ behavioral and self-report measures. Consistent with the effect of response-shift, the second experimental treatment subgroup yielded test and pretest scores that were statistically and practically significantly different.

Norman (2003) concluded that participants in the first experiment based their retrospective accounts on an implicit theory of stability, whereas participants in the second experiment based their accounts on an implicit theory of change. He inferred that in both cases, participants applied implicit theories based on the perceived effectiveness of the intervention to gauge how far off their initial estimates were. He further noted that the extrapolation back to the initial state turned out to be as valid or better than the first estimate.

Retrospective measures invalidated by implicit theories. In Ross and Conway’s (1986) study, students wishing to participate in a study skills program evaluated their current skills and then were randomly assigned to either an experimental group or a wait–list control group. The students in the experimental group participated in a training program that did not improve their
skills on any objective measure. Following the training, the experimental and control groups returned, and both groups were asked to recall their initial evaluations of their skills. Experimental program participants recalled their original evaluation of their study skills as being worse than they had reported originally. Control subjects exhibited no system bias in recall. Academic grades were not affected by the program for either experimental or control subjects.

Based on the results of the study, Ross and Conway (1986) concluded that participants in the experimental group applied an implicit theory of change, because they reported their prior skills as being much worse than they were after training. That is, they retrospectively reported having poorer pretraining skills than they indicated before training, confirming their expectation of the program’s success. These results were obtained despite incentives to respondents to recall their earlier answers as accurately as possible (Schwarz, in press). Therefore, the researchers further concluded that the respondents’ actions were consistent with an implicit theory of change and distinct from the theoretical interpretation of impression management. In particular, Ross and Conway stated:

Conceivably, to look good and to please the program leader, program participants could have intentionally derogated their past so as to glorify the present. But what is the point of purposely rewriting the past when the experimenters assert that they can and will assess the accuracy of the recall? (p. 137)

It is important to note that while Ross and Conway’s (1986) study is cited as validation of personal recall theory (e.g., Schwarz, in press), the thentest asked participants to recall their earlier rating. However, in practice the thentest is used to recall conditions that exist before an intervention and to assess these conditions from a new perspective (Sprangers & Hoogstraten, 1989). Therefore, although the study demonstrates the fallibility of retrospective measures, it describes a situation different from the typical use of the thentest (Babcock, 1997).
Impression Management

A review of literature referencing Howard, Ralph, et al. (1979) and examining the effect of impression management on retrospective measures yields three relevant studies: Howard, Millham, Slaten, and O’Donnel, 1981; Sprangers, 1989; and Sprangers and Hoogstraten, 1991.

Howard et al. (1981) divided 40 students interested in assertiveness training into a control and experimental group. Following Howard, Ralph, et al. (1979) procedural guidelines, both groups completed a pretest, posttest, and thentest on two measures related to the intervention and a control measure. Objective ratings of assertiveness and measures of social desirability were also obtained prior to and after the intervention. Howard et al. (1981) found that there was no evidence for the operation of impression management influencing the shifts in evaluation obtained by employing the thentest. As evidence for their conclusion, they specified that the self-report experimental measures’ then-post indices of change correlated more highly with objective measures of change than post-pre self-report indices. They further noted that within the experimental group, scores on thentest experimental measures shared less common variance with social desirability scores than pretest scores. The researchers argued that the retrospective measures appeared to be less socially desirable than traditional pretest measures. In contrast, the relationship between social desirability responding and thentest experimental measures in the control group did not differ from those obtained at pretest. Based on these results, the researchers concluded that the intervention not only increased assertiveness, but also reduced social desirability responding in retrospective measures of pretreatment assertiveness. They also noted that the effect was specific, because the relationship between the control measure and social desirability responding was not impacted by treatment effect or measurement occasion (pretest, thentest).
Using the term *subject bias* in lieu of *social desirability bias* (Babcock, 1997), Sprangers (1989) conducted research on the premise that a method for identifying subject-bias in pre-post/then and related designs (e.g., pre-post-then, pre-then-post) was to include a placebo control condition. She asserted that because placebo subjects devote the same amount of time and effort to the placebo treatment as do experimental subjects to an experimental intervention, a significant pre-then difference in the placebo condition can be attributed to subject bias, thus invalidating experience limitation as a valid response-shift explanation. Of the studies she reviewed, eight included a placebo control condition. Of the eight, one study reported significant pre-then differences scores in both the experimental and placebo control conditions. While subject bias was not proven to be a consistent alternative to experience limitation, Sprangers advised that researchers be aware of this form of bias and incorporate a control condition to differentiate between experience limitation and subject bias.

Sprangers and Hoogstraten (1991) conducted a follow-up study employing a retrospective pretest design with an experimental, a placebo, and a no-treatment control condition. The sample consisted of 64 psychology freshman enrolled in a study skills training. In addition to completing a conventional pretest, participants provided posttest and thentest responses to a self-report measure. Participants first completed all posttest items and then while keeping the posttest in front of them, they indicated how they perceived themselves to have been prior to training. The researchers found significant mean post-then and post-pre difference scores in the experimental group, but not in the control group. In the placebo group, they found significant mean post-then difference scores. They concluded that post-then difference scores were not free from subject bias. Making recommendations similar to Sprangers’s (1989), they
advocated that retrospective pretest designs include a control condition and an independent measure of change to mitigate the effect of subject bias.

Summary

This chapter included an overview of research that laid the foundation for the evolution of the retrospective pretest and a review of representative studies employing its use. It also described prior research that examined the effects of pretest sensitization, post-intervention survey order, and memory distortion on retrospective pretest designs. Chapter 3 discusses the methodology used to execute this study.
CHAPTER 3

METHODS

Research Design

This study implemented four research designs incorporating the retrospective pretest (see Table 1). Situational Leadership® II (SLII) training participants were randomly assigned to one of four groups, where each group represented a research design of interest. The relative placement of objective, pretest, posttest, and thentest measures closely emulated the designs described by Howard and Dailey (1979).

Table 1

Research Design per Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Research Designa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-Post-Then</td>
<td>Ob Pr X1 Ob Po-Thb</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
<td>Ob Pr X1 Ob Po/Thc</td>
</tr>
<tr>
<td>3. Post-Then</td>
<td>Ob -- X1 Ob Po-Thb</td>
</tr>
<tr>
<td>4. Post/Then</td>
<td>Ob -- X1 Ob Po/Thc</td>
</tr>
</tbody>
</table>

Note. Ob = objective measure; Po = self-report posttest; Pr = self-report pretest; Th = self-report thentest; X1 = experimental treatment. aNotation follows Sprangers’s (1989) nomenclature. bSeparate posttest and thentest questionnaires. cSingle post-intervention questionnaire. Participants instructed to provide posttest and thentest responses before moving to next survey item.

Within each group, two types of repeated measures were administered: (a) objective performance and (b) subjective self-report. Participants in all four groups completed an objective performance measure prior to training and as training was completing. After completing the objective performance measure, each group also completed a set of self-reports, surveying perceived leadership effectiveness according to the design being tested. Group 1 completed a pretest at the beginning of training, a posttest as training was completing, and a thentest
following the posttest. Group 2 completed a pretest at the beginning of training and a combined posttest/thentest as training was completing. Group 3 completed a posttest as training was completing and a thentest following the posttest. Group 4 completed a combined posttest/thentest as training was completed.

Population

The target population for this study is situational leadership® training workshop participants. Situational leadership training workshops target individuals in leadership positions at multiple levels in the organizations, from executive to supervisor. The training has been used to develop leaders across a wide variety of industry and organizational types.

There are three primary reasons for targeting this population. First, considering all levels of leadership roles (e.g., executive, manager, supervisor), leadership training accounted for over 18% of the learning content proposed for 2005 (Sugrue & Rivera, 2005). Second, in a review of leadership training evaluation programs, the W. K. Kellogg Foundation (2002) cited the retrospective pretest as an important tool. Third, the situational leadership models are some of the most widely used leadership models in the world today (Blanchard, Fowler, & Hawkins, 2005; Center for Leadership Studies, 2005). The Center for Leadership Studies indicated that the situational leadership model serves as the basis for leadership systems in over 700 of the Fortune 1000 companies. Blanchard, Fowler, et al. reported that millions of managers in Fortune 500 companies and small businesses nationwide have been trained to follow the SLII model.

Sample

Participants from seven SLII training programs provided the data for this study. The SLII
training programs were all facilitated by certified trainers employed by the same international training company. The SLII training program is based on the SLII model and is designed to teach managers how to identify the needs of their employees and tailor their management style to each situation. For a full description of the SLII model, see Blanchard (1994).

Across the seven training programs sampled, data were collected from 76 individuals. Participants in each class were randomly assigned to one of the four research designs groups (see Table 2). The chi-square test of homogeneity ($\chi^2 (18) = 5.974, p = .997$) indicated that there was no statistically significant difference in the distribution of participants to research design group across training programs.

Table 2

<table>
<thead>
<tr>
<th>Group by Program Crosstablation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1. Pre-Post-Then</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
</tr>
<tr>
<td>3. Post-Then</td>
</tr>
<tr>
<td>4. Post/Then</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Note. P1 – P7 denote the seven training programs.

Instrumentation

Two types of leadership competency instruments were used in this study: (a) objective performance and (b) subjective self-report. The Leader Behavior Analysis II® Self provided a performance measure of leadership competence based on the underlying model of the intervention (SLII). The SMP-S provided self-report data on participants’ perceived leadership
competence. Two subjective self-report constructs were analyzed – a construct consistent with the intervention (SMP-SEXP) and a construct not covered in the training (SMP-SCTL). The following sections provide a brief description of the instruments and their relevant scales, techniques used to assess data reliability and validity, and instrument layout and directions.

