Oil Yields and Stratigraphy of the Green River Formation's Tipton Member at Bureau of Mines Sites Near Green River, Wyo.
Oil Yields and Stratigraphy of the Green River Formation's Tipton Member at Bureau of Mines Sites Near Green River, Wyo.

By George F. Dana and John Ward Smith
Laramie Energy Research Center, Laramie, Wyo.
This publication has been cataloged as follows:

<table>
<thead>
<tr>
<th>Dana, George F</th>
</tr>
</thead>
</table>

Includes bibliography.

1. Oil fields—Wyoming. 2. Oil-shales—Wyoming. I. Smith, John Ward, jt. auth. II. Title. III. Title: Green River Formation's Tipton Member. (Series)

TN23.U7 no. 7681 622.06173

U.S. Dept. of the Int. Library
CONTENTS

Abstract 1
Introduction 1
 Location and geology 2
 Bureau of Mines in situ investigations .. 3
Experimental work 4
 Stratigraphy and lithology 4
 Oil-yield sampling and assay 5
 Oil-yield and stratigraphic correlations.. 5
 Average oil yields of Tipton zones 7
Discussion 9
Conclusions 9
References 11
Appendix A.--Tabulation of USBM wells ... 12
Appendix B.--Tabulated oil yield of samples .. 17
Appendix C.--Specimen lithologic description . 39

ILLUSTRATIONS

1. Area of investigation, Sweetwater County, Wyo. 2
2. Rock Springs exploratory sites, sec 15, T 18 N, R 106 W 3
3. Well locations, Rock Springs site 2, sec 15, T 18 N, R 106 W .. 4
4. Stratigraphic and oil-yield cross section, Green River-
 Rock Springs area 6

TABLES

1. Average oil yields of Tipton Member 8
A-1. All wells drilled and/or cored, Rock Springs and Green River
 in situ experiment sites 12
B-1. USBM Rock Springs site 1, well(s) 3A and 3B 17
B-2. USBM Rock Springs site 2, well 1 19
B-3. USBM Rock Springs site 2, well 2 20
B-4. USBM Rock Springs site 2, well 3 21
B-5. USBM Rock Springs site 2, well 3A 22
B-6. USBM Rock Springs site 2, well 4 23
B-7. USBM Rock Springs site 2, well 5 24
B-8. USBM Rock Springs site 2, well A 25
B-9. USBM Rock Springs site 2, well B 25
B-10. USBM Rock Springs site 2, well C 26
B-11. USBM Rock Springs site 2, well D 27
B-12. USBM Rock Springs site 3, well 1 28
B-13. USBM Rock Springs site 4, well 5 31
B-14. USBM Rock Springs site 6, well 2 34
B-15. USBM Rock Springs site 7, well 11 35
B-16. USBM Green River site 1, well 1 36
B-17. USBM Green River site 2, well Q-12 38
C-1. Core samples of the Green River Formation from USBM Green River
 site 1, well 1, drilled in 1967 in NW1/4NE1/4NE1/4 of sec 24,
 T 18 N, R 107 W, Sweetwater County, Wyo. 39
OIL YIELDS AND STRATIGRAPHY OF THE GREEN RIVER FORMATION'S TIPTON MEMBER AT BUREAU OF MINES SITES NEAR GREEN RIVER, WYO.

by

George F. Dana¹ and John Ward Smith²

ABSTRACT

Oil yields, lithology, and stratigraphy have been evaluated for 15 cored wells and two sampled wells representing 10 square miles of the Tipton Member of the Green River Formation near Green River, Wyo. The area evaluated is being used by the Bureau of Mines for experimental production of oil from the oil shales in place. Lithology and oil yields were correlated to produce a stratigraphy diagram for the in situ study area, permitting precise designation of comparable sections. Because of lateral uniformity of oil shale, oil yields from eight cores and two sets of drill-cutting samples within a quarter section show the range of variation in average oil yield arising from experimental error. Variation in average oil yields from the seven cores representing the 10-square-mile study area lies within the expected experimental error. No difference in oil-shale richness across the study area is indicated.

Average oil yields for three Tipton sections in the study area were determined as follows: (1) The entire Tipton Member oil shale (about 145 feet thick), 13.3 gallons per ton; (2) the 40-foot upper rich zone, 21.0 gallons per ton; and (3) the 21-foot zone in which the Laramie Energy Research Center is conducting in situ experiments, 22.4 gallons per ton. One acre of the 21-foot experimental section represents 34,300 barrels of oil in place, and 1 acre of the Tipton's 40-foot rich upper layer represents 62,000 barrels.

INTRODUCTION

The Laramie Energy Research Center (LERC) of the Bureau of Mines is engaged in research aimed at producing oil from Green River Formation oil shales in place. Fieldwork in the formation's Tipton Shale Member is located between the towns of Green River and Rock Springs in southwestern Wyoming (fig. 1). Oil-yield data were determined for 15 cores and two sets of drill cuttings taken from eight sites in the study area. Oil-yield histograms and stratigraphic markers are correlated to define comparable oil-shale sections, greatly aiding in evaluation of the results of retorting and oil production.

¹Geologist.
²Project leader.
from experiments on the oil shales in place. The correlations permit direct comparison of oil-shale grades across the study area.

Location and Geology

The study area includes about 10 square miles: sections 15 through 22, T 18 N, R 106 W, and sections 13 and 24, T 18 N, R 107 W, Sweetwater County, Wyo. The sites form two groups, Green River sites 1 and 2 in the east half of section 24, T 18 N, R 107 W, and Rock Springs sites 1 through 8 in the north half of section 15, T 18 N, R 106 W. Rock Springs sites 4 and 6 were selected for the initial in situ experiments because of advantages in relation to outcrop areas, depths of drilling to richest available oil-shale strata, proximity to sources of energy and equipment, and availability of the land on a lease basis.

The study area is located on the eastern flank of the Green River Basin and on the extreme western slope of the Rock Springs Uplift. Dips in the working area are 1.0° to a maximum of 2.0° to the west, and the beds strike generally north-south. The Green River Basin has not been greatly affected by tectonic forces, and its Green River Formation oil-shale beds are relatively relaxed and undisturbed. The natural fracture systems present are found only in the near-surface zones affected by weathering and shallow subsurface waters.

The oil shales of the Green River Formation were deposited during Eocene time in Wyoming's Lake Gosiute (1). They formed under a unique set of environmental deposition conditions in a large, comparatively still, fresh-water

3 Underlined numbers in parentheses refer to items in the list of references preceding the appendixes.
lake which maintained a two-layered density stratification (7). The upper layer supported planktonic and other life. The lower layer was a reducing environment. Organic matter rich in hydrogen was deposited in the sediment and preserved as part of the oil-shale matrix. Annual life cycles are reflected in the light and dark layers or varves found in oil shale (5). The darker layers contain high amounts of organic matter. Correlation of some varves across large distances within the Green River Basin has been remarkable (8).

Bureau of Mines In Situ Investigations

Since 1966, the Bureau of Mines has conducted experiments on in situ production of shale oil from the Tipton oil shales in the study area. All of the sites used in the experiments are shown in figure 2.

The initial experiment was conducted on site 4. Here 8,000 gallons of shale oil was produced by in situ methods. Results and evaluation of these tests were reported by Burwell and others (2) and by Carpenter and others (3). Additional in situ experiments are being conducted at site 6 (fig. 2), where the oil-shale section of interest occurs at depths of 125 to 145 feet (4).

Experiments in creating horizontal hydraulic fractures in solid oil shale have been successfully conducted in the Tipton Member at Green River site 2 (13).

FIGURE 2. - Rock Springs Exploratory Sites, Sec 15, T 18 N, R 106 W.
EXPERIMENTAL WORK

From 1966 to present, LERC has drilled 96 wells for which information is available within the study area. Appendix A gives location, name, date drilled, surface elevation, casing installed, depth to Tipton, depth to M-bed, depths and thickness of cored interval, total depth, and other surveys and data available on each well.

Two separate studies were made to compare oil shales of the Tipton Member. The first involves representative cores offering the most complete sampling over the entire area. Cores for this study were chosen from Rock Springs sites 1, 3, 4, 6, and 7 and Green River sites 1 and 2. The second study was made to examine variations in average oil yields arising from experimental variations in coring, sampling, and assaying. This study is based on the assumption that Green River Formation oil shales are laterally uniform over short distances. Eight cores and two sets of drill cuttings were obtained from the 5,000-square-foot Rock Springs site 2. Locations of the sampled holes are shown in figure 3.

Stratigraphy and Lithology

In the study area, the Green River Formation consists of the lower Wilkins Peak Shale Member and the underlying Tipton Shale Member. All of the wells drilled in the Rock Springs sites cut from 30 to 125 feet of Wilkins Peak beds before penetrating the Tipton strata, approximately 145 feet thick in the three wells that reach the underlying Wasatch Formation. In the Green River sites, 360 to 390 feet of Wilkins Peak was drilled above the top of the Tipton beds.

The Tipton Shale Member consists principally of oil shale, marlstone, and mudstone with numerous thin (up to 0.4-foot) tuff beds, some sandstone layers, siltstone zones, concentrations of dolomite pods, inclusions, and occasional algal beds, and rare thin fresh-water limestones. A sample lithologic description of the entire Tipton Member is found in appendix C. The description was made from the fresh face of the core after it was split lengthwise. The core was from Green River 1-1 well.
The top of the Tipton is recognized lithologically as the base of the last barren siltstone-marlstone and the top of the continuous oil shale. The base of the Tipton and the top of the Wasatch Formation are placed at the base of a gray marlstone-limestone containing abundant fossil snail shells of Goniobasis sp. and the fresh-water clam of Unio sp. The Goniobasis bed is 12 to 16 feet thick in cores from the Rock Springs area and is at least 10 feet thick in the Green River area (fig. 4).

A distinct pink-to-maroon tuff bed 0.1 to 0.4 foot thick occurs about 35 feet below the top of the Tipton Member. Since this bed is found in all cores except one and is easily recognized, it is used as the principal correlation marker in all wells. For convenience this marker is referred to as M-bed.

A lithologic zone of interest is a 40-foot section of 21.0-gallon-per-ton oil shale beginning at the top of the Tipton. The zone is described as Tipton's upper rich zone by Culbertson (5). The entire upper rich zone consists of dark gray, dark brown, and black oil shale, very faintly varved and containing concentrations of dolomite. Zones of flaky crystals and crystal faces of pyrite and/or pyrrhotite are found throughout the section. Within the zones the crystals occur as individual crystals and as veinlets of crystals.

In the lower part of the 40-foot zone, a 21-foot zone of oil shale containing 22.4 gallons per ton exists. This zone is being used for Bureau of Mines in situ retorting and fracturing experiments (2-4, 13).

Oil-Yield Sampling and Assay

Fischer assays for oil yield (10) were made on each of 15 cores and two sets of drill cuttings from the study area. Samples from the cores were taken on either a 1-foot basis or a lithologic change basis. Most often, sampling was done on the latter basis, so a true oil-yield value was determined for each type of rock in the core. During the drilling of wells A and B, site 2, samples were caught directly from the mud stream at 2-foot intervals. Because of shallow depths and slow rates of drilling, the 2-foot samples were expected to closely represent the oil shale being cut. Oil-yield assay values for both core and drill-cutting samples are found in appendix B.

Oil-Yield and Stratigraphic Correlations

Trudell and others (14) have developed deposit correlations for Green River Formation oil shales in Colorado. Their correlation technique, based on oil-yield and lithologic comparisons, yields a time-stratigraphic network precisely defining simultaneously deposited sections of the formation. Their methods were used in this study to designate comparable sections.

A five-well cross section, constructed by their methods from oil-yield assay and lithologic data from the study area, is presented in figure 4. The cross-section line is designated in figure 1. Four of the five wells penetrated all or nearly all of the Tipton. Lithologic correlations, as solid
lines, were made on the Wilkins Peak-Tipton contact, M-bed, and on the top of the Goniobasis-bearing basal zone of the Tipton. The oil-yield correlations shown as dashed lines in figure 4 are picked at abrupt and/or distinctive changes in yield.

Average Oil Yields of Tipton Zones

Appendix B presents data on the oil yield of cores in the study area. Listed are depth of sample, oil yield, and footage times gallons per cubic foot.

Average oil yields were calculated using a technique (11) that compensates for the variation of rock specific gravity with oil yield. Average oil yields for specific zones were obtained by summing the footage times gallons per cubic foot values from appendix B over the length of the section of interest, then dividing this sum by the footage represented. The resulting value is the average oil yield of the section in gallons per cubic foot. Using the oil specific gravity relationship as described by Stanfield and coworkers (12), the value is converted to average oil yield in gallons per ton. Smith and coworkers (9) have shown that the relationship of oil yield to specific gravity used in these calculations is applicable to Wyoming oil shales.

Average oil yields of the cored and drilled zones, well and site numbers, and depths of sampling are shown in table 1. The average oil yields in the table were calculated for the total Tipton sampled, the 40-foot zone (the Tipton's upper rich zone), and the 21-foot experimental zone.

At site 2, oil yields from closely spaced wells (fig. 3) were compared for the 21-foot zone in the following chart:

<table>
<thead>
<tr>
<th>Well</th>
<th>Footage in selected section</th>
<th>Calculated yield, gal/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.3</td>
<td>22.4</td>
</tr>
<tr>
<td>2</td>
<td>21.5</td>
<td>23.0</td>
</tr>
<tr>
<td>3</td>
<td>21.5</td>
<td>21.6</td>
</tr>
<tr>
<td>4</td>
<td>21.5</td>
<td>22.4</td>
</tr>
<tr>
<td>5</td>
<td>21.1</td>
<td>22.9</td>
</tr>
<tr>
<td>A</td>
<td>22.0</td>
<td>21.5</td>
</tr>
<tr>
<td>B</td>
<td>22.0</td>
<td>22.6</td>
</tr>
<tr>
<td>C</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>D</td>
<td>20.4</td>
<td>22.1</td>
</tr>
<tr>
<td>3A</td>
<td>22.7</td>
<td>23.2</td>
</tr>
</tbody>
</table>

Total 224.5
Average 22.4

The values given for wells A and B were obtained from assay of 2-foot drill cuttings. Values for A and B are comparable to those for core samples. Although the value for A represents the low extreme for all values, it is only one-tenth of a gallon per ton less than the lowest value obtained from core assay of well 3. Within the small area, average oil-yield values range from 21.5 to 23.2 gallons per ton.
TABLE 1. - Average oil yields of Tipton Member

<table>
<thead>
<tr>
<th>Well</th>
<th>Total Tipton sampled</th>
<th>Upper rich shale zone</th>
<th>Experimental section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depths, feet</td>
<td>Oil, gal/ton</td>
<td>Depths, feet</td>
</tr>
<tr>
<td>Rock Springs site 1, well(s) 3A and 3B.</td>
<td>96.4-199.2</td>
<td>14.29</td>
<td>96.4-134.1</td>
</tr>
<tr>
<td>Rock Springs site 3, well 1</td>
<td>64.5-209.6</td>
<td>13.13</td>
<td>64.5-107.6</td>
</tr>
<tr>
<td>Rock Springs site 4, well 5</td>
<td>44.5-189.5</td>
<td>13.37</td>
<td>44.5-86.9</td>
</tr>
<tr>
<td>Rock Springs site 6, well 2</td>
<td>102.0-150.8</td>
<td>20.53</td>
<td>102.0-144.0</td>
</tr>
<tr>
<td>Rock Springs site 7, well 11</td>
<td>69.1-90.6</td>
<td>22.48</td>
<td>69.1-90.6</td>
</tr>
<tr>
<td>Green River site 1, well 1</td>
<td>360.0-503.2</td>
<td>13.79</td>
<td>360.0-398.3</td>
</tr>
<tr>
<td>Green River site 2, well Q12</td>
<td>391.0-433.0</td>
<td>19.49</td>
<td>393.0-431.0</td>
</tr>
<tr>
<td>Rock Springs site 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well 1</td>
<td>40.5-80.0</td>
<td>17.35</td>
<td>40.5-71.0</td>
</tr>
<tr>
<td>Well 2</td>
<td>40.5-80.0</td>
<td>17.88</td>
<td>40.4-70.5</td>
</tr>
<tr>
<td>Well 3</td>
<td>40.0-75.3</td>
<td>19.30</td>
<td>40.0-75.3</td>
</tr>
<tr>
<td>Well 3A</td>
<td>32.3-76.8</td>
<td>21.05</td>
<td>32.3-75.4</td>
</tr>
<tr>
<td>Well 4</td>
<td>34.3-80.6</td>
<td>18.53</td>
<td>34.3-73.5</td>
</tr>
<tr>
<td>Well 5</td>
<td>40.2-78.1</td>
<td>19.65</td>
<td>40.2-75.9</td>
</tr>
<tr>
<td>Well A</td>
<td>34.0-80.0</td>
<td>19.63</td>
<td>34.0-76.0</td>
</tr>
<tr>
<td>Well B</td>
<td>32.0-80.0</td>
<td>19.62</td>
<td>32.0-74.0</td>
</tr>
<tr>
<td>Well C</td>
<td>34.0-80.0</td>
<td>20.03</td>
<td>34.0-76.0</td>
</tr>
<tr>
<td>Well D</td>
<td>34.0-80.0</td>
<td>19.20</td>
<td>34.0-76.0</td>
</tr>
</tbody>
</table>
DISCUSSION

The correlations of lithology and histogram configurations confirm the comparative uniformity of the oil-shale sections in the Tipton Member. Selected sections can be compared with confidence.

Uniformity in strata was expected at site 2 where distances between core-holes were small. Variations in oil-yield averages for this site must therefore be associated with sampling and analytical errors. The range of 1.3 gallons per ton in the 40-foot zone and the range of 1.7 gallons per ton in the 21-foot zone for the site 2 averages are within the expected errors inherent in the analytical procedures.

