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GEOLOGIC FACTORS IN PREDICTING COAL MINE ROOF-ROCK
STABILITY IN THE UPPER KITTANNING COALBED,
SOMERSET COUNTY, PA.

by

A. T. lannacchione, 1 J, P, Ulery, ! D. M. Hyman, ' and F. E, Chase

ABSTRACT

Roof-rock instability in advancing sections of underground coal mines is
a major contributing factor to accidents resulting in fatalities and injuries.
Such roof-rock conditions can also result in loss of production due to addi-
tional cleanup time and increased amounts of reject material. The Bureau of
Mines is investigating fundamental geologic factors affecting coal mine roof-
rock instability in order to develop techniques to predict zones of potential
unstable roof-rock.

Two distinct directional trends of unstable shale roof-rock in a mine
working the Upper Kittanning Coalbed are delineated: one trend is associated
with the sandstone-shale transition zone, the other with a fault system. The
unstable shale roof-rock associated with the transition zone, a consequence of
differential compaction, is comprised of slickensided roof-rock. Whereas, the
unstable shale roof-rock associated with the fault system, a consequence of
structural deformation of the strata, is comprised of fault planes. These
faults, small in comparison to the sandstone-shale transition zone, are dif-
ficult to delineate with a standard drilling program. Trends of the transi-
tion zone associated with the sedimentary facies change are projected into
unmined portions of the coalbed with the aid of exploration core data.

INTRODUCTION

The Bureau of Mines is investigating fundamental geologic factors that
influence coal mine roof-rock stability (7, 13, 17, ZOfZZ,.gé).z There is
presently a lack of practical information detailing how local and regional
geologic settings affect the distribution, frequency, and magnitude of roof
falls in U.S. coal mines. Techniques and methodologies to predict the occur-
rence of unstable roof-rock usually require detailed surface and in-mine geo-

logic mapping, extensive exploration core hole data, and an understanding of

1Geologist, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, Pa.
2Underlined numbers in parentheses refer to items in the list of references
preceding the appendix.



the stratigraphy and structure of the area. A schematic outlining the method-
ology used in this study is presented in the appendix (fig. A-1).

The Bureau is presently evaluating these techniques and methodologies at
two locations in Somerset County, Pa. (fig. 1). Each study has a number of
tasks:

1. Choose a site (relatively new mine so that predictive techniques can
be evaluated).

2. Establish geologic data-base (acquire core hole data and construct
isopach maps).

3. Conduct detailed in-mine investigations and mapping.

4. Establish the geological criteria that influence roof-rock in unmined
portions of the coalbed, and

5. Evaluate the success and effectiveness of the study.

This investigation was conducted on a relatively new mine, approximately
5 years old, working the Upper Kittanning Coalbed in Somerset County, Pa. The
cooperating company also plans to open a mine directly south of the mine under
investigation. The Upper Kittanning Coalbed in this area is a metallurgical-
grade coal that has been used for coke making and steam generation. It is
generally very friable and ranges in thickness from 42 to 58 inches (107 to
147 cm.) Overburden (fig. 2) ranges from zero at the outcrop to less than
600 feet (183 m).

When this mine was first opened, a competent sandstone top provided an
excellent roof-rock. However, as development advanced beyond this competent
sandstone, incompetent shale was encountered. The Bureau's mission has been
to determine the characteristics of the unstable roof-rock and to predict the
occurrence of other areas of unstable roof-rock in advance of mining.
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MINING AND ROOF SUPPORT SYSTEMS

A continuous mining system is used in developing the main and submain
entries with these entries outlining panels. Butt entry development off sub-
main entries is followed by retreat mining. Panel development is accomplished
by driving butt entries between submain entries (fig. 1). Butt entries are
then pillared and retreated before starting the next panel. Partial and full
retreat mining systems have been used. During retreat mining, rooms are
driven into barrier pillars between butt entry sections. Pillars are then
pulled, incorporating barrier into adjacent retreated sections (gob).