Leader Behavior Analysis II

The Leader Behavior Analysis II Self is a 20-item instrument modeled after the SLII model. The instrument portrays typical job situations and asks respondents to choose among four leadership responses to each scenario posed. The items test respondents’ ability to correctly match leadership styles to levels of follower readiness, according to the SLII model.

The construct validity of the LBAII contributes to this study’s nomological net of measures and treatment. Describing the initial phase of establishing construct validity for the LBAII, Zigarmi et al. (1997) noted that the structure of the instrument was based upon characteristics of situational leadership defined in literature and was congruent with the SLII model. This level of construct validity is relevant because the training on the SLII model served as the treatment effect in this study.

Describing the empirical process of establishing construct validity of the LBAII, Zigarmi et al. (1997) reported the results of a study based on a sample of 552 individuals completing the LBAII-O and the SMP-O. The SMP was chosen because Zigarmi et al. expected that the skill of matching leadership style to employee development level (operationalized by the LBAII) would be statistically confirmed by the task cycle® of leadership advocated by Wilson (1988) and operationalized by the SMP. Results from the study indicated that many of the subconstructs of the LBAII-O and SMP-O were positively and highly correlated. Zigarmi et al. thereby made the
generalization that since many of the subconstructs were in concert, the LBAII and SMP were measuring the same construct of leadership. Further, Zigarmi et al. indicated that the validity results of the LBAII-O could be applied to the LBAII-S.

Although the LBAII-S yields six measures, the Effectiveness Scale is considered the most important score because it is the “raison d’être for the model” and is correlated to “key managerial behavior researched by other authors of management” (Zigarmi et al., 1997, p. 28). Therefore, it served as the objective measure of leadership competence in this study.

Effectiveness Scale. Effectiveness scores range from 20 to 80, with each item having a maximum score of 4 and a minimum score of 1. Reliability of LBAII Effectiveness scores was examined by Punch (as cited in Zigarmi et al., 1997). Punch conducted a Rasch analysis and found that 15 of the 20 items fit the response model very well, 2 items overdiscriminated, and 3 items under discriminated. McDermot (as cited in Zigarmi et al., 1979) found that LBAII-S_{EF} scores discriminated between managers who attended a 3-day SLII training workshop and a matched group of managers who did not. Zigarmi et al. found that, with the exception of other-responses to the SMP Scales of Goal Pressure, Work Involvement, Co-Worker Competence, Team Atmosphere, Climate, and Commitment, LBAII-O_{EF} scores positively related to the managerial dimensions measured by the SMP-O.

Survey of Management Practices

The SMP consists of 145 items designed to measure managerial competency on 11 skills and 12 attributes (Wilson, 2006). The instrument incorporates a 7-item Likert scale with appropriate anchors for a competency-based scale (Shipper, 1995). Successive versions of the
instrument have been judged to reflect accepted standards of instrument development and psychometric properties (Morrison et al., 1978; Shipper, 1999; Val Velsor & Leslie, 1991; Wilson, 1978). As it relates to this study, the SMP scales of Work Involvement and Clarification of Goals and Objectives are relevant. Based on the validity analysis conducted by Zigarmi et al. (1997) and communication with the author of the LBAII (D. Zigarmi, personal communication, January 22, 2007), the Work Involvement Scale served as the study’s self-report control measure (SMP-S_{CTL}), and the Clarification of Goals and Objectives Scale served as the study’s self-report experimental measure (SMP-S_{EXP}).

Work Involvement Scale. The aim of the Work Involvement Scale was to appraise to what extent work, as work, provided a level of interest, involvement, and challenge (Wilson, 1978). The Work Involvement Scale contains 5 items, with each item having a maximum score of 7 and a minimum score of 1. Item responses were averaged to obtain scale scores.

Based on a sample of 99 self-responses and 556 other-responses to Form G of the instrument, reliability of Work Involvement scores was examined by Wilson in 1978. The self- and other-responses to the scale, respectively, yielded coefficient alphas of .90 and .91.

Zigarmi et al. (1997) provided evidence of discriminate validity between SMP Work Involvement Scale scores and LBAII Effectiveness Scale scores. In their study, scores were compared by categorizing LBAII Effectiveness Scale scores. The top third scores were categorized as high. The bottom third scores were categorized as low. A comparison between the means of the two groups yielded no statistical difference in Work Involvement Scale scores.
Clarification of Goals and Objectives Scale. The aim of the Clarification of Goals and Objectives Scale was to appraise to what extent managers set, clarify, and give goals a priority (Wilson, 1978). The Clarification of Goals and Objectives Scale contains 7 items, with each item having a maximum score of 7 and a minimum score of 1. Items marked not applicable (NA) were assigned a score based on how the corresponding participant responded to the rest of the scale. Item responses were averaged to obtain scale scores.

Based on a sample of 99 self-responses and 556 other-responses to Form G of the instrument, the reliability of Clarification of Goals and Objectives Scale scores was examined by Wilson in 1978. The self- and other-responses to the scale, respectively, yielded coefficient alphas of .87 and .93.

Zigarmi et al. (1997) provided evidence of concurrent validity between SMP Clarification of Goals and Objectives Scale scores and LBAII Effectiveness Scale scores, as other-responses to the two scales shared a significant amount of common variance. Correlating scores from the two scales across a sample of 552 respondents produced a correlation coefficient of .389.

Reliability

To assess the data reliability of observed variables, coefficient alphas were calculated separately for group subsamples on each analyzed repeated measure of the SMP-SC, SMP-SE, and LBAII-SE. The data reliability of gain scores analyzed in the study was assessed via the formula defined by Williams and Zimmerman (1996), which expresses reliability of a difference as a function of the reliability of components using the ratio of the repeated measures’ standard deviations and the correlation between scores as parameters. The formula is:

$$\rho_{dd'} = \frac{\lambda \rho_{xx'} + \lambda^{-1} \rho_{yy'} - 2 \rho_{xy'}}{\sqrt{\lambda + \lambda^{-1} - \rho_{xy'}}}$$

(3.1)
where \(\lambda \) is the ratio of pretest (or thentest) standard deviation (SD) and posttest SD, \(\rho_{xx} \) is the reliability of pretest (or thentest) scores, \(\rho_{yy} \) is the reliability of posttest scores, and \(\rho_{xy} \) is the correlation between pretest (or thentest) and posttest scores.

Data reliability estimates were compared to internal consistency measurements of other studies as well as measurements within the study. The similarity of reliability estimates was analyzed by examining the confidence intervals around the reliability estimates (Fan & Thompson, 2001).

Validity

Data validity was assessed by replicating analyses conducted by Zigarmi et al. (1997) and Howard, Ralph, et al. (1979). The data validity of each group of SMP-SCTL scores was assessed by comparing SMP-SCTL thentest scores between individuals who scored high on the LBAII-S Effectiveness Scale to those who scored low. Data validity of each group of SMP-SEXP scores was assessed by correlating thentest and posttest-thentest gain scores to like measures from the LBAII-S. Data validity estimates were compared to results from other studies as well as measurements within the study. The similarity of data validity estimates for SMP-SEXP scores was analyzed using the \(z \) statistic, defined in Hinkle et al. (2003):

\[
z = \frac{r_1' - r_2'}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}} \tag{3.2}
\]

where \(r \) equals the standard transformation of correlation coefficients as defined by Cohen (1988, p. 110) (see Formula 3.3) and \(n \) equals group size.

\[
r' = \frac{1}{2} \log \left(\frac{1 + r}{1 - r} \right) \tag{3.3}
\]
where r equals the correlation between measures.

Administration

Across all participants and measurement occasions, the LBAII-S was administered in its original form. The layout of and the participant directions for the set of SMP-S scales differed according to measurement occasion and retrospective pretest design group.

The layout of the pretest, posttest, and thentest self-report measures modeled the layout of the original SMP. The layout of the combined posttest/thentest measure modeled the instrument layout illustrated in Taylor-Pownell and Renner (2000). The SMP items, posttest responses, and thentest responses were laid out adjacently with posttest responses to the right of SMP items, and thentest responses to the right of posttest responses.

The directions for the pretest and posttest instruments modeled the directions of the original SMP. Across all groups, directions for instrumentation involving thentest items followed guidelines established by Howard, Ralph, et al. (1979) and asked participants to reassess their pre-intervention behavior. In addition, the directions for instrumentation involving thentest items differed by research design group. Directions for thentest and posttest/thentest instrumentation for participants in Groups 1 and 2, who had completed a pretest, followed guidelines established by Mezoff (1981a) and asked participants not to recall their prior answers or worry whether their reevaluated ratings agreed or disagreed with prior ratings. Thentest directions for participants in Groups 2 and 4, which were combined with posttest directions, followed guidelines established by Mezoff (1981b) and indicated that there might be no differences between posttest and thentest ratings. Appendix B contains figures illustrating the instructions for instrumentation involving thentest items for each of the four groups.
Data Collection

Data were collected from SLII participants at two different times. The data collection was administered by the facilitator conducting the training and managed by a set of prepared envelopes individually addressed to each participant. As training was beginning, participants received a pre-assessment envelope containing a set of surveys to collect pretest data. As training was completing, participants received a post-assessment envelope containing a set of surveys to collect posttest and thentest data.

