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 Murine neuronal networks, derived from embryonic frontal cortex (FC) tissue 

grown on microelectrode arrays, were used to investigate zinc toxicity at concentrations 

ranging from 20 to 2000 μM total zinc acetate added to the culture medium. Continual 

multi-channel recording of spontaneous action potential generation allowed a 

quantitative analysis of the temporal evolution of network spike activity generation at 

specific zinc acetate concentrations. Cultures responded with immediate concentration-

dependent excitation lasting from 5 to 50 min, consisting of increased spiking and 

enhanced, coordinated bursting. This was followed by irreversible activity decay. The 

time to 50% and 90% activity loss was concentration dependent, highly reproducible, 

and formed linear functions in log–log plots. Network activity loss generally preceded 

morphological changes. 20% cell swelling was correlated with 50% activity loss. 

Cultures pretreated with the GABAA receptor antagonists bicuculline (40 μM) and 

picrotoxin (1 mM) lacked the initial excitation phase. This suggests that zinc-induced 

excitation may be mediated by interfering with GABA inhibition. Partial network 

protection was achieved by stopping spontaneous activity with either tetrodotoxin (200 

nM) or lidocaine (250 μM). However, recovery was not complete and slow deterioration 

of network activity continued over 6 hrs. Removal of zinc by early medium changes 

showed irreversible, catastrophic network failure to develop in a concentration-

dependent time window between 50% and 90% activity loss. Investigation of entry 



routes suggested the L-type but not N-type calcium channels to be the main entry 

pathway for zinc. Data are presented implicating the chloride channel to be an 

additional entry route.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Zinc and the Nervous System 

Zinc is heterogeneously distributed throughout the brain, varying over a five-fold 

range from 26–40 ppm (369-568 μM) in cortical gray matter to 136–145 ppm (1.931-

2.059 mM) in hippocampal mossy fibers (Choi and Koh, 1998).  Zinc can be released 

into the synapse to modulate the activity of various neurotransmitter receptors. For 

example, zinc inhibits N-methyl-d-aspartate (NMDA) and γ-aminobutyric acid (GABA) 

receptors, and potentiates α-amino-5-hydroxy- 3-methyl-4-isoxazole propionic acid 

(AMPA) receptors (Harrison and Gibbons, 1994; Smart et al., 1994).  Additionally, zinc 

inhibits transporter-mediated glutamate uptake (Vandenberg et al., 1998) and, 

depending on concentration, can inhibit or potentiate glycine receptors (Han & Wu, 

1999; Spiridon et al.,1998).  While synaptic zinc may be important for normal neural 

function, it is also known that zinc is toxic to neurons. Studies in animal models suggest 

that endogenous zinc mediates neurodegeneration resulting from ischemia (Koh et al., 

1996) and seizure (Suh et al., 1996).  Numerous reports have shown that zinc is toxic to 

cultured neurons (Choi et al., 1988, 1992; Chen and Liao, 2003; Manev et al., 1997; 

Weiss et al., 2000). Pharmacological approaches confirmed that zinc entered neurons 

and that such increases in intracellular free zinc resulted in neurotoxicity (Canzoniero et 

al., 1999; Sensi et al., 1997).  Studies using zinc-sensitive fluorophores to directly 

measure increased intracellular zinc suggest that this divalent ion enters neurons 

through a number of calcium-permeable pathways: glutamate receptors, voltage-gated 
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calcium channels, and Na+/Ca++ exchangers all permit zinc influx (Cheng and Reynolds, 

1998; Colvin et al., 2000; Marin et al., 2000; Sensi et al., 1997; Sheline et al., 2002). In 

addition, some plasma membrane transporters may mediate accumulation of zinc 

(Colvin, 1998; Colvin et al., 2003).  While zinc neurotoxicity has been established, and 

zinc-sensitive fluorophores have been used to measure intracellular zinc, it is important 

to note that few reports have demonstrated a quantitative relationship between zinc and 

zinc-mediated neurotoxicity (Canzoniero et al., 1999; Sensi et al., 1999). Also, early 

emphasis on excitotoxicity, that required examination of zinc effects in the presence of 

high concentrations of potassium, has dominated these studies and only limited 

information is available on zinc toxicity in normal physiological media.  While the 

mechanisms by which increased intracellular zinc kills neurons remain unclear, it has 

been suggested that increased intracellular zinc may result in mitochondrial impairment 

and generation of reactive oxygen species (Dineley et al., 2003; Kim et al., 1999; Sensi 

et al., 1999).  

 

1.2 Zinc Absorption and Excretion. 

Adults in North America tend to generally consume 8 – 15 mg of zinc per day via 

their dietary intake (IOM, 2001). Under a normal diet, zinc absorption ranges from 26 – 

33% of this exposure level (Sandstrom and Abrahamson, 1989; Knudsen et al., 1995; 

Hunt et al., 1998) whereas, fasting results in higher zinc absorption, 68 – 81% (Istfan et 

al., 1983; Sandstrom and Abrahamson, 1989). Zinc is mainly absorbed in the small 

intestine of the digestive tract. Studies in rats have suggested that 60% absorption 

occurs in the duodenum (Methfessel and Spencer, 1973; Davies, 1980), 30% in the 
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ileum, 8% in the jejunum, and 3% through the colon and cecum (Davies, 1980). 

Although, in more recent studies including human subjects (Lee et al., 1989), a greater 

rate of transport has been suggested across the jejunum than any other intestinal 

segment. The quantitative significance of the different intestinal segments is not yet 

clearly defined; however the fact that gastrointestinal absorption of zinc is biphasic is 

already well established, with a rapid phase occurring initially followed by a saturable 

slow phase (Davies, 1980; Gunshin et al., 1991).  

Zinc absorption occurs through both passive diffusion and a saturable carrier-

mediated process (Tacnet et al., 1990). Absorption via the saturable carrier-mediated 

process is important for high intestinal concentrations of zinc. Metallothionenes also 

play a significant role in absorption for high zinc concentrations (Hempe and Cousins, 

1991).  Furthermore, they take part in zinc homeostasis and their production is amplified 

due to increased zinc levels (Richards and Cousins, 1975; Cousins, 1985). Not much is 

known about the exact role of metallothioneins in zinc absorption, but it is thought to 

regulate zinc availability by binding it in the intestinal mucosal cells, thus preventing 

absorption and providing an exit route for excess zinc as these cells are shed and 

excreted in the feces (Foulkes and McMullen, 1987). It was suggested in a study by 

Hempe and Cousins in 1992 that as zinc enters the cells of the intestinal mucosa, it is 

initially associated with CRIP, a saturable cysteine-rich intestinal protein and only a 

small portion of zinc binds to metallothioneins. If intestinal concentrations of zinc 

continue to rise, CRIP becomes saturated, and therefore binding of zinc to 

metallothioneins increases.   
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After crossing the intestines, zinc then binds to plasma albumin and beta-2-

macroglobulin where it is carried to hepatocytes. 30 – 40% of this protein-bound zinc is 

extracted by liver and then released in to the blood stream (Talcott et al., 2001). Zinc is 

mainly eliminated through pancreatic secretions and bile into the feces. 70-80% of an 

ingested dose of zinc is excreted in the feces via the gastrointestinal tract. (Davies and 

Nightingale, 1975).  Approximately 14% of the eliminated zinc is excreted in urine 

(Wastney et al., 1986) through sweat (Prasad et al., 1963), saliva secretion (Greger and 

Sickles, 1979), and incorporation into hair (Rivlin, 1983) are other minor routes of zinc 

elimination. The rate at which zinc is excreted is dependent on both past and current 

zinc intake (Johnson et al., 1988). Age is also another factor that affects the rate at 

which zinc is excreted. In 1991 He et al. reported higher fecal excretion of zinc in adult 

mice following an intraperitoneal dose of 
65

Zn, as compared to younger mice (weanling, 

adolescent, or young adult mice). 

 

1.3 Zinc Cytotoxicity 

 In this study the toxicity of zinc has been directed towards neurons but it has 

been reported in many studies that zinc is also toxic to others cells in the body. Zinc 

toxicity may occur due to high oral doses of zinc salts in mammals (> 20 g/day). 

Inhalation of zinc fumes over a few hours of less than 20 mg zinc salts can be followed 

by the symptoms of the metal fume fever and can therefore induce toxicity. Patients 

diagnosed with zinc toxicity are treated by chelating therapy to remove increased zinc 

from the body. However, mortality is high in cases involving severe zinc intoxication. 

This might be due to the association of many organs in the zinc-mediated dysfunction: 
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pancreas, liver, kidney, heart and hematological system. Numerous animal studies have 

been conducted suggesting that high levels of zinc induce toxicity which may affect 

different organs. Recently, Dyk et al. investigated histological changes in the liver of 

Cichlidae fish after exposure to zinc. The livers appeared soft and several histological 

changes were present which indicated metal toxicity. These histological changes 

reported included hyalinization, hepatocyte vacuolation, cellular swelling, and 

congestion of blood vessels (Dyk et al., 2007).  In another study low levels of zinc 

acetate and zinc chloride were applied on the skin of rabbits and mice. Skin irritations 

were observed on these animals (Gilmour et al., 2006).   