Rooms are driven 18 to 20 feet (5.5 to 6 m) wide on 80 foot (24 m) cen-
ters, with crosscuts perpendicular to headings. Recently, 60° angles with
alternating crosscuts have been initiated in the main entries in response to
changing roof-rock conditions (see enlarged detail, fig. 12). Continuous min-
ers and belt haulage are used to cut and haul the coal from the working
faces.

There are four basic roof support systems in operation: wood crossbars
and posts, roof bolts (mechanical and resin types) through crossbars, full
roof bolt pattern, and cribbing. Under competent sandstone roof-rock wood
cross bars and posts are used. Generally, two roof bolts are placed into
each crossbar when 1 to 3 feet of shale occurs between the coalbed and sand-
stone roof-rock to retard slacking. Roof bolts on 4-foot centers are used in
competent shale roof-rock. Combinations of cribbing, roof bolts, and wood
crossbars and posts are used when incompetent shale with a high frequency of
slickensided planes is encountered. Generally, 5/8-inch-diameter mechanical
expansion shell roof bolts with a length of 48 inches (122 cm) are used.
Recently, full-column resin anchored roof bolts have been used with good
results wherever shale is the dominant roof-rock.

STRATIGRAPHY

The Upper Kittanning Coalbed and associated roof and floor rocks are part
of the Kittanning and Freeport Formations (Allegheny Group--Pennsylvanian Sys-
tem (fig. 3)). Ferm (6) and Williams (36) showed that the sedimentary facies
encountered in the Kitfhnning and Freeport Formations represents deposition in
a deltaic environment, where a somewhat low rate of detrital sediment influx
permitted the establishment of vast swamps. The complexity of the depositional
environments in the delta (9) accounts for the extreme local and regional
lithologic variation that characterizes these formations.

A sedimentary facies map (fig. 4) using data from over 70 exploration
core holes was constructed for the study area. Three basic roof-rock types
are identified: a thick sandstone (Freeport Sandstone); a thick, dark-gray
laminated shale; and a lateral transition zone between the sandstone and shale
sedimentary facies. This transition zone is generally comprised of slicken-
sided shale with some thin sandstone stringers.
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FIGURE 5. - Photograph of the channel-phase Freeport Sandstone showing the massive, cross-
bedded, and fining upward sequence above the mine mouth of the active workings
of the study mine.



The Freeport Sandstone in the study area varies in thickness ranging from
10 to 50 feet (3 to 15 m), and generally resembles a shoestring configuration.
The sandstone-shale contact, where observed, was well defined and generally
slickensided. Large crossbeds, fining upward sequence, scouring, coalified
plant fossils, and shale nodules characterized this unit as a high-energy
channel-phase sandstone (fig. 5). The switchback in the course of the channel
cutting across the active mine workings probably represents a meander in the
ancient river system. However, the main channel seems to split into several
smaller channels across the projections of the new mine to the south of the
active mine (fig. 4). The effect these changes in the geometry of the channel-
phase sandstone will have on trend prediction is unknown (see section on Pre-
diction of Unstable Roof-Rock Areas in Advance of Mining).

STRUCTURAL SETTING

Folding and Faulting

In western Pennsylvania fold and fault intensities decrease toward the
northwest (fig. 6). Generally, intense folding (Valley and Ridge Province) is

Appalachian Plateaus
Province

Valley and Ridge
Province

o* ’\0(\
S

Piedmont
Province

/Somerset )
e

Frequency and intensity of folding and faulting

()
<
O

Province

Low High -
FIGURE 6. - Physiographic location of the study area.
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characterized by asymmetric en echelon folds (with large structural relief)
and associlated thrust, reverse, normal, and wrench faults (1, 3, 34). Gentle
folding (Pittsburgh Plateaus Section of the Appalachian Plateaus Province) is
characterized by folds with little structural relief and a general lack of
faulting (34). The study area, which is located in the Allegheny Mountain
Section of the Appalachian Plateaus Province, lies between these two extremes.
Gentle folds like the Somerset Syncline and intense folds with associated
faulting such as Chestnut Ridge and Laurel Hill Anticlines (30, 33) character-
ize the study area. Figure 7 is a structure contour map on ‘the base of the
Upper Kittanning Coalbed in northern Somerset County. The Upper Kittanning
Coalbed dips range from approximately horizontal at the bottom of the Somerset
Syncline to nearly 20° along the flanks of Laurel Hill Anticline. No evidence
of faulting within the Pennsylvanian System of this area has been identified
to date. However, Cate (2), Fettke (8), and Gwinn (l1) have mapped faults of
significant displacement in the Oriskzhy Sandstone (Devonian System). These
faults, shown in figure 7, occur along the axes of Laurel Hill Anticline and
Boswell Dome.