Pre-Assessment

In the pre-assessment packet, participants received a cover letter asking them to complete a set of assessments. Because the assessment packets for Groups 1 and 2 contained two surveys (each enclosed in its own envelope), the cover letter for participants in Groups 1 and 2 also asked that they complete the surveys in the order indicated on the outer envelopes. Additionally, the cover letter for Groups 1 and 2 asked participants to place each completed survey back into its respective envelope before moving on to the next form.

For all participants, the first survey asked participants to copy their answers, from the LBAII-S they took prior to attending training, to an evaluation form. This prevented participants from having to give up their copy of the LBAII-S. The second survey asked participants to provide pretest responses to the SMP-S. Only the pre-assessment packets for participants in Groups 1 and 2 contained the second survey.

Post-Assessment

In the post-assessment packet, participants received a cover letter asking them to
complete a set of assessments. The cover letter asked participants to complete the surveys in the order indicated and place each completed survey back in its respective envelope before moving on to the next form.

The post-assessment packets for participants in Groups 1 and 3 contained three surveys. The post-assessment packets for participants in Group 2 and 4 contained two surveys. For all participants, the first survey in the post-assessment packet was the LBAII-S. For participants in Group 1 and 3, the second survey asked participants to provide posttest responses to the set of SMP-S scales. For participants in Groups 2 and 4, the second survey asked participants to provide posttest and thentest responses to the set of SMP-S scales. For participants in Groups 1 and 3, the third survey asked participants to provide thentest responses to the set of SMP-S scales.

Data Analysis

The data were analyzed using SPSS® version 14.0 and R version 2.3.1. Subsequent to examining data reliability and validity, analyses were conducted specific to each research question.

Research Questions 1-2

Research Questions 1 and 2 considered the statistical and practical significance of measurement outcomes derived from SLII training participants’ responses to a control and an experimental measure. For each measure, parallel analyses were conducted to test the (a) interaction effect between retrospective pretest design group (i.e., pre-post-then, pre-post/then, post-then, and post/then) and measurement occasion (i.e., posttest, thentest); (b) simple effects of
retrospective pretest design group at each measurement occasion; and (c) simple effects of measurement occasion at each retrospective pretest design group. For these analyses, alpha was maintained at .05 following Winer’s guidelines (as cited in Huck & McLean, 1975).

Research questions 1 and 2 are as follows:

1. Is there a difference in measurement outcomes, derived from SLII training participants’ responses to a subjective control measure, among four retrospective pretest design groups?

2. Is there a difference in measurement outcomes, derived from SLII training participants’ responses to a subjective experimental measure, among four retrospective pretest design groups?

Interaction effects - Ho1A and Ho2A. To determine the statistical significance of differences in posttest-thentest gain scores between groups, two split-plot ANOVAs were conducted. Each of the two split-plot ANOVAs had one within-subjects factor (occasion) and one between-subjects factor (group). The within-subjects factor for research question 1 had two levels: posttest and thentest responses to the SMP-SCTL. The within-subjects factor for research question 2 had two levels: posttest and thentest responses to the SMP-SCTL. The between-subjects factor for the two split-plot ANOVAs was identical, representing the four research designs under study. The null hypotheses are as follows:

Ho1A: There is no statistically significant interaction between group and occasion, as measured by posttest and thentest responses to the SMP-SCTL.

Ho2A: There is no statistically significant interaction between group and occasion, as measured by posttest and thentest responses to the SMP-S_EXP.

The interaction effect of each of the split-plot ANOVAs identified whether the differences in repeated measures between groups were statistically significant. To determine the practical effect of the interaction between group and occasion, eta squared was calculated as defined by Tabachnick and Fidell (2001, p. 338):
\[\eta^2 = 1 - \Lambda \]

(3.4)

where \(\Lambda \) is the ratio of the determinant error matrix of the error cross-products matrix to the determinant of the sum of the error and effect cross-products matrices. Eta squared values of .01, .09, and .25 were respectively interpreted as small, medium, and large effects, following Cohen’s (1988) general guidelines.

Simple effects of group at occasion – Ho1\(_B\), C and Ho2\(_B\), C. To determine the statistical significance of differences in posttest and thentest scores between groups, two tests of simple effects were conducted for each research question. For research question 1, the simple effects of group at the SMP-S\(_{CTL}\) posttest occasion and group at the SMP-S\(_{CTL}\) thentest occasion were tested. For research question 2, the simple effects of group at the SMP-S\(_{EXP}\) posttest occasion and group at the SMP-S\(_{EXP}\) thentest occasion were tested. The null hypotheses are as follows:

- **H01\(_B\):** There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-S\(_{CTL}\).
- **H01\(_C\):** There is no statistically significant simple effect of group at the thentest occasion, as measured by the SMP-S\(_{CTL}\).
- **H02\(_B\):** There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-S\(_{EXP}\).
- **H02\(_C\):** There is no statistically significant simple effect of group at the thentest occasion, as measured by the SMP-S\(_{EXP}\).

To determine the practical significance of the simple effect of group at each occasion, eta squared was calculated as defined by Hinkle et al. (2003, p. 540):

\[\eta^2 = \frac{SS_B}{SS_T} \]

(3.5)

where \(SS_B \) denotes sums of squares between and \(SS_T \) denotes sums of squares total. Eta squared values of .01, .09, and .25 were respectively interpreted as small, medium, and large effects,
following Cohen’s (1988) general guidelines.

Simple effects of occasion at group - Ho1 _D, E, F, G and Ho2 _D, E, F, G. To determine whether the posttest and thentest scores within each group were statistically significantly different from each other, four tests of simple effects were conducted for each research question. For research question 1, the simple effects of occasion (SMP_CTL posttest, SMP_CTL thentest) at each group were tested. For research question 2, the simple effects of occasion (SMP_EXP posttest, SMP_EXP thentest) at each group were tested. The null hypotheses are as follows:

\[\text{Ho1}_D: \text{There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP_CTL.} \]

\[\text{Ho1}_E: \text{There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP_CTL.} \]

\[\text{Ho1}_F: \text{There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP_CTL.} \]

\[\text{Ho1}_G: \text{There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP_CTL.} \]

\[\text{Ho2}_D: \text{There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP_EXP.} \]

\[\text{Ho2}_E: \text{There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP_EXP.} \]

\[\text{Ho2}_F: \text{There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP_EXP.} \]

\[\text{Ho2}_G: \text{There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP_EXP.} \]

To determine the practical significance of the simple effects of occasion at each group, \(d \) was calculated as defined by Dunlap, Cortina, Vaslow, and Burke (1996, p. 171):

\[d = t_c \left[\frac{2(1 - r)}{n} \right]^{1/2} \]

(3.6)
where t_c is t for correlated measures, r is the correlation between measures, and n is the sample size per group. Cohen d values of .20, .50, and .80 were respectively interpreted as small, medium, and large effects, following Cohen’s (1988) general guidelines.

Summary

This chapter discussed the research design, population, sample, instrumentation, data collection, and data analysis procedures required to answer the study’s research questions. Chapter 4 contains the findings from this study.
CHAPTER 4
FINDINGS

Overview

The purpose of this study was to compare outcome measures resulting from four research design implementations incorporating the retrospective pretest: (1) pre-post-then, (2) pre-post/then, (3) post-then, and (4) post/then. The study analyzed the interaction effect of pretest sensitization and post-intervention survey order on two subjective measures: (a) a control measure not related to the intervention (SMP-\text{S}_{\text{CTL}}) and (b) an experimental measure consistent with the intervention (SMP-\text{S}_{\text{EXP}}). The Effectiveness Scale of the self version of the Leader Behavior Analysis II® (LBAII-SEF) provided an objective measure of performance, used to estimate data validity of the subjective measures.

This chapter reports the study’s findings. The Data Assessment section outlines results from reliability, validity, and missing values analyses. The Descriptive Statistics section outlines the mean, standard deviation, normality, and kurtosis values for key variables. The Statistical Assumptions section describes how the data met the necessary statistical assumptions associated with the study’s null hypotheses. The Data Analyses section reviews the results of the null hypotheses testing. The chapter concludes with a Summary section.

Data Assessment

Key data collected from Situational Leadership® II (SLII) training participants were assessed for reliability, validity, and missing values. Data reliability was assessed by computing coefficient alphas on groups of observed scores and applying Formula 3.1 to groups of gain scores. Data validity was assessed by replicating analyses conducted by Zigarmi et al. (1997) and
Howard, Ralph, et al. (1979). Missing values were assessed via the missing values function within SPSS.

Data Reliability

Table 3 outlines the coefficient alphas computed for groups of (a) SMP-\text{S}_{\text{CTL}} thentest and posttest scores, (b) SMP-\text{S}_{\text{EXP}} thentest and posttest scores, and (c) LBAII-S_{\text{EF}} thentest and posttest scores. Comparing 95\% confidence intervals around the reliability coefficients indicates that the SMP-\text{S}_{\text{CTL}} values were not statistically significantly different from the alpha (.90) reported in Wilson’s (1978) study. Comparing 95\% confidence intervals around the reliability coefficients indicates that the SMP-\text{S}_{\text{EXP}} values were not statistically significantly different from the alpha (.87) reported in Wilson’s (1978) study. Comparing 95\% confidence intervals around the LBAII-S_{\text{EF}} reliability coefficients indicates that the values were not statistically significantly different from Nunnally’s (1978) minimum standard of .70.