In the larger study area, slightly higher ranges were found—the 40-foot zone was 1.9 gallons per ton, and the 21-foot zone was 2.4 gallons per ton. These variations in oil yield over the entire study area are too near the variations found in the site 2 averages to indicate that real differences exist. The variations probably do not represent significant formational changes but again are a product of errors in experimental techniques.

Lithologic changes in the study area are minor in nature. From comparison within the cross section, examination of the lithology of each core, and the calculations of average oil yield for comparable zones in the study area, both individual horizons and zones are easily correlated from well to well within the study area.

Average oil yields for the three zones of interest indicate values of potential shale oil in place as follows (12):

<table>
<thead>
<tr>
<th>Zone</th>
<th>Thickness, feet</th>
<th>Average oil yields, gal/ton</th>
<th>Barrels/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Tipton zone......</td>
<td>145</td>
<td>13.3</td>
<td>151,000</td>
</tr>
<tr>
<td>Upper rich zone........</td>
<td>40</td>
<td>21.0</td>
<td>62,000</td>
</tr>
<tr>
<td>Experimental zone......</td>
<td>21</td>
<td>22.4</td>
<td>34,300</td>
</tr>
</tbody>
</table>

The 21-foot experimental zone represents 22 million barrels of oil per square mile and 10 times that much over the study area.

CONCLUSIONS

A stratigraphic and oil-yield correlation pattern has been established for the Tipton Shale Member and for the 21-foot oil-shale zone being used by the Bureau of Mines for in situ retorting and fracturing experiments. Correlations based on both lithology and oil yield can confidently be made.

The average oil yield obtained in the 21-foot zone is 22.4 gallons per ton, the average of all 10 averages obtained at site 2. This determined value defines the richness of the oil-shale section used in in situ experiments.
Drill-cutting samples obtained from shallow depths, at slow drilling rates, and at short intervals are representative of the zone being drilled. Average oil-yield values from such cuttings may be used with confidence.

Oil shale in this 21-foot zone, as well as in other sections in the Tipton Shale Member, appears to be uniform, and variations in its parameters are small and appear to be associated with sampling and assay procedures.
REFERENCES

4. _____ Engineering Aspects of Processing Oil Shale by In Situ Retorting. 71st Nat. Meeting, AIChE, Dallas, Tex., 1972, Preprint 54A, 16 pp.

APPENDIX A.--Tabulation of USEM Wells

TABLE A-1. - All wells drilled and/or cored, Rock Springs and Green River in situ experiment sites

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing</th>
<th>Depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Dec. 1965.</td>
<td>6,341.0</td>
<td>21 ft of 7 in, 40 ft of 4 in.</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-1</td>
<td>do...</td>
<td>6,347.9</td>
<td>21 ft of 7 in, 42 ft of 4 in.</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>126.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3A-1</td>
<td>Jan. 1966.</td>
<td>6,347.0</td>
<td>96 ft of 7 in.</td>
<td>96.4</td>
<td>-</td>
<td>29.9-126.5</td>
<td>96.6</td>
<td>126.5</td>
<td>Assay, sample log, description.</td>
<td>Plugged back to 63 feet.</td>
</tr>
<tr>
<td>3B-1</td>
<td>do...</td>
<td>6,347.0 (est.)</td>
<td>99 ft of 7 in.</td>
<td>96.4</td>
<td>30.1</td>
<td>120.0-200.2</td>
<td>80.2</td>
<td>200.2</td>
<td>do...........</td>
<td>3B is continuance and completion of 3A.</td>
</tr>
<tr>
<td>4-1</td>
<td>Dec. 1965.</td>
<td>6,349.8</td>
<td>21 ft of 7 in.</td>
<td>98.5</td>
<td>-</td>
<td>21.0-126.8</td>
<td>105.8</td>
<td>126.8</td>
<td>do...........</td>
<td>-</td>
</tr>
<tr>
<td>5-1</td>
<td>Dec. 1965.</td>
<td>6,341.2</td>
<td>21 ft of 7 in, 40 ft of 4 in.</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6-1</td>
<td>June 1966. (casing)</td>
<td>6,351.4</td>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>40.0-54.0</td>
<td>14.0</td>
<td>54.0</td>
<td>Assay only.</td>
<td>-</td>
</tr>
<tr>
<td>7-1</td>
<td>do...</td>
<td>6,351.9 (casing)</td>
<td>do.......</td>
<td>-</td>
<td>-</td>
<td>40.0-55.0</td>
<td>15.0</td>
<td>55.0</td>
<td>do...........</td>
<td>-</td>
</tr>
<tr>
<td>8-1</td>
<td></td>
<td>6,351.1 (cement)</td>
<td>do.......</td>
<td>-</td>
<td>-</td>
<td>29.0-50.8</td>
<td>21.8</td>
<td>50.8</td>
<td>Assay, sample log, description.</td>
<td>Plugged immediately after drilling. Do.</td>
</tr>
<tr>
<td>18-1</td>
<td>do...</td>
<td>6,351.3 (cement)</td>
<td>do.......</td>
<td>-</td>
<td>-</td>
<td>30.0-50.6</td>
<td>20.6</td>
<td>50.6</td>
<td>do...........</td>
<td>Cored after fracing.</td>
</tr>
<tr>
<td>20F-1</td>
<td>do...</td>
<td>6,350.0</td>
<td>do.......</td>
<td>-</td>
<td>-</td>
<td>35.0-50.4</td>
<td>15.4</td>
<td>50.4</td>
<td>do...........</td>
<td>-</td>
</tr>
<tr>
<td>21-1</td>
<td>do...</td>
<td>6,351.4</td>
<td>do.......</td>
<td>-</td>
<td>-</td>
<td>30.0-42.2</td>
<td>12.2</td>
<td>42.2</td>
<td>do...........</td>
<td>-</td>
</tr>
</tbody>
</table>

1 All wells now plugged.
TABLE A-1. - All wells drilled and/or cored, Rock Springs and Green River in situ experiment sites--Continued

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing</th>
<th>Depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Feb. 1966.</td>
<td>6,302.9</td>
<td>40.5 ft of 7 in.</td>
<td>Unknown</td>
<td>66.6</td>
<td>40.5-80.0</td>
<td>39.5</td>
<td>80.0</td>
<td>Assay, sample log, description.</td>
<td>Downhole photos available.</td>
</tr>
<tr>
<td>2-2</td>
<td>do...</td>
<td>6,302.9</td>
<td>do...</td>
<td>Unknown</td>
<td>65.8</td>
<td>40.5-80.0</td>
<td>39.5</td>
<td>80.0</td>
<td>do...</td>
<td>do...</td>
</tr>
<tr>
<td>3-2</td>
<td>do...</td>
<td>6,304.1</td>
<td>do...</td>
<td>Unknown</td>
<td>69.4</td>
<td>40.0-75.3</td>
<td>35.3</td>
<td>75.3</td>
<td>do...</td>
<td>do...</td>
</tr>
<tr>
<td>3A-2</td>
<td>Sept. 1966.</td>
<td>6,305.0 (est.)</td>
<td>Unknown</td>
<td>32.5</td>
<td>69.8</td>
<td>14.9-76.8</td>
<td>61.9</td>
<td>76.8</td>
<td>do...</td>
<td>do...</td>
</tr>
<tr>
<td>3-2</td>
<td>Feb. 1966.</td>
<td>6,304.9</td>
<td>40.5 ft of 7 in.</td>
<td>Unknown</td>
<td>33.0</td>
<td>30.0-80.6</td>
<td>50.6</td>
<td>80.6</td>
<td>do...</td>
<td>do...</td>
</tr>
<tr>
<td>5-2</td>
<td>Oct. 1966.</td>
<td>6,304.6</td>
<td>Unknown</td>
<td>Unknown</td>
<td>70.8</td>
<td>40.2-78.1</td>
<td>37.9</td>
<td>78.1</td>
<td>Sample log, description.</td>
<td>X-ray diffraction for mineral content. Hole for thermocouple.</td>
</tr>
<tr>
<td>A-2</td>
<td>Feb. 1967.</td>
<td>Unknown</td>
<td>40.0 ft of 7 in.</td>
<td>34.0</td>
<td>69.0 (est.)</td>
<td>Not cored</td>
<td>-</td>
<td>80.0</td>
<td>Assay of 2-ft samples, description.</td>
<td>-</td>
</tr>
<tr>
<td>B-2</td>
<td>do...</td>
<td>Unknown</td>
<td>do...</td>
<td>Unknown</td>
<td>32.0</td>
<td>67.0 (est.)</td>
<td>Not cored</td>
<td>-</td>
<td>80.0</td>
<td>do...</td>
</tr>
<tr>
<td>C-2</td>
<td>do...</td>
<td>Unknown</td>
<td>do...</td>
<td>Unknown</td>
<td>67.0 (est.)</td>
<td>40.0-59.2</td>
<td>19.2</td>
<td>80.0</td>
<td>Assay, sample log, description.</td>
<td>Do.</td>
</tr>
<tr>
<td>D-2</td>
<td>do...</td>
<td>Unknown</td>
<td>40.0 ft of 7 in.</td>
<td>32.0</td>
<td>67.0 (est.)</td>
<td>40.0-59.2</td>
<td>19.7</td>
<td>80.0</td>
<td>do...</td>
<td>do...</td>
</tr>
<tr>
<td>7-2</td>
<td>Apr. 1967.</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>36.0</td>
<td>75.6</td>
<td>Assay, porosity, permeability.</td>
<td>-</td>
</tr>
<tr>
<td>3T-2</td>
<td>do...</td>
<td>Unknown</td>
<td>40.0 ft of 5 in.</td>
<td>Unknown</td>
<td>Unknown</td>
<td>39.5-108.0</td>
<td>68.5</td>
<td>108.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Rock Springs Site 3, NE1/4NW1/4NE1/4, Section 15, T 18 N, R 106 W

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing</th>
<th>Depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Sept. 1966.</td>
<td>6,368.1 (casing)</td>
<td>Unknown</td>
<td>64.5</td>
<td>98.6</td>
<td>26.0-217.4</td>
<td>191.4</td>
<td>217.4</td>
<td>Assay, sample log, description.</td>
<td>X-ray diffraction of various zones.</td>
</tr>
<tr>
<td>5-3</td>
<td>do...</td>
<td>6,363.8</td>
<td>do...</td>
<td>61.9</td>
<td>98.0</td>
<td>15.0-207.0</td>
<td>192.0</td>
<td>207.0</td>
<td>do...</td>
<td>do...</td>
</tr>
</tbody>
</table>

2 All wells now plugged and buried.
3 Other holes were drilled at site 3 by Bartlesville Energy Research Center, but data are not available. 1 of these holes is open; all others are cement-plugged.
<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 through 5-4</td>
<td>Spring 1967.</td>
<td>50.0 ft of 7 in, 68.0 ft of 5-1/2 in.</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Not cored</td>
<td>-</td>
<td>88.0</td>
<td>-</td>
</tr>
<tr>
<td>5-4 (abandoned)</td>
<td>Dec. 1966.</td>
<td>6,315.0</td>
<td>Unknown</td>
<td>44.5</td>
<td>81.7</td>
<td>30.0-213.7</td>
<td>180.7</td>
<td>213.7</td>
<td>Assay, sample log, description.</td>
</tr>
<tr>
<td>6-4 through 11-4</td>
<td>Spring 1967.</td>
<td>50.0 ft of 7 in, 68.0 ft of 5-1/2 in.</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Not cored</td>
<td>-</td>
<td>88.0</td>
<td>Water analysis on No. 6-W.</td>
</tr>
<tr>
<td>7-4</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td>Unknown</td>
<td>79.2</td>
<td>50.0-90.0</td>
<td>40.0</td>
<td>90.0</td>
<td>Assay, sample log, description.</td>
</tr>
<tr>
<td>D-1 through D-4</td>
<td>Summer 1967.</td>
<td>68.0 ft of 5-1/2 in.</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Not cored</td>
<td>-</td>
<td>200.0</td>
<td>-</td>
</tr>
<tr>
<td>PBC-1</td>
<td>Sept. 1969.</td>
<td>20.0 ft of 7 in.</td>
<td><50</td>
<td>81.0</td>
<td>50.0-90.0</td>
<td>40.0</td>
<td>90.0</td>
<td>Assay, sample log, description.</td>
<td>Oil yield calculations available.</td>
</tr>
<tr>
<td>PBC-2</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>80.7</td>
<td>60.0-90.3</td>
<td>30.3</td>
<td>90.3</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-3</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td>Unknown</td>
<td>80.9</td>
<td>60.0-115.0</td>
<td>55.0</td>
<td>115.0</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-4</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td>Unknown</td>
<td>80.9</td>
<td>60.0-90.0</td>
<td>30.0</td>
<td>90.0</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-5</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>80.9</td>
<td>60.0-90.0</td>
<td>30.0</td>
<td>90.0</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-6</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>Unknown</td>
<td>(est. 80.3)</td>
<td>35.0</td>
<td>95.0</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-7</td>
<td>Oct. 1969.</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>80.9</td>
<td>60.0-90.0</td>
<td>30.0</td>
<td>90.0</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-8</td>
<td>..do....</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>82.2</td>
<td>60.0-90.7</td>
<td>30.7</td>
<td>90.7</td>
<td>..do.....</td>
</tr>
<tr>
<td>PBC-9</td>
<td>Sept. 1969.</td>
<td>Unknown</td>
<td>..do.....</td>
<td><60</td>
<td>81.1</td>
<td>60.0-94.4</td>
<td>34.4</td>
<td>94.4</td>
<td>..do.....</td>
</tr>
</tbody>
</table>

All holes now abandoned and buried.
<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing</th>
<th>Depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBC-10</td>
<td>Oct. 1969.</td>
<td>Unknown</td>
<td>20.0 ft of 7 in.</td>
<td><60</td>
<td>79.2</td>
<td>60.0-90.0</td>
<td>30.0</td>
<td>90.0</td>
<td>Assay, sample log description.</td>
<td>Oil yield calculations available. Do.</td>
</tr>
<tr>
<td>PBC-11</td>
<td>do...</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>80.5</td>
<td>60.0-91.0</td>
<td>31.0</td>
<td>91.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-12</td>
<td>do...</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>82.2</td>
<td>60.0-91.0</td>
<td>31.0</td>
<td>91.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-13</td>
<td>Sept. 1969.</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>81.3</td>
<td>60.0-90.0</td>
<td>30.0</td>
<td>90.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-14</td>
<td>Oct. 1969.</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>80.2</td>
<td>60.0-91.0</td>
<td>31.0</td>
<td>91.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-15</td>
<td>do...</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>80.5</td>
<td>60.0-91.0</td>
<td>31.0</td>
<td>91.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-16</td>
<td>Feb. 1970.</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>82.1</td>
<td>60.0-85.5</td>
<td>25.5</td>
<td>85.5</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-17</td>
<td>do...</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>81.6</td>
<td>60.0-86.0</td>
<td>26.0</td>
<td>86.0</td>
<td>do...</td>
<td>Do.</td>
</tr>
<tr>
<td>PBC-18</td>
<td>do...</td>
<td>Unknown</td>
<td>do....</td>
<td><60</td>
<td>79.4</td>
<td>60.0-85.5</td>
<td>25.5</td>
<td>85.5</td>
<td>do...</td>
<td>Do.</td>
</tr>
</tbody>
</table>

ROCK SPRINGS SITE 6, SE1/4NE1/4NW1/4 AND SW1/4NW1/4NE1/4, SECTION 15, T 18 N, R 106 W—Continued

							Assay, sample log description.	do...	Oil yield calculations available. Do.	
6-2	Oct.- Nov.	6,363.4	Unknown	102.0	140.0	90.0-150.8	60.8	150.8		
6-7	Nov. 1969.	6,367.6	do.....	107.0	-	100.0-135.6	35.6	135.6		Do.
(8)	Apr. 1971.	6,385.2	132.0 ft of 7 in. (est.)	Unknown	Not cored	-	177.0	-		Used as ground water monitor well.
M		6,363.8	109.0 ft of 7 in. (est.)	Unknown	Not cored	-	154.0	-		Do.
N		6,347.5	95.0 ft of 7 in. (est.)	Unknown	Not cored	-	140.0	-		Do.

4 All holes now abandoned and buried.

5Rock Springs site 5, SE1/4SE1/4NW1/4, section 15, T 18 N, R 106 W—comprised approximately 30 holes drilled by the Bureau's Bartlesville Energy Research Center, which kept all records. 1 well open; others plugged and buried.