Various observations and studies involving human populations who have been 

exposed to zinc have revealed the evidence of toxicity with increased levels of zinc in 

their systems. EHC-93, an atmospheric dust sample is known to induce lung cell injury 

and inflammation (Adamson et al., 1999). In a 3-day study, a solution containing all 

metals present in EHC-93 and that of a zinc salt alone resulted in an increase in 

inflammatory cells, protein in lung lavage fluid, and DNA synthesis in lung cells. But only 

the zinc salts stimulated rapid focal necrosis of type 1 alveolar epithelial cells followed 

by inflammation and amplification of protein levels in lavage fluid in a 28-day. At 4 

weeks, following the injury, epithelial cell proliferation was enhanced and focal fibrosis 

was observed. When zinc salt was applied at a 10x dose, the pulmonary changes were 

significantly enhanced. This study shows that the toxicity associated with EHC-93 

atmospheric dust is almost certainly due to the level of soluble zinc in this particulate 

sample. This indicates that enhanced zinc content of atmospheric dust may possibly be 
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a fundamental factor in determining pulmonary cell reactivity to inhaled particulates 

(Adamson et al., 1999).  

Another study showed that cardiac injury may be induced by pulmonary zinc 

exposure. Impaired mitochondrial respiration, stimulated cell signaling, altered Ca2+ 

homeostasis, and increased transcription of sulfotransferases were suggested to be a 

result of the direct effect of zinc on myocardium following pulmonary exposure (Gilmour 

et al., 2006).  

Also, pulmonary exposure of a rat model to zinc showed cardiac, coagulative, 

and fibrinolytic alterations. This study demonstrated that cardiovascular blood 

coagulation impairments are expected following pulmonary zinc exposure and 

associated pulmonary injury and inflammation (Gilmour et al., 2006). 

 

1.4 Zinc Involvement in Brain Disorders. 

 Zinc levels and its role in the brain diseases have become an important area of 

study. Recently, there have been numerous reports on the involvement of zinc in 

Alzheimer’s Disease (AD). It’s already known that AD is associated with the abnormal 

aggregation of beta-amyloid protein (Aß) in the brain and many studies have confirmed 

that certain metals play a role in the precipitation and cytotoxicity of this protein. Zinc 

was shown in 1993 to promote aggregation of plaques in AD (Mantyh et al., 1993). 

More recently, In 2006, a study suggested that Aß complexed with zinc and that this 

complex was more toxic than Aß by itself (Chen et al., 2006). Normally most of the zinc 

present in the brain is sequestered in cellular compartments or tightly bound to specific 

proteins. Zinc is released from presynaptic terminals upon stimulation of zinc-containing 
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pathways. However, excessive zinc translocation and accumulation from pre- to 

postsynaptic neurons contributes to the selective nerve cell injury seen in cerebral 

ischemia, epilepsy, and brain trauma. This increase in intracellular post-synaptic zinc 

strongly corresponds with neuronal damage, suggesting a role for zinc in cellular injury 

(Young et al., 2007). Studies have suggested that zinc destroys neurons by inhibiting 

ATP synthesis at the level of mitochondria. Cytochromes b and c1 complex have been 

shown to be reversibly inhibited by zinc (Dineley et al., 2003). Cells undergo apoptosis 

when exposed to lower levels of zinc (< 30 μM). However, necrosis is observed under 

higher exposures (Kim et al., 1999). Also, at higher zinc concentrations, neurons have 

the capability to alternatively induce proteins such as metallothioneins that bind zinc, 

decrease its intracellular level, and therewith provide protection (Ravid et al., 2006). 

Despite the numerous studies conducted to further investigate zinc toxicity, much about 

effects of excess zinc on various processes in the body still remains unknown.  

 

1.5 Zinc and Cancer 

 Zinc had not been listed as a carcinogen but has been suggested to play a role in 

cancer cells. Numerous studies have investigated the affect of zinc on cancer cells. 

Concentrations of 150 μM or higher resulted in apoptosis and necrosis in thyroid cancer 

cell lines (Iitaka et al., 2001). Also, zinc has been shown to induce apoptosis in HEP-2 

cancer cell line which was established from human laryngeal carcinoma (Rudolf et al., 

2005). The direct application of zinc to prostate cancer cell lines has also shown 

evidence of apoptosis (Uzzo et al., 2002).  An interesting study in 2005 showed that the 

antibiotic, clioquinol served as a zinc ionophore when applied to cancer cells. The 
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significant increase in intracellular zinc from the clioquinol reduced cell viability in eight 

different cancer cell lines. Also in the same study, clioquinol inhibited tumor growth of 

xenografts over a 6-week period, in an in vivo xenograft mouse model (Ding et al., 

2005). These studies imply that inducing high levels of intracellular zinc in malignant 

cells may have an anti-cancer effect. This approach could used as effective therapy 

against many tumors.  

 It is very interesting that reducing zinc levels below normal may also control 

cancer cells. For example, in both breast and prostate cancer cells, zinc is significantly 

decreased due to a reduction of zinc transporters which are capable of moving zinc into 

the cell. Investigations of zinc involvement in breast cancer have just recently emerged 

with findings showing the presence and function of LIV-1 protein, a zinc transporter 

(Taylor et al., 2004). Perhaps more importantly, a recent study showed evidence 

indicating a negative correlation between LIV-1 protein expression and tumor size, 

grade, and stage (Kasper et at., 2005). More research has been done toward prostate 

cancer and zinc. The highest levels of zinc are seen in normal human prostate tissue 

when compared to any other soft tissue in the body. It is already known that prostate 

epithelial cells normally accumulate zinc and loss of this function turns them malignant 

due to the mislocation or reduced generation of the zinc transporter proteins, ZIP-1, 

ZIP-2 and ZIP-3 (Desouki et al., 2007).  

 

1.6 Proposed Research and Contributions 

Given the evidence that zinc can have toxic effects on tissue of the central 

nervous system (CNS), it is essential to quantify both its neurotoxicity and functional 
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toxicity. The latter term is used here to describe interference with the normal 

electrophysiological mechanisms of neural tissue without causing cell death. The 

temporal evolution of these forms of toxicity as a function of zinc concentration is not 

well documented.  Also, the influence of tissue electrical activity on the progression of 

toxicity and the major cellular entry channels involved are poorly defined and still 

controversial.  To help understand these processes, we have used murine frontal cortex 

tissue for the formation of spontaneously active networks on optically transparent 

microelectrode arrays.  This approach provides morphological information and 

multichannel electrophysiological data on action potential patterns in a small nerve cell 

network and is well suited to answer some of the questions raised above.     

  Spontaneously active neuronal networks grown on substrate integrated 

microelectrode arrays (MEAs) in vitro have been used for many studies of 

pharmacological and toxicological responses to known and unknown compounds 

(Gross et al., 1995; Gramowski et al., 2000; Morefield et al., 2000; Keefer et al., 2001a; 

Gross and Pancrazio, 2006; Gross and Gopal, 2006).  Although such changes must be 

considered "cell culture correlate responses" to the altered behavioral or life-threatening 

changes that occur in animals, these networks function as physiological sensors as they 

are capable of generating activity changes in the same concentration ranges that alter 

functions of an intact mammalian nervous system (Xia et al., 2003; Xia and Gross, 

2003; Gross and Gopal, 2006).  EC50 values are in the same range as those published 

for other preparations and often overlap with those obtained from animal experiments.  

It is apparent that the major receptor, synaptic, and cellular mechanisms responsible for 

basic pattern generation in CNS tissues, are represented in neuronal primary cell 
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cultures. There is now little doubt that such cultures provide histiotypic pharmacological 

responses (Gross and Gopal, 2006).   

This report quantifies temporal electrophysiological and morphological changes 

in cultured neurons as a function of concentrations of added zinc acetate ranging from 

20 μM to 2 mM in normal medium with serum and in serum-free and albumin-free 

medium. Concentrations below 20 uM added to cultures lacking serum and albumin did 

not result in any electrophysiological changes. If serum and albumin were present, then 

concentrations below 175 uM did not cause electrophysiological activity changes to 

occur. The research shows that temporal electrophysiological and morphological 

changes in neurons are a function of zinc concentration and that electrophysiological 

deficits occur before major morphological changes are manifest. As zinc enters the cell 

and electrical activity deteriorates, specific morphological changes take place. The 

primary feature is neuronal cell swelling and frequent lysis, implying ion deregulation 

with increases in cellular osmolarity. To observe these changes, 20% cell swelling was 

linked to the time and percent activity loss after a specific concentration of zinc was 

added. All zinc concentrations tested created an excitatory phase before the onset of 

irreversible activity decline. In order to quantify this excitation phase, the duration and 

percent increase from reference activity was analyzed. In this report we have confirmed 

that zinc neurotoxicity is indeed linked to spontaneous activity. 

No reports have been found that link the spontaneous electrical activity of neural 

tissue networks to zinc exposures. Consequently, the evolution of toxicity as reflected in 

the pharmacologically sensitive network electrical activity is not defined. In addition, the 

relationship between declining activity and cellular morphological changes is unknown. 
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Finally, it is possible that major electrophysiological changes can occur at low zinc 

concentrations in the absence of general neuronal death. This too is presently unknown.       

This dissertation addresses these questions using parallel, multiunit recording of 

spike activity generated by murine networks growing on microelectrode arrays in 

culture. Such a methodology is shown to be well suited for quantitative investigations of 

zinc neurotoxicity and cytotoxicity.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Microelectrode Array Fabrication and Cell Culture 

Microelectrode arrays (MEA) were fabricated in-house and prepared according to 

methods described previously (Gross, 1994; Gross et al., 1985; Gross and Kowalski, 

1991). Briefly, indium–tin oxide (ITO)-sputtered glass plates were photoetched, spin-

insulated with methyltrimethoxysilane, cured, deinsulated at the electrode tips with laser 

shots, and electrolytically gold-plated to adjust the interface impedance to 1 MΩ at 1 K 

Hz (Gross et al., 1985). The MEA insulation material is hydrophobic, and butane flaming 

was used to activate the surface and generate a hydrophilic adhesion island (3 mm in 

diameter) centered on the MEA (Lucas et al., 1986; Gross and Kowalski, 1991).    