Table 3
Score Reliability Estimates

<table>
<thead>
<tr>
<th>Group</th>
<th>SMP-\text{S}_{\text{CTL}} Then</th>
<th>SMP-\text{S}_{\text{CTL}} Post</th>
<th>SMP-\text{S}_{\text{EXP}} Then</th>
<th>SMP-\text{S}_{\text{EXP}} Post</th>
<th>LBAII-S_{\text{EF}} Pre</th>
<th>LBAII-S_{\text{EF}} Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-Post-Then</td>
<td>.978</td>
<td>.946</td>
<td>.924</td>
<td>.684</td>
<td>.739</td>
<td>.680</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
<td>.959</td>
<td>.966</td>
<td>.764</td>
<td>.856</td>
<td>.774</td>
<td>.710</td>
</tr>
<tr>
<td>3. Post-Then</td>
<td>.977</td>
<td>.959</td>
<td>.915</td>
<td>.875</td>
<td>.768</td>
<td>.734</td>
</tr>
<tr>
<td>4. Post/Then</td>
<td>.938</td>
<td>.958</td>
<td>.929</td>
<td>.924</td>
<td>.750</td>
<td>.558</td>
</tr>
<tr>
<td>All groups combined</td>
<td>.964</td>
<td>.956</td>
<td>.903</td>
<td>.865</td>
<td>.745</td>
<td>.691</td>
</tr>
</tbody>
</table>

Data Validity

\text{SMP-\text{S}_{\text{CTL}}} data validity. Data validity of each group of SMP-\text{S}_{\text{CTL}} scores was assessed by
comparing SMP-S诸葛 thentest scores between individuals who scored high on the LBAII-S Effectiveness Scale to those who scored low. Following the process used in the Zigarmi et al. (1997) study, the bottom 5 scores were identified as low and the top 5 scores were identified as high. Across all groups, the results (see Table 4) are generally consistent with the findings from the Zigarmi et al. study, where group (low vs. high) did not have a statistically significant effect on SMP-S诸葛 scores. However, when considering effect sizes, a small effect (.021) was detected in Group 2. Additionally within Group 2, SMP-S诸葛 thentest scores were lower for those participants whose LBAII-SEF scores were higher.

Table 4

Analysis of Variance Between SMP-S诸葛 Thentest Scores by Group

<table>
<thead>
<tr>
<th>Group</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>p</th>
<th>η^2</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-Post-Then</td>
<td>.049</td>
<td>1</td>
<td>8</td>
<td>.830</td>
<td>.006</td>
<td>6.160</td>
<td>6.280</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
<td>.177</td>
<td>1</td>
<td>8</td>
<td>.685</td>
<td>.021</td>
<td>5.720</td>
<td>6.000</td>
</tr>
<tr>
<td>3. Post-Then</td>
<td>.127</td>
<td>1</td>
<td>8</td>
<td>.731</td>
<td>.016</td>
<td>5.920</td>
<td>5.640</td>
</tr>
<tr>
<td>4. Post/Then</td>
<td>.011</td>
<td>1</td>
<td>8</td>
<td>.917</td>
<td>.001</td>
<td>5.640</td>
<td>5.560</td>
</tr>
</tbody>
</table>

SMP-SEXP data validity. Data validity of each group of SMP-SEXP scores was assessed by correlating thentest and posttest-thentest gain scores to like measures from the LBAII-S. Thentest scores resulting from participant responses to the SMP-SEXP were correlated to LBAII-SEF pretest scores. Gain scores resulting from participant posttest and thentest responses to the SMP-SEXP were correlated to LBAII-SEF posttest-pretest gain scores. The former analysis allowed comparisons to be made to findings from the Zigarmi et al. (1997) study. Replicating the work of Howard, Ralph, et al. (1979), the latter analysis allowed validity comparisons to be made between experimental measurement outcomes derived from the retrospective pretest designs.
The resulting correlation coefficients were transformed to validity estimates using Formula 3.3 (see Table 5). Applying the z statistic (see Formula 3.2) to the thentest validity estimates indicates that only the validity estimate for Group 4 was statistically significantly different ($p = .021$) from the correlation coefficient computed in the Zigarmi et al. (1997) study, where the reported correlation coefficient between SMP-S_{EXP} and LBAII-S_{EF} scores was .398.

Table 5

SMP-S_{EXP} Score Validity Estimates

<table>
<thead>
<tr>
<th>Group</th>
<th>Thentest r'</th>
<th>Posttest-thentest gain r'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-Post-Then</td>
<td>0.376</td>
<td>0.348</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
<td>0.206</td>
<td>-0.223</td>
</tr>
<tr>
<td>3. Post-Then</td>
<td>0.299</td>
<td>-0.085</td>
</tr>
<tr>
<td>4. Post/Then</td>
<td>-0.172</td>
<td>-0.051</td>
</tr>
</tbody>
</table>

Only the posttest-thentest gain validity coefficient for Group 1 was in the expected direction. Applying the z statistic (see Formula 3.2) to the posttest-pretest gain validity estimates indicates that the validity estimate for Group 1 was close to being statistically significantly different from the other groups. Pairwise comparisons between the validity estimate from Group 1 to the validity estimates from Groups 2, 3, and 4 resulted in respective p-values of .065 (1 vs. 2), .139 (1 vs. 3), and .159 (1 vs. 4). All other pairwise comparisons resulted in p-values that were equal to or greater than .329.

Formula 3.1 determined the reliability of the gain scores used to compute the posttest-thentest gain validity coefficients. The reliability coefficients for the four groups of SMP-S_{EXP} posttest-thentest gain scores were .606, .030, .642, and .772. The reliability coefficients for the four groups of LBA-S_{EF} posttest-thentest gain scores were .537, .628, .474, and .689. Applying
95% confidence intervals around the reliability coefficients indicates that the majority of the values were not statistically significantly different from Nunnaly’s (1978) minimum standard of .70. The notable exception was the SMP-S_{EXP} coefficient for Group 2.

Missing Values

Using the missing values function in SPSS, the study’s key data were surveyed to identify missing data (see Table 6). Of the 456 values (76 participants * 3 measures * 2 occasions), a total of 41 (8.99%) were missing. Of the 41 missing values, 13 values were imputed using the process defined by Milliken (1984). Missing posttest scores were imputed by adding the mean delta of gain scores, between the two repeated measures for a given group, to matching thentest scores. Missing thentest scores were imputed by subtracting the mean delta of gain scores, between the two repeated measures for a given group, from matching posttest scores. Missing pretest scores were imputed by subtracting the mean delta of gain scores, between the two repeated measures for a given group, from matching posttest scores.

<table>
<thead>
<tr>
<th>Group</th>
<th>LBAII-S_{EF}</th>
<th>SMP-S_{CTL}</th>
<th>SMP-S_{EXP}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Then</td>
</tr>
<tr>
<td>1. Pre-Post-Then</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2. Pre-Post/Then</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3. Post-Then</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4. Post/Then</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

The remaining 28 were treated via listwise deletion as they represented 14 pairs of missing values on the two post-intervention measurement occasions. Across the 76 participants,
8 failed to complete the posttest and thentest measures of the SMP-S\textsubscript{CTL} and 6 failed to complete the posttest and thentest measures of the SMP-S\textsubscript{EXP}. Factoring out the pairs of missing values, the rates of imputation were 1.32\% for the LBAII-SEF, 4.41\% for the SMP-S\textsubscript{CTL}, and 3.57\% for the SMP-S\textsubscript{EXP}.

Examining scatterplots of the study’s key data revealed four outliers. Two SMP-S\textsubscript{CTL} thentest scores, 1 SMP-S\textsubscript{CTL} posttest score, and 1 SMP-S\textsubscript{EXP} posttest score were numerically distant from the rest of the data. The outliers were treated as missing data and addressed through imputation, as recommended by Brown and Kros (2003). Addressing the outlying values raised the rates of imputation for the SMP-S\textsubscript{CTL} and SMP-S\textsubscript{EXP} to 6.62\% and 5.00\%.

Descriptive Statistics

The dataset, resulting from the missing value analyses, was processed using SPSS 14.0. The measures analyzed in this study tended to be negatively skewed and normally distributed. Table 7 outlines descriptive statistics for the study’s key variables, considering all research designs groups collectively.

<table>
<thead>
<tr>
<th>Measure/Occasion</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBAII-SEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posttest</td>
<td>76</td>
<td>71.752</td>
<td>6.493</td>
<td>-.565</td>
<td>-.593</td>
</tr>
<tr>
<td>Pretest</td>
<td>76</td>
<td>59.577</td>
<td>9.613</td>
<td>.087</td>
<td>-.319</td>
</tr>
<tr>
<td>SMP-S\textsubscript{CTL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posttest</td>
<td>68</td>
<td>6.327</td>
<td>.699</td>
<td>-.811</td>
<td>-.555</td>
</tr>
<tr>
<td>Thentest</td>
<td>68</td>
<td>6.019</td>
<td>.835</td>
<td>-.511</td>
<td>-.380</td>
</tr>
<tr>
<td>SMP-S\textsubscript{EXP}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posttest</td>
<td>70</td>
<td>6.078</td>
<td>.578</td>
<td>-.715</td>
<td>1.017</td>
</tr>
<tr>
<td>Thentest</td>
<td>70</td>
<td>5.346</td>
<td>.838</td>
<td>-.439</td>
<td>-.005</td>
</tr>
</tbody>
</table>
Statistical Assumptions

Before conducting the statistical procedures to answer the study’s research questions, the data were analyzed to determine the level of compliance with associated statistical assumptions. The statistical assumptions common to research questions 1 and 2 were normality, equality of covariance matrices, homogeneity of variance, independence of subjects, and sphericity.