655 other wells drilled for in situ retorting experiments.
<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date drilled</th>
<th>Surface elevation, feet</th>
<th>Casing</th>
<th>Depth to Tipton Member, feet</th>
<th>Depth to M-bed, feet</th>
<th>Depths of cored interval, feet</th>
<th>Thickness of cored interval, feet</th>
<th>Total depth, feet</th>
<th>Other surveys, data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Apr. 1971.</td>
<td>6,358.9</td>
<td>106.0 ft of 7 in.</td>
<td>104.0 (est.)</td>
<td>Unknown</td>
<td>Not cored</td>
<td>-</td>
<td>151.0</td>
<td>-</td>
<td>Used as ground water monitor well.</td>
</tr>
<tr>
<td>Q</td>
<td>..do....</td>
<td>6,369.4</td>
<td>117.0 ft of 7 in.</td>
<td>115.0 (est.)</td>
<td>Unknown</td>
<td>Not cored</td>
<td>-</td>
<td>162.0</td>
<td>-</td>
<td>Do.</td>
</tr>
</tbody>
</table>

ROCK SPRINGS SITE 7, NE1/4SE1/4NW1/4, SECTION 15, T 18 N, R 106 W

| 7-11 | Sept. 1969. | Unknown | 70.0 ft of 7 in. | <69.1 | >90.6 | 69.1-90.6 | 21.5 | 90.6 | Assay, sample log, description. | Gamma-ray and caliper logs. |

ROCK SPRINGS SITE 8, NE1/4SW1/4NE1/4, SECTION 15, T 18 N, R 106 W

8-1	Nov. 1969.	Unknown	Unknown	Unknown	69.0	Not cored	-	82.3	-	-
8-2	..do....	Unknown	Unknown	Unknown	Unknown	Not cored	-	84.0	-	-
8-3	..do....	Unknown	Unknown	Unknown	Unknown	Not cored	-	85.6	-	-
8-4	..do....	Unknown	Unknown	Unknown	Unknown	Not cored	-	79.5	-	-

GREEN RIVER SITE 1, NW1/4NE1/4NE1/4, SECTION 24, T 18 N, R 107 W

| 1-1 | Apr. 1967. | 6,182.3 | 20.0 ft of 7 in. | 360.0 | Unknown | 360.0-503.2 | 143.2 | 503.2 | Assay, sample log, description. | X-ray diffraction. |

GREEN RIVER SITE 2, SW1/4NW1/4SE1/4, SECTION 24, T 18 N, R 107 W

2-1	Aug. 1970.	6,205.0	389.0 ft of 7 in.	386.4	421.7	356.0-434.3	78.3	434.3	Sample log, description.	Gamma-ray and resistivity logs.
Q-12	Feb. 1971.	6,210.6	Unknown	391.1	426.2	375.0-433.0	58.0	433.0	Assay, sample log, description.	-
L-7	..do....	6,209.6	Unknown	391.0	425.9	374.0-434.0	60.0	434.0	Sample log, description.	-
L-19	Apr. 1971.	6,199.4	..do....	378.7	Unknown	364.0-421.4	57.4	421.4	Core not examined.	-
B-12	..do....	6,192.3	..do....	378.4	(est.)	360.0-419.0	59.2	419.0	..do....	-

75 other wells drilled for subsurface fracturing experiment; all wells open (3 are capped).
6Approximately 10 other wells drilled by Bartlesville Energy Research Center.
APPENDIX B—TABULATED OIL YIELD OF SAMPLES

TABLE B-1. USBM Rock Springs site 1, well(s) 3A and 3B

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLES BEGIN IN ROCK SPRINGS 3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.4</td>
<td>18.5</td>
<td>1.338</td>
<td>114.8</td>
<td>24.8</td>
<td>1.888</td>
<td>133.5</td>
<td>22.3</td>
<td>0.942</td>
</tr>
<tr>
<td>97.4</td>
<td>19.4</td>
<td>1.115</td>
<td>115.9</td>
<td>21.3</td>
<td>1.510</td>
<td>134.1</td>
<td>9.5</td>
<td>0.221</td>
</tr>
<tr>
<td>98.2</td>
<td>32.3</td>
<td>2.339</td>
<td>116.9</td>
<td>31.9</td>
<td>.632</td>
<td>134.4</td>
<td>12.4</td>
<td>.375</td>
</tr>
<tr>
<td>99.3</td>
<td>22.9</td>
<td>.321</td>
<td>117.2</td>
<td>19.0</td>
<td>1.369</td>
<td>134.8</td>
<td>8.5</td>
<td>.066</td>
</tr>
<tr>
<td>99.5</td>
<td>32.5</td>
<td>.427</td>
<td>118.2</td>
<td>21.6</td>
<td>1.528</td>
<td>134.9</td>
<td>5.7</td>
<td>.532</td>
</tr>
<tr>
<td>99.7</td>
<td>23.7</td>
<td>.330</td>
<td>119.2</td>
<td>15.6</td>
<td>1.152</td>
<td>135.9</td>
<td>5.8</td>
<td>.464</td>
</tr>
<tr>
<td>99.9</td>
<td>30.2</td>
<td>2.016</td>
<td>120.2</td>
<td>23.3</td>
<td>1.792</td>
<td>136.9</td>
<td>4.1</td>
<td>.333</td>
</tr>
<tr>
<td>100.9</td>
<td>30.2</td>
<td>2.016</td>
<td>121.3</td>
<td>9.1</td>
<td>.071</td>
<td>137.9</td>
<td>4.4</td>
<td>.142</td>
</tr>
<tr>
<td>101.9</td>
<td>Missing</td>
<td>-</td>
<td>121.4</td>
<td>31.4</td>
<td>2.079</td>
<td>138.3</td>
<td>2.8</td>
<td>.230</td>
</tr>
<tr>
<td>102.0</td>
<td>21.7</td>
<td>.307</td>
<td>122.4</td>
<td>31.7</td>
<td>2.094</td>
<td>141.2</td>
<td>4.5</td>
<td>.364</td>
</tr>
<tr>
<td>102.2</td>
<td>27.3</td>
<td>.929</td>
<td>123.4</td>
<td>32.3</td>
<td>.850</td>
<td>142.2</td>
<td>7.0</td>
<td>.166</td>
</tr>
<tr>
<td>102.7</td>
<td>9.3</td>
<td>.144</td>
<td>123.8</td>
<td>31.8</td>
<td>2.100</td>
<td>142.5</td>
<td>15.3</td>
<td>1.333</td>
</tr>
<tr>
<td>102.9</td>
<td>19.9</td>
<td>1.425</td>
<td>124.8</td>
<td>34.4</td>
<td>2.233</td>
<td>143.5</td>
<td>13.6</td>
<td>.510</td>
</tr>
<tr>
<td>103.9</td>
<td>18.8</td>
<td>.407</td>
<td>125.8</td>
<td>18.7</td>
<td>.270</td>
<td>144.0</td>
<td>14.7</td>
<td>1.202</td>
</tr>
<tr>
<td>104.2</td>
<td>11.3</td>
<td>.863</td>
<td>126.0</td>
<td>17.3</td>
<td>.126</td>
<td>145.1</td>
<td>7.7</td>
<td>.061</td>
</tr>
<tr>
<td>105.2</td>
<td>16.7</td>
<td>1.224</td>
<td>126.1</td>
<td>20.3</td>
<td>.580</td>
<td>145.2</td>
<td>14.3</td>
<td>.427</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>126.5</td>
<td>21.1</td>
<td>.449</td>
<td>145.6</td>
<td>24.9</td>
<td>1.721</td>
</tr>
<tr>
<td>SAMPLES CHANGE TO 3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.2</td>
<td>14.6</td>
<td>1.087</td>
<td>126.8</td>
<td>27.1</td>
<td>.554</td>
<td>146.6</td>
<td>13.0</td>
<td>.196</td>
</tr>
<tr>
<td>107.2</td>
<td>11.8</td>
<td>.988</td>
<td>127.1</td>
<td>14.9</td>
<td>.775</td>
<td>146.8</td>
<td>25.5</td>
<td>.176</td>
</tr>
<tr>
<td>108.3</td>
<td>18.6</td>
<td>1.344</td>
<td>127.8</td>
<td>21.2</td>
<td>.150</td>
<td>146.9</td>
<td>4.2</td>
<td>.102</td>
</tr>
<tr>
<td>109.3</td>
<td>21.6</td>
<td>1.375</td>
<td>127.9</td>
<td>17.2</td>
<td>1.256</td>
<td>147.2</td>
<td>5.1</td>
<td>.123</td>
</tr>
<tr>
<td>110.2</td>
<td>18.7</td>
<td>.405</td>
<td>128.9</td>
<td>24.5</td>
<td>1.698</td>
<td>147.5</td>
<td>18.9</td>
<td>.136</td>
</tr>
<tr>
<td>110.5</td>
<td>17.2</td>
<td>.754</td>
<td>129.9</td>
<td>32.5</td>
<td>.427</td>
<td>147.6</td>
<td>3.3</td>
<td>.003</td>
</tr>
<tr>
<td>111.1</td>
<td>22.0</td>
<td>1.552</td>
<td>130.1</td>
<td>24.4</td>
<td>.508</td>
<td>147.7</td>
<td>0.0</td>
<td>.000</td>
</tr>
<tr>
<td>112.1</td>
<td>12.8</td>
<td>.966</td>
<td>130.4</td>
<td>37.7</td>
<td>.958</td>
<td>147.8</td>
<td>8.6</td>
<td>.671</td>
</tr>
<tr>
<td>113.1</td>
<td>13.5</td>
<td>1.114</td>
<td>130.8</td>
<td>10.9</td>
<td>.835</td>
<td>148.8</td>
<td>8.7</td>
<td>.747</td>
</tr>
<tr>
<td>114.2</td>
<td>8.0</td>
<td>.126</td>
<td>131.8</td>
<td>15.7</td>
<td>.348</td>
<td>149.9</td>
<td>0.0</td>
<td>.000</td>
</tr>
<tr>
<td>114.4</td>
<td>11.0</td>
<td>.084</td>
<td>132.1</td>
<td>18.4</td>
<td>1.332</td>
<td>150.0</td>
<td>9.2</td>
<td>.715</td>
</tr>
<tr>
<td>114.5</td>
<td>19.0</td>
<td>.411</td>
<td>133.1</td>
<td>27.8</td>
<td>.754</td>
<td>151.0</td>
<td>11.5</td>
<td>.263</td>
</tr>
</tbody>
</table>

I/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.3</td>
<td>12.8</td>
<td>0.966</td>
<td>167.2</td>
<td>12.5</td>
<td>0.095</td>
<td>185.1</td>
<td>11.1</td>
<td>0.849</td>
</tr>
<tr>
<td>152.3</td>
<td>17.3</td>
<td>1.262</td>
<td>167.3</td>
<td>6.1</td>
<td>.487</td>
<td>186.1</td>
<td>11.9</td>
<td>.542</td>
</tr>
<tr>
<td>153.3</td>
<td>0</td>
<td>.000</td>
<td>168.3</td>
<td>6.6</td>
<td>.524</td>
<td>186.7</td>
<td>16.0</td>
<td>.118</td>
</tr>
<tr>
<td>154.0</td>
<td>10.3</td>
<td>.079</td>
<td>169.3</td>
<td>10.8</td>
<td>.828</td>
<td>186.8</td>
<td>22.5</td>
<td>.158</td>
</tr>
<tr>
<td>154.1</td>
<td>9.7</td>
<td>.075</td>
<td>170.3</td>
<td>9.2</td>
<td>.715</td>
<td>186.9</td>
<td>9.3</td>
<td>.722</td>
</tr>
<tr>
<td>154.2</td>
<td>2.2</td>
<td>.018</td>
<td>171.3</td>
<td>7.8</td>
<td>.613</td>
<td>187.9</td>
<td>12.2</td>
<td>.925</td>
</tr>
<tr>
<td>154.3</td>
<td>11.4</td>
<td>.696</td>
<td>172.3</td>
<td>10.5</td>
<td>.242</td>
<td>188.9</td>
<td>18.3</td>
<td>1.325</td>
</tr>
<tr>
<td>155.1</td>
<td>14.1</td>
<td>.527</td>
<td>172.6</td>
<td>8.7</td>
<td>.272</td>
<td>189.9</td>
<td>2.2</td>
<td>.036</td>
</tr>
<tr>
<td>155.6</td>
<td>9.1</td>
<td>.495</td>
<td>173.0</td>
<td>9.5</td>
<td>.074</td>
<td>190.1</td>
<td>18.0</td>
<td>.653</td>
</tr>
<tr>
<td>156.3</td>
<td>14.4</td>
<td>1.074</td>
<td>173.1</td>
<td>6.8</td>
<td>.539</td>
<td>190.6</td>
<td>17.8</td>
<td>1.294</td>
</tr>
<tr>
<td>157.3</td>
<td>12.7</td>
<td>.863</td>
<td>174.1</td>
<td>7.4</td>
<td>.350</td>
<td>191.6</td>
<td>17.7</td>
<td>1.287</td>
</tr>
<tr>
<td>158.2</td>
<td>Missing</td>
<td>-</td>
<td>174.7</td>
<td>10.0</td>
<td>.309</td>
<td>192.6</td>
<td>15.3</td>
<td>1.133</td>
</tr>
<tr>
<td>160.2</td>
<td>.3</td>
<td>.008</td>
<td>175.1</td>
<td>9.6</td>
<td>.743</td>
<td>193.6</td>
<td>16.4</td>
<td>.241</td>
</tr>
<tr>
<td>160.5</td>
<td>.3</td>
<td>.005</td>
<td>176.1</td>
<td>10.7</td>
<td>.246</td>
<td>193.8</td>
<td>7.1</td>
<td>.168</td>
</tr>
<tr>
<td>160.7</td>
<td>.4</td>
<td>.010</td>
<td>176.4</td>
<td>8.1</td>
<td>.635</td>
<td>194.1</td>
<td>12.8</td>
<td>.290</td>
</tr>
<tr>
<td>161.0</td>
<td>.2</td>
<td>.002</td>
<td>177.4</td>
<td>7.1</td>
<td>.505</td>
<td>194.4</td>
<td>4.3</td>
<td>.140</td>
</tr>
<tr>
<td>161.1</td>
<td>.3</td>
<td>.008</td>
<td>178.3</td>
<td>Missing</td>
<td>-</td>
<td>194.7</td>
<td>16.4</td>
<td>.843</td>
</tr>
<tr>
<td>161.4</td>
<td>.8</td>
<td>.034</td>
<td>180.2</td>
<td>6.3</td>
<td>.502</td>
<td>195.4</td>
<td>9.3</td>
<td>.217</td>
</tr>
<tr>
<td>161.9</td>
<td>.0</td>
<td>.000</td>
<td>181.2</td>
<td>9.2</td>
<td>.286</td>
<td>195.7</td>
<td>23.5</td>
<td>.328</td>
</tr>
<tr>
<td>162.2</td>
<td>.1</td>
<td>.009</td>
<td>181.6</td>
<td>10.9</td>
<td>.250</td>
<td>195.9</td>
<td>29.3</td>
<td>1.967</td>
</tr>
<tr>
<td>163.3</td>
<td>3.3</td>
<td>.135</td>
<td>181.9</td>
<td>8.5</td>
<td>.664</td>
<td>196.9</td>
<td>18.3</td>
<td>.928</td>
</tr>
<tr>
<td>163.8</td>
<td>0</td>
<td>.000</td>
<td>182.9</td>
<td>8.7</td>
<td>.136</td>
<td>197.6</td>
<td>20.3</td>
<td>.580</td>
</tr>
<tr>
<td>163.9</td>
<td>4.3</td>
<td>.279</td>
<td>183.1</td>
<td>13.2</td>
<td>.298</td>
<td>198.0</td>
<td>7.9</td>
<td>.372</td>
</tr>
<tr>
<td>164.7</td>
<td>9.8</td>
<td>.379</td>
<td>183.4</td>
<td>15.4</td>
<td>.911</td>
<td>198.6</td>
<td>15.2</td>
<td>.225</td>
</tr>
<tr>
<td>165.2</td>
<td>15.6</td>
<td>.691</td>
<td>184.2</td>
<td>15.0</td>
<td>.779</td>
<td>198.8</td>
<td>16.8</td>
<td>.492</td>
</tr>
<tr>
<td>165.8</td>
<td>7.0</td>
<td>.554</td>
<td>184.9</td>
<td>18.2</td>
<td>.264</td>
<td>199.2</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>166.8</td>
<td>9.9</td>
<td>.306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-2. - USBM Rock Springs site 2, well 1