Folds and the appearance of faults within the Devonian System in the
Allegheny Mountain Section of Pennsylvania have been explained by Gwinn (1l1):

Paleozoic rocks were transported westward along nonoutcropping low-
angle detachment thrust faults referred to as decollement zones.

The major folds were formed in passive response to steplike upward
shearing of the decollement zones from a Mid-Cambrian shale zone in
the Valley and Ridge Province up through competent carbonate rocks
into the Upper Ordovician or Silurian Systems beneath the Plateau.
The folds evidence shortening of the stratified sequence superincum-
bent on the sole thrusts.

A cross section (fig. 8) through the study area illustrates the authors' view
of Gwinn's hypothesis. Data concerned with the location and dip of faults
were taken from Cate (2). Notice the depressed fault blocks along the Laurel
Hill Anticline. Faults bounding the axial depressed zones, both reverse and
normal, reflect a thrust of the anticlinal limbs toward the anticlinal crests.
These thrusts probably extend down to the decollement zone and are directly
linked to the formation of the Appalachian Mountains (lg’.lé’.gﬁ)' The forces
responsible for this Paleozoic deformation in the Allegheny Mountain Section
probably were due to the northwestward upthrust of a wedge of Blue Ridge and
western Piedmont rocks (2, 32).

Fracture Systems

Lineaments, joints, and cleat were studied to determine the orientations
of fracture systems in the strata of the active mine workings. Although frac-
tures are not primary factors affecting roof-rock stability, they are often
associated with an increase in instability of roof-rock. It was found that
there is a correlation between the strike of the local anticlines and syn-
clines and the orientations of lineaments, joints, and coal cleat within the
study area. The composite strike of the Laurel Hill Anticline, Johnstown Syn-
cline, Boswell Dome, Somerset Syncline, and Negro Mountain Anticline is
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approximately N 37° E. Major lineament trends were observed to be centered
about N 72° W, N 37° E, and N 75° E. Dominant joint, coal cleat, and slicken-
sided plane orientations were measured to be between N 60° W to N 32° W and

N 48° E to N 74° E within the active workings of the study mine. All fracture
systems including joints, cleat, and lineaments have a systematic trend in the
northwest-southeast direction, approximately N 72° W to N 27° W. A nonsystem-—
atic trend approximately perpendicular to the systematic trend was found to
range from N 37° E to N 75° E. Systematic trends are generally perpendicular
to structural trends and represent extension fractures; nonsystematic trends
are generally parallel to regional structural trends and represent release
fractures (24). This indicates that the same tectonic forces responsible for
the folding and faulting of the Allegheny Mountain Section (fig. 8) influenced
the orientation of the fracture systems of this area. Measurements were anal-
yzed using a system devised by Diamond (4).

Lineament trends were determined using six Landsat imagery covering
Somerset County, Pa. Color infrared aerial photography was examined but added
no significant additional information in the lineament analysis of this area.
Figure 9 is one of these Landsat scenes with the locations and orientations of
ma jor observed lineaments. One hundred (100) lineaments from six images rep-
resenting spring, summer, fall, and winter seasons from 1973 to 1976 were
observed, traced, and plotted on a rose diagram (fig. 10). There have been
many studies (5, 16, 25, 31) indicating the possible relationship of unstable