Research Question 1

Research question 1 asked whether there were statistical and practical differences in measurement outcomes derived from SLII training participants’ responses to the SMP-SCTL, a control measure. The assumption of normality of SMP-SCTL scores was tested by examining kurtosis values. As depicted in Table 7, the kurtosis values for posttest and then-test SMP-SCTL scores were all within the stringent range of ±1. Using the cutoff established by Tabachnick and Fidell (2001) of \(p > .001 \), the results from a Box M test \((F(9, 44245) = 1.930, p = .043) \) indicate that the assumption of equality of covariance matrices was met. The results of two separate Levene’s tests indicate that the SMP-SCTL posttest and then-test scores met the homogeneity of variance assumption (see Table 8).

Table 8

Levene’s Test Results - SMP-SCTL Score Variance Between Groups

<table>
<thead>
<tr>
<th>Occasion</th>
<th>(F)</th>
<th>df(_1)</th>
<th>df(_2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posttest</td>
<td>1.875</td>
<td>3</td>
<td>64</td>
<td>.143</td>
</tr>
<tr>
<td>Thentest</td>
<td>2.109</td>
<td>3</td>
<td>64</td>
<td>.108</td>
</tr>
</tbody>
</table>

Research Question 2

Research question 2 asked whether there were statistical and practical differences in
measurement outcomes derived from SLII training participants’ responses to the SMP-SEXP, an experimental measure. The assumption of normality of SMP-SEXP scores was tested by examining kurtosis values. As depicted in Table 7, the kurtosis values for posttest and thentest SMP-SEXP scores were all within the conservative range of ± 2. Using the cutoff established by Tabachnick and Fidell (2001) of \(p > .001 \), the results from a Box M test \(F(9, 47612) = 1.854, p = .054 \) indicate that the assumption of equality of covariance matrices was met. The results of two separate Levene’s tests indicate that the SMP-SEXP posttest and thentest scores met the homogeneity of variance assumption (see Table 9).

Table 9

<table>
<thead>
<tr>
<th>Occasion</th>
<th>Statistic</th>
<th>df₁</th>
<th>df₂</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posttest</td>
<td>1.507</td>
<td>3</td>
<td>66</td>
<td>.221</td>
</tr>
<tr>
<td>Thentest</td>
<td>1.005</td>
<td>3</td>
<td>66</td>
<td>.396</td>
</tr>
</tbody>
</table>

Common to Research Questions 1 and 2

Independence of subjects was established through random selection of participants to groups and verified by comparing LBAII-SEF pretest scores between groups. Group differences between LBAII-SEF pretest \(F(3, 75) = .240, p = .868 \) scores were not statistically significantly different. The sphericity assumption was met because the repeated measure analyses included only two levels.

Data Analyses

Research questions 1 and 2 considered the statistical and practical significance of measurement outcomes derived from SLII training participants’ responses to a control and an
experimental measure. For each measure, parallel analyses were conducted to test the (a) interaction effect between retrospective pretest design group (i.e., pre-post-then, pre-post/then, post-then, and post/then) and measurement occasion (i.e., posttest, thentest); (b) simple effects of retrospective pretest design group at each measurement occasion; and (c) simple effects of measurement occasion at each retrospective pretest design group.

Research Question 1

Research question 1 asked whether there were statistical and practical differences in measurement outcomes derived from SLII training participants’ responses to the SMP-SCTL, a control measure. A split-plot ANOVA with simple effect tests on associated estimated means on SMP-SCTL posttest and thentest scores tested the null hypotheses associated with research question 1. The within-subjects factor was identified as occasion and had two levels: posttest and thentest responses to the SMP-SCTL. The between-subjects factor was identified as group and represented the four research designs under study: (a) pre-post-then, (b) pre-post/then, (c) post-then, and (d) post/then. To test for practical significance, an effect size was computed for each hypothesis.

The results from the split-plot ANOVA indicate that there were differences in measurement outcomes, derived from SLII training participants’ responses to a subjective control measure, between retrospective pretest design groups. Figure 1 graphically represents the relationships between the estimated marginal means produced by the split-plot ANOVA.
Table 10 presents the results of statistical significance tests and effect size calculations for each hypothesis. In the following sections, each hypothesis precedes a description of associated findings, in subsequent sections.

Table 10

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>F</th>
<th>df$_1$</th>
<th>df$_2$</th>
<th>p</th>
<th>effect</th>
<th>Reject null?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ho1_A$ – Interaction between group and occasion</td>
<td>1.030</td>
<td>3</td>
<td>64</td>
<td>.385</td>
<td>.046a</td>
<td>No</td>
</tr>
<tr>
<td>$Ho1_B$ – Simple effect of group at posttest occasion</td>
<td>.113</td>
<td>3</td>
<td>64</td>
<td>.952</td>
<td>.005b</td>
<td>No</td>
</tr>
<tr>
<td>$Ho1_C$ – Simple effect of group at thentest occasion</td>
<td>.226</td>
<td>3</td>
<td>64</td>
<td>.878</td>
<td>.010b</td>
<td>No</td>
</tr>
<tr>
<td>$Ho1_D$ – Simple effect of occasion at Group 1</td>
<td>7.127</td>
<td>1</td>
<td>17</td>
<td>.016</td>
<td>.400c</td>
<td>Yes</td>
</tr>
<tr>
<td>$Ho1_E$ – Simple effect of occasion at Group 2</td>
<td>3.854</td>
<td>1</td>
<td>15</td>
<td>.068</td>
<td>.160c</td>
<td>No</td>
</tr>
<tr>
<td>$Ho1_F$ – Simple effect of occasion at Group 3</td>
<td>5.954</td>
<td>1</td>
<td>17</td>
<td>.026</td>
<td>.441c</td>
<td>Yes</td>
</tr>
<tr>
<td>$Ho1_G$ – Simple effect of occasion at Group 4</td>
<td>9.796</td>
<td>1</td>
<td>15</td>
<td>.007</td>
<td>.655c</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note. aeffect = η^2 (Formula 3.4). beffect = η^2 (Formula 3.5). ceffect = d (Formula 3.6).
Ho1A: There is no statistically significant interaction between group and occasion, as measured by posttest and thenest responses to the SMP-SCTL.

Ho1A analysis. Group means of gains between participant responses to the SMP-SCTL posttest and thenest ranged from .138 to .413. The smallest mean difference was found in Group 2, where individuals completed instrumentation according to the pre-post/then design. The largest mean difference was found in Group 3, where individuals completed instrumentation according to the post-then design. Across all participants, group accounted for 4.61% of the variance in SMP-SCTL posttest-thentest gain scores. This effect was not statistically significant (p = .385). Therefore, this study failed to reject Ho1A.

Ho1B: There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-SCTL.

Ho1B analysis. Group means of participant responses to the SMP-SCTL posttest ranged from 6.250 to 6.388. Group 2 participants, who completed instrumentation according to the pre-post/then design, had the lowest mean score. Group 4 participants, who completed instrumentation according to the post/then design, had the highest mean score. Across all participants, group accounted for .53% of the variance in SMP-SCTL thenest scores. This effect was not statistically significant (p = .952). Therefore, this study failed to reject Ho1B.

Ho1C: There is no statistically significant simple effect of group at the thenest occasion, as measured by the SMP-SCTL.

Ho1C analysis. Group means of participant responses to the SMP-SCTL thenest ranged from 5.899 to 6.113. Group 3 participants, who completed instrumentation according to the post-then design, had the lowest mean score. Group 2 participants, who completed instrumentation according to the pre-post/then design, had the highest mean score. Across all participants, group
accounted for 1.05% of the variance in SMP-SCTL thentest scores. This effect was not statistically significant ($p = .878$). Therefore, this study failed to reject H_{o1C}.

H_{o1D}: There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP-SCTL.

H_{o1D} analysis. For participants in Group 1, who completed instrumentation according to the pre-post-then design, the intervention did have a measured effect on posttest responses to the SMP-SCTL. The mean delta between posttest and thentest responses was .272. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of .400. This standardized mean difference was statistically significant ($p = .016$). Therefore, this study rejected H_{o1D}.

H_{o1E}: There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP-SCTL.

H_{o1E} analysis. For participants in Group 2, who completed instrumentation according to the pre-post/then design, the intervention did not have a measured effect on posttest responses to the SMP-SCTL. The mean delta between posttest and thentest responses was .138. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of .160. This standardized mean difference was not statistically significant ($p = .068$). Therefore, this study failed to reject the null hypothesis H_{o1E}.

H_{o1F}: There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP-SCTL.

H_{o1F} analysis. For participants in Group 3, who completed instrumentation according to the post-then design, the intervention did have a measured effect on posttest responses to the
SMP-S\textsubscript{CTL}. The mean delta between posttest and thentest responses was .413. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of .441. This standardized mean difference was statistically significant ($p = .026$). Therefore, this study rejected $Ho1_F$.

$Ho1_G$: There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP-S\textsubscript{CTL}.

$Ho1_G$ analysis. For participants in Group 4, who completed instrumentation according to the post/then design, the intervention had a measured effect on posttest responses to the SMP-S\textsubscript{CTL}. The mean delta between posttest and thentest responses was .400. This difference, when divided by the pooled standard deviation of the two repeated measures yielded, a Cohen’s d of .655. This standardized mean difference was statistically significant ($p = .007$). Therefore, this study rejected $Ho1_G$.