<table>
<thead>
<tr>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.5</td>
<td>1.2</td>
<td>0.020</td>
<td>56.7</td>
<td>28.2</td>
<td>0.572</td>
<td>68.7</td>
<td>12.3</td>
<td>0.373</td>
</tr>
<tr>
<td>40.7</td>
<td>19.0</td>
<td>1.369</td>
<td>57.0</td>
<td>8.4</td>
<td>0.066</td>
<td>69.1</td>
<td>17.5</td>
<td>2.55</td>
</tr>
<tr>
<td>41.7</td>
<td>13.3</td>
<td>1.000</td>
<td>57.1</td>
<td>35.9</td>
<td>1.616</td>
<td>69.3</td>
<td>28.8</td>
<td>2.133</td>
</tr>
<tr>
<td>42.7</td>
<td>12.8</td>
<td>0.869</td>
<td>57.8</td>
<td>17.0</td>
<td>0.373</td>
<td>70.4</td>
<td>29.5</td>
<td>0.791</td>
</tr>
<tr>
<td>43.6</td>
<td>18.5</td>
<td>1.204</td>
<td>58.1</td>
<td>25.3</td>
<td>1.570</td>
<td>70.8</td>
<td>26.4</td>
<td>0.361</td>
</tr>
<tr>
<td>44.5</td>
<td>20.1</td>
<td>1.437</td>
<td>59.0</td>
<td>28.3</td>
<td>1.912</td>
<td>71.0</td>
<td>8.1</td>
<td>0.127</td>
</tr>
<tr>
<td>45.5</td>
<td>17.6</td>
<td>0.512</td>
<td>60.0</td>
<td>35.1</td>
<td>0.680</td>
<td>71.2</td>
<td>17.1</td>
<td>0.749</td>
</tr>
<tr>
<td>45.9</td>
<td>16.8</td>
<td>0.861</td>
<td>60.3</td>
<td>13.2</td>
<td>0.099</td>
<td>71.8</td>
<td>5.0</td>
<td>0.121</td>
</tr>
<tr>
<td>46.6</td>
<td>20.5</td>
<td>1.461</td>
<td>60.4</td>
<td>28.7</td>
<td>0.967</td>
<td>72.1</td>
<td>11.1</td>
<td>0.255</td>
</tr>
<tr>
<td>47.6</td>
<td>12.4</td>
<td>0.563</td>
<td>60.9</td>
<td>26.7</td>
<td>1.641</td>
<td>72.4</td>
<td>9.8</td>
<td>0.076</td>
</tr>
<tr>
<td>48.2</td>
<td>9.0</td>
<td>0.210</td>
<td>61.8</td>
<td>25.2</td>
<td>0.696</td>
<td>72.5</td>
<td>4.9</td>
<td>0.395</td>
</tr>
<tr>
<td>48.5</td>
<td>13.3</td>
<td>0.900</td>
<td>62.2</td>
<td>20.5</td>
<td>0.292</td>
<td>73.5</td>
<td>4.8</td>
<td>0.387</td>
</tr>
<tr>
<td>49.4</td>
<td>7.9</td>
<td>0.186</td>
<td>62.4</td>
<td>18.0</td>
<td>0.522</td>
<td>74.5</td>
<td>4.9</td>
<td>0.316</td>
</tr>
<tr>
<td>49.7</td>
<td>18.9</td>
<td>0.409</td>
<td>62.8</td>
<td>24.4</td>
<td>1.185</td>
<td>75.3</td>
<td>3.6</td>
<td>0.294</td>
</tr>
<tr>
<td>50.0</td>
<td>25.4</td>
<td>1.750</td>
<td>63.5</td>
<td>15.6</td>
<td>0.922</td>
<td>76.3</td>
<td>3.1</td>
<td>0.254</td>
</tr>
<tr>
<td>51.0</td>
<td>24.8</td>
<td>0.986</td>
<td>64.3</td>
<td>18.4</td>
<td>0.266</td>
<td>77.3</td>
<td>6.4</td>
<td>0.254</td>
</tr>
<tr>
<td>51.4</td>
<td>19.2</td>
<td>1.243</td>
<td>64.5</td>
<td>18.4</td>
<td>1.199</td>
<td>77.8</td>
<td>13.5</td>
<td>0.304</td>
</tr>
<tr>
<td>52.3</td>
<td>27.1</td>
<td>0.738</td>
<td>65.4</td>
<td>27.5</td>
<td>2.242</td>
<td>78.1</td>
<td>19.3</td>
<td>1.388</td>
</tr>
<tr>
<td>52.7</td>
<td>19.9</td>
<td>1.425</td>
<td>66.6</td>
<td>27.1</td>
<td>0.738</td>
<td>79.1</td>
<td>13.9</td>
<td>0.312</td>
</tr>
<tr>
<td>53.7</td>
<td>20.3</td>
<td>1.449</td>
<td>67.0</td>
<td>33.1</td>
<td>0.867</td>
<td>79.4</td>
<td>11.7</td>
<td>0.535</td>
</tr>
<tr>
<td>54.7</td>
<td>15.8</td>
<td>1.166</td>
<td>67.4</td>
<td>10.9</td>
<td>0.835</td>
<td>80.0</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>55.7</td>
<td>16.4</td>
<td>1.204</td>
<td>68.4</td>
<td>16.7</td>
<td>0.367</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{1/} Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.5</td>
<td>13.8</td>
<td>0.517</td>
<td>55.7</td>
<td>28.5</td>
<td>0.769</td>
<td>67.7</td>
<td>15.6</td>
<td>0.461</td>
</tr>
<tr>
<td>41.0</td>
<td>15.4</td>
<td>1.139</td>
<td>56.1</td>
<td>21.5</td>
<td>0.152</td>
<td>68.1</td>
<td>16.2</td>
<td>0.715</td>
</tr>
<tr>
<td>42.0</td>
<td>13.4</td>
<td>0.604</td>
<td>56.2</td>
<td>36.2</td>
<td>1.394</td>
<td>68.7</td>
<td>9.8</td>
<td>0.152</td>
</tr>
<tr>
<td>42.6</td>
<td>17.3</td>
<td>0.631</td>
<td>56.8</td>
<td>11.7</td>
<td>0.267</td>
<td>68.9</td>
<td>29.3</td>
<td>1.967</td>
</tr>
<tr>
<td>43.1</td>
<td>18.9</td>
<td>0.545</td>
<td>57.1</td>
<td>29.2</td>
<td>1.961</td>
<td>69.9</td>
<td>24.6</td>
<td>1.022</td>
</tr>
<tr>
<td>43.5</td>
<td>21.1</td>
<td>1.498</td>
<td>58.1</td>
<td>26.6</td>
<td>1.818</td>
<td>70.5</td>
<td>14.5</td>
<td>0.324</td>
</tr>
<tr>
<td>44.5</td>
<td>20.2</td>
<td>0.722</td>
<td>59.1</td>
<td>32.2</td>
<td>1.060</td>
<td>70.8</td>
<td>15.3</td>
<td>0.566</td>
</tr>
<tr>
<td>45.0</td>
<td>16.8</td>
<td>0.984</td>
<td>59.6</td>
<td>18.3</td>
<td>0.132</td>
<td>71.3</td>
<td>4.8</td>
<td>0.077</td>
</tr>
<tr>
<td>45.8</td>
<td>20.8</td>
<td>1.480</td>
<td>59.7</td>
<td>31.7</td>
<td>0.628</td>
<td>71.5</td>
<td>13.0</td>
<td>0.490</td>
</tr>
<tr>
<td>46.8</td>
<td>11.5</td>
<td>0.439</td>
<td>60.0</td>
<td>22.6</td>
<td>0.159</td>
<td>72.0</td>
<td>6.7</td>
<td>0.053</td>
</tr>
<tr>
<td>47.3</td>
<td>12.2</td>
<td>0.092</td>
<td>60.1</td>
<td>29.8</td>
<td>2.393</td>
<td>72.1</td>
<td>5.6</td>
<td>0.449</td>
</tr>
<tr>
<td>47.4</td>
<td>14.1</td>
<td>1.159</td>
<td>61.3</td>
<td>17.8</td>
<td>0.129</td>
<td>73.1</td>
<td>4.8</td>
<td>0.387</td>
</tr>
<tr>
<td>48.5</td>
<td>6.9</td>
<td>0.274</td>
<td>61.4</td>
<td>19.3</td>
<td>0.694</td>
<td>74.1</td>
<td>4.7</td>
<td>0.380</td>
</tr>
<tr>
<td>49.0</td>
<td>17.3</td>
<td>0.505</td>
<td>61.9</td>
<td>25.8</td>
<td>1.596</td>
<td>75.1</td>
<td>3.7</td>
<td>0.302</td>
</tr>
<tr>
<td>49.4</td>
<td>25.3</td>
<td>1.744</td>
<td>62.8</td>
<td>14.1</td>
<td>0.949</td>
<td>76.1</td>
<td>4.5</td>
<td>0.364</td>
</tr>
<tr>
<td>50.4</td>
<td>20.2</td>
<td>1.443</td>
<td>63.7</td>
<td>18.6</td>
<td>0.134</td>
<td>77.1</td>
<td>6.9</td>
<td>0.219</td>
</tr>
<tr>
<td>51.4</td>
<td>27.5</td>
<td>0.560</td>
<td>63.8</td>
<td>10.9</td>
<td>0.167</td>
<td>77.5</td>
<td>18.2</td>
<td>0.923</td>
</tr>
<tr>
<td>51.7</td>
<td>24.4</td>
<td>1.693</td>
<td>64.0</td>
<td>19.7</td>
<td>1.130</td>
<td>78.2</td>
<td>11.4</td>
<td>0.174</td>
</tr>
<tr>
<td>52.7</td>
<td>20.0</td>
<td>1.431</td>
<td>64.8</td>
<td>28.6</td>
<td>1.929</td>
<td>78.4</td>
<td>14.7</td>
<td>1.093</td>
</tr>
<tr>
<td>53.7</td>
<td>18.3</td>
<td>1.325</td>
<td>65.8</td>
<td>33.3</td>
<td>1.959</td>
<td>79.4</td>
<td>17.2</td>
<td>0.754</td>
</tr>
<tr>
<td>54.7</td>
<td>16.7</td>
<td>1.224</td>
<td>66.7</td>
<td>13.6</td>
<td>1.020</td>
<td>80.0</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet 1</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet 1</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet 1</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0</td>
<td>20.7</td>
<td>1.474</td>
<td>56.3</td>
<td>20.6</td>
<td>1.467</td>
<td>67.0</td>
<td>21.5</td>
<td>0.304</td>
</tr>
<tr>
<td>41.0</td>
<td>17.0</td>
<td>.622</td>
<td>57.3</td>
<td>14.9</td>
<td>1.107</td>
<td>67.2</td>
<td>17.2</td>
<td>1.005</td>
</tr>
<tr>
<td>41.5</td>
<td>9.0</td>
<td>.560</td>
<td>58.3</td>
<td>16.7</td>
<td>.857</td>
<td>68.0</td>
<td>13.9</td>
<td>.104</td>
</tr>
<tr>
<td>42.3</td>
<td>16.2</td>
<td>1.072</td>
<td>59.0</td>
<td>14.1</td>
<td>.105</td>
<td>68.1</td>
<td>19.3</td>
<td>.139</td>
</tr>
<tr>
<td>43.2</td>
<td>13.4</td>
<td>.906</td>
<td>59.1</td>
<td>27.7</td>
<td>.940</td>
<td>68.2</td>
<td>9.0</td>
<td>.070</td>
</tr>
<tr>
<td>44.1</td>
<td>17.0</td>
<td>1.243</td>
<td>59.6</td>
<td>12.1</td>
<td>.184</td>
<td>68.3</td>
<td>27.2</td>
<td>2.036</td>
</tr>
<tr>
<td>45.1</td>
<td>12.3</td>
<td>.932</td>
<td>59.8</td>
<td>20.4</td>
<td>.146</td>
<td>69.4</td>
<td>27.5</td>
<td>.747</td>
</tr>
<tr>
<td>46.1</td>
<td>18.1</td>
<td>1.182</td>
<td>59.9</td>
<td>40.8</td>
<td>.254</td>
<td>69.8</td>
<td>32.1</td>
<td>.846</td>
</tr>
<tr>
<td>47.0</td>
<td>20.9</td>
<td>1.486</td>
<td>60.0</td>
<td>28.4</td>
<td>.192</td>
<td>70.2</td>
<td>10.8</td>
<td>.828</td>
</tr>
<tr>
<td>48.0</td>
<td>16.7</td>
<td>.367</td>
<td>60.1</td>
<td>28.2</td>
<td>.763</td>
<td>71.2</td>
<td>15.0</td>
<td>.445</td>
</tr>
<tr>
<td>48.3</td>
<td>16.4</td>
<td>.843</td>
<td>60.5</td>
<td>30.3</td>
<td>.606</td>
<td>71.6</td>
<td>13.3</td>
<td>.500</td>
</tr>
<tr>
<td>49.0</td>
<td>14.0</td>
<td>.105</td>
<td>60.8</td>
<td>28.0</td>
<td>1.138</td>
<td>72.1</td>
<td>20.3</td>
<td>.145</td>
</tr>
<tr>
<td>49.1</td>
<td>22.4</td>
<td>1.418</td>
<td>61.4</td>
<td>26.4</td>
<td>.361</td>
<td>72.2</td>
<td>4.8</td>
<td>.039</td>
</tr>
<tr>
<td>50.0</td>
<td>10.5</td>
<td>.646</td>
<td>61.6</td>
<td>26.9</td>
<td>1.835</td>
<td>72.3</td>
<td>19.7</td>
<td>.282</td>
</tr>
<tr>
<td>50.8</td>
<td>12.2</td>
<td>.092</td>
<td>62.6</td>
<td>28.1</td>
<td>.380</td>
<td>72.5</td>
<td>27.3</td>
<td>.743</td>
</tr>
<tr>
<td>50.9</td>
<td>13.3</td>
<td>1.000</td>
<td>62.8</td>
<td>10.6</td>
<td>.081</td>
<td>72.9</td>
<td>30.0</td>
<td>.802</td>
</tr>
<tr>
<td>51.9</td>
<td>17.8</td>
<td>.776</td>
<td>62.9</td>
<td>35.4</td>
<td>2.283</td>
<td>73.3</td>
<td>21.8</td>
<td>.308</td>
</tr>
<tr>
<td>52.5</td>
<td>25.3</td>
<td>.349</td>
<td>63.9</td>
<td>20.5</td>
<td>1.169</td>
<td>73.5</td>
<td>26.1</td>
<td>.895</td>
</tr>
<tr>
<td>52.7</td>
<td>13.9</td>
<td>.104</td>
<td>64.7</td>
<td>19.0</td>
<td>.274</td>
<td>74.0</td>
<td>15.0</td>
<td>.111</td>
</tr>
<tr>
<td>52.8</td>
<td>27.2</td>
<td>1.296</td>
<td>64.9</td>
<td>15.3</td>
<td>.567</td>
<td>74.1</td>
<td>16.8</td>
<td>1.107</td>
</tr>
<tr>
<td>53.5</td>
<td>24.3</td>
<td>1.181</td>
<td>65.4</td>
<td>26.4</td>
<td>.723</td>
<td>75.0</td>
<td>5.8</td>
<td>.139</td>
</tr>
<tr>
<td>54.2</td>
<td>23.2</td>
<td>1.785</td>
<td>65.8</td>
<td>12.8</td>
<td>.097</td>
<td>75.3</td>
<td></td>
<td>Bottom</td>
</tr>
</tbody>
</table>