N
} 370

72°
75°

w
100 observations total 0] 5

I L
Scale of
observations

Lineaments

FIGURE 10. - Rose diagram of the lineament orientations in northern Somerset County, Pa.
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roof-rock in mines beneath these lineaments. Since none of the lineaments
observed passed through the active mine workings, no determination of the
affect of lineaments on roof-rock instability was made. Joints were observed
and measured in the limestone floor and shale roof-rock. Over 150 readings
were measured throughout the active mine workings. Figure 11 is a rose dia-
gram of the joints, cleats, and slickensided plane oreintations. Cleat is the
natural fracture system in coalbeds and is analogous to joints. The dominant
fracture plane is referred to as the face cleat (N 60° W and 27° W, fig. 11);
the secondary fracture plane is referred to as the butt cleat (N 44° E and

n 72° E, fig. 11). Normally occurring at right angles to each other, face
cleats are analogous to systematic rock joints; butt cleat are analogous to
nonsystematic rock joints (23-24).

GEOLOGICAL FACTORS AFFECTING ROOF-ROCK STABILITY

The physical condition of the roof-rock strata determines the type of
support needed to maintain a stable roof in a coal mine if we ignore depth of
cover and width of opening. Roof-rock stability can be affected by sedimen-
tary facies changes and/or structural deformation in the coal-bearing strata.
Many sedimentary facies changes, like the changes in roof-rock types across
the study mine (fig. 4), are large-scale mappable features and therefore pre-
dictable if enough exploration data are available. Much less is known about
the occurrence, geometry, and frequency of structural deformation features in
the Allegheny Mountain Section. Observations of unstable roof-rock areas in
this study (fig. 12) have enabled the authors to correlate roof-rock instabil-
ity with either sedimentary facies changes and/or structural deformation of
rock strata.

Effects of Sedimentary Facies Changes

Detailed geological mapping of the Upper Kittanning Coalbed and associated
strata in the study mine indicates that more than 95% of the unstable roof-
rock areas examined were within the shale sedimentary facies. A comparison
of the shale isopach map (fig. 13) with the unstable roof-rock map (fig. 12)
identifies only two roof fall areas (No. 8 room, 5th heading, lst right sub-
main entry, and No. 2 room, 2d heading, main entry) that extend into the
channel-phase sandstone facies. Sections were measured at approximately 700
intersecting headings and crosscuts (fig. 13). Generally, a stable roof-rock
was encountered wherever the channel-phase Freeport Sandstone is greater than
10 feet thick and where there is less than 2 feet of shale between the sand-
stone and the coalbed (main entry, at mine mouth, to 2d right submain entry;
lst right submain entry; and lst, 2d, and 3d butt entries—--fig. 12). Occa-
sionally, isolated thick pockets of shale underneath the channel-phase sand-
stone facies have caused localized roof support problems (No. 27 to No. 29
rooms, 8th and 9th headings, 2d butt entry, and No. 14 to No. 16 rooms, 4th
and 5th headings, 3d butt entry--fig. 12).
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study mine.
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Two distinct trends of unstable shale roof-rock are shown in the enlarged
detail of figure 12. One trend has both high-frequency, small slickensided
roof-rock (fig. 14) and large, low-angle slickensided planes (fig. 15) found
almost exclusively in the transition zone adjacent to the channel-phase sand-
stone. The second trend has horizontal slickensided planes (fig. 16) and roof
falls associated with thrust faulting (fig. 17) exclusively within the thick
shale sedimentary facies. The first trend associated with the sandstone-shale
sedimentary facies change is a result of differential compaction, while the
second trend of unstable roof-rock, confined to the shale sedimentary facies,
is a result of regional structural deformation.

The dominant strikes of the large, low—angle slickensided planes located
within the transition zone (fig. 18) were examined to determine the relation-
ships of these slickensided planes to other geologic factors. Dominant
strikes of locally grouped slickensided planes are subparallel to one another.
However, the dominant strikes of all slickensided planes (N 49° E, N 62° E,
and N 77° E) are subparallel to the strikes of surface lineaments (N 37° E and
N 75° E) and coal cleat (N 44° E and N 72° E). Because the high-frequency,
small slickensided roof-rock and low-angle slickensided planes are generally
confined to the transition zone, we believe sedimentary facies changes with
resulting differential compaction is the dominant factor in the formation of
these slickensided planes. The alinement of the strike of these planes with
the strike of structures, such as anticlines, synclines, and fracture systems,
indicates that structural deformation may have also played an important role
in their formation. This would seem reasonable owing to the close proximity
in geologic time of the deposition, burial, and structural deformation of
coal-bearing strata of the Allegheny Mountain section (2, 34-35).