Research Question 2

Research Question 2 asked whether there were statistical and practical differences in measurement outcomes derived from SLII training participants’ responses to the SMP-S\textsubscript{EXP}, an experimental measure. A split-plot ANOVA with simple effect tests on associated estimated means on SMP-S\textsubscript{EXP} posttest and thentest scores tested the null hypotheses associated with research question 2. The within-subjects factor was identified as occasion and had two levels: posttest and thentest responses to the SMP-S\textsubscript{EXP}. The between-subjects factor was identified as group and represented the four research designs under study: (a) pre-post-then, (b) pre-post/then, (c) post-then, and (d) post/then. To test for practical significance, an effect size was computed for each hypothesis.
The results from the split-plot ANOVA indicate that there were differences in measurement outcomes, derived from SLII training participants’ responses to a subjective experimental measure, between retrospective pretest design groups. Figure 2 graphically represents the relationships between the estimated marginal means produced by the split-plot ANOVA.

Figure 2. Estimated marginal means of SMP-S\(_{\text{EXP}}\). Standard deviations for the four groups of posttest scores were .384, .564, .499, and .764. Standard deviations for the four groups of thentest scores were .827, .617, .866, and 1.001. Group sample sizes were 18, 18, 18, and 16.

Table 11 presents the results of statistical significance tests and effect size calculations for each hypothesis. In the following sections, each hypothesis precedes a description of associated findings.
Table 11

Results of Split-plot ANOVA and Simple Effect Tests on SMP-S\textsubscript{EXP} Scores

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>F</th>
<th>df\textsubscript{1}</th>
<th>df\textsubscript{2}</th>
<th>p</th>
<th>effect</th>
<th>Reject null?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_02_A – Interaction between group and occasion</td>
<td>.400</td>
<td>3</td>
<td>66</td>
<td>.753</td>
<td>.018a</td>
<td>No</td>
</tr>
<tr>
<td>H_02_B – Simple effect of group at posttest occasion</td>
<td>2.275</td>
<td>3</td>
<td>66</td>
<td>.088</td>
<td>.094b</td>
<td>No</td>
</tr>
<tr>
<td>H_02_C – Simple effect of group at thentest occasion</td>
<td>1.221</td>
<td>3</td>
<td>66</td>
<td>.309</td>
<td>.053b</td>
<td>No</td>
</tr>
<tr>
<td>H_02_D – Simple effect of occasion at Group 1</td>
<td>12.635</td>
<td>1</td>
<td>17</td>
<td>.002</td>
<td>.982c</td>
<td>Yes</td>
</tr>
<tr>
<td>H_02_E – Simple effect of occasion at Group 2</td>
<td>58.392</td>
<td>1</td>
<td>17</td>
<td><.001</td>
<td>1.140c</td>
<td>Yes</td>
</tr>
<tr>
<td>H_02_F – Simple effect of occasion at Group 3</td>
<td>30.754</td>
<td>1</td>
<td>15</td>
<td><.001</td>
<td>1.145c</td>
<td>Yes</td>
</tr>
<tr>
<td>H_02_G – Simple effect of occasion at Group 4</td>
<td>21.377</td>
<td>1</td>
<td>15</td>
<td><.001</td>
<td>.924c</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note. aeffect = η^2 (Formula 3.4). beffect = η^2 (Formula 3.5). ceffect = d (Formula 3.6).

H_02_A: There is no statistically significant interaction between group and occasion, as measured by posttest and thentest responses to the SMP-S\textsubscript{EXP}.

H_02_A analysis. Group means of gains between participant responses to the SMP-S\textsubscript{EXP} posttest and thentest ranged from .633 to .823. The smallest mean difference was found in Group 1, where individuals completed instrumentation according to the pre-post-then design. The largest mean difference was found in Group 4, where individuals completed instrumentation according to the post/then design. Across all participants, group accounted for 1.79% of the variance in SMP-S\textsubscript{EXP} posttest-thentest gain scores. This effect was not statistically significant ($p = .753$). Therefore, this study failed to reject H_02_A.

H_02_B: There is no statistically significant simple effect of group at the posttest occasion, as measured by the SMP-S\textsubscript{EXP}.

H_02_B analysis. Group means of participant responses to the SMP-S\textsubscript{EXP} posttest ranged from 5.830 to 6.318. Group 4 participants, who completed instrumentation according to the post/then design, had the lowest mean score. Group 3 participants, who completed instrumentation according to the post-then design, had the highest mean score. Across all
participants, group accounted for 9.37% of the variance in SMP-S\textsubscript{EXP} thentest scores. This effect was not statistically significant ($p = .088$). Therefore, this study failed to reject Ho_{2B}.

Ho_{2C}: There is no statistically significant simple effect of group at the thentest occasion, as measured by the SMP-S\textsubscript{EXP}.

Ho_{2C} analysis. Group means of participant responses to the SMP-S\textsubscript{EXP} thentest ranged from 5.007 to 5.509. Group 4 participants, who completed instrumentation according to the post/then design, had the lowest mean score. Group 3 participants, who completed instrumentation according to the post-then design, had the highest mean score. Across all participants, group accounted for 5.26% of the variance in SMP-S\textsubscript{EXP} thentest scores. This effect was not statistically significant ($p = .309$). Therefore, this study failed to reject Ho_{2C}.

Ho_{2D}: There is no statistically significant simple effect of occasion at Group 1, as measured by posttest and thentest responses to the SMP-S\textsubscript{EXP}.

Ho_{2D} analysis. For participants in Group 1, who completed instrumentation according to the pre-post-then design, the intervention had a measured effect on posttest responses to the SMP-S\textsubscript{EXP}. The mean delta between posttest and thentest responses was .633. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of .982. This standardized mean difference was statistically significant ($p = .002$). Therefore, this study rejected Ho_{2D}.

Ho_{2E}: There is no statistically significant simple effect of occasion at Group 2, as measured by posttest and thentest responses to the SMP-S\textsubscript{EXP}.

Ho_{2E} analysis. For participants in Group 2, who completed instrumentation according to the pre-post/then design, the intervention had a measured effect on posttest responses to the
SMP-SEXP. The mean delta between posttest and thentest responses was .674. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of 1.140. This standardized mean difference was statistically significant ($p < .001$). Therefore, this study rejected Ho_{2E}.

Ho_{2F}: There is no statistically significant simple effect of occasion at Group 3, as measured by posttest and thentest responses to the SMP-SEXP.

Ho_{2F} analysis. For participants in Group 3, who completed instrumentation according to the post-then design, the intervention had a measured effect on posttest responses to the SMP-SEXP. The mean delta between posttest and thentest responses was .809. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of 1.145. This standardized mean difference was statistically significant ($p < .001$). Therefore, this study rejected Ho_{2F}.

Ho_{2G}: There is no statistically significant simple effect of occasion at Group 4, as measured by posttest and thentest responses to the SMP-SEXP.

Ho_{2G} analysis. For participants in Group 4, who completed instrumentation according to the post/then design, the intervention had a measured effect on posttest responses to the SMP-SEXP. The mean delta between posttest and thentest responses was .823. This difference, when divided by the pooled standard deviation of the two repeated measures, yielded a Cohen’s d of .924. This standardized mean difference was statistically significant ($p < .001$). Therefore, this study rejected Ho_{2F}.

Summary

This chapter reported the study’s findings. The Data Assessment section outlined results
from reliability, validity, and missing values analyses. The Descriptive Statistics section outlined the mean, standard deviation, normality, and kurtosis values for key variables. The Statistical Assumptions section described how the data met the necessary statistical assumptions associated with the study’s null hypotheses. The Data Analyses section reviewed the results of null hypotheses testing. The study rejected three of the null hypotheses associated with research question 1 and also rejected four of the null hypotheses associated with research question 2. Chapter 5 synthesizes the study’s findings and presents conclusions, recommendations, and implications.
CHAPTER 5

DISCUSSION

Overview

This chapter includes four sections: (a) Synthesis of Findings, (b) Conclusions, and (c) Recommendations and (d) Implications. In the Synthesis of Findings, the researcher collates the results of the hypotheses findings to answer the study’s two research questions. The Conclusion section draws inferences from the results and relates the findings to existing literature. The Recommendations section provides areas for further research. The Implications section relates the study’s findings to the field of performance improvement.

Synthesis of Findings

This study considered two related research questions to determine whether the interaction effect of pretest sensitization and post-intervention survey order impacted how participants responded to two self-report measures. Research question 1 asked: Are there differences in measurement outcomes, derived from Situational Leadership® II training participants’ responses to a subjective control measure, among four retrospective pretest design groups? Research question 2 asked: Are there differences in measurement outcomes, derived from Situational Leadership® II training participants’ responses to a subjective experimental measure, among four retrospective pretest design groups?

For each measure, parallel analyses were conducted to test the (a) interaction effect between retrospective pretest design group (i.e., pre-post-then, pre-post/then, post-then, and post/then) and measurement occasion (i.e., posttest, thentest); (b) simple effects of retrospective
pretest design group at each measurement occasion; and (c) simple effects of measurement
occasion at each retrospective pretest design group.