1 Depth to top of sample.
TABLE B-5. - USBM Rock Springs site 2, well 3A

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.9</td>
<td>1.3</td>
<td>0.119</td>
<td>39.6</td>
<td>23.2</td>
<td>1.136</td>
<td>61.3</td>
<td>29.0</td>
<td>1.950</td>
</tr>
<tr>
<td>16.0</td>
<td>.8</td>
<td>.040</td>
<td>40.3</td>
<td>21.9</td>
<td>1.546</td>
<td>62.3</td>
<td>35.3</td>
<td>2.278</td>
</tr>
<tr>
<td>16.6</td>
<td>.2</td>
<td>.014</td>
<td>41.3</td>
<td>19.4</td>
<td>1.394</td>
<td>63.3</td>
<td>20.1</td>
<td>1.150</td>
</tr>
<tr>
<td>17.4</td>
<td>.3</td>
<td>.025</td>
<td>42.3</td>
<td>19.9</td>
<td>.285</td>
<td>64.1</td>
<td>14.7</td>
<td>.109</td>
</tr>
<tr>
<td>18.4</td>
<td>.3</td>
<td>.025</td>
<td>42.5</td>
<td>11.3</td>
<td>.863</td>
<td>64.2</td>
<td>26.7</td>
<td>1.823</td>
</tr>
<tr>
<td>19.4</td>
<td>.3</td>
<td>.025</td>
<td>43.5</td>
<td>18.6</td>
<td>1.344</td>
<td>65.2</td>
<td>16.4</td>
<td>1.324</td>
</tr>
<tr>
<td>20.4</td>
<td>1.6</td>
<td>.133</td>
<td>44.5</td>
<td>17.1</td>
<td>1.249</td>
<td>66.3</td>
<td>20.3</td>
<td>.290</td>
</tr>
<tr>
<td>21.4</td>
<td>9.6</td>
<td>.446</td>
<td>45.5</td>
<td>11.9</td>
<td>.904</td>
<td>66.5</td>
<td>18.0</td>
<td>.653</td>
</tr>
<tr>
<td>22.0</td>
<td>21.3</td>
<td>.906</td>
<td>46.5</td>
<td>15.6</td>
<td>1.152</td>
<td>67.0</td>
<td>Missing</td>
<td>-</td>
</tr>
<tr>
<td>22.6</td>
<td>19.8</td>
<td>1.419</td>
<td>47.5</td>
<td>19.6</td>
<td>.422</td>
<td>68.0</td>
<td>11.7</td>
<td>.446</td>
</tr>
<tr>
<td>23.6</td>
<td>23.9</td>
<td>1.830</td>
<td>47.8</td>
<td>19.8</td>
<td>.993</td>
<td>68.5</td>
<td>26.1</td>
<td>1.790</td>
</tr>
<tr>
<td>24.7</td>
<td>14.3</td>
<td>.854</td>
<td>48.5</td>
<td>16.7</td>
<td>.367</td>
<td>69.5</td>
<td>29.4</td>
<td>.592</td>
</tr>
<tr>
<td>25.5</td>
<td>2.5</td>
<td>.206</td>
<td>48.8</td>
<td>21.0</td>
<td>1.492</td>
<td>69.8</td>
<td>29.1</td>
<td>.782</td>
</tr>
<tr>
<td>26.5</td>
<td>.1</td>
<td>.008</td>
<td>49.8</td>
<td>13.3</td>
<td>1.000</td>
<td>70.2</td>
<td>34.3</td>
<td>.891</td>
</tr>
<tr>
<td>27.5</td>
<td>.0</td>
<td>.000</td>
<td>50.8</td>
<td>13.2</td>
<td>.596</td>
<td>70.6</td>
<td>13.3</td>
<td>1.000</td>
</tr>
<tr>
<td>28.5</td>
<td>.2</td>
<td>.017</td>
<td>51.4</td>
<td>5.8</td>
<td>.139</td>
<td>71.6</td>
<td>16.3</td>
<td>.240</td>
</tr>
<tr>
<td>29.5</td>
<td>.3</td>
<td>.025</td>
<td>51.7</td>
<td>20.0</td>
<td>.572</td>
<td>71.8</td>
<td>10.3</td>
<td>.159</td>
</tr>
<tr>
<td>30.5</td>
<td>1.2</td>
<td>.100</td>
<td>52.1</td>
<td>28.4</td>
<td>1.918</td>
<td>72.0</td>
<td>19.9</td>
<td>.855</td>
</tr>
<tr>
<td>31.5</td>
<td>4.7</td>
<td>.304</td>
<td>53.1</td>
<td>21.6</td>
<td>1.528</td>
<td>72.6</td>
<td>12.3</td>
<td>.186</td>
</tr>
<tr>
<td>32.3</td>
<td>14.4</td>
<td>1.074</td>
<td>54.1</td>
<td>26.4</td>
<td>.904</td>
<td>72.8</td>
<td>25.9</td>
<td>1.956</td>
</tr>
<tr>
<td>33.3</td>
<td>16.2</td>
<td>1.191</td>
<td>54.6</td>
<td>19.9</td>
<td>1.425</td>
<td>73.9</td>
<td>21.7</td>
<td>.767</td>
</tr>
<tr>
<td>34.3</td>
<td>21.4</td>
<td>1.758</td>
<td>55.6</td>
<td>20.6</td>
<td>1.467</td>
<td>74.4</td>
<td>16.3</td>
<td>1.198</td>
</tr>
<tr>
<td>34.8</td>
<td>29.3</td>
<td>1.967</td>
<td>56.6</td>
<td>16.3</td>
<td>1.198</td>
<td>75.4</td>
<td>10.5</td>
<td>.726</td>
</tr>
<tr>
<td>35.8</td>
<td>31.6</td>
<td>2.089</td>
<td>57.6</td>
<td>19.9</td>
<td>1.568</td>
<td>76.3</td>
<td>3.4</td>
<td>.556</td>
</tr>
<tr>
<td>36.8</td>
<td>27.8</td>
<td>1.885</td>
<td>58.7</td>
<td>35.7</td>
<td>2.298</td>
<td>76.5</td>
<td>8.1</td>
<td>.190</td>
</tr>
<tr>
<td>37.8</td>
<td>Missing</td>
<td>-</td>
<td>59.7</td>
<td>29.8</td>
<td>1.994</td>
<td>76.8</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>38.6</td>
<td>30.9</td>
<td>2.052</td>
<td>60.7</td>
<td>28.7</td>
<td>1.160</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>0.8</td>
<td>0.067</td>
<td>49.0</td>
<td>15.5</td>
<td>0.155</td>
<td>60.8</td>
<td>29.1</td>
<td>0.391</td>
</tr>
<tr>
<td>31.0</td>
<td>.7</td>
<td>.059</td>
<td>49.1</td>
<td>13.5</td>
<td>.709</td>
<td>61.0</td>
<td>24.2</td>
<td>.168</td>
</tr>
<tr>
<td>32.0</td>
<td>2.5</td>
<td>.206</td>
<td>49.8</td>
<td>15.4</td>
<td>.114</td>
<td>61.1</td>
<td>29.4</td>
<td>1.775</td>
</tr>
<tr>
<td>33.0</td>
<td>21.1</td>
<td>1.198</td>
<td>49.9</td>
<td>9.7</td>
<td>.450</td>
<td>62.0</td>
<td>24.6</td>
<td>.852</td>
</tr>
<tr>
<td>33.8</td>
<td>6.8</td>
<td>.270</td>
<td>50.5</td>
<td>20.5</td>
<td>.292</td>
<td>62.5</td>
<td>17.0</td>
<td>.373</td>
</tr>
<tr>
<td>34.3</td>
<td>17.4</td>
<td>.634</td>
<td>50.7</td>
<td>21.8</td>
<td>.462</td>
<td>62.8</td>
<td>23.6</td>
<td>1.481</td>
</tr>
<tr>
<td>34.8</td>
<td>19.5</td>
<td>1.400</td>
<td>51.0</td>
<td>24.9</td>
<td>1.205</td>
<td>63.7</td>
<td>17.3</td>
<td>.379</td>
</tr>
<tr>
<td>35.8</td>
<td>33.4</td>
<td>2.182</td>
<td>51.7</td>
<td>26.5</td>
<td>.544</td>
<td>64.0</td>
<td>14.8</td>
<td>.770</td>
</tr>
<tr>
<td>36.8</td>
<td>31.9</td>
<td>.842</td>
<td>52.0</td>
<td>23.1</td>
<td>.808</td>
<td>64.7</td>
<td>14.2</td>
<td>.212</td>
</tr>
<tr>
<td>37.2</td>
<td>22.6</td>
<td>2.476</td>
<td>52.5</td>
<td>19.8</td>
<td>.284</td>
<td>64.9</td>
<td>20.2</td>
<td>.866</td>
</tr>
<tr>
<td>37.5</td>
<td>34.2</td>
<td>2.445</td>
<td>52.7</td>
<td>23.1</td>
<td>.485</td>
<td>65.5</td>
<td>12.0</td>
<td>.182</td>
</tr>
<tr>
<td>38.6</td>
<td>26.8</td>
<td>1.829</td>
<td>53.0</td>
<td>32.0</td>
<td>.844</td>
<td>65.7</td>
<td>20.2</td>
<td>.433</td>
</tr>
<tr>
<td>39.6</td>
<td>33.0</td>
<td>1.297</td>
<td>53.4</td>
<td>17.5</td>
<td>.510</td>
<td>66.0</td>
<td>11.5</td>
<td>.175</td>
</tr>
<tr>
<td>40.2</td>
<td>15.8</td>
<td>1.049</td>
<td>53.8</td>
<td>19.1</td>
<td>.275</td>
<td>66.2</td>
<td>27.5</td>
<td>1.494</td>
</tr>
<tr>
<td>41.1</td>
<td>19.2</td>
<td>.829</td>
<td>54.0</td>
<td>21.7</td>
<td>.460</td>
<td>67.0</td>
<td>31.2</td>
<td>.414</td>
</tr>
<tr>
<td>41.7</td>
<td>17.2</td>
<td>1.005</td>
<td>54.3</td>
<td>20.7</td>
<td>.442</td>
<td>67.2</td>
<td>25.6</td>
<td>.528</td>
</tr>
<tr>
<td>42.5</td>
<td>9.5</td>
<td>.883</td>
<td>54.6</td>
<td>21.7</td>
<td>.460</td>
<td>67.5</td>
<td>32.2</td>
<td>1.060</td>
</tr>
<tr>
<td>43.7</td>
<td>12.6</td>
<td>.286</td>
<td>54.9</td>
<td>20.1</td>
<td>.718</td>
<td>68.0</td>
<td>36.0</td>
<td>.925</td>
</tr>
<tr>
<td>44.0</td>
<td>15.3</td>
<td>.793</td>
<td>55.4</td>
<td>16.5</td>
<td>.484</td>
<td>68.4</td>
<td>4.2</td>
<td>.170</td>
</tr>
<tr>
<td>44.7</td>
<td>21.0</td>
<td>.298</td>
<td>55.8</td>
<td>15.9</td>
<td>.352</td>
<td>68.9</td>
<td>14.7</td>
<td>.109</td>
</tr>
<tr>
<td>44.9</td>
<td>18.6</td>
<td>.269</td>
<td>56.1</td>
<td>15.1</td>
<td>.672</td>
<td>69.0</td>
<td>16.9</td>
<td>.124</td>
</tr>
<tr>
<td>45.1</td>
<td>21.2</td>
<td>1.504</td>
<td>56.7</td>
<td>16.5</td>
<td>.484</td>
<td>69.1</td>
<td>11.5</td>
<td>.351</td>
</tr>
<tr>
<td>46.1</td>
<td>20.8</td>
<td>.592</td>
<td>57.1</td>
<td>20.7</td>
<td>.737</td>
<td>69.5</td>
<td>16.9</td>
<td>.618</td>
</tr>
<tr>
<td>46.5</td>
<td>14.6</td>
<td>.435</td>
<td>57.6</td>
<td>29.5</td>
<td>.791</td>
<td>70.0</td>
<td>22.6</td>
<td>.476</td>
</tr>
<tr>
<td>46.9</td>
<td>18.6</td>
<td>.403</td>
<td>58.0</td>
<td>32.8</td>
<td>.645</td>
<td>70.3</td>
<td>21.3</td>
<td>.302</td>
</tr>
<tr>
<td>47.2</td>
<td>18.1</td>
<td>.788</td>
<td>58.3</td>
<td>36.0</td>
<td>.925</td>
<td>70.5</td>
<td>24.5</td>
<td>.849</td>
</tr>
<tr>
<td>47.8</td>
<td>23.2</td>
<td>.487</td>
<td>58.7</td>
<td>20.9</td>
<td>.446</td>
<td>71.0</td>
<td>22.8</td>
<td>.160</td>
</tr>
<tr>
<td>48.1</td>
<td>18.1</td>
<td>.263</td>
<td>59.0</td>
<td>27.7</td>
<td>1.315</td>
<td>71.1</td>
<td>21.2</td>
<td>.301</td>
</tr>
<tr>
<td>48.3</td>
<td>12.4</td>
<td>.563</td>
<td>59.7</td>
<td>29.1</td>
<td>1.760</td>
<td>71.3</td>
<td>22.8</td>
<td>.119</td>
</tr>
<tr>
<td>48.9</td>
<td>17.0</td>
<td>.124</td>
<td>60.6</td>
<td>25.8</td>
<td>.355</td>
<td>72.0</td>
<td>18.0</td>
<td>.261</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-6. - USBM Rock Springs site 2, well 4--Continued

<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.2</td>
<td>16.9</td>
<td>0.371</td>
<td>73.8</td>
<td>4.5</td>
<td>0.437</td>
<td>78.9</td>
<td>22.6</td>
<td>0.317</td>
</tr>
<tr>
<td>72.5</td>
<td>18.0</td>
<td>0.261</td>
<td>75.0</td>
<td>4.4</td>
<td>0.712</td>
<td>79.1</td>
<td>5.6</td>
<td>0.180</td>
</tr>
<tr>
<td>72.7</td>
<td>10.4</td>
<td>0.240</td>
<td>77.0</td>
<td>3.7</td>
<td>0.302</td>
<td>79.5</td>
<td>13.2</td>
<td>0.199</td>
</tr>
<tr>
<td>73.0</td>
<td>13.0</td>
<td>0.490</td>
<td>78.0</td>
<td>2.4</td>
<td>0.099</td>
<td>79.7</td>
<td>15.0</td>
<td>1.002</td>
</tr>
<tr>
<td>73.5</td>
<td>5.8</td>
<td>0.139</td>
<td>78.5</td>
<td>5.6</td>
<td>0.180</td>
<td>80.6</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.

TABLE B-7. - USBM Rock Springs site 2, well 5

<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.2</td>
<td>27.5</td>
<td>1.121</td>
<td>54.7</td>
<td>25.4</td>
<td>1.050</td>
<td>67.4</td>
<td>18.4</td>
<td>0.932</td>
</tr>
<tr>
<td>40.8</td>
<td>27.9</td>
<td>1.134</td>
<td>55.3</td>
<td>22.7</td>
<td>1.593</td>
<td>68.1</td>
<td>18.2</td>
<td>1.055</td>
</tr>
<tr>
<td>41.4</td>
<td>18.9</td>
<td>0.273</td>
<td>56.3</td>
<td>29.8</td>
<td>0.598</td>
<td>68.9</td>
<td>14.2</td>
<td>0.636</td>
</tr>
<tr>
<td>41.6</td>
<td>18.7</td>
<td>1.350</td>
<td>56.6</td>
<td>19.9</td>
<td>1.425</td>
<td>69.5</td>
<td>27.6</td>
<td>1.874</td>
</tr>
<tr>
<td>42.6</td>
<td>18.7</td>
<td>1.215</td>
<td>57.6</td>
<td>21.3</td>
<td>1.510</td>
<td>70.5</td>
<td>29.0</td>
<td>0.585</td>
</tr>
<tr>
<td>43.5</td>
<td>14.7</td>
<td>0.437</td>
<td>58.6</td>
<td>15.5</td>
<td>1.146</td>
<td>70.8</td>
<td>27.2</td>
<td>0.740</td>
</tr>
<tr>
<td>43.9</td>
<td>17.2</td>
<td>0.879</td>
<td>59.6</td>
<td>19.1</td>
<td>1.375</td>
<td>71.2</td>
<td>28.9</td>
<td>0.778</td>
</tr>
<tr>
<td>44.6</td>
<td>19.9</td>
<td>1.425</td>
<td>60.6</td>
<td>29.0</td>
<td>0.585</td>
<td>71.6</td>
<td>13.2</td>
<td>0.993</td>
</tr>
<tr>
<td>45.6</td>
<td>14.9</td>
<td>1.107</td>
<td>60.9</td>
<td>24.2</td>
<td>0.168</td>
<td>72.6</td>
<td>16.2</td>
<td>0.715</td>
</tr>
<tr>
<td>46.6</td>
<td>11.6</td>
<td>0.884</td>
<td>61.0</td>
<td>32.3</td>
<td>2.126</td>
<td>73.2</td>
<td>6.0</td>
<td>0.048</td>
</tr>
<tr>
<td>47.6</td>
<td>13.7</td>
<td>0.205</td>
<td>62.0</td>
<td>32.9</td>
<td>0.431</td>
<td>73.3</td>
<td>12.4</td>
<td>0.094</td>
</tr>
<tr>
<td>47.8</td>
<td>15.7</td>
<td>0.348</td>
<td>62.2</td>
<td>25.5</td>
<td>0.351</td>
<td>73.4</td>
<td>7.7</td>
<td>0.061</td>
</tr>
<tr>
<td>48.1</td>
<td>19.3</td>
<td>0.972</td>
<td>62.4</td>
<td>24.1</td>
<td>1.005</td>
<td>73.5</td>
<td>28.4</td>
<td>1.343</td>
</tr>
<tr>
<td>48.8</td>
<td>22.0</td>
<td>1.552</td>
<td>63.0</td>
<td>23.3</td>
<td>0.163</td>
<td>74.2</td>
<td>24.5</td>
<td>1.019</td>
</tr>
<tr>
<td>49.8</td>
<td>15.5</td>
<td>0.344</td>
<td>63.1</td>
<td>30.6</td>
<td>2.036</td>
<td>74.8</td>
<td>14.5</td>
<td>0.108</td>
</tr>
<tr>
<td>50.1</td>
<td>17.1</td>
<td>0.874</td>
<td>64.1</td>
<td>29.7</td>
<td>1.392</td>
<td>74.9</td>
<td>16.9</td>
<td>1.237</td>
</tr>
<tr>
<td>50.8</td>
<td>12.9</td>
<td>0.973</td>
<td>64.8</td>
<td>28.7</td>
<td>1.934</td>
<td>75.9</td>
<td>9.4</td>
<td>0.802</td>
</tr>
<tr>
<td>51.8</td>
<td>13.3</td>
<td>1.000</td>
<td>65.8</td>
<td>24.0</td>
<td>0.501</td>
<td>77.0</td>
<td>5.1</td>
<td>0.082</td>
</tr>
<tr>
<td>52.8</td>
<td>13.7</td>
<td>0.616</td>
<td>66.1</td>
<td>19.0</td>
<td>0.137</td>
<td>77.2</td>
<td>5.2</td>
<td>0.376</td>
</tr>
<tr>
<td>53.4</td>
<td>8.7</td>
<td>0.204</td>
<td>66.2</td>
<td>19.4</td>
<td>0.558</td>
<td>78.9</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>53.7</td>
<td>22.9</td>
<td>1.605</td>
<td>66.6</td>
<td>23.8</td>
<td>1.326</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-8. - USBM Rock Springs site 2, well A

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>19.4</td>
<td>2.788</td>
<td>34</td>
<td>25.3</td>
<td>3.488</td>
<td>58</td>
<td>16.7</td>
<td>2.448</td>
</tr>
<tr>
<td>12</td>
<td>15.5</td>
<td>2.292</td>
<td>36</td>
<td>31.1</td>
<td>4.126</td>
<td>60</td>
<td>30.6</td>
<td>4.072</td>
</tr>
<tr>
<td>14</td>
<td>1.9</td>
<td>.316</td>
<td>38</td>
<td>30.5</td>
<td>4.060</td>
<td>62</td>
<td>28.3</td>
<td>3.824</td>
</tr>
<tr>
<td>16</td>
<td>.2</td>
<td>.034</td>
<td>40</td>
<td>18.7</td>
<td>2.700</td>
<td>64</td>
<td>21.6</td>
<td>3.056</td>
</tr>
<tr>
<td>18</td>
<td>.6</td>
<td>.100</td>
<td>42</td>
<td>14.9</td>
<td>2.214</td>
<td>66</td>
<td>19.2</td>
<td>2.762</td>
</tr>
<tr>
<td>20</td>
<td>8.3</td>
<td>1.300</td>
<td>44</td>
<td>16.1</td>
<td>2.370</td>
<td>68</td>
<td>21.6</td>
<td>3.056</td>
</tr>
<tr>
<td>22</td>
<td>22.0</td>
<td>3.104</td>
<td>46</td>
<td>15.9</td>
<td>2.344</td>
<td>70</td>
<td>19.1</td>
<td>2.750</td>
</tr>
<tr>
<td>24</td>
<td>16.9</td>
<td>2.474</td>
<td>48</td>
<td>20.8</td>
<td>2.960</td>
<td>72</td>
<td>17.8</td>
<td>2.588</td>
</tr>
<tr>
<td>26</td>
<td>.2</td>
<td>.034</td>
<td>50</td>
<td>17.1</td>
<td>2.498</td>
<td>74</td>
<td>18.4</td>
<td>2.664</td>
</tr>
<tr>
<td>28</td>
<td>.3</td>
<td>.050</td>
<td>52</td>
<td>18.9</td>
<td>2.726</td>
<td>76</td>
<td>6.3</td>
<td>1.004</td>
</tr>
<tr>
<td>30</td>
<td>.7</td>
<td>.118</td>
<td>54</td>
<td>23.8</td>
<td>3.316</td>
<td>78</td>
<td>5.0</td>
<td>.806</td>
</tr>
<tr>
<td>32</td>
<td>8.9</td>
<td>1.386</td>
<td>56</td>
<td>20.8</td>
<td>2.960</td>
<td>80</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

\(1^\) Depth to top of sample.