Structural Deformation

Small-scale thrust and bedding plane faults have been mapped in the
active workings of the study mine. The authors believe this faulting is
related to the previously discussed large-scale structural deformation of the
entire Allegheny Mountain Section. The faults observed in the coalbed and
associated strata have small displacements, measured in inches. Faults at
depth in the Allegheny Mountain Section have large displacements, tens of feet
to hundreds of feet. Structural deformation of the coal-bearing strata in the
study area is undoubtedly responsible for roof-rock instability associated
with faulting encountered in the underground mine.



FIGURE 14. - Photograph of small, high-frequency, randomly oriented, slickensided planes in the transition zone of the
study mine.
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FIGURE 15. - Photograph of large, low-angle, slickensided plane with a measurable strike and
dip in the transition zone of the study mine.



FIGURE 16. - Photograph of horizontal slickensided plane within shale roof-rock of the main entries.




FIGURE 17. - Photograph of thrust fault and associated roof fall within shale roof-rock of the main entries.
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FIGURE 18. - Rose diagram and the location of the dominant strike of the large, low-angle,
slickensided planes located within the transition zone of the study mine.

Observations of this phenomenon have been reported in several Bureau of
Mines reports. A strip mine working the Upper Freeport Coal Group on the
down-thrown side of a strike-fault zone along the eastern flank of the Chest-
nut Ridge Anticline (29) exposed coalbed dips ranging from 12° to 47° SE in a
distance of 2,000 feet (600 m). Three thrust faults of 1 to 3 feet (0.3 to
1 m) displacement were observed on this steep dip slope. Seven thrust faults,
similar in character to those observed in the strip mine, were encountered in
three underground mines located several miles to the west of Chestnut Ridge
Anticline in Indiana and Armstrong Counties, Pa. (29). Several normal faults
were also observed in a mine working the Lower Kittanning Coalbed in Cambria
County, Pa. (l4). All the observed thrust faults in both surface and under-
ground mines are characterized by (1) small displacements (fig. 19),

(2) strikes subparallel to the strike of the surrounding strata, (3) a 1- to
3-inch-thick (2.6- to 7.7-cm) fault gouge along the fault plane (fig. 20), and
(4) dips of faults cutting across the coalbed at 20° to 45° angles (fig. 21).



FIGURE 19. - Photograph of thrust fault with structurally disturbed coal and shale roof-rock.




FIGURE 20. - Photograph of thrust fault showing 1- to 3-inch (2.6- to 7.7-cm) fault gouge along thrust plane.




FIGURE 21. - Photograph of thrust fault cutting across the Upper Kittanning Coalbed at a 45° angle.
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Bedding plane (horizontal slickensided planes) and thrust faults have
been observed and mapped within the advancing main entries of the study mine
(No. 47 to No. 55 rooms, lst to 7th headings, main entry (fig. 12)). Figure 22
shows the location of seven cross sections constructed across thrust-faulted
areas of the main entry. As many as three distinct faults cut across the
advancing main entries. The dips of two of these faults reverse across the
main entries from southeast to northwest with no change in the general strike
of the fault system (fig. 22). Two faults are mapped in the 1lst, 2d, 34, 6th,
and 7th headings, while three faults are mapped in the 4th and 5th headings.
It appears the first thrust fault inby the 5th heading changes to a bedding
plane fault in the 6th heading. The first and second faults outby the 4th,
5th, and 7th headings have thrust strata in both directions over a block of
coal (cross sections A-A', C-C', and D-D' of fig. 23).