Across both research questions, the first two set of effects were found to be statistically
insignificant: (a) interaction effect between retrospective pretest design group (i.e., pre-post-then,
pre-post/then, post-then, and post/then) and measurement occasion (i.e., posttest, thentest) and
(b) simple effects of retrospective pretest design group at each measurement occasion. However,
when considering effect sizes, some practical significance was detected. In the control measure,
the interaction effect between group and occasion produced a small effect, accounting for 4.61%
of the variance in SMP-S_{CTL} posttest-thentest gain scores. In the experimental measure, the
simple effect of group at the posttest measurement occasion produced a medium effect,
accounting for 9.37% of the variance in SMP-S_{EXP} posttest scores. Also in the experimental
measure, the simple effect of group at the thentest measurement occasion produced a small
effect, accounting for 5.26% of the variance in SMP-S_{EXP} thentest scores.

These results provide preliminary evidence to answer the study’s two research questions,
indicating that there were differences in measurement outcomes among the four retrospective
pretest designs implemented. In both the control and experimental measure, differences were
found between groups of participant responses. The magnitude of these differences is further
synthesized and discussed by examining the simple effects of measurement occasion at each
retrospective pretest design group.

Control Measure

In the control measure, a significant treatment effect was detected in Groups 1 (pre-post-
then), 3 (post-then), and 4 (post/then). In Group 2 (pre-post/then), the intervention did not appear
to have an effect on the difference between posttest and thentest scores. In Groups 1 and 3, the effect sizes were nearly identical ($d = .400$ and .441). In Group 2, the effect between posttest and thentest scores ($d = .160$) was approximately $1/3$ the size found in Groups 1 and 3. In Group 4, the effect ($d = .655$) was 1.5 times as large as the effects found in Groups 1 and 3, and over 4 times as large as the effect found in Group 2.

It appears that taking a pretest had no effect when participants were given the post-intervention self-report measures (posttest, thentest) in separate forms. However, in the case when participants were given the post-intervention self-report measures in a combined form, the difference between taking a pretest or not substantially affected how participants responded. Participants who did not take a pretest reported 4 times the gain between posttest and thentest score than participants who did not take the pretest.

The differences in measurement outcomes between Groups 2 and 4 suggest that the combination of taking a pretest and a single post-intervention self-report survey (combining posttest and thentest responses) may have signaled an implicit theory of stability to participants. Conversely, taking a single post-intervention self-report survey without the benefit of a prior pretest may have signaled an implicit theory of change to participants.

However, it is important to note that the intervention was not designed or expected to induce a treatment effect on the control measure (D. Zigarmi, personal communication, December 8, 2006). This suggests that, for the control measure, the post/then design produced the least valid results and the pre-post/then design produced the most valid results. Considering the validity analyses presented in chapter 4 weakens the validity of the pre-post/then design just slightly, because a small effect ($\eta^2 = .021$) was found between LBAII-S_{EF} effectiveness group and SMP-S_{CTL} scores.
Experimental Measure

In the experimental measure, a significant treatment effect was detected in all four groups. Additionally, the effect sizes were large and nearly identical ($d = .982, 1.140, 1.145,$ and 0.924) in all four groups. The largest difference between effect size was found between Groups 3 (post-then) and 4 (post/then). However, the effect size for Group 4 was only 20% less than the effect size for Group 3. This indicates that even though retrospective pretest group accounted for 9.37% of the variance in SMP-SEXP posttest scores and 5.26% of the variance in SMP-SEXP thentest scores, the impact of these differences was negligible when considered collectively.

The validity data present a slightly different picture. While the validity coefficients for Groups 1, 2, and 3 were consistent with prior literature (Zigarmi et al., 1997), the validity coefficient for Group 4 was statistically significantly different ($p = .021$). Additionally, when correlating SMP-SEXP posttest-thentest gain scores to LBAII-SEF posttest-pretest gain scores, only Group 1 produced a validity coefficient that was in the expected direction ($r' = .348$). These findings suggest that for the experimental measure, the post/then design produced the least valid results and the pre-post-then design produced the most valid results.

Conclusions

Considering all the analyses performed in this study, findings indicate that there were differences in measurement outcomes among the four retrospective pretest designs implemented. In both the control and experimental measure, differences were found between groups of participant responses. In the case of the control measure, the differences were evident in the magnitude of the treatment effect between groups. These differences suggest that the post/then design produced the least valid results and the pre-post/then design produced the most valid
results. In the case of the experimental measure, the differences were evident in the direction and magnitude of the validity coefficients. These differences suggest that for the experimental measure, the post/then design produced the least valid results and the pre-post-then design produced the most valid results. Considering the results of both research questions, the post/then design appeared to produce the least valid results. The findings from this study support the recommendation of Umble et al. (2000) to examine the concurrent validity of measures derived from retrospective pretest designs.

These findings also add to the literature surrounding the validity of retrospective pretest designs as they consider the interaction effect of pretest sensitization and post-intervention survey order on two self-report measures. Data from this study suggest that differences between retrospective pretest design groups may be sensitive to the type of measure administered. This indicates that following Sprangers and Hoogstraten’s (1989) advice to include a control condition is not as easy as it may seem. Depending on the design used, participant responses could indicate a treatment effect where none is expected.

When considering how the findings relate to similar studies conducted on retrospective pretest designs, it is difficult to make direct comparisons due to differences in the levels of reporting and the aims of the studies considered. However, by taking into account the higher order findings from this study, some comparisons can be made relating to pretest sensitization, survey administration, and control measures.

Pretest Sensitization

Although this study did not specifically analyze the main effect of pretest, findings indicate that, in the case of the control measure, the administration of a pretest had a practical
effect on the magnitude of the treatment effect when the post-intervention measures were administered via a single survey. However, in the case of the experimental measure, this study found no evidence of a pretest effect. The former finding supports the conclusions of Sprangers and Hoogstraten (1989), who observed a pretest effect. The latter finding supports the conclusions of Terborg and Davis (1982), who did not observe a pretest effect.

Survey Administration

Although this study did not specifically analyze the main effect of post-intervention survey order, findings indicate that post-survey administration order had no observed effect on either the control or experimental measure. These findings support the conclusions of Sprangers and Hoogstraten (1989) and Terborg and Davis (1982).

Control Measure

This study found a statistically significant difference in the control measures in three of the four research designs tested. For participants in the pre-post-then, post/then, and post-then groups, a statistically significant difference was found between the two repeated measures of the control variable. For participants in the pre-post/then group, no statistically significant difference was found between the two repeated measures of the control variable. The former is consistent with the Sprangers and Hoogstraten (1991) study and one of the eight studies referenced in the Sprangers and Hoogstraten (1989) meta-analysis. The latter is consistent with the findings from seven of the eight studies referenced in the Sprangers and Hoogstraten (1989) meta-analysis.
Recommendations for Future Research

Recommendations for future research were derived by considering the limitations of this study’s results. The findings from this study are limited when considering (a) sample size, (b) measurement invariance, (c) number of measures, and (d) intended population. Resultant recommendations are presented in order of importance.

Sample Size

Although the sample was representative of the intended population, the size of the sample limits the generalization of the study’s results. Considering the number of participants who failed to complete the posttest and thentest measures resulted in an effective sample size of 68 for the control measure and 70 for the experimental measure. Consequently, some group sizes were as low as 16. Although this group size was sufficient to detect statistically significant differences in repeated measures at the group level, it was not sufficient to detect statistically significant differences in posttest scores, thentest scores, or their derivatives across groups. Therefore, this study should be replicated to determine whether the results hold in a larger sample. Detecting a statistically significant medium effect would require approximately another 19 participants per group (see Cohen, 1988, Table 8.4.1).

Measurement Invariance

Because of the limited sample size, this study did not test for measurement invariance. To determine whether the factor structures of the experimental and control measure are invariant across retrospective pretest design groups, either confirmatory or exploratory factor analyses should be conducted. Using general factor analysis guidelines (Stevens, 2002) would require a
5:1 ratio of participants to survey item to conduct an exploratory factor analysis and a 10:1 ratio for confirmatory factor analysis.

Number of Measures

This study focused on two measures of the SMP-S: (a) Work Involvement Scale and (b) Clarification of Goals and Objectives Scale. Considering that the two measures produced different results, it is recommended that future research investigate additional measures of the SMP-S. For the experimental measure, Zigarmi (D. Zigarmi, personal communication, December 8, 2006) suggested that future research should consider the following SMP scales: (a) Upward Communication, (b) Orderly Work Planning, and (c) Building Trust. For the control measure Zigarmi suggested the following SMP scales: (a) Organization Climate and (b) Commitment.

Intended Population

This focused on the self-perceptions of individuals attending a Situational Leadership II workshop. Because the opportunity for evaluation extends across many domains, it is recommended that this study be replicated for other populations. This would require selecting a set of self-report measures that could be validated via an external referent. It would also be prudent for future researchers, replicating this study, to select a complement of measures with established psychometric properties.

Implications

If this study’s findings generalize to other populations and measures, outcome
measurements derived from retrospective pretest designs may be viewed with even greater caution than they are today. It seems likely that nomological nets weakened by nonconforming validity coefficients will be used to substantiate inherent concerns regarding the use of the retrospective pretest (i.e., subject acquiescence and memory distortion). An unfortunate side effect may be that all designs involving the retrospective pretest may fall victim to these concerns, not just the studies in which there are problems in establishing concurrent validity evidence.

Regardless of the validity problems encountered in this study, it is the researcher’s opinion that the retrospective pretest is a viable tool. Especially because the demand for accountability in the field of performance improvement is high, the retrospective pretest provides a practical means to garner pretest data that might otherwise be confounded by pretest sensitization, experience limitation, or participant access. The problem is that not all literature promoting retrospective pretest designs informs readers of the need to validate resulting outcome measures and the importance of employing multiple methods to access change.