TABLE B-9. - USBM Rock Springs site 2, well B

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>22.0</td>
<td>3.104</td>
<td>34</td>
<td>28.9</td>
<td>3.890</td>
<td>58</td>
<td>22.5</td>
<td>3.164</td>
</tr>
<tr>
<td>12</td>
<td>15.1</td>
<td>2.240</td>
<td>36</td>
<td>31.6</td>
<td>4.178</td>
<td>60</td>
<td>29.2</td>
<td>3.922</td>
</tr>
<tr>
<td>14</td>
<td>1.6</td>
<td>.266</td>
<td>38</td>
<td>27.8</td>
<td>3.770</td>
<td>62</td>
<td>29.6</td>
<td>3.966</td>
</tr>
<tr>
<td>16</td>
<td>.6</td>
<td>.100</td>
<td>40</td>
<td>17.8</td>
<td>2.588</td>
<td>64</td>
<td>23.8</td>
<td>3.316</td>
</tr>
<tr>
<td>18</td>
<td>.6</td>
<td>.100</td>
<td>42</td>
<td>16.8</td>
<td>2.460</td>
<td>66</td>
<td>16.4</td>
<td>2.408</td>
</tr>
<tr>
<td>20</td>
<td>4.4</td>
<td>.712</td>
<td>44</td>
<td>13.0</td>
<td>1.960</td>
<td>68</td>
<td>26.1</td>
<td>3.580</td>
</tr>
<tr>
<td>22</td>
<td>18.1</td>
<td>2.626</td>
<td>46</td>
<td>17.8</td>
<td>2.588</td>
<td>70</td>
<td>12.9</td>
<td>1.946</td>
</tr>
<tr>
<td>24</td>
<td>7.6</td>
<td>1.196</td>
<td>48</td>
<td>18.9</td>
<td>2.726</td>
<td>72</td>
<td>25.7</td>
<td>3.534</td>
</tr>
<tr>
<td>26</td>
<td>1.2</td>
<td>.200</td>
<td>50</td>
<td>14.6</td>
<td>2.174</td>
<td>74</td>
<td>15.0</td>
<td>2.226</td>
</tr>
<tr>
<td>28</td>
<td>.4</td>
<td>.068</td>
<td>52</td>
<td>23.7</td>
<td>3.304</td>
<td>76</td>
<td>6.6</td>
<td>1.048</td>
</tr>
<tr>
<td>30</td>
<td>1.6</td>
<td>.266</td>
<td>54</td>
<td>22.4</td>
<td>3.152</td>
<td>78</td>
<td>4.0</td>
<td>.650</td>
</tr>
<tr>
<td>32</td>
<td>16.1</td>
<td>2.370</td>
<td>56</td>
<td>18.0</td>
<td>2.612</td>
<td>80</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

\(1^\) Depth to top of sample.
TABLE B-10. - USBM Rock Springs site 2, well C

<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>20.9</td>
<td>2.972</td>
<td>40.7</td>
<td>19.8</td>
<td>1.419</td>
<td>54.7</td>
<td>23.0</td>
<td>1.611</td>
</tr>
<tr>
<td>12.0</td>
<td>16.8</td>
<td>2.460</td>
<td>41.7</td>
<td>17.5</td>
<td>1.765</td>
<td>55.7</td>
<td>20.8</td>
<td>1.480</td>
</tr>
<tr>
<td>14.0</td>
<td>2.0</td>
<td>0.332</td>
<td>42.3</td>
<td>11.5</td>
<td>0.877</td>
<td>56.7</td>
<td>22.4</td>
<td>1.576</td>
</tr>
<tr>
<td>16.0</td>
<td>1.8</td>
<td>0.298</td>
<td>43.3</td>
<td>18.0</td>
<td>1.306</td>
<td>57.7</td>
<td>17.3</td>
<td>1.262</td>
</tr>
<tr>
<td>18.0</td>
<td>0.6</td>
<td>0.100</td>
<td>44.3</td>
<td>17.5</td>
<td>1.275</td>
<td>58.7</td>
<td>16.1</td>
<td>0.592</td>
</tr>
<tr>
<td>20.0</td>
<td>3.1</td>
<td>0.508</td>
<td>45.3</td>
<td>13.0</td>
<td>0.980</td>
<td>59.2</td>
<td>Missing</td>
<td>-</td>
</tr>
<tr>
<td>22.0</td>
<td>15.9</td>
<td>2.344</td>
<td>46.3</td>
<td>13.5</td>
<td>0.608</td>
<td>60.0</td>
<td>26.1</td>
<td>3.580</td>
</tr>
<tr>
<td>24.0</td>
<td>13.5</td>
<td>2.026</td>
<td>46.9</td>
<td>20.1</td>
<td>1.437</td>
<td>62.0</td>
<td>30.7</td>
<td>4.084</td>
</tr>
<tr>
<td>26.0</td>
<td>0.6</td>
<td>0.100</td>
<td>47.9</td>
<td>19.6</td>
<td>1.406</td>
<td>64.0</td>
<td>27.3</td>
<td>3.714</td>
</tr>
<tr>
<td>28.0</td>
<td>0.9</td>
<td>0.150</td>
<td>48.9</td>
<td>15.1</td>
<td>0.244</td>
<td>66.0</td>
<td>18.5</td>
<td>2.676</td>
</tr>
<tr>
<td>30.0</td>
<td>1.2</td>
<td>0.200</td>
<td>49.1</td>
<td>18.4</td>
<td>1.332</td>
<td>68.0</td>
<td>23.6</td>
<td>3.292</td>
</tr>
<tr>
<td>32.0</td>
<td>13.2</td>
<td>1.986</td>
<td>50.1</td>
<td>20.2</td>
<td>1.443</td>
<td>70.0</td>
<td>20.7</td>
<td>2.948</td>
</tr>
<tr>
<td>34.0</td>
<td>24.3</td>
<td>3.374</td>
<td>51.1</td>
<td>14.0</td>
<td>1.047</td>
<td>72.0</td>
<td>21.3</td>
<td>3.020</td>
</tr>
<tr>
<td>36.0</td>
<td>31.5</td>
<td>4.168</td>
<td>52.1</td>
<td>14.6</td>
<td>0.435</td>
<td>74.0</td>
<td>19.0</td>
<td>2.738</td>
</tr>
<tr>
<td>38.0</td>
<td>28.8</td>
<td>3.878</td>
<td>52.5</td>
<td>8.4</td>
<td>0.197</td>
<td>76.0</td>
<td>7.0</td>
<td>1.108</td>
</tr>
<tr>
<td>40.0</td>
<td>29.6</td>
<td>0.198</td>
<td>52.8</td>
<td>18.7</td>
<td>0.540</td>
<td>78.0</td>
<td>4.9</td>
<td>0.790</td>
</tr>
<tr>
<td>40.1</td>
<td>21.4</td>
<td>0.606</td>
<td>53.2</td>
<td>25.2</td>
<td>1.739</td>
<td>80.0</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>40.5</td>
<td>12.0</td>
<td>0.182</td>
<td>54.2</td>
<td>24.4</td>
<td>0.846</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-11. - USBM Rock Springs site 2, well D

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>19.9</td>
<td>2.850</td>
<td>40.8</td>
<td>18.3</td>
<td>1.325</td>
<td>54.4</td>
<td>25.2</td>
<td>0.522</td>
</tr>
<tr>
<td>12.0</td>
<td>20.6</td>
<td>2.934</td>
<td>41.8</td>
<td>17.5</td>
<td>.892</td>
<td>54.7</td>
<td>20.8</td>
<td>1.480</td>
</tr>
<tr>
<td>14.0</td>
<td>1.3</td>
<td>.216</td>
<td>42.5</td>
<td>10.8</td>
<td>.828</td>
<td>55.7</td>
<td>23.2</td>
<td>1.623</td>
</tr>
<tr>
<td>16.0</td>
<td>.4</td>
<td>.068</td>
<td>43.5</td>
<td>17.7</td>
<td>1.287</td>
<td>56.7</td>
<td>20.3</td>
<td>1.449</td>
</tr>
<tr>
<td>18.0</td>
<td>.6</td>
<td>.100</td>
<td>44.5</td>
<td>15.6</td>
<td>1.152</td>
<td>57.7</td>
<td>17.5</td>
<td>1.275</td>
</tr>
<tr>
<td>20.0</td>
<td>7.2</td>
<td>1.138</td>
<td>45.5</td>
<td>12.1</td>
<td>.918</td>
<td>58.7</td>
<td>15.9</td>
<td>1.172</td>
</tr>
<tr>
<td>22.0</td>
<td>22.7</td>
<td>3.186</td>
<td>46.5</td>
<td>11.6</td>
<td>.354</td>
<td>59.7</td>
<td>Missing</td>
<td>-</td>
</tr>
<tr>
<td>24.0</td>
<td>15.4</td>
<td>2.278</td>
<td>46.9</td>
<td>18.3</td>
<td>1.325</td>
<td>60.0</td>
<td>29.7</td>
<td>3.976</td>
</tr>
<tr>
<td>26.0</td>
<td>.9</td>
<td>.150</td>
<td>47.9</td>
<td>19.0</td>
<td>1.369</td>
<td>62.0</td>
<td>30.1</td>
<td>4.020</td>
</tr>
<tr>
<td>28.0</td>
<td>.4</td>
<td>.068</td>
<td>48.9</td>
<td>18.7</td>
<td>.405</td>
<td>64.0</td>
<td>24.7</td>
<td>3.420</td>
</tr>
<tr>
<td>30.0</td>
<td>.9</td>
<td>.150</td>
<td>49.2</td>
<td>17.9</td>
<td>1.300</td>
<td>66.0</td>
<td>15.8</td>
<td>2.332</td>
</tr>
<tr>
<td>32.0</td>
<td>11.2</td>
<td>1.712</td>
<td>50.2</td>
<td>19.1</td>
<td>1.375</td>
<td>68.0</td>
<td>26.3</td>
<td>3.602</td>
</tr>
<tr>
<td>34.0</td>
<td>21.5</td>
<td>3.044</td>
<td>51.2</td>
<td>13.0</td>
<td>.294</td>
<td>70.0</td>
<td>12.8</td>
<td>1.932</td>
</tr>
<tr>
<td>36.0</td>
<td>31.4</td>
<td>4.158</td>
<td>51.5</td>
<td>8.4</td>
<td>.066</td>
<td>72.0</td>
<td>23.0</td>
<td>3.222</td>
</tr>
<tr>
<td>38.0</td>
<td>28.4</td>
<td>3.836</td>
<td>51.6</td>
<td>13.9</td>
<td>1.144</td>
<td>74.0</td>
<td>13.2</td>
<td>1.986</td>
</tr>
<tr>
<td>40.0</td>
<td>30.8</td>
<td>.409</td>
<td>52.7</td>
<td>8.5</td>
<td>.266</td>
<td>76.0</td>
<td>4.8</td>
<td>.774</td>
</tr>
<tr>
<td>40.2</td>
<td>23.5</td>
<td>.656</td>
<td>53.1</td>
<td>15.3</td>
<td>.340</td>
<td>78.0</td>
<td>4.6</td>
<td>.744</td>
</tr>
<tr>
<td>40.6</td>
<td>11.7</td>
<td>.178</td>
<td>53.4</td>
<td>24.0</td>
<td>1.670</td>
<td>80.0</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.5</td>
<td>17.7</td>
<td>1.287</td>
<td>89.1</td>
<td>35.4</td>
<td>2.283</td>
<td>115.1</td>
<td>16.0</td>
<td>0.589</td>
</tr>
<tr>
<td>65.5</td>
<td>21.2</td>
<td>1.504</td>
<td>90.1</td>
<td>26.8</td>
<td>1.829</td>
<td>115.6</td>
<td>12.4</td>
<td>0.094</td>
</tr>
<tr>
<td>66.5</td>
<td>28.2</td>
<td>1.335</td>
<td>91.1</td>
<td>32.3</td>
<td>2.126</td>
<td>115.7</td>
<td>21.0</td>
<td>1.492</td>
</tr>
<tr>
<td>67.2</td>
<td>27.7</td>
<td>1.879</td>
<td>92.1</td>
<td>32.7</td>
<td>1.502</td>
<td>116.7</td>
<td>22.2</td>
<td>1.564</td>
</tr>
<tr>
<td>68.2</td>
<td>22.7</td>
<td>1.752</td>
<td>92.8</td>
<td>18.0</td>
<td>0.313</td>
<td>117.7</td>
<td>6.6</td>
<td>0.419</td>
</tr>
<tr>
<td>69.3</td>
<td>26.2</td>
<td>1.077</td>
<td>92.9</td>
<td>34.1</td>
<td>2.218</td>
<td>118.5</td>
<td>4.9</td>
<td>0.118</td>
</tr>
<tr>
<td>69.9</td>
<td>9.0</td>
<td>.210</td>
<td>93.9</td>
<td>29.3</td>
<td>2.164</td>
<td>118.8</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>70.2</td>
<td>17.9</td>
<td>1.430</td>
<td>95.0</td>
<td>18.8</td>
<td>0.136</td>
<td>118.9</td>
<td>8.8</td>
<td>0.686</td>
</tr>
<tr>
<td>71.3</td>
<td>21.0</td>
<td>1.641</td>
<td>95.1</td>
<td>24.6</td>
<td>1.704</td>
<td>119.9</td>
<td>9.6</td>
<td>0.743</td>
</tr>
<tr>
<td>72.4</td>
<td>10.7</td>
<td>.821</td>
<td>96.1</td>
<td>24.0</td>
<td>1.670</td>
<td>120.9</td>
<td>8.7</td>
<td>0.407</td>
</tr>
<tr>
<td>73.4</td>
<td>12.0</td>
<td>1.002</td>
<td>97.1</td>
<td>16.4</td>
<td>.722</td>
<td>121.5</td>
<td>4.5</td>
<td>0.036</td>
</tr>
<tr>
<td>74.5</td>
<td>18.0</td>
<td>1.306</td>
<td>97.7</td>
<td>11.5</td>
<td>.088</td>
<td>121.6</td>
<td>6.7</td>
<td>0.585</td>
</tr>
<tr>
<td>75.5</td>
<td>15.6</td>
<td>1.152</td>
<td>97.8</td>
<td>16.0</td>
<td>.943</td>
<td>122.7</td>
<td>13.8</td>
<td>1.034</td>
</tr>
<tr>
<td>76.5</td>
<td>16.6</td>
<td>1.095</td>
<td>98.6</td>
<td>25.7</td>
<td>.707</td>
<td>123.7</td>
<td>15.9</td>
<td>1.289</td>
</tr>
<tr>
<td>77.4</td>
<td>22.8</td>
<td>.640</td>
<td>99.0</td>
<td>29.6</td>
<td>.793</td>
<td>124.8</td>
<td>1.0</td>
<td>0.025</td>
</tr>
<tr>
<td>77.8</td>
<td>22.3</td>
<td>1.570</td>
<td>99.4</td>
<td>13.8</td>
<td>.517</td>
<td>125.1</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>78.8</td>
<td>19.7</td>
<td>1.412</td>
<td>Missing</td>
<td></td>
<td></td>
<td>125.4</td>
<td>14.6</td>
<td>0.435</td>
</tr>
<tr>
<td>79.8</td>
<td>18.2</td>
<td>.791</td>
<td>105.6</td>
<td>17.7</td>
<td>1.158</td>
<td>125.8</td>
<td>3.0</td>
<td>0.049</td>
</tr>
<tr>
<td>80.4</td>
<td>18.1</td>
<td>1.313</td>
<td>107.3</td>
<td>3.2</td>
<td>.059</td>
<td>127.4</td>
<td>10.7</td>
<td>0.657</td>
</tr>
<tr>
<td>81.4</td>
<td>13.7</td>
<td>.822</td>
<td>107.6</td>
<td>9.5</td>
<td>.147</td>
<td>127.0</td>
<td>11.2</td>
<td>.342</td>
</tr>
<tr>
<td>82.2</td>
<td>4.8</td>
<td>.039</td>
<td>107.8</td>
<td>3.0</td>
<td>.059</td>
<td>128.2</td>
<td>152</td>
<td>1.126</td>
</tr>
<tr>
<td>82.3</td>
<td>13.8</td>
<td>1.034</td>
<td>108.0</td>
<td>15.6</td>
<td>1.152</td>
<td>128.6</td>
<td>15.2</td>
<td>1.120</td>
</tr>
<tr>
<td>83.3</td>
<td>14.4</td>
<td>.537</td>
<td>109.0</td>
<td>9.7</td>
<td>.074</td>
<td>129.6</td>
<td>15.5</td>
<td>0.458</td>
</tr>
<tr>
<td>83.8</td>
<td>12.6</td>
<td>.381</td>
<td>109.1</td>
<td>5.0</td>
<td>.403</td>
<td>130.0</td>
<td>2.1</td>
<td>0.122</td>
</tr>
<tr>
<td>84.2</td>
<td>25.2</td>
<td>1.912</td>
<td>110.1</td>
<td>4.2</td>
<td>.341</td>
<td>130.7</td>
<td>.5</td>
<td>0.008</td>
</tr>
<tr>
<td>85.3</td>
<td>26.9</td>
<td>2.018</td>
<td>111.1</td>
<td>4.8</td>
<td>.348</td>
<td>130.9</td>
<td>.4</td>
<td>0.014</td>
</tr>
<tr>
<td>86.4</td>
<td>30.3</td>
<td>2.020</td>
<td>112.0</td>
<td>11.2</td>
<td>.856</td>
<td>131.3</td>
<td>.4</td>
<td>.007</td>
</tr>
<tr>
<td>87.4</td>
<td>21.4</td>
<td>1.516</td>
<td>113.0</td>
<td>16.4</td>
<td>.722</td>
<td>131.5</td>
<td>.7</td>
<td>.024</td>
</tr>
<tr>
<td>88.4</td>
<td>24.3</td>
<td>1.012</td>
<td>113.6</td>
<td>8.2</td>
<td>.321</td>
<td>131.9</td>
<td>.9</td>
<td>.023</td>
</tr>
<tr>
<td>89.0</td>
<td>21.2</td>
<td>.150</td>
<td>114.1</td>
<td>13.0</td>
<td>.980</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.2</td>
<td>1.5</td>
<td>0.125</td>
<td>159.5</td>
<td>10.2</td>
<td>0.236</td>
<td>181.4</td>
<td>22.7</td>
<td>1.593</td>
</tr>
<tr>
<td>133.2</td>
<td>.2</td>
<td>.017</td>
<td>159.8</td>
<td>6.5</td>
<td>.310</td>
<td>182.4</td>
<td>20.1</td>
<td>.287</td>
</tr>
<tr>
<td>134.2</td>
<td>2.1</td>
<td>.191</td>
<td>160.4</td>
<td>12.8</td>
<td>.966</td>
<td>182.6</td>
<td>17.4</td>
<td>.634</td>
</tr>
<tr>
<td>135.3</td>
<td>.0</td>
<td>.000</td>
<td>161.4</td>
<td>13.3</td>
<td>1.000</td>
<td>183.1</td>
<td>11.2</td>
<td>.342</td>
</tr>
<tr>
<td>135.4</td>
<td>4.3</td>
<td>.314</td>
<td>162.4</td>
<td>15.4</td>
<td>.911</td>
<td>183.5</td>
<td>18.0</td>
<td>1.306</td>
</tr>
<tr>
<td>136.3</td>
<td>14.7</td>
<td>1.093</td>
<td>163.2</td>
<td>19.4</td>
<td>1.255</td>
<td>184.5</td>
<td>16.6</td>
<td>1.217</td>
</tr>
<tr>
<td>137.3</td>
<td>13.3</td>
<td>.300</td>
<td>164.1</td>
<td>18.1</td>
<td>1.313</td>
<td>185.5</td>
<td>16.0</td>
<td>.589</td>
</tr>
<tr>
<td>137.6</td>
<td>7.7</td>
<td>.606</td>
<td>165.1</td>
<td>19.4</td>
<td>1.394</td>
<td>186.0</td>
<td>11.1</td>
<td>.085</td>
</tr>
<tr>
<td>138.6</td>
<td>7.6</td>
<td>.598</td>
<td>166.1</td>
<td>18.7</td>
<td>.945</td>
<td>186.1</td>
<td>5.9</td>
<td>.047</td>
</tr>
<tr>
<td>139.6</td>
<td>5.1</td>
<td>.410</td>
<td>166.8</td>
<td>6.4</td>
<td>.204</td>
<td>186.2</td>
<td>12.1</td>
<td>.826</td>
</tr>
<tr>
<td>140.6</td>
<td>8.1</td>
<td>.635</td>
<td>167.2</td>
<td>17.2</td>
<td>.754</td>
<td>187.1</td>
<td>14.0</td>
<td>.209</td>
</tr>
<tr>
<td>141.6</td>
<td>11.9</td>
<td>.904</td>
<td>167.8</td>
<td>6.9</td>
<td>.164</td>
<td>187.3</td>
<td>14.4</td>
<td>1.074</td>
</tr>
<tr>
<td>142.6</td>
<td>9.9</td>
<td>.765</td>
<td>168.1</td>
<td>18.6</td>
<td>.941</td>
<td>188.3</td>
<td>15.3</td>
<td>1.246</td>
</tr>
<tr>
<td>143.6</td>
<td>8.0</td>
<td>.628</td>
<td>168.8</td>
<td>8.1</td>
<td>.190</td>
<td>189.4</td>
<td>10.8</td>
<td>.083</td>
</tr>
<tr>
<td>144.6</td>
<td>8.9</td>
<td>.693</td>
<td>169.1</td>
<td>16.1</td>
<td>1.185</td>
<td>189.5</td>
<td>12.6</td>
<td>.190</td>
</tr>
<tr>
<td>145.6</td>
<td>6.9</td>
<td>.547</td>
<td>170.1</td>
<td>7.5</td>
<td>.236</td>
<td>189.7</td>
<td>3.2</td>
<td>.262</td>
</tr>
<tr>
<td>146.6</td>
<td>10.3</td>
<td>.793</td>
<td>170.5</td>
<td>27.6</td>
<td>1.874</td>
<td>190.7</td>
<td>6.2</td>
<td>.099</td>
</tr>
<tr>
<td>147.6</td>
<td>8.8</td>
<td>.686</td>
<td>171.5</td>
<td>22.2</td>
<td>1.564</td>
<td>190.9</td>
<td>9.3</td>
<td>.794</td>
</tr>
<tr>
<td>148.6</td>
<td>7.4</td>
<td>.584</td>
<td>172.5</td>
<td>20.3</td>
<td>.580</td>
<td>192.0</td>
<td>10.0</td>
<td>.154</td>
</tr>
<tr>
<td>149.6</td>
<td>7.5</td>
<td>.591</td>
<td>172.9</td>
<td>14.3</td>
<td>.640</td>
<td>192.2</td>
<td>5.7</td>
<td>.182</td>
</tr>
<tr>
<td>150.6</td>
<td>7.0</td>
<td>.554</td>
<td>173.5</td>
<td>18.7</td>
<td>1.350</td>
<td>192.6</td>
<td>17.9</td>
<td>.260</td>
</tr>
<tr>
<td>151.6</td>
<td>9.3</td>
<td>.722</td>
<td>174.5</td>
<td>22.0</td>
<td>1.552</td>
<td>192.8</td>
<td>.0</td>
<td>.000</td>
</tr>
<tr>
<td>152.6</td>
<td>18.3</td>
<td>1.325</td>
<td>175.5</td>
<td>23.0</td>
<td>1.611</td>
<td>193.8</td>
<td>.0</td>
<td>.000</td>
</tr>
<tr>
<td>153.6</td>
<td>13.7</td>
<td>1.130</td>
<td>176.5</td>
<td>23.0</td>
<td>1.611</td>
<td>194.8</td>
<td>.0</td>
<td>.000</td>
</tr>
<tr>
<td>154.7</td>
<td>11.2</td>
<td>.942</td>
<td>177.5</td>
<td>12.4</td>
<td>.939</td>
<td>195.3</td>
<td>3.2</td>
<td>.262</td>
</tr>
<tr>
<td>155.8</td>
<td>16.6</td>
<td>1.217</td>
<td>178.5</td>
<td>13.5</td>
<td>1.013</td>
<td>196.3</td>
<td>3.4</td>
<td>.111</td>
</tr>
<tr>
<td>156.8</td>
<td>14.3</td>
<td>1.067</td>
<td>179.5</td>
<td>13.6</td>
<td>1.020</td>
<td>196.7</td>
<td>3.5</td>
<td>.086</td>
</tr>
<tr>
<td>157.8</td>
<td>10.5</td>
<td>.484</td>
<td>180.5</td>
<td>21.4</td>
<td>.606</td>
<td>197.0</td>
<td>1.7</td>
<td>.099</td>
</tr>
<tr>
<td>158.4</td>
<td>5.5</td>
<td>.044</td>
<td>180.9</td>
<td>9.0</td>
<td>.070</td>
<td>197.7</td>
<td>.5</td>
<td>.004</td>
</tr>
<tr>
<td>158.5</td>
<td>13.8</td>
<td>1.034</td>
<td>181.0</td>
<td>24.5</td>
<td>.679</td>
<td>197.8</td>
<td>.7</td>
<td>.012</td>
</tr>
</tbody>
</table>