 Frontal cortex tissue was dissociated from 15- to 16-day-old BALB/c/Icr murine 

embryos and cultured according to the methods of Ransom et al., (1977) with minor 

modification that included the use of DNAse during tissue dissociation. The cells were 

seeded on the MEAs as 0.1 ml droplets with subsequent addition of 2 ml of medium 

confined to a 4-cm2 area by a silicone gasket. The care and use of, as well as all 

procedures involving, animals in the study were approved by the institutional animal 

care and use committee of the University of North Texas and are in accordance with the 

guidelines of the Institutional Care and Use Committee of the National Institute on Drug 

Abuse, National Institutes of Health, and the Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, 

National Research Council, 1996).  
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The dissociated cells were incubated in Dulbecco's modified minimal essential 

medium (DMEM) supplemented with 5% horse serum, in a 90% air and 10% CO2 

atmosphere. No antibiotics/anti-mitotics were used. Fig. 1 shows a 13-week old culture 

on a 64-electrode MEA together with examples of phase contrast images of living 

neurons on such arrays.  

 

A 

C

B

D

 

 

Figure 1.  Example of neuronal circuits on microelectrode arrays.  Transparent indium-
tin oxide (ITO) conductors allow extensive optical access to the network morphology.  
(A) Neuronal network derived from murine spinal cord tissue (92 days in vitro), grown on 
the recording matrix of a 64-electrode array plate (Bodian stained). (B-D) Living neurons 
on MEAs. Recording sites (Gold-plated, exposed ITO conductors are shown by arrows 
in (B)). The ITO conductors are 8 μm wide and 1200Å thick. bars = 50 μm. (CNNS 
Archives) 
 

 

 13

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T40-49H6BFT-3&_coverDate=07%2F31%2F2003&_alid=350980958&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4960&_sort=d&view=c&_acct=C000007818&_version=1&_urlVersion=0&_userid=452995&md5=6096b33ae2c00ee317956c6473aa80d6#fig1#fig1


2.2 Pharmacological Manipulations & Life Support  

 Zinc acetate, tetrodotoxin (TTX), lidocaine, verapamil, omega-conotoxin MVIIA 

(SNX-111), magnesium chloride (MgCl2), NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione), and bicuculline were all obtained from Sigma Aldrich 

(Sigma Aldrich, inc., St. Louis, MO, www.sigmaaldrich.com) . Table 1 includes a list of 

these compounds along with the concentrations added. All compounds were diluted in 

water since all were water soluble. Also all the compounds except for zinc acetate were 

completely reversible and nontoxic when added to cultures (see appendix).  

Table1. List of compounds used.   

 Compound Concentration Range 

Zinc Acetate 20 μM -2 mM 

TTX 200 nM 

Lidocaine 250 μM 

Verapamil 80 μM 

SNX-111 75 μM 

MgCl2 10 mM 

Bicuculline 40 μM 

NBQX 80 μM 

 

 

 

 

 

To obtain relatively even distributions, the drugs were micropipetted into the culture 

medium near the edge of the circular chamber at four cardinal positions (separated by 

90°). Thorough mixing was achieved by gentle back and forth movement of the medium 

(normally about 50% per cycle 4-5 cycles) via syringe attached to one of the Luer ports. 
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To remove the test drug, syringes were used to extract the medium through the same 

Luer connections at the edge of the recording chamber.  These connections lead 

through 0.8 mm conduits in the stainless steel to an orifice inside the ‘O’ ring situated 

approximately 100-200 μm above the surface of the MEA inside the ‘O’ ring (Gross, 

1994).                                                                                                              

 Microelectrode arrays were placed into recording chambers (Gross, 1994, Gross 

and Schwalm, 1994) and sustained at 37°C on a microscope stage. The pH was 

maintained at 7.4 with a continuous stream of humidified 10% CO2 and 90% air at 5–10 

mL/min into a special cap fitted with a heated ITO window to prevent condensation. The 

syringe pump, Harvard Apparatus® Pump II (Harvard Apparatus, inc., Holliston, 

Massachusetts, www.harvardapparatus.com) compensated for water evaporation (30 to 

60 μl/hr depending on set-up). During experiments, pH and osmolarity were tested at 

intervals of 2-3 hours. Despite the limited medium volume in the chamber (2 mL), the 

pH could be tested by extracting 100 μL volumes with a pipette and measuring pH in the 

pipette tip. This could be accomplished with an Accumet flexible glass pH 

microelectrode that has such a small sensor diameter as to allow entry into the pipette 

tip and a friction-fit stabilization of the pipette tip. In this manner temperature equilibrium 

and stability could be achieved for measuring. After pH measurements, 10 μL of the 

medium were extracted for osmolarity determination with a Wescore 5500 vapor 

pressure osmometer. This special protocol allowed frequent measurements without 

exhausting the medium volume in the chamber and compromising sterility.  pH values 

between 7.35 and 7.45 +/- .05 were accepted as they had little influence on overall 

activity. Osmolarities were not allowed to fluctuate more than 10% from a reference of 
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320 mOsmoles. Between 290 and 340 mOsmoles, neurons osmoregulate without 

measurable activity variations if the changes are slow (10 mOsm per minute).  Rapid 

medium replacements require osmolarity matching to within 10 mOsm.  Water additions 

are tolerated generally up to 5% of the total volume.   

    

 

 

 

A 

B 

Figure 2. Experimental 
Workstation. (A) Faraday cage with 
inverted microscope and culture life 
support equipment. Oscilloscopes 
and two monitoring screens display 
data digitized by Plexon 
multichannel data amplification and 
processing system. (B) Recording 
chamber on microscope stage with 
plexon preamplifiers attached. A 
cap with heated window covers the 
medium bath and maintains the 
10% CO2 atmosphere while 
allowing continual microscope 
observations. (CNNS Archives) 
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2.3 Recording Environment and Data Analysis 

After assembly, neuronal activities were monitored on oscilloscopes in real time 

to provide spike information. Recording was performed with a commercially available, 

computer-controlled, 64-channel data acquisitions and processing system (Plexon Inc., 

Dallas, TX, www.plexoninc.com).  Preamplifiers were placed on the microscope stage to 

both sides of the recording chamber and connected to the MEA by means of zebra 

strips (Fujipoly America Corporation, Carteret, NJ, www.fujipoly.com). Total system gain 

was set to 10,000. The amplifier ground was connected to the stainless steel chamber 

confining the culture medium. An important feature of network activity is the 

organization of action potentials (spikes) into high-frequency clusters (bursts). Burst 

patterns represent a simplified level of activity and often reveal the major modes of 

network behavior (Gross, 1994; Keefer et al., 2001c). Integration was used to simplify 

the identification and quantification of bursts. All analyses were done with binned data 

(bin size of 60 s). Single-unit activity was averaged across the network to yield mean 

spike rate, burst rate, burst duration, and integrated burst amplitude per minute. In order 

to avoid excessive network responses to medium changes required for the washout of 

substances, the native medium was exchanged for the wash medium (fresh DMEM 

stock) at the beginning of the experiment, and the cultures were allowed to stabilize 

before any drugs were added (termed reference activity). The percent change in activity 

for each variable at each zinc or drug concentration was always calculated relative to 

this 20- to 60-min reference spontaneous activity. To follow the changes in network 

activity with time, spike rates and burst rates, averaged across all active units selected 

per minute, were plotted as a sequence of "minute means" in real time. 
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 Bursts were identified operationally by digital RC integration with rise time 

constants of approximately 100 ms. Two thresholds (Fig. 2) were used: a lower 

threshold to determine the start and stop times for the burst and a higher threshold to 

confirm that the integrated profile was above the noise level. A gap rule of 100 ms 

devoid of spikes was used to separate burst events into two bursts (Morefield et al., 

2000).  T1 and T2 were set by inspection during off line data analysis with the intent to 

capture major bursts and ignore spike clusters of 2 to 4 spikes. Raster displays showing 

spiking and bursting were viewed with the Neuroexplorer® program (NEX Technologies, 

Littleton, MA, www.neuroexplorer.com) and thresholds were set to mimic the burst 

count in initial segments of the native activity.  This operational definition allowed 

quantitative comparisons of burst patterns within the same culture if thresholds were not 

changed.     

Figure 3.  Burst detection method. 
Time stamp sequence of a 
discriminated unit and mathematically 
simulated RC integration.  The two 
thresholds (T1 & T2) identify 
sufficiently large bursts with accurate 
start and stop times. BD: Burst 
Duration. (CNNS Archives). 

BD 
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2.4 Cell Swelling Analysis 

After the application of zinc, neurons showed extensive swelling and consequent 

lysing. Cells in culture were observed with a microscope at the time of recording. An 

area of the culture including 8 or more neurons was chosen and analyzed. Consecutive 

pictures were taken before and after the application of zinc using the software, Frame 

Grabber® (Integral Technologies, inc., Indianapolis, IN, www. integraltech.com) Cell 

swelling analysis was done for four different concentrations of zinc (50, 200, 500, 1000 

μM) added to cultures. Pictures of the area initially selected for analysis were taken 

every 1-2 minutes due to the concentration of zinc added until the cells were completely 

lysed. Evaluation and analysis of somal swelling was done using the software, ImageJ® 

(National Institute of Health). The soma were observed and traced manually 3 times to 

obtain an area for each picture taken. Because all data were expressed in percent 

change, no calibration was attempted and numbers are in arbitrary units. If the 

coefficient of variation for the three values obtained from the tracings was below 5% 

then the average from those three values was recorded and used for analysis. An 

example of the tracings is shown in figure 4 and the values obtained for areas, the 

average, and coefficient of variation are shown in Table 2.  
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A B C

 
Figure 4. Manual tracing of soma to obtain area (in arbitrary units). Line around the 
perimeter of the soma were drawn three times (A,B,C).  
 