Outby

LEGEND

Roof falls

Thrust fault
>~ (direction of movement)

e——e Location of cross sections

0] 50 feet
—
0] 15 meters
Scale

5

FIGURE 22. - Location of thrust faults, roof fall areas, and cross sections in the advancing
main entries of the study mine.
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FIGURE 23. - Cross-sectional view of the thrust faults encountered in headings 4 through 7 of
the advancing main entries of the study mine.
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Cross sections (figs. 23 and 24), compiled from mapping along the ribs of
headings cut by the thrust faults, show the presence of bedding and coal-cleat
deformation associated with faulting. Figure 19 is a photograph of a fault
plane and associated roof-rock deformation. Many faults have well-developed
slickensided surfaces. All thrust fault planes extended into the shale
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FIGURE 24. - Cross-sectional view of the thrust faults encountered in headings 1 through 3
of the advancing main entries of the study mine.

roof-rock where most became bedding plane faults. An extension of this per-
sistent horizontal fault system has been mapped as much as 800 feet northwest
to 100 feet southeast of the thrust fault system. The bedding plane fault
(fig. 25) is bounded above and below by horizontal slickensided planes and can
have anywhere from O to 4 inches (10.2 cm) of fault gouge (crushed shale). The
roof bolters refer to the bedding plane fault as the "breaker,” because of the
ease in drilling through this zone.



FIGURE 25. - Photograph of the bedding plane fault associated with st faults. Notice the horizontal slickensided plane
and fault gouge.
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PREDICTION OF UNSTABLE ROOF-ROCK IN ADVANCE OF MINING

Observations of unstable roof-rock areas in the study mine indicate roof-
rock instability is associated with either sedimentary and/or structural defor-
mation of rock strata. Some 957 of all unstable roof-rock areas are located
within the sandstone-shale transition zone and the thick shale sedimentary
facies. Two distinct trends of unstable shale roof-rock are recognized: the
transition zone, adjacent to the channel-phase sandstone, comprised of both
high-frequency, slickensided roof-rock and large-angle slickensided planes;
and the structurally disturbed thick-shale roof-rock associated with thrust
and bedding plane faults (fig. 12). Figure 26 is a generalized cross section
showing the relationships between slickensided and faulted roof-rock with
sedimentary facies changes and structural deformation. Because the sandstone-
shale transition represents a large—scale sedimentary facies change, projec-
tion of transition zone into unmined portions of the coalbed with the aid of
exploration core data is possible. Not enough data on the size, geometry,
and distribution of faults are known to project their trends into unmined
portions of the mine property. Faults are smaller geological features than
sandstone-shale transition zones and need detailed examination and data to
identify their characteristics. In contrast to this the sandstone-sedimentary
facies changes can be delineated by any properly trained mine personnel with
a good drilling program. Therefore, only the trends of unstable roof-rock
associated with the sedimentary facies change are mapped (fig. 27).

Projected areas of incompetent shale roof-rock associated with the
sandstone-shale transition zone above the active and projected mine workings
of the study are shown in figure 27. The main entries projections of the
active mine cross the transition zone twice, while the main entries projec-
tions of the new mine to the south of the active mine will cross the transi-
tion zone as many as three times (fig. 27). Since the mine is entirely
dependent on the main entries, they must be supported and maintained if the
mine is to remain safe and productive. It is essential to locate main entries
in competent roof-rock. If roof support problems occur in advancing submain
entries, development of panels can fall behind retreat sections, hampering
production goals. Once paneis are outlined by main and submain developments,
ma jor geologic features affecting roof-rock stability should have been identi-
fied and mapped. If advancing main and submain development is to keep pace
with panel extraction, it is necessary to know of hazardous mining conditions
before the continuous miner encounters them.