Just as reliability is a property of obtained scores, validity can change from sample to sample. Therefore, researchers incorporating the retrospective pretest must consider how the validity of self-report measures will be established. In fact, this requirement is not limited to self-report measures or retrospective pretest designs. Validity is a property inured to scores and cannot be generalized to an instrument.

When accessing change, it is a well-established principle to employ multiple methods. When considering the need to provide concurrent validity of outcome measures with the importance of incorporating multiple methods to access change, one sees that the issues are reciprocal. By incorporating concurrent methods to assess change, a researcher can establish a
nomological net of the study’s measures. Therefore, a sound design incorporating the retrospective pretest should incorporate multiple measures, within an established nomological net, in order to adequately assess changes in performance. Although such a design goal should be considered for any performance improvement study, it is a must for studies incorporating the retrospective pretest less they fall victim to inherent concerns related to retrospective accounts.

Summary

This study detected differences in measurement outcomes from SLII participant responses to an experimental and a control measure. In the case of the experimental measure, differences were found in the magnitude and direction of the validity coefficients. In the case of the control measure, differences were found in the magnitude of the treatment effect between groups.

These differences indicate that, for this study, the pre-post-then design produced the most valid results for the experimental measure. For the control measure in this study, the pre-post/then design produced the most valid results. Across both measures, the post/then design produced the least valid results.

Researchers and practitioners embracing retrospective pretest designs are encouraged to follow the recommendation of Umble et al. (2000) to examine the concurrent validity of measures derived from retrospective pretest designs. Researchers and practitioners considering Sprangers and Hoogstraten’s (1989) advice to include a control measure are cautioned that derivative results may be sensitive to the choice of research design.
APPENDIX A

REPRESENTATIVE STUDIES INCORPORATING
Representative Studies Incorporating the Retrospective Pretest

<table>
<thead>
<tr>
<th>Research</th>
<th>Variable(s)</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig, Palus, Rogolsky (2000)</td>
<td>Leadership skills</td>
<td>Pr X1 Po Th<sup>b</sup></td>
</tr>
<tr>
<td>Francis-Smythe and Smith (1997)</td>
<td>Organizational commitment, job involvement, and career planning</td>
<td>-- X1 Th Po<sup>b</sup></td>
</tr>
<tr>
<td>Hoogstraten (1982)</td>
<td>Problem solving skills</td>
<td>Pr Ob X1 Ob Po Th<sup>c</sup></td>
</tr>
<tr>
<td>Hoogstraten (1985)</td>
<td>Communication skills</td>
<td>Pr X1 X2 Po Th<sup>b</sup></td>
</tr>
<tr>
<td>Study 1</td>
<td></td>
<td>Pr -- X2 Po Th<sup>c</sup></td>
</tr>
<tr>
<td>Study 2</td>
<td>Counseling knowledge and skills</td>
<td>Pr X1 Pb Po Th<sup>c</sup></td>
</tr>
<tr>
<td>Howard and Dailey (1979)</td>
<td>Interviewing skills</td>
<td>Pr Ob X1 Ob Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Howard, Dailey, and Gulanick (1979)</td>
<td>Interview skills</td>
<td>Pr Ob X1 Ob Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Howard, Ralph, et al. (1979), Study 4</td>
<td>Assertiveness, sex-role orientation, and individual goal attainment</td>
<td>Pr Ob X1 Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Howard, Schmeck, and Bray (1979), Study 2</td>
<td>Learning theory knowledge and principles of condition knowledge</td>
<td>Pr Ob -- X1 Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Lam and Bengo (2003)</td>
<td>Perception of teaching and learning in mathematics</td>
<td>-- X1 Po Th<sup>b</sup></td>
</tr>
<tr>
<td>Lamb and Tschillard (2005)</td>
<td>Instructional design knowledge</td>
<td>Pr X1 Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Levinson et al. (1990)</td>
<td>Teaching skills and control measures</td>
<td>Pr X1 Th Po<sup>b</sup></td>
</tr>
<tr>
<td>Mann (1997)</td>
<td>Self-efficacy</td>
<td>Pr X1 Th Po<sup>a</sup></td>
</tr>
<tr>
<td>Manthei (1977)</td>
<td>Counseling skills</td>
<td>Pr X1 Th Po<sup>b</sup></td>
</tr>
<tr>
<td>Mezoff (1981)</td>
<td>Leadership skills</td>
<td>-- X1 Po Th<sup>c</sup></td>
</tr>
<tr>
<td>Pohl (1982)</td>
<td>Statistical knowledge</td>
<td>Pr Ob X1 Ob Po Th<sup>a</sup></td>
</tr>
<tr>
<td>Pratt, McGuigan, and Katzev (2000)</td>
<td>Parenting skills</td>
<td>Pr X1 Po Th<sup>b</sup></td>
</tr>
</tbody>
</table>

(table continues)
<table>
<thead>
<tr>
<th>Research</th>
<th>Variable(s)</th>
<th>Design<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raidl et al. (2004)</td>
<td>Resource management, nutrition, and food safety behaviors</td>
<td>-- X1 Po Th<sup>d</sup></td>
</tr>
<tr>
<td>Rhodes and Jason (1987)</td>
<td>Drug usage and gang membership</td>
<td>Pr X1 Po Th<sup>b</sup></td>
</tr>
<tr>
<td>Rotter, C. A. (2004)</td>
<td>Leadership skills</td>
<td>-- X1 Po Th<sup>f</sup></td>
</tr>
<tr>
<td>Skeff et al. (1992)</td>
<td>Teaching skills and control measures</td>
<td>Pr X1 Th Po<sup>b</sup></td>
</tr>
<tr>
<td>Townsend, Lai, Lavery, Sutherland, and Wilton (1999)</td>
<td>Mathematics self concept and anxiety</td>
<td>Pr X1 Po Th<sup>f</sup></td>
</tr>
<tr>
<td>Zwiebel (1987)</td>
<td>Attitude towards mental retardation</td>
<td>Pr X1 Po Th<sup>e</sup></td>
</tr>
</tbody>
</table>

^{Note.} Ob = objective measure; Pb = Placebo treatment; Po = self-report posttest; Pr = self-report pretest; Th = self-report thentest; X1, X2 = experimental treatment. ^aNotation follows Sprangers’s (1989) nomenclature. ^bPost-intervention survey administration details not provided. ^cSingle post-intervention questionnaire. Participants instructed to complete all posttest items before providing thentest responses. ^dSingle post-intervention questionnaire. Participants instructed to provide posttest and thentest responses before moving to next survey item. ^eSingle post-intervention questionnaire. Thentest questions follow posttest questions. ^fSeparate posttest and thentest questionnaires.
APPENDIX B

DIRECTIONS FOR INSTRUMENTATION INVOLVING THE TEST ITEMS
Please evaluate each statement according to how well it best described you before training. This survey gives you the chance to retrospectively assess your pre-workshop behavior, using the information you gained during the course of training. Think back to when you began this training program. Now that the training is completing, how would your rate yourself as having been before?

You may remember how you rated yourself on these items when you first took this assessment at the beginning of training. Please do not simply recall your original ratings. These ratings are to reflect your current opinion of your pre-training behavior, based on the knowledge, ability, or awareness you gained during the course of training. Do not worry whether these ratings agree or disagree with your earlier ratings. Blacken the circles that most closely described you as you were on Jan. 13. If you are unsure about an item, please blacken the NA circle (not applicable).

Figure B1. Group 1 (pre-post-then) directions for thentest items.

Please evaluate each statement twice: (1) according to how well it best describes you today, now that you are completing training and (2) according to how well is described you on Jan. 13, before training.

The second rating gives you the chance to retrospectively assess your pre-workshop behavior, using the information you gained during the course of training. Think back to when you began this training program. Now that training is completing, how would your rate yourself as having been before? You may remember how you rated yourself on these items when you first took this assessment at the beginning of training. Please do not simply recall your original ratings. These ratings are to reflect your current opinion of your pre-training behavior, based on the knowledge, ability, or awareness you gained during the course of training. Do not worry whether these ratings agree or disagree with your earlier ratings. Blacken the circles that most closely describes you as of today and described you as of Jan. 13. There may or may not be any differences between the two ratings. If you are unsure about an item, please leave it blank, or blacken the NA circle (not applicable).

Figure B2. Group 2 (pre-post/then) directions for posttest and thentest items.

Please evaluate each statement according to how well it best described you before training. This survey gives you the chance to retrospectively assess your pre-workshop behavior, using the information you gained during the course of training. Think back to when you began this training program. Using the knowledge, skills, or awareness you gained during this workshop, how would you rate yourself as having been before the training began? Blacken the circles that most closely described you as you were on Jan. 13. If you are unsure about an item, please blacken the NA circle (not applicable).

Figure B3. Group 3 (post-then) directions for thentest items.

Please evaluate each statement twice: (1) according to how well it best describes you today, now that you are completing training and (2) according to how well is described you on Jan. 13, before training.

The second rating gives you the chance to retrospectively assess your pre-workshop behavior, using the information you gained during the course of training. Think back to when you began this training program. Using the knowledge, skills, or awareness you gained during this workshop, how would you rate yourself as having been before the training began?

Blacken the circles that most closely describes you as of today and described you as of Jan. 13. There may or may not be any differences between the two ratings. If you are unsure about an item, please leave it blank, or blacken the NA circle (not applicable).

Figure B4. Group 4 (post/then) directions for posttest and thentest items.
REFERENCES