Table 2. Sample values obtained from the manual tracings shown in Fig 3. The 
average (avg.) of the three values of A, B, and C is given along with the standard 
deviation (SD) and coefficient of variation (CV). 
 

Area  
A 4125 
B 4324 
C 4254 

avg. 4234.3 
SD 100.9 

 

 

 
CV 2.36%  

 

 

2.5 Statistics 

Where appropriate, data are presented as mean +/- standard deviations and (n) 

number of experiments performed. Statistical significance was determined by t-tests 

with P<0.05 considered as significant. 95% confidence limits for Fig. 13 were calculated 

using Microsoft® Excel software (procedure explained in Appendix C).  
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When determining the significance between a chosen set of values and time to 

50% and 90% activity loss at certain concentrations, two types of t-tests where 

conducted using the one-sample and unpaired from Graphpad® Software (Graphpad 

Software, inc., San Diego, CA, www.graphpad.com). Individual values from experiments 

where compared to the theoretical 50% & 90% activity loss which is derived from 

equation 1 and experimental 50% & 90% activity loss which is the calculated mean of 

experimental values. Both t-tests were used to determine statistical significance 

between the time to 20% cell swelling and time to 50% activity loss at different zinc 

concentrations (Fig 14). Also, t-test were used to determine statistical significance 

between time to 50% and 90% activity loss in cultures with 500 μM zinc with or without 

NBQX pretreatment (Fig. 20) or with or without SNX-111 pretreatment (Fig. 23).  
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     CHAPTER 3 

RESULTS 

3.1 Basic Network Responses to Zinc 

3.1.1 Responses to High Concentrations 

The typical network activity response to high concentrations of zinc is shown in 

the spike and burst rate plot of Fig. 5A.  The plot depicts the temporal evolution of spike 

and burst activity averaged across all discriminated, digitized units in one-minute bins.  

After a 38 min period of stable spike and burst activity, the addition of 200 μM zinc 

acetate to the bath medium resulted in a rapid (2 min delay) 120% increase in spike 

activity and a 140% increase in burst rate lasting approximately 50 min. Note that spike 

and burst data follow each other closely.  Thereafter, activity declined until it reached 

catastrophic network failure at 145 min. Network bursting ceased at approximately 130 

min. This activity loss was irreversible, as demonstrated by the lack of response to two 

complete medium replacements.  Concomitant to the activity loss, neurons undergo 

time-dependent morphological changes.  Neuronal somata show clear swelling with 

development of cytoplasmic granularity.  The nucleus showed no overt effects until after 

major necrotic changes had occurred.  The flat glia carpet showed condensation of 

cytoplasmic components and apparent swelling of some cells (compare panels B3 & 4 

with B1).  The neuronal cellular destruction is global as no nerve cells were spared.  

The raster display (spike time stamp pattern) from the 49 discriminated units 

plotted in Fig. 5 is shown in Fig. 6A for four time periods: native activity (at 20 min), the 

excitatory phase (at 60 min), and activity decay (at 110 & 120 min). This display shows 

changes in the activity pattern that are, however, difficult to quantify. A simple 
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quantification is shown in Figs 6B and C were the number of active units, the number of 

bursting units, the mean burst duration, and the burst period are plotted in one minute 

bins. To eliminate contributions from electronic noise, active neurons were defined as 

those units having more than 5 spikes per minute. Bursting neurons had to have one 

identified burst per minute. The burst duration is defined in the methods section (Fig. 3). 

This variable represents the average across all units per minute. An abrupt decrease in 

active and bursting neurons starts at 110 min with the number of bursting neurons 

dropping off more sharply. At that time the mean burst duration shows a substantial 

increase until it undergoes a sharp drop at a 145 min. It is interesting to note that, at 135 

min, the active neurons have decreased by 90% whereas the burst duration of the 

remaining 10% increased by 280%. The network dies by losing units and not by 

progressive reduction in burst duration.  Fig. 6B shows a sharp drop in the mean burst 

period upon application of zinc, revealing the main reason for the spike rate increases 

shown in Fig. 5. Zinc addition reduced burst periods resulting in higher burst rates and 

greater network spike production. The minute to minute fluctuations of the mean burst 

periods are reduced substantially after the application of zinc. Between 0 and 40 min 

the mean burst period is 3.29 sec ± 0.33 SD.   After addition of zinc (45 and 90 min), 

this variability is reduced to 1.37 sec ± 0.09 SD.  The coefficients of variation change 

from 10.2 to 6.9, reflecting a greater regularity of burst periods after zinc application. 

This can be verified qualitatively by inspection of the raster display panels of Fig. 6A. 

Zinc acetate was applied in 40 μL of a 10 mM stock solution to give the final 

concentration of 200 μM in the 2 mL constant medium bath. This constitutes a 2% 

change in medium volume which does not generate osmolarity or pH responses. 
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Figure 5. (A) Common network response to high concentrations of zinc. Each data point 
represents the average spike (left ordinate) and burst (right ordinate) rate in 1 min bins 
for all discriminated units (n=49).  Addition of 200 μM zinc at 38 min results in an 
immediate excitatory period lasting 70 min followed by activity decay for about 30 min 
and complete, irreversible activity loss. (B1-B6) Consecutive pictures of the same 
neuron taken at the intervals shown in A.  At 220 min (B5 and B6, right panel), the 
neuron is swollen and necrotic in appearance. B6 represents enlarged views of B1and 
B5. Diagonal electrode conductor width is 10 μm.  
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Differences in the responses of individual units are best demonstrated by 

individual spike rate plots as shown in Figure 7.  Here, a remarkable diversity among 

units can be seen. Whereas all units succumb to zinc toxicity, the respective activities 

do not stop at the same time and especially the excitatory phase shows substantial 

variability. 

 

Figure 6.  (A) Raster plot of activity over time for four experimental episodes at 20, 
60, 110, and 120 min shown in Fig. 3. The excitatory phase, activity decay, and 
more subtle changes in burst patterns can be observed. Each row represents a 
discriminated unit.  (B.) Temporal evolution of burst period showing a sharp 
reduction at the moment of zinc application. (C) Temporal changes in active and 
bursting neurons and in burst duration as a function of time. The application of 
zinc is shown at 40 min. Data in B and C are presented as global averages per 
minute. BD: burst duration; BN: bursting neurons; AN: active neurons. 
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Figure 7.  Individual spike rate plots from discriminated units used to generate Fig. 5 are 
plotted in one-minute bins. Vertical dashed line: application of 200 μM zinc acetate; 
vertical dotted line: full medium change. Individual profiles show response differences 
although all of them respond to zinc with activity termination. Rapid excitatory response 
to zinc is shown by 90% of the population and 83% of the units lost all activity at 125 
minutes. Only one unit (circle) displayed a response to the medium change before 
dying. 
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Figure 8.  Pretreatment with zinc chelator, Ca EDTA. The addition of Ca EDTA prior to 
500 μΜ zinc application prevented any major changes in electrophysiological activity 
and cell death. Image of a neuron in culture is shown before zinc application at 5 min (i) 
and at 220 min (ii). 
 
 
 The addition of zinc specific chelator, Ca EDTA has been known to prevent zinc 

neurotoxicity and hence protect neurons from contact with toxic amounts of zinc either 

released presynaptically or added in vivo or in vitro (Frederickson et al., 2002). In order 

to show that the changes observed in electrophysiological activity, neurotoxicity, and 

consequent cell death subsequent to zinc additions were actually specific to the actions 

of zinc, 10 mM Ca EDTA was applied to the culture medium prior to 500 μM zinc 

addition (Fig 8). Electrophysiological activity remained the same and cell death did not 

result.   
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3.1.2 Network Response to Low Concentrations of Zinc. 
 

Zinc concentrations below 20 μM added to cultures did not result in an excitation 

phase nor did they cause loss of any activity when evaluated for up to 24 hours. Figure 

9 compares the change in spike rate activity of cultures responding to 15 and 20 μM 

zinc. The addition of 15 μM did not cause any changes in network activity, but 20 μM 

resulted in activity loss and consequent cell death. This suggests that cells in FC culture 

have the capability to buffer zinc concentrations below 20 μM and concentrations above 

20 μM exceed this buffering capacity. To further investigate this buffering capacity, 200 

μM zinc was added in 10 μM increments with 20 to 30 min between applications (1-20) 

as shown in Figure 10.  The first application of zinc did not result in any network activity 

changes, but subsequent ones caused sudden increases followed by stable activity. 