/ Depth to top of sample.
TABLE B-12. - USBM Rock Springs site 3, well 1--Continued

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.0</td>
<td>0.4</td>
<td>0.007</td>
<td>202.2</td>
<td>3.1</td>
<td>0.254</td>
<td>207.2</td>
<td>1.4</td>
<td>0.222</td>
</tr>
<tr>
<td>198.2</td>
<td>1.6</td>
<td>.133</td>
<td>203.2</td>
<td>3.9</td>
<td>.317</td>
<td>208.1</td>
<td>7.2</td>
<td>.512</td>
</tr>
<tr>
<td>199.2</td>
<td>2.9</td>
<td>.238</td>
<td>204.2</td>
<td>3.9</td>
<td>.317</td>
<td>209.0</td>
<td>6.1</td>
<td>.146</td>
</tr>
<tr>
<td>200.2</td>
<td>3.6</td>
<td>.294</td>
<td>205.2</td>
<td>6.2</td>
<td>.494</td>
<td>209.3</td>
<td>1.0</td>
<td>.025</td>
</tr>
<tr>
<td>201.2</td>
<td>3.3</td>
<td>.270</td>
<td>206.2</td>
<td>5.3</td>
<td>.426</td>
<td>209.6</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.5</td>
<td>9.6</td>
<td>0.446</td>
<td>69.0</td>
<td>24.8</td>
<td>1.716</td>
<td>87.6</td>
<td>4.0</td>
<td>0.130</td>
</tr>
<tr>
<td>45.1</td>
<td>19.5</td>
<td>1.400</td>
<td>70.0</td>
<td>16.9</td>
<td>1.237</td>
<td>88.0</td>
<td>5.0</td>
<td>.403</td>
</tr>
<tr>
<td>46.1</td>
<td>18.1</td>
<td>.651</td>
<td>71.0</td>
<td>30.9</td>
<td>1.436</td>
<td>89.0</td>
<td>5.1</td>
<td>.410</td>
</tr>
<tr>
<td>46.6</td>
<td>24.2</td>
<td>1.009</td>
<td>71.7</td>
<td>35.1</td>
<td>2.268</td>
<td>90.0</td>
<td>4.7</td>
<td>.380</td>
</tr>
<tr>
<td>47.2</td>
<td>31.0</td>
<td>2.057</td>
<td>72.7</td>
<td>26.2</td>
<td>.898</td>
<td>91.0</td>
<td>4.1</td>
<td>.333</td>
</tr>
<tr>
<td>48.2</td>
<td>33.1</td>
<td>2.384</td>
<td>73.2</td>
<td>28.9</td>
<td>1.556</td>
<td>92.0</td>
<td>6.2</td>
<td>.445</td>
</tr>
<tr>
<td>49.3</td>
<td>24.7</td>
<td>1.197</td>
<td>74.0</td>
<td>14.6</td>
<td>.217</td>
<td>92.9</td>
<td>4.4</td>
<td>.142</td>
</tr>
<tr>
<td>50.0</td>
<td>34.6</td>
<td>2.243</td>
<td>74.2</td>
<td>27.6</td>
<td>1.874</td>
<td>93.3</td>
<td>19.4</td>
<td>1.533</td>
</tr>
<tr>
<td>51.0</td>
<td>29.8</td>
<td>1.994</td>
<td>75.2</td>
<td>31.7</td>
<td>2.094</td>
<td>94.4</td>
<td>14.9</td>
<td>1.107</td>
</tr>
<tr>
<td>52.0</td>
<td>18.8</td>
<td>.407</td>
<td>76.2</td>
<td>32.2</td>
<td>2.120</td>
<td>95.4</td>
<td>19.9</td>
<td>1.425</td>
</tr>
<tr>
<td>52.3</td>
<td>22.1</td>
<td>1.558</td>
<td>77.2</td>
<td>25.0</td>
<td>.345</td>
<td>96.4</td>
<td>22.8</td>
<td>1.119</td>
</tr>
<tr>
<td>53.3</td>
<td>21.1</td>
<td>1.198</td>
<td>77.4</td>
<td>12.4</td>
<td>.188</td>
<td>97.1</td>
<td>33.8</td>
<td>.881</td>
</tr>
<tr>
<td>54.1</td>
<td>16.1</td>
<td>.948</td>
<td>77.6</td>
<td>19.7</td>
<td>.424</td>
<td>97.5</td>
<td>6.5</td>
<td>.207</td>
</tr>
<tr>
<td>54.9</td>
<td>11.2</td>
<td>.856</td>
<td>77.9</td>
<td>20.2</td>
<td>1.443</td>
<td>97.9</td>
<td>12.1</td>
<td>.184</td>
</tr>
<tr>
<td>55.9</td>
<td>15.4</td>
<td>.228</td>
<td>78.9</td>
<td>12.9</td>
<td>.486</td>
<td>98.1</td>
<td>4.8</td>
<td>.077</td>
</tr>
<tr>
<td>56.1</td>
<td>21.1</td>
<td>1.498</td>
<td>79.4</td>
<td>12.7</td>
<td>.096</td>
<td>98.3</td>
<td>6.0</td>
<td>.144</td>
</tr>
<tr>
<td>57.1</td>
<td>18.9</td>
<td>.273</td>
<td>79.5</td>
<td>16.0</td>
<td>.236</td>
<td>98.6</td>
<td>.3</td>
<td>.005</td>
</tr>
<tr>
<td>57.3</td>
<td>14.1</td>
<td>1.054</td>
<td>79.7</td>
<td>17.5</td>
<td>1.275</td>
<td>98.8</td>
<td>10.6</td>
<td>.244</td>
</tr>
<tr>
<td>58.3</td>
<td>17.0</td>
<td>1.243</td>
<td>80.7</td>
<td>28.4</td>
<td>1.918</td>
<td>99.1</td>
<td>.3</td>
<td>.005</td>
</tr>
<tr>
<td>59.3</td>
<td>22.7</td>
<td>1.593</td>
<td>81.7</td>
<td>25.7</td>
<td>.707</td>
<td>99.3</td>
<td>8.5</td>
<td>.465</td>
</tr>
<tr>
<td>60.3</td>
<td>19.2</td>
<td>1.381</td>
<td>82.1</td>
<td>17.0</td>
<td>.994</td>
<td>100.0</td>
<td>8.8</td>
<td>.617</td>
</tr>
<tr>
<td>61.3</td>
<td>18.4</td>
<td>1.332</td>
<td>82.9</td>
<td>15.1</td>
<td>.448</td>
<td>100.9</td>
<td>8.8</td>
<td>.274</td>
</tr>
<tr>
<td>62.3</td>
<td>19.5</td>
<td>1.400</td>
<td>83.3</td>
<td>19.1</td>
<td>1.512</td>
<td>101.3</td>
<td>9.5</td>
<td>.074</td>
</tr>
<tr>
<td>63.3</td>
<td>13.0</td>
<td>.980</td>
<td>84.4</td>
<td>17.1</td>
<td>.125</td>
<td>101.4</td>
<td>9.1</td>
<td>.141</td>
</tr>
<tr>
<td>64.3</td>
<td>15.1</td>
<td>.560</td>
<td>84.5</td>
<td>25.6</td>
<td>1.586</td>
<td>101.6</td>
<td>6.0</td>
<td>.144</td>
</tr>
<tr>
<td>64.8</td>
<td>5.3</td>
<td>.085</td>
<td>85.3</td>
<td>23.3</td>
<td>1.466</td>
<td>101.9 Missing</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65.0</td>
<td>25.0</td>
<td>1.727</td>
<td>86.2</td>
<td>16.0</td>
<td>.825</td>
<td>102.0</td>
<td>8.1</td>
<td>.635</td>
</tr>
<tr>
<td>66.0</td>
<td>26.3</td>
<td>1.801</td>
<td>86.9</td>
<td>5.7</td>
<td>.182</td>
<td>103.0</td>
<td>11.6</td>
<td>.884</td>
</tr>
<tr>
<td>67.0</td>
<td>26.2</td>
<td>1.795</td>
<td>87.3</td>
<td>10.1</td>
<td>.156</td>
<td>104.0</td>
<td>14.3</td>
<td>1.174</td>
</tr>
<tr>
<td>68.0</td>
<td>22.1</td>
<td>1.558</td>
<td>87.5</td>
<td>5.9</td>
<td>.047</td>
<td>105.1</td>
<td>18.3</td>
<td>1.192</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-13. - USBM Rock Springs site 4, well 5—Continued