Roof-rock instability has been associated with the sandstone-shale tran-
sition zone by several investigators (12, 14, 18-19, 26-27). However, quanti-
tative analysis of the characteristics, locations, and areal extent of unstable
roof-rock areas is lacking. More detailed documentation is needed to determine
the relationship of the geometry of the channel-phase sandstone with the fre-
quency and orientation of slickensided, unstable shale roof-rock in these
areas.
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BENEFITS OF GEOLOGIC STUDIES TO THE MINING INDUSTRY

This type of geologic study provides both short- and long-term benefits
to the mining industry. In the short term, detailed mapping enables the mine
operator to better understand the characteristics and trends of the mine roof-
rock. Specific types of roof support,——such as post and crossbars and resin
roof bolts—-, have demonstrated histories of effectively controlling particu-
lar types of roof conditions; therefore, the most appropriate roof support
systems can be matched with the expected roof-rock types. Knowing these char-
acteristics and trends aids in determining approximate strengths of roof-rock
over retreat panels and estimating possible failure time between removal of
pillars and collapse of overburden. Developing mapping techniques will also
enable the mine operators to identify faulted strata as the zone is approached
and entered by advancing sections. This advance warning will alert mine per-
sonnel of the probability of encountering unstable roof-rock ahead so that
enhance safety procedures and appropriate support systems can be implemented.

Long-term benefits will include the ability to project trends of certain
kinds of unstable roof-rock types, similar to the unstable roof-rock trends
associated with the sandstone-shale transition zone of this study. This
information will also aid in projecting main and submain entries under the
most competent roof-rock. MSHA roof support plans also can be designed to
match the most effective roof support system with the expected roof-rock
types. This would be an improvement to the uniform roof support system used
by most mine operators.

SUMMARY AND CONCLUSIONS

The Bureau of Mines is establishing fundamental geologic factors affect-
ing coal mine roof-rock stability in order to develop practical techniques to
predict zones of potential unstable roof-rock. This study was conducted at a
5-year-old mine with a 20-year reserve. A geological data base was estab-
lished by constructing regional maps from exploration core hole information.
The following important geologic characteristics were delineated by in-mine
mapping:

l. Three distinct mappable sedimentary facies are present; the channel-
phase Freeport Sandstone, the sandstone-shale transition zone, and the thick
shale.

2. Of the unstable roof-rock areas, 957 are within the sandstone-shale
transition zone and the thick shale sedimentary facies.

3. Two distinct trends of unstable shale roof-rock are delineated. One
trend is associated with the sandstone-shale transition zone, the other with
the structural deformation of the strata.

4, The unstable shale roof-rock associated with the sandstone-shale
transition zone is comprised mainly of high-frequency, slickensided roof-rock
and large, low-angle, slickensided planes.
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5. Some of the areas of unstable shale roof-rock, disrupted by thrust
and bedding plane faults, are related to structural deformation of the strata.

6. All thrust fault planes are found to extend into the shale roof-rock
where most level off into bedding plane faults.

7. Composite strikes of orientations of large, low-angle, slickensided
planes, lineaments, and coal cleats in the study area are subparallel to sys-
tematic and nonsystematic fracture trends associated with the Appalachian
Mountains.

Conclusions drawn from this investigation are——

l. Unstable roof-rock areas are associated with distinctly mappable sed-
imentary facies and/or structural deformation of strata and are therefore pre-
dictable (given significant geologic information).

2. Sedimentary facies changes with resulting differential compaction is
the dominant factor in the formation of large, low—-angle, slickensided planes
with some additional influences from structural deformation of rock strata.

3. The sandstone-shale transition zone represents a large-scale sedi-
mentary facies change. Projections of this zone into unmined portions of the
coalbed with the aid of exploration core data was demonstrated.

4., Detailed mapping has indicated the presence of small-scale thrust and
bedding plane faults within the coal-bearing strata. This faulting is related
to the large-scale structural deformation of the entire Allegheny Mountain
Section. This deformation of the coal-bearing strata in Somerset, Fayette,
Cambria, and Indiana Counties, Pa., is probably responsible for numerous
unstable roof-rock areas in underground coal mines.

5. Because these faults are small-scale geologic features, they are dif-
ficult to find with a standard drilling program. Also little is known as to
their occurrence, size, and geometry.

6. Similar studies must be conducted for individual mine properties in
different areas because mappable conditions and characteristics change rapidly
from one coal region to another.
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