When stability was established, the next 10 μM dose of zinc was applied until the final 

concentration of zinc totaled to 200 μM (20th application). Activity decay continued in the 

next 5 hours until no network spiking was observed and major global cell death 

occurred. This experiment shows a remarkable cellular adjustment in response to small 

incremental increases in zinc concentrations. Presumably, this reflects the upregulation 

of metallothionenes and a consequent stronger buffering (see discussion).  
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Figure 9. Response to 15 μM (A) (n=2) and 20 μM (B) (n=2) zinc. (i) Neuron at 
reference activity (REF). (Aii) Neuron at 800 min. (Bii) Neuron at 1500 min. (Cii) Neuron 
at 700 min. 
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Figure 10. Network accommodation to incremental additions of low concentrations of 
zinc.  200 μM zinc is added to the culture in 10 μM increments (line). After the last 
application there is continuous decay of spike rate activity until the culture lost all activity 
at 1080 min (A). The expansion of A is shown in B. 
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3.2  Zinc-Induced Excitation 

 Network excitation immediately following zinc application was seen at all 

concentrations used above 20 μM. Such excitatory phases are depicted in Figs. 5A, 

12A, 15B, and 17A. Although the zinc-dependent subsequent decay of activity is highly 

consistent, the excitation profiles are quantitatively more variable. This is summarized in 

Fig. 11 where the maximum percent spike activity increases ranged from 10% to 140%. 

Profiles are biphasic and ranged from 5 to 60 min with a maximum at 50 μM zinc 

followed by marked decrease at higher zinc concentrations. The decay of the duration is 

caused by the rapid spike inactivation and cell destruction at higher zinc acetate 

additions, which overwhelms the excitation effect.   

An interesting observation is the absence of excitation under the influence of the 

GABA antagonists bicuculline or picrotoxin.  Fig. 12 shows results from four 

experiments where the same concentration of zinc acetate was applied to a network in 

normal (serum free) medium (12A) and to networks in the presence of bicuculline or 

picrotoxin. Figs. 12B and D demonstrate the absence of this excitation in the presence 

of 40 μM bicuculline and 1 mM picrotoxin, respectively. The GABA antagonists need to 

be applied close to their saturation point to prevent the excitation.  A concentration of 

200 μM picrotoxin was not sufficient to block the transient excitation that followed zinc 

application (12C).   A total of four bicuculline and two picrotoxin experiments at 40 μM 

and 1 μM, respectively, have shown a complete suppression of the zinc excitation 

phase.   
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Figure 11. Excitation phase duration (in minutes, left ordinate) and maximum percent 
increase (from baseline, right ordinate) as a function of zinc concentrations. (n=19 
cultures). Values plotted are mean values from 2 to 5 data points.  Curve fit was done 
by inspection.  
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Figure 12.  Absence of excitation phase in cultures treated with bicuculline or picrotoxin. 
(A) 40 min excitation phase peaking at 175% of its native activity induced by 250 μM 
zinc. (B) Lack of prominent excitation phase when the culture was exposed to 40 μM 
bicuculline 25 min before zinc was added. (n=3) (C) A network excited by 200 μM 
picrotoxin (at 28 min) still shows a zinc excitation phase, indicating that GABAA 
antagonists need to be near saturation concentrations to prevent zinc excitation (n=3). 
(D) The excitation phase is absent in cultures under 1 mM picrotoxin (n=3). 
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3.3   Quantification of Zinc-Induced Temporal Activity Decay  

 As shown in Figs 5A , 12A, 15B, and 17A network responses are biphasic and 

consist of an excitatory phase followed by activity loss. The response can be quantified 

in terms of the time required to reach a certain percentage activity loss.  For 

convenience, we have selected the 50% and 90% mean activity decrease levels and 

plotted them as a function of zinc concentrations.  A linear plot follows a power function 

that reveals a rapid (10-20 min) activity loss at 2 mM applied zinc acetate and a sharp 

rise in time at less than 50 μM (shown in Appendix).  Between the concentrations of 20 

and 2000 μM, the data linearizes well in double log plots (Fig. 13), providing a 

quantitative measurement of activity loss at applied zinc concentrations. Zinc 

concentrations including and below 20 μM did not have an effect on the network activity 

for observation periods up to 30 hours (Fig. 9A).  

Experiments were conducted in serum- and albumin-free medium (lower two 

functions in Fig. 13) as well as in medium containing serum.  The sensitivity of network 

responses is clearly greater in the absence of serum.  In medium containing 5% serum, 

zinc concentrations below 175 μM did not affect the cultures, revealing protection. The 

linear regressions of time to 50% and 90% activity decay as a function of zinc acetate 

applied in micromolar concentrations to networks in serum and albumin-free medium 

are shown in equation 1 and 2. The linear regressions of time to 50% activity loss in 

those containing serum in the medium is shown in equation 3. 
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   t = 1841C-0.71             (1) 50% activity decay, serum and albumin-free 

     t = 2902C-0.72    (2) 90% activity decay, serum and albumin-free 

 t = 5601C-0.66    (3) 50% activity decay, in serum  

 

where C is expressed in micromoles/L  and t in minutes. Equation (1 and 2) are defined 

above concentrations of 20 μM, equation (3) above 175 µM.  95% confidence limits for 

equation 1 and 2 are included in the Appendix C. 
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Figure 13.  Double log linear regressions for 50% and 90% activity decay in albumin-
free and serum-free medium (n = 29). A 50% activity loss function is also shown for 
experiments in medium containing 5% serum (solid triangles, n = 7). Confidence Limits 
are shown in Appendix C. 
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3.4  Relationship between Electrical Activity Deterioration and Specific Morphological 
Changes 
 
As zinc enters the cell and electrical activity deteriorates, specific morphological 

changes take place. One of the most prominent morphological features is cell swelling. 

This change is observed following zinc application at all concentrations which result in 

cell death (Fig. 15C). To observe these changes, the time it took for neurons in culture 

to reach 20% cell swelling was compared to the time to 50% activity loss after zinc 

applications of 50, 200, 500, and 1000 μM (Fig. 14).  Statistical significance was not 

detected between time to 20% cell swelling and time to 50% activity loss for each zinc 

concentration applied to the culture (t-test, p<0.05) therefore suggesting that 20 % cell 

swelling and 50% network activity loss are closely coupled. There is, however a trend 

for the 20% cell swelling to occur after the 50% activity loss indicating that 20% swelling 

may be more accurately coupled to 55-60% activity loss. Neurons evaluated for 20% 

swelling were of different sizes. Areas (arbitrary values) of soma from cultures treated 

with 500 μM zinc are shown in Figure 15A (#1-8). Network activity of the neurons 

selected for evaluation from Figure 15A is presented in Figure 15B. The time when 20% 

cell swelling occurs for neurons #1-8 is superimposed at relative points during the 

network response to 500 μM zinc (Fig 15B). The initial soma area did not show a 

relationship with changes in the rate of network activity loss nor lysing.  
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Figure 14.  Analysis of cell swelling and activity loss. Comparison between the times it 
takes for a neuron to swell 20% and 50% network activity loss is shown for each 
concentration of zinc added to the culture. Values for time to 50% activity loss are 
derived from equation 1. Statistical significance was not found at each concentration. 
(Standard deviations are shown with bars for values indicating time to 20% cell swelling. 
One sample t-test, p<0.05). 
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Figure 15. Percent changes in areas of selected neurons. (A) The change in somal 
areas from neurons # (1-8) is shown each minute following 500 μM zinc additions until 
the cell lysed. Initial arbitrary areas of each neuron are shown in the box to the right. 
Plateaus in percent change in area indicate lysing of soma. Dotted line represents 20 % 
cell swelling. (B) Network activity of the culture in which neurons 1-8 were observed. 
Boxes indicate the occurrence of 20% swelling of neurons (1-8) during the experiment. 
(C) Consecutive images shown of a swelling neuron before and after 500 μM zinc 
application to culture. 
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3.5 Partial Protection of Networks by Activity Suppression or With Early Removal of Zinc     
  

 The irreversibility of activity loss was established in over 40 experiments. Medium 

changes after zinc-induced termination of activity were never observed to allow even 

partial recovery.  In order to determine the effect of spontaneous activity on zinc toxicity, 

we conducted three experiments with tetrodotoxin (TTX) at concentrations that blocked 

all action potential traffic in the networks (200 nM) and four experiments with lidocaine 

(250 μM). For quantification of protection, we used exposures to 500 μM zinc acetate 

for 55-60 min, which assures no recovery (Fig. 17A).  However, when activity was 

stopped before zinc application, partial recovery was possible.  Fig. 17 (B, C) shows 

examples of network responses in the presence of these compounds and 500 μM zinc 

acetate.  Zinc was added 10 min after the compounds had blocked all activity and was 

left on the cultures for 60 min.  The treated cultures revealed an immediate and rapid 

recovery of activity in terms of spike production and active units. Thereafter, the network 

activity decayed slowly with time. Maximum activity, regained after two medium 

changes (MC x2), varied greatly in each experiment conducted (Table 3). Note that 

cultures which regained higher network activity after medium changes required more 

time to reach 90% network activity loss (Table 3). These experiments represent an 

indirect blockage of entry routes and demonstrate that despite suppression of all action 

potential traffic, lethal zinc toxicity still develops. Experiments were done in serum and 

albumin free medium.  
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Figure 17.  (A) Mean spike and burst production per minute of a network 
exposed to 500 μM of zinc acetate for 60 min. Recovery of activity after two 
medium changes (MC x2) is not possible (n=3). (B & C) Acute temporary 
protection against zinc toxicity with the sodium channel blockers tetrodotoxin 
(n= 3) and lidocaine (n=4). Plots show real time network activity in terms of 
average number of spikes and bursts recorded per minute. Acute protection is 
evident although complete recovery is not achieved and delayed activity decay 
follows. Zinc acetate (500 μM) was added within 10 min after the compound 
additions and suppression of spontaneous activity and was left on the networks 
for 60 min. Ref: reference activity.  
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Table 3. Summary of Lidocaine and TTX experiments showing the maximum (max) 
percent of revival and time (min) to 90% activity loss after medium changes.  
 

Lidocaine TTX 
EXP Max % 

revival 
Time to     
-90% 

EXP Max % 
revival 

Time to  
-90% 

MP141 45 121 MP135 167 440 
MP183 19 40 MP140 58 90 
MP184 38 64 MP153 143 415 
MP213 250 125    
 

In order to determine the transition time from reversible to irreversible damage, 

we examined responses to early removal of zinc at the IC50 and IC90 times with two 

medium changes after exposure to 500 μM zinc (Fig. 17). To determine if network were 

still physically capable of generating spontaneous activity, they were disinhibited with 40 

μM bicuculline.  Removal of zinc at the IC50 time resulted in activity decay and loss of 

activity for several hours, but without cellular necrosis (n=2). Fig. 17A shows a 

quiescent culture that was reactivated with bicuculline. This may demonstrate functional 

neurotoxicity due to cell stress and partial damage. Removal of zinc at the IC90 time 

(Fig. 17B) did not reactivate the networks even in the presence of bicuculline (n=2). 

Morphological observations showed extensive cellular necrosis. All experiments were 

done in serum and albumin free medium.     
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Figure 17. Removal of zinc at IC50 and IC90. (A) Reference activity at 400 spikes per 
min was recorded before the addition of 500 uM zinc (18 min). After the addition of 
zinc, a swift decay was observed following a regular excitation phase. When the 
network reached 50% activity loss, zinc was removed by two medium washes (MC 
x2). Application of 40 uM bicuculline at 310 min showed recovery of activity to the 
reference state (n=2). (i) morphology of neuron before zinc application (12 min) and 
(ii) the same neuron after bicuculline application (320 min). (B) Removal of zinc at 
90% activity loss prevented activity recovery. Network did not respond to 40 uM 
bicuculline (n=2). (i) morphology of neuron before zinc application (10 min), (ii) the 
same neuron after bicuculline application (120 min). 
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3.6  Identification of Predominant Entry Pathways for Zinc and Protection of Neurons 
via Systematic Blockage of Ion Channels 

 The identification of zinc entry routes have been mainly investigated in 

depolarization-induced cultures, mainly by KCl additions of up to 50 mM (Sheline et al., 

2000; Sensi et al.,1997). However, the understanding of zinc entry pathways is 

important under normal conditions. The main entry routes for zinc have been suggested 

to be the calcium channel linked NMDA receptor, calcium permeable AMPA receptor, 

and the L and N-type voltage gated calcium channels (Sensi et al., 1997, Marin et al., 

2001). In order to investigate the predominant entry pathway of zinc into the neuron, the 

recovery of spontaneous activity was analyzed following entry blockage and toxic zinc 

application. These receptor linked ion channels, suggested to be entry pathways, were 

blocked individually prior to the addition of a toxic dosage of zinc (500 μM). Two to three 

consecutive medium changes were then conducted after 60 minutes exposure and 

network activity was compared to the reference activity. Verapamil was used to block 

the L-type voltage gated calcium channels and SNX-111 to block the N-type voltage 

gated calcium channels. To block the passage of zinc through the calcium permeable 

NMDA receptors, MgCl2 was applied to the cultures and NBQX was used to inhibit 

AMPA receptors. The entry route blocker which provides the most protection by 

presenting the greatest and most continuous network activity recovery is then presumed 

to be the main entry route for zinc under normal spontaneous conditions.  

 

3.6.1 Blockage of Zinc Entry through NMDA Channels 

  When zinc is exposed to neurons either by release from the presynaptic neuron 

or by external application, it is able to enter the postsynaptic neuron via the calcium 
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permeable NMDA channel. In order to observe the protective effects of blocking this 

channel, 10 mM MgCl2 was added to the culture medium prior to the addition of 500 μM 

zinc. The application of MgCl2 completely inhibited the culture’s spontaneous activity. 

After the addition of zinc, one hour was allowed to elapse before the replacement of two 

medium changes. Network activity recovery was then measured and compared to the 

native activity. In this case where the NMDA channels were blocked prior to zinc 

application, activity revival was detected immediately following the medium change for 

15-30 min, a drop in activity was detected, and consecutive death resulted (Fig 18). 
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Figure 18. Reference activity is shown for a FC culture from time 210 to 240 (ref). MgCl2 
(10 mM) is added at 240 min resulting in complete inhibition of the network activity. At 
255 min zinc (500 μM) is applied and left on for 1 hour until 3 consecutive medium 
changes are taken out at time 305. Activity is regained after the medium changes 
peaking at 200% of the reference activity in 20 minutes following a rapid loss of activity 
and cell death. Images (A-D) of the same neuron are shown at different times during the 
experiment (n=2). 
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Table 4. Summary of values obtained from experiments in which MgCl2 was used to 
block the NMDA receptor entry route for zinc. Maximum activity revival is shown for 
each experiment to indicate the percentage of network activity that was regained after 
medium changes compared to the reference activity. The time to 90% activity loss after 
the medium changes is also shown.   

 

Exp Maximum % activity 
revival 

Time to -90% 
(min) 

 

MP217 106 180  
MP218 55 31 
MP236 242 58  
Mean   134 ± 97 89.7 ± 79.4 
±SD  

 

3.6.2 Blockage of Zinc Entry through AMPA Channels 

  Another possible route for zinc to enter the neuron is through the calcium 

permeable AMPA channels. NBQX (20 μM) was used to block AMPA receptors. Unlike 

the addition of MgCl2 or verapamil which result in total network activity inhibition, 

addition of NBQX did not inhibit network activity but slowed down bursting with higher 

coordination. A successive application of 500 μM zinc caused the network activity to 

decay. Even if medium changes were taken out one hour after incubation with zinc and 

NBQX, the network activity still continued to decrease until the culture died (n=5) as 

shown in Figure 19. The time it took cultures to lose 50% and 90% activity after zinc 

application with NBQX pretreatment were compared to the same reductions in normal 

medium (Table 5) and no statistical difference was detected (one-sample and unpaired 

t-test p<0.05) (Fig 20). Hence, this shows that pretreatment with NBQX did not prevent 

zinc neurotoxicity and therefore could not be considered the main entry route.  
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Figure 19. (A) Reference activity (REF) is recorded following the addition of 20 μM 
NBQX at 23 min. 500 μM Zinc is then applied at 32 min following two consecutive 
medium changes at 105 min. Network activity decay is continued until all activity is lost. 
(n=5). (B) The time to 50% and 90% activity loss in FC cultures is shown when exposed 
to 500 μM zinc, with or without 20 μM NBQX pretreament.  

 
 

 
Table 5. Summary of network activity loss experiments from Figure 20. The time (min) it 
takes for each network to lose 50% and 90% of its activity is shown. 

 
 

EXP -50% -90%  
 mp110 24 45 
 mp169 32 53  

mp214 20 43  
 mp238 28 55 
 mp239 24 45 
  
 Mean ± SD 25.6 ± 4.6 48.2 ± 5.4 
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Figure 20. The time (min) to 50% and 90% activity loss in FC cultures is shown when 
exposed to 500 μM zinc with or without NBQX pretreatment. (n=5). (standard deviations 
are shown with error bars.) Statistical significance was not detected between values 
(one sample and unpaired t-test, P<0.05).  

 

3.6.3 Blockage of Voltage Gated Calcium Channel Entry 

It has been suggested in literature that voltage gated calcium channels also 

provide an entry pathway for zinc into the neuron (Sheline et al., 2002). The two primary 

VGCCs which play a role in zinc entry are the L and N types (ibid). Verapamil was used 

to block the L-type VGCCs and SNX-111 was used to block the N-type VGCCs. 

Verapamil or SNX-111 were pre-applied to the culture before the addition of 500 μM 

zinc and left on for one hour. Three medium changes were performed and observations 

were made to evaluate the amount of activity regained or lost comparing to reference 

activity. The pre-application of 80 μM verapamil and subsequent exposure of 500 μM 

zinc to the culture for 1 hr resulted in complete activity revival and full protection from 
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zinc neurotoxicity (Fig. 21a), however exposure to more than 1hr resulted in total death. 

The pretreatment of the N-type calcium channel blocker, SNX-111 resulted in partial 

protection and delayed cell death (Fig. 22).  

 
Table 6. Summary of experiments in which cultures where exposed to zinc and 
verapamil for 1 hr.  The time (min) recorded after the three medium changes is shown 
for each experiment. The % network activity remaining at time of experiment termination 
is shown. The activity is compared to the reference activity. 
 
 
 Exp Recording period 

after mcx3 (min) 
Activity at exp 

termination (%)  
 MP143 250 100 
 MP233 380 245 
 MP234 600 200 
 MP235 60 150 
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Figure 21. (A) 80 μM verapamil was applied to the culture at 130 min and a consecutive 
application of 500 μM zinc was given at 140 min. Medium was replaced 3 times (mcx3) 
at 200 min to assure complete removal of added compounds. Reference activity (R) is 
recorded for 20 min. (i) neuron before zinc and verapamil are applied and (ii) was the 
same neuron at 590 min. (n=4) (B) 80 μM verapamil was added to the culture following 
60 min of reference activity. Zinc (500 μM) was applied at 73 min and medium was 
replaced three times (mcx3) at 191 min. Image of the same neuron is shown at 30 min 
and 225 min (n=3). 
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Figure 22. Partial Protection against zinc toxicity via blockage of N-type calcium 
channel. Culture was treated with 75 μM SNX-11 at 40 min and 500 μM zinc was 
applied at 70 min then washed out three times at 132 min. Ref: reference activity. 
Image of neuron in culture at reference activity (i) and at 270 min (ii). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 23. The time to 50% and 90% activity loss in FC cultures is shown when 
exposed to 500 μM zinc with or without 75 μM SNX-111(n=3). The value obtained 
indicating the time to 50% activity loss in cultures treated with only 500 μM zinc is the 
mean of all experimental values (standard deviations are shown with error bars). 
Statistical significance was detected using both one-sample and unpaired t-test 
(p<0.05). 
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The pre-application of SNX-111 did not result in an immediate and complete 

activity inhibition as seen with the application of verapamil, nor did it result in complete 

protection against zinc neurotoxicity.  The pretreatment of cultures with SNX-111 did 

result in partial protection considering that it took more than twice the amount of time to 

lose 50% and 90% activity when compared to cultures which had only zinc added (Fig. 

21). However, complete network activity decay and consecutive cell death did occur in 

these experiments. 

 
 
Table 7. Summary of values showing the amount of time (min) it took to lose 50% and 
90% network activity in experiments pretreated with SNX-111. 
 
 EXP -50%  -90% 
 

mp246 80 130  
mp247 88 134  

 mp248 83 128 
Mean ± SD 83.7 ± 4 130.7 ± 5.1  

 
 
 
 
 
Table 8. Summary of 1 hr protection via blockage of entry routes. 
 

Entry Route Entry Route Blocker Time to 90% activity loss 
after MC X3 (min) 

NMDA MgCl2 10mM n=3 58, 31, 180  (highly variable)
  

AMPA 0 (no protection) NBQX 80 μM n=5 

L-Type VGCC Verapamil 80uM n=4 Protection 

N-Type VGCC 130, 128, 134  SNX-111 75 μM n=3 
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 The greatest protection in these cultures was observed when the L-type calcium 

channel route was blocked via verapamil. N-type calcium channel and NMDA 

receptor blockage did also provide partial protection. But AMPA receptor blockage 

did not provide any protection against zinc toxicity.  

 

3.7   Novel Entry Pathway for Zinc 

In this section the likelihood of zinc entering through the chloride channel 

linked GABA receptors was studied. Enhanced and rapid cell death was 

observed when 15 μM Muscimol, a GABA receptor agonist was applied to the 

cultures before a toxic dosage of zinc (300 μM) as seen in Fig 24.  
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Fig. 24 Stable reference activity (0-28 min) was shut off by 15 μM muscimol followed 
by the addition of 300 μM zinc. Two full medium changes (MC) showed no recovery 
of the reference activity (n=3). 
 

 This study suggested that pretreatment of cultures with Verapamil and then zinc 

(≤ 500 μM) for one hour resulted in complete protection against zinc toxicity (fig 21). 
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When muscimol and verapamil where applied to the culture prior to a toxic dose of zinc 

no cell/activity revival was observed after medium changes, suggesting that the chloride 

channel linked GABA receptor to be an entry pathway for zinc. 

300 �M Zn 

mcx3 20 μM Muscimol 

80 μM Verapamil
REF 

 

 

Fig. 25. Protection Suppressed with addition of muscimol. Culture was initially treated 
with verapamil (80 μM) and muscimol (20 μM) was added 20 min later followed by the 
addition of 300 μM zinc. Three medium changes (mcx3) were taken out in 40 min. (n=3) 

 

 

 

 

 

 

 

 

 53



CHAPTER 4 

DISCUSSION 

The cytotoxicity of zinc is established as a phenomenon, but has been based 

primarily on morphological observations and measures of cell death (Choi et al., 1988; 

1992; Koh et al., 1996).  The mechanism by which zinc exerts its toxicity is 

controversial. Koh et al. (1996) and Kim et al. (1999) suggest oxidative stress whereas 

Sheline et al. (2000) favors failure of energy production due to mitochondrial damage.  

Capasso et al. (2005) recently showed that mitochondrial damage plays a role in zinc 

induced neuronal cell death. This is accompanied by extra-mitochondrial production of 

reactive oxygen species and disruption of metabolic enzymatic activity, eventually 

leading to neuronal injury (ibid).  However, there appear to be multiple entry pathways 

and the temporal aspects of entry and subsequent cellular damage were not quantified. 

Further, influences on the electrophysiological function of neuronal ensembles were 

unknown and the possibility of functional neurotoxicity in the absence of cytotoxicity was 

not considered previously. Therefore, quantitative analyses using multichannel 

electrophysiological techniques that can monitor the temporal evolution of toxicity in a 

neuronal network can provide important dynamic information to the field of zinc toxicity. 

As shown in this study, such an approach provides additional information in terms of 

activity changes, points of reversibility, and quantitative data based on the readout of 

system spike production and burst patterns. Linkage between morphological 

deterioration and loss of activity can also be established. Further, in the culture 

environment, the measurement of free zinc is facilitated.  
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Despite the clear warning signs of toxicity, zinc exposure in industrialized nations 

is increasing.  Zinc is found in almost every skin powder, is added to most vitamin 

supplements, and is found in such diverse products as dental adhesive, sun screens, 

nasal sprays, and potions designed to boost the immune system. To this must be added 

environmental exposures, as zinc is found in automobile tires, paint, batteries, 

galvanized metals, and in some new nanomaterials that are emerging rapidly without 

systematic toxicity analyses. Inhalation of zinc compounds, mainly zinc oxide fumes, can 

lead to a condition known as "metal fume fever". The symptoms include headache, 

altered taste, nasal passage irritation, cough, rales, fever, weakness, hyperapnea, 

sweating, pains in the legs and chest, reduced lung volume, and leukocytosis (ATSDR, 

1988; Bertholf, 1988).   

Compared to mercury (Gopal, 2002) and lead (unpublished observations), zinc 

causes similar rapid deteriorations of network activity at high concentrations.  However, 

the mechanisms are different, as cell swelling and lysis were not observed in response 

to mercury intoxication (Gopal, 2002).  The observed osmotic swelling of neurons in the 

presence of zinc acetate is compatible with a blocking of mitochondrial function and 

impairment of membrane ionic pumps. Neuronal cell rupture in media has been 

reported (Choi, 1988) and observations in our laboratory of neuronal lysing in normal 

media were frequent.  Although the time to activity loss and cell death is a function of 

concentration (Fig. 13; equations 1 & 2), neuronal swelling is seen already at 20 μM 

whereas lysing is observed generally above 50 μM zinc acetate.  It is interesting that 

Choi et al. (1988) reported an ED50 of 600 μM (total zinc) 15 min after zinc application 

for cortical cultures using LDH assays.  This evaluation correlates with our time for 50% 
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activity reduction at 600 μM (equation 1). However, at this time, cells do not show major 

deterioration and more than 90% of the units are still firing, albeit at a reduced level. 

We observed that networks responded to all zinc concentrations, starting at 20 

μM zinc acetate, with initial excitation followed by irreversible activity decay in the 

absence of medium changes. This was seen when experiments were carried out in 

serum and albumin free medium (see Fig. 13). If zinc was added to cultures in medium 

containing 5% serum, only concentrations including and above 175 μM were effective, 

indicating that the serum components and albumin bind zinc and protect cells. This 

agrees with the work of Lin et al. (2005), which suggested that albumin is protective of 

zinc-induced neurotoxicity of cultured rat cerebellar granule neurons. In our studies, 

activity could be restored by medium changes at the IC50 time for 500 μM zinc 

exposure in serum and albumin free medium (Fig. 17). The time when partial recovery 

can be achieved is strongly concentration dependent. Critical levels of zinc appear to 

enter the cytoplasm between IC50 and IC90 times. At 500 μM this occurs within 12 

minutes, although at 20 μM zinc that time gap is 220 minutes (equation 1). Both the 

amplitude and duration of the excitatory phase are also concentration-dependent but, at 

high concentrations, a rapid silencing of units truncates the excitation phase.  It has 

been proposed that zinc attenuates the GABA response and thereby elicits 

hyperexcitability of the neurons (Ruiz  et al., 2004; Westbrook and Mayer, 1987). 

Conversely, it has also been found that zinc acts as an inhibitory neuromodulator as it 

can selectively  block N-methyl-D-aspartate (NMDA) receptors (Christine and Choi, 

1990).  In patch recording experiments, concentrations of 10-100 μM zinc chloride 

reduced single NMDA channel conductivity coupled to an increase in channel noise, 
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suggestive of a fast channel block (ibid).  However, our observations show that the 

excitation dominates at all concentrations tested, indicating that the network effects of 

possible GABA receptor blocking are stronger than the influences of NMDA receptor 

inactivation.  In addition, the excitation is accompanied by increased burst coordination 

among channels with enhanced burst period regularity (see Fig. 6B).  This is also 

demonstrated by the reduced variability of the minute means in burst period plots that 

represent an average across all discriminated units selected for recording (Fig. 6A).  In 

these cultures, such burst coordination and temporal pattern regularization is 

characteristic of GABA receptor or channel blockage (Keefer et al., 2001 b,c).   

  The electrophysiological effects of synaptically released zinc and those 

generated by exogenous loading of zinc by relatively high concentrations appear to 

have diverse effects.  Whereas the former is considered to have anti-excitatory 

influences because of zinc inhibition of practically all glutamate receptors (Frederickson 

et al., 2004), higher concentrations of exogenous zinc generate extensive excitation that 

appears to be terminated only by the subsequent zinc-induced cell destruction. This 

concentration-dependent paradoxical effect of zinc complicates zinc investigations and 

mechanistic explanations of observed effects. In this paper we have focused on a 

exogenous exposures over a large concentration range in order to quantify toxic effects 

in terms of total zinc acetate added to the cultures. Concentrations applied to cultures 

which where below 20 μM did not result in any electrophysiological changes and cell 

death when evaluated for 24 hours. This indicates that the cells have a functional 

buffering capacity for concentrations that do not exceed 20 μM. Metallothionenes have 

been suggested to play an important role in this buffering of zinc (Palmiter, 1998). They 
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seem to play a major role in altering accessibility of free zinc ions for the zinc-binding 

enzyme group by being able to bind and dispense free zinc ions (ibid). Its been 

previously implied that application of certain heavy metals like zinc to neuronal cultures 

causes upregulation of metallothionenes (Palmiter, 1988). Our data agrees with these 

observations, as it is seen in this study that a high concentration of zinc (200 μM) can 

be added to culture in very small nontoxic increments such as 10 μM to delay 

neurotoxicity (Figure 10).   

As previously mentioned, the applications of zinc above 20 μM resulted in an 

excitation phase which was quantified in this study. The observed excitatory phase by 

itself cannot be held responsible for the concomitant loss of activity and cell 

deterioration. Such a degree of excitation can be obtained with many pharmacological 

manipulations that do not result in cell death.  Also, the excitatory phase is eliminated in 

the presence of bicuculline and picrotoxin, but activity decay and cell deterioration is still 

observed. Consequently, a vesicular release of endogenous zinc does not seem to be 

the primary mechanism of toxicity. Our data are therefore not directly linked to 

excitotoxicity but rather to the entry of zinc through channels, which triggers subsequent 

cellular damage. Certainly, the extensive swelling and frequent lyses of neurons 

represent observations consistent with mitochondrial damage and associated osmotic 

swelling due to ion gradient deregulation. Neurons evaluated in frontal cortex cultures 

were capable of swelling up to 50% of their initial area before they lysed. It was found 

that the initial area of a neuron is not correlated with the time it takes for it to lyse. 

Another interesting observation made was that 20% neuronal swelling occurs close to 

the time when 50% network activity has decayed.  
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The experiments conducted to show acute, partial protection represent the 

beginning of a systematic effort to block and possibly rank the efficacy of entry routes. 

Temporary protection of neurons occurs under conditions of suppressed or blocked 

activity. It may be assumed that suppressed electrical activity lowers the probability of 

channel opening and reduces zinc entry.  These observations support earlier published 

data suggesting that a major entry route for zinc is through channels associated with 

network electrical activity including voltage-gated calcium channels, NMDA receptors, 

and AMPA receptors (Koh and Choi, 1994; Sensi et al., 1997).  This study has also 

analyzed these main entry routes and suggested the primary entry pathway for neurons 

in spontaneous, non-depolarized state to be the L-type voltage gated calcium channels 

due to protection against 500 μM zinc by L-type specific calcium channel blocker, 

verapamil. However complete protection was only seen when cultures where exposed 

to verapamil and zinc for 1 hour. Exposures beyond 1.5 hours resulted in cell death. 

This could indicate the entry of zinc through routes not associated with electrical activity 

like zinc transporters. Zinc transporters are proteins existing on most cells in the body 

known to permit both the entry and exit of zinc and sometimes other cations. They are 

the least understood of all the entry routes in terms of mechanisms and are very difficult 

to manipulate pharmacologically since they are not known to respond to any drugs 

presently available.  

It has been reported for the first time in this study that chloride channel-linked 

GABA receptors may provide an entry pathway for zinc into the FC neurons. Zinc has 

been suggested to bind to the GABAA receptor (Smart et al., 1994) but has never been 

implicated as an entry route. The pretreatment of FC neurons with a GABA  receptor A
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agonist, muscimol induced a more rapid cell death compared to cultures which had not 

been pretreated. This implied that opening of the chloride channel allowed more zinc to 

enter the neurons. Even when tested with the presence of verapamil cells where not 

spared. Therefore it is strongly suggested that zinc enters FC neurons through chloride 

channels linked to GABAA receptors. These findings imply the possibility of enhanced 

neuronal cell death for persons consuming drugs which act as GABAA receptor 

agonists, such as benzodiazapenes or alcohol. 

Whether the concentrations used in this study are ever attained in animals even 

under high environmental zinc exposures is difficult to determine. Binding, 

compartmentalization, and clearance represent complicated dynamic factors that are 

not yet clearly defined. However, synaptic concentrations have been estimated to reach 

300 μM under strong stimulation or depolarizing conditions (Assaf and Chung, 1984). It 

is important to quantify the temporal evolution of zinc toxicity on the cellular and small 

network levels as such toxicity represents a basic dynamic feature that must be defined 

to support future studies of zinc buffering and clearance, both on the cellular and 

organismal levels.   

Electrophysiological assessments of toxicity, if based on the monitoring of many 

active units, provide a highly fault-tolerant, quantitative measure that is relatively simple 

to use.  The anticipated technical expansions to multinetwork platforms and robotic cell 

seeding, maintenance, and testing will result in a major increase in assay efficiency.  

Primary cell culture will emerge as the preferred core methodology as embryos from a 

single mouse can seed over 1000 MEAs if different regions of the central nervous 

system are used.  Validation of primary culture as histiotypic assay platforms was 
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therefore a secondary goal of this investigation. As with many other compounds (Gross 

and Gopal, 2006; Gross and Pancrazio, 2006), the results reported in this paper with 

zinc acetate agree well with the literature and provide additional quantitative data on the 

dynamic aspects of toxicity development.  

The better understanding of the temporal dynamics of zinc toxicity may allow 

application of these finding to a variety of other tissues. Central to such applications is 

the potential control of tumor growth or elimination. It is possible, that localized high 

concentrations of zinc can affectively eliminate malignant cells without a major 

disruption of surrounding healthy tissue. The high zinc buffering capacity of cells can be 

used to create a sharp gradient between toxic and nontoxic concentrations. It is 

anticipated that different tissues will show different zinc uptake and toxicity dynamics. 

However, glandular tumors such as those found in testosterone sensitive prostate 

cancer, may be highly similar in their response to what has been seen for neural tissue 

in this study. Therefore, the investigation of zinc toxicity in a variety of different tissues 

should be highly encouraged.  
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APPENDIX A 

DRUG CONTROLS
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Acetate  

Zinc was applied to the cultures in the form of zinc acetate. In order to rule out 

the effects of acetate, 2 mM sodium acetate was added to the culture and no change in 

electrophysiological activity was observed for about 6 hours (355 min). The osmolarity 

at reference period (R) was 324 milliosmoles and at termination it was 327 milliosmoles. 

PH remained unchanged at 7.43. 
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MgCl   2

Magnesium Chloride, (8 mM) was preapplied to cultures before the addition of 

zinc and left on the culture for 60 min to inhibit the NMDA receptors, one route of entry 

for zinc ions. Medium changes resulted in activity loss and cell death within 180 min. In 

order to rule out the effects of MgCl2, 8 mM was added to a culture and left on for 60 

min resulting in complete activity inhibition. Network activity was regained after two 

medium changes (MCX2) and observed for 200 min.  Osmolarity was 226 milliosmoles 

during reference activity (REF), 228 milliosmoles during incubation with MgCl2, and 227 

milliosmoles at time of termination. 
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SNX-111 
 
 
 The reversibility of SNX-111 was tested by application of 75 μM (in 25 μM 
increments at 38, 81, and 162 min) then washed out three times (MC X3) at 222 min 
showing complete activity revival.   
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Lidocaine  
 
 

Reference activity was recorded for 20 minutes following 250 mM Lidocaine 

application to the culture. This resulted in immediate network activity inhibition. When 

the culture’s medium was changes two times at 96 min, complete network activity was 

regained hence showing the complete reversibility of lidocaine. 
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Verapamil 
 
 

80 μM Verapamil was applied to the culture at 255 min removed via 3 full 

medium changes at 292 min. This resulted in complete activity (dotted line) & unit 

revival (straight line) therefore presenting the reversibility of verapamil.  
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APPENDIX B 

FREE ZINC CALCULATIONS
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Free zinc calculations in DMEM stock solution are made after additions of 

various zinc concentration (Courtesy of Neurobiotex). To be aware of how much free 

zinc is being exposed to the cells after addition of zinc acetate, individual samples of 

DMEM stock solution (not including cells) containing various concentrations of zinc 

acetate (10 - 2000 μM) were analyzed by Neurobiotex and sample readings of free zinc 

were obtained.     
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APPENDIX C 

CONFIDENCE LIMITS & LINEAR SCALES
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95% Confidence Limits for 50% Activity Loss  

R2 = 0.86
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Equations below may be used to find the upper and lower limits for each concentration 

of zinc applied to a culture (Excel). 

                                      

Upper Limits: t = 2951C-0.76 

 Lower Limits: t = 2028C-0.81
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95% Confidence Limits for 90% Activity Loss 

 

R2 = 0.8935

1

10

100

1000

10 100 1000 10000
Concentration of Zn++ (μM)

Ti
m

e 
to

 5
0%

 &
 9

0%
 a

ct
iv

ity
 d

ec
re

as
e 

(m
in

) 

90% activity loss

 

 

 

Equations below may be used to obtain the upper and lower limits of each 

concentration of zinc applied to a culture (Excel). 

 

Upper Limits: t = 4064C-0.74

 Lower Limits: t = 2794C-0.81
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50% Activity Loss (linear scale). 

R2 = 0.8749
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90% Activity Loss (linear scale). 

R2 = 0.8935
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