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>106.0</td>
<td>0.0</td>
<td>0.000</td>
<td>123.5</td>
<td>11.6</td>
<td>0.884</td>
<td>145.1</td>
<td>8.2</td>
<td>0.578</td>
</tr>
<tr>
<td>106.7</td>
<td>9.3</td>
<td>.722</td>
<td>124.5</td>
<td>8.1</td>
<td>.826</td>
<td>146.0</td>
<td>16.9</td>
<td>.495</td>
</tr>
<tr>
<td>107.7</td>
<td>12.9</td>
<td>.973</td>
<td>125.8</td>
<td>9.5</td>
<td>.810</td>
<td>146.4</td>
<td>17.8</td>
<td>1.294</td>
</tr>
<tr>
<td>108.7</td>
<td>4.0</td>
<td>.165</td>
<td>126.9</td>
<td>5.8</td>
<td>.464</td>
<td>147.4</td>
<td>17.4</td>
<td>1.014</td>
</tr>
<tr>
<td>108.9</td>
<td>14.1</td>
<td>.211</td>
<td>127.9</td>
<td>7.6</td>
<td>.598</td>
<td>148.2</td>
<td>5.7</td>
<td>.228</td>
</tr>
<tr>
<td>109.1</td>
<td>7.5</td>
<td>.118</td>
<td>128.9</td>
<td>10.4</td>
<td>.800</td>
<td>148.7</td>
<td>16.2</td>
<td>1.191</td>
</tr>
<tr>
<td>109.3</td>
<td>13.9</td>
<td>.208</td>
<td>129.9</td>
<td>10.1</td>
<td>.779</td>
<td>149.7</td>
<td>17.7</td>
<td>.772</td>
</tr>
<tr>
<td>109.5</td>
<td>0.0</td>
<td>0.000</td>
<td>130.9</td>
<td>8.5</td>
<td>.664</td>
<td>150.3</td>
<td>6.6</td>
<td>.052</td>
</tr>
<tr>
<td>109.8</td>
<td>11.8</td>
<td>.898</td>
<td>131.9</td>
<td>7.6</td>
<td>.478</td>
<td>150.4</td>
<td>13.5</td>
<td>1.013</td>
</tr>
<tr>
<td>110.8</td>
<td>10.0</td>
<td>.772</td>
<td>132.7</td>
<td>8.8</td>
<td>.686</td>
<td>151.4</td>
<td>21.6</td>
<td>.306</td>
</tr>
<tr>
<td>111.8</td>
<td>0.9</td>
<td>.060</td>
<td>133.7</td>
<td>10.7</td>
<td>.575</td>
<td>151.6</td>
<td>7.8</td>
<td>.184</td>
</tr>
<tr>
<td>112.6</td>
<td>2.4</td>
<td>.079</td>
<td>134.4</td>
<td>19.6</td>
<td>1.406</td>
<td>151.9</td>
<td>23.6</td>
<td>.494</td>
</tr>
<tr>
<td>113.0</td>
<td>0.8</td>
<td>.047</td>
<td>135.4</td>
<td>10.8</td>
<td>.248</td>
<td>152.2</td>
<td>28.4</td>
<td>1.918</td>
</tr>
<tr>
<td>113.7</td>
<td>0.8</td>
<td>.034</td>
<td>135.7</td>
<td>8.9</td>
<td>.762</td>
<td>153.2</td>
<td>14.8</td>
<td>1.100</td>
</tr>
<tr>
<td>114.2</td>
<td>2.3</td>
<td>.019</td>
<td>136.8</td>
<td>14.2</td>
<td>1.060</td>
<td>154.2</td>
<td>24.2</td>
<td>.336</td>
</tr>
<tr>
<td>114.3</td>
<td>1.4</td>
<td>.117</td>
<td>137.8</td>
<td>13.6</td>
<td>1.020</td>
<td>154.4</td>
<td>8.7</td>
<td>.136</td>
</tr>
<tr>
<td>115.3</td>
<td>1.0</td>
<td>.076</td>
<td>138.8</td>
<td>9.7</td>
<td>.825</td>
<td>154.6</td>
<td>16.0</td>
<td>1.061</td>
</tr>
<tr>
<td>116.2</td>
<td>3.7</td>
<td>.121</td>
<td>139.9</td>
<td>3.3</td>
<td>.027</td>
<td>155.5</td>
<td>21.8</td>
<td>1.540</td>
</tr>
<tr>
<td>116.6</td>
<td>0.3</td>
<td>.005</td>
<td>140.0</td>
<td>13.4</td>
<td>1.007</td>
<td>156.6</td>
<td>24.2</td>
<td>1.681</td>
</tr>
<tr>
<td>116.8</td>
<td>3.8</td>
<td>.124</td>
<td>141.0</td>
<td>13.8</td>
<td>.724</td>
<td>157.5</td>
<td>25.2</td>
<td>.348</td>
</tr>
<tr>
<td>117.2</td>
<td>4.7</td>
<td>.152</td>
<td>141.7</td>
<td>6.1</td>
<td>.146</td>
<td>157.7</td>
<td>21.1</td>
<td>.599</td>
</tr>
<tr>
<td>117.6</td>
<td>7.0</td>
<td>.111</td>
<td>142.0</td>
<td>12.8</td>
<td>.386</td>
<td>158.1</td>
<td>12.6</td>
<td>.952</td>
</tr>
<tr>
<td>117.8</td>
<td>15.1</td>
<td>.224</td>
<td>142.4</td>
<td>2.2</td>
<td>.018</td>
<td>159.1</td>
<td>7.0</td>
<td>.111</td>
</tr>
<tr>
<td>118.0</td>
<td>14.2</td>
<td>.954</td>
<td>142.5</td>
<td>3.5</td>
<td>.572</td>
<td>159.3</td>
<td>10.7</td>
<td>.246</td>
</tr>
<tr>
<td>118.9</td>
<td>7.6</td>
<td>.598</td>
<td>142.7</td>
<td>19.7</td>
<td>.141</td>
<td>159.6</td>
<td>11.0</td>
<td>.421</td>
</tr>
<tr>
<td>119.9</td>
<td>8.0</td>
<td>.188</td>
<td>142.8</td>
<td>1.8</td>
<td>.030</td>
<td>160.1</td>
<td>18.0</td>
<td>.261</td>
</tr>
<tr>
<td>120.2</td>
<td>11.9</td>
<td>.271</td>
<td>143.0</td>
<td>15.1</td>
<td>.448</td>
<td>160.3</td>
<td>17.9</td>
<td>.260</td>
</tr>
<tr>
<td>120.5</td>
<td>6.1</td>
<td>.487</td>
<td>143.4</td>
<td>12.2</td>
<td>.370</td>
<td>160.5</td>
<td>6.5</td>
<td>.155</td>
</tr>
<tr>
<td>121.5</td>
<td>7.5</td>
<td>.591</td>
<td>143.8</td>
<td>14.3</td>
<td>.320</td>
<td>160.8</td>
<td>15.7</td>
<td>.348</td>
</tr>
<tr>
<td>122.5</td>
<td>10.4</td>
<td>.800</td>
<td>144.1</td>
<td>19.6</td>
<td>1.406</td>
<td>161.1</td>
<td>23.2</td>
<td>1.461</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-13. - USBM Rock Springs site 4, well 5--Continued

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.0</td>
<td>21.8</td>
<td>0.924</td>
<td>169.7</td>
<td>8.9</td>
<td>0.693</td>
<td>179.3</td>
<td>2.9</td>
<td>0.238</td>
</tr>
<tr>
<td>162.6</td>
<td>12.4</td>
<td>0.094</td>
<td>170.7</td>
<td>7.8</td>
<td>.306</td>
<td>180.3</td>
<td>3.7</td>
<td>.272</td>
</tr>
<tr>
<td>162.7</td>
<td>20.7</td>
<td>.737</td>
<td>171.2</td>
<td>14.3</td>
<td>.427</td>
<td>181.2</td>
<td>2.3</td>
<td>.190</td>
</tr>
<tr>
<td>163.2</td>
<td>13.2</td>
<td>.397</td>
<td>171.6</td>
<td>3.9</td>
<td>.095</td>
<td>182.2</td>
<td>2.8</td>
<td>.230</td>
</tr>
<tr>
<td>163.6</td>
<td>15.6</td>
<td>1.037</td>
<td>171.9</td>
<td>22.3</td>
<td>.157</td>
<td>183.2</td>
<td>3.5</td>
<td>.286</td>
</tr>
<tr>
<td>164.5</td>
<td>8.8</td>
<td>.069</td>
<td>172.0</td>
<td>Missing</td>
<td>-</td>
<td>184.2</td>
<td>3.3</td>
<td>.081</td>
</tr>
<tr>
<td>164.6</td>
<td>11.1</td>
<td>.340</td>
<td>174.0</td>
<td>.0</td>
<td>.000</td>
<td>184.5</td>
<td>4.2</td>
<td>.239</td>
</tr>
<tr>
<td>165.0</td>
<td>19.5</td>
<td>.420</td>
<td>174.5</td>
<td>.0</td>
<td>.000</td>
<td>185.2</td>
<td>5.3</td>
<td>.426</td>
</tr>
<tr>
<td>165.3</td>
<td>13.3</td>
<td>.300</td>
<td>175.2</td>
<td>3.3</td>
<td>.297</td>
<td>186.2</td>
<td>5.1</td>
<td>.164</td>
</tr>
<tr>
<td>165.6</td>
<td>17.6</td>
<td>1.281</td>
<td>176.3</td>
<td>2.2</td>
<td>.200</td>
<td>186.6</td>
<td>3.2</td>
<td>.262</td>
</tr>
<tr>
<td>166.6</td>
<td>12.7</td>
<td>.959</td>
<td>177.4</td>
<td>1.9</td>
<td>.142</td>
<td>187.6</td>
<td>1.0</td>
<td>.092</td>
</tr>
<tr>
<td>167.6</td>
<td>14.3</td>
<td>1.067</td>
<td>178.3</td>
<td>Missing</td>
<td>-</td>
<td>188.7</td>
<td>4.5</td>
<td>.291</td>
</tr>
<tr>
<td>168.6</td>
<td>17.3</td>
<td>.252</td>
<td>178.8</td>
<td>1.5</td>
<td>.062</td>
<td>189.5</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>168.8</td>
<td>6.5</td>
<td>.465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.0</td>
<td>15.4</td>
<td>1.139</td>
<td>113.0</td>
<td>19.8</td>
<td>1.419</td>
<td>131.0</td>
<td>32.2</td>
<td>2.120</td>
</tr>
<tr>
<td>91.0</td>
<td>19.6</td>
<td>1.406</td>
<td>114.0</td>
<td>14.9</td>
<td>1.107</td>
<td>132.0</td>
<td>34.4</td>
<td>2.233</td>
</tr>
<tr>
<td>92.0</td>
<td>18.6</td>
<td>1.344</td>
<td>115.0</td>
<td>13.6</td>
<td>.510</td>
<td>133.0</td>
<td>34.7</td>
<td>2.248</td>
</tr>
<tr>
<td>93.0</td>
<td>25.8</td>
<td>1.773</td>
<td>115.5</td>
<td>Missing</td>
<td>-</td>
<td>134.0</td>
<td>27.6</td>
<td>1.874</td>
</tr>
<tr>
<td>94.0</td>
<td>12.4</td>
<td>.939</td>
<td>116.5</td>
<td>14.0</td>
<td>.524</td>
<td>135.0</td>
<td>23.9</td>
<td>1.664</td>
</tr>
<tr>
<td>95.0</td>
<td>2.5</td>
<td>.206</td>
<td>117.0</td>
<td>18.9</td>
<td>1.363</td>
<td>136.0</td>
<td>22.7</td>
<td>.956</td>
</tr>
<tr>
<td>96.0</td>
<td>.4</td>
<td>.034</td>
<td>118.0</td>
<td>20.4</td>
<td>1.455</td>
<td>136.6</td>
<td>Missing</td>
<td>-</td>
</tr>
<tr>
<td>97.0</td>
<td>1.2</td>
<td>.100</td>
<td>119.0</td>
<td>17.3</td>
<td>1.262</td>
<td>137.0</td>
<td>14.9</td>
<td>1.107</td>
</tr>
<tr>
<td>98.0</td>
<td>.6</td>
<td>.050</td>
<td>120.0</td>
<td>19.9</td>
<td>1.425</td>
<td>138.0</td>
<td>26.0</td>
<td>1.784</td>
</tr>
<tr>
<td>99.0</td>
<td>.3</td>
<td>.025</td>
<td>121.0</td>
<td>Missing</td>
<td>-</td>
<td>139.0</td>
<td>30.1</td>
<td>2.010</td>
</tr>
<tr>
<td>100.0</td>
<td>2.8</td>
<td>.230</td>
<td>121.2</td>
<td>12.8</td>
<td>.773</td>
<td>140.0</td>
<td>30.5</td>
<td>2.030</td>
</tr>
<tr>
<td>101.0</td>
<td>8.1</td>
<td>.635</td>
<td>122.0</td>
<td>15.6</td>
<td>1.152</td>
<td>141.0</td>
<td>17.2</td>
<td>1.256</td>
</tr>
<tr>
<td>102.0</td>
<td>18.5</td>
<td>1.338</td>
<td>123.0</td>
<td>28.5</td>
<td>1.923</td>
<td>142.0</td>
<td>29.6</td>
<td>1.983</td>
</tr>
<tr>
<td>103.0</td>
<td>18.4</td>
<td>1.332</td>
<td>124.0</td>
<td>25.2</td>
<td>1.739</td>
<td>143.0</td>
<td>23.8</td>
<td>1.658</td>
</tr>
<tr>
<td>104.0</td>
<td>34.1</td>
<td>2.218</td>
<td>125.0</td>
<td>23.4</td>
<td>1.635</td>
<td>144.0</td>
<td>15.3</td>
<td>1.133</td>
</tr>
<tr>
<td>105.0</td>
<td>29.0</td>
<td>1.950</td>
<td>126.0</td>
<td>20.4</td>
<td>.436</td>
<td>145.0</td>
<td>13.4</td>
<td>1.007</td>
</tr>
<tr>
<td>106.0</td>
<td>32.1</td>
<td>2.115</td>
<td>126.3</td>
<td>Missing</td>
<td>-</td>
<td>146.0</td>
<td>5.4</td>
<td>.433</td>
</tr>
<tr>
<td>107.0</td>
<td>31.4</td>
<td>2.079</td>
<td>126.5</td>
<td>15.9</td>
<td>1.758</td>
<td>147.0</td>
<td>5.0</td>
<td>.403</td>
</tr>
<tr>
<td>108.0</td>
<td>28.6</td>
<td>1.929</td>
<td>128.0</td>
<td>17.7</td>
<td>1.287</td>
<td>148.0</td>
<td>4.0</td>
<td>.325</td>
</tr>
<tr>
<td>109.0</td>
<td>22.8</td>
<td>1.599</td>
<td>129.0</td>
<td>34.3</td>
<td>.446</td>
<td>149.0</td>
<td>3.4</td>
<td>.278</td>
</tr>
<tr>
<td>110.0</td>
<td>21.4</td>
<td>1.516</td>
<td>129.2</td>
<td>Missing</td>
<td>-</td>
<td>150.0</td>
<td>2.7</td>
<td>.178</td>
</tr>
<tr>
<td>111.0</td>
<td>15.6</td>
<td>1.152</td>
<td>129.9</td>
<td>34.6</td>
<td>2.467</td>
<td>150.8</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>112.0</td>
<td>15.7</td>
<td>1.159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-15. - USBM Rock Springs site 7, well 11

<table>
<thead>
<tr>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.1</td>
<td>17.4</td>
<td>1.268</td>
<td>76.4</td>
<td>29.9</td>
<td>1.120</td>
<td>85.4</td>
<td>26.4</td>
<td>1.807</td>
</tr>
<tr>
<td>70.1</td>
<td>21.3</td>
<td>1.510</td>
<td>77.0</td>
<td>20.3</td>
<td>1.449</td>
<td>86.4</td>
<td>31.0</td>
<td>2.057</td>
</tr>
<tr>
<td>71.1</td>
<td>18.1</td>
<td>0.656</td>
<td>78.0</td>
<td>19.9</td>
<td>1.425</td>
<td>87.4</td>
<td>31.3</td>
<td>0.829</td>
</tr>
<tr>
<td>71.6</td>
<td>19.8</td>
<td>1.419</td>
<td>79.0</td>
<td>17.5</td>
<td>1.275</td>
<td>87.8</td>
<td>22.7</td>
<td>0.319</td>
</tr>
<tr>
<td>72.6</td>
<td>21.4</td>
<td>0.910</td>
<td>80.0</td>
<td>17.7</td>
<td>1.287</td>
<td>88.0</td>
<td>12.7</td>
<td>0.96</td>
</tr>
<tr>
<td>73.2</td>
<td>14.5</td>
<td>1.080</td>
<td>81.0</td>
<td>20.8</td>
<td>0.888</td>
<td>88.1</td>
<td>16.9</td>
<td>0.124</td>
</tr>
<tr>
<td>74.2</td>
<td>11.6</td>
<td>0.177</td>
<td>81.6</td>
<td>27.2</td>
<td>1.296</td>
<td>88.2</td>
<td>22.4</td>
<td>0.473</td>
</tr>
<tr>
<td>74.4</td>
<td>6.3</td>
<td>0.100</td>
<td>82.3</td>
<td>14.5</td>
<td>0.108</td>
<td>88.5</td>
<td>26.5</td>
<td>1.812</td>
</tr>
<tr>
<td>74.6</td>
<td>28.1</td>
<td>1.901</td>
<td>82.4</td>
<td>31.1</td>
<td>2.063</td>
<td>89.5</td>
<td>18.8</td>
<td>0.678</td>
</tr>
<tr>
<td>75.6</td>
<td>26.8</td>
<td>0.366</td>
<td>83.4</td>
<td>29.1</td>
<td>1.959</td>
<td>90.0</td>
<td>15.2</td>
<td>0.676</td>
</tr>
<tr>
<td>75.8</td>
<td>21.5</td>
<td>0.913</td>
<td>84.4</td>
<td>28.5</td>
<td>1.923</td>
<td>90.6</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

^{1/} Depth to top of sample.
<table>
<thead>
<tr>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
<th>Sample depth, feet<sup>1/</sup></th>
<th>Oil, gal per ton</th>
<th>Footage times, gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>360.0</td>
<td>33.8</td>
<td>2.203</td>
<td>383.7</td>
<td>17.6</td>
<td>1.281</td>
<td>404.0</td>
<td>19.7</td>
<td>1.412</td>
</tr>
<tr>
<td>361.0</td>
<td>32.8</td>
<td>.645</td>
<td>384.7</td>
<td>21.6</td>
<td>1.375</td>
<td>405.0</td>
<td>16.0</td>
<td>1.179</td>
</tr>
<tr>
<td>361.3</td>
<td>30.3</td>
<td>.404</td>
<td>385.6</td>
<td>27.9</td>
<td>1.890</td>
<td>406.0</td>
<td>15.5</td>
<td>1.146</td>
</tr>
<tr>
<td>361.5</td>
<td>31.6</td>
<td>2.089</td>
<td>386.6</td>
<td>32.8</td>
<td>2.151</td>
<td>407.0</td>
<td>16.5</td>
<td>.606</td>
</tr>
<tr>
<td>362.5</td>
<td>32.3</td>
<td>2.126</td>
<td>387.6</td>
<td>35.8</td>
<td>2.303</td>
<td>407.5</td>
<td>5.9</td>
<td>.094</td>
</tr>
<tr>
<td>363.5</td>
<td>27.2</td>
<td>.740</td>
<td>388.6</td>
<td>22.4</td>
<td>.630</td>
<td>407.7</td>
<td>10.8</td>
<td>.083</td>
</tr>
<tr>
<td>363.9</td>
<td>27.6</td>
<td>1.874</td>
<td>389.0</td>
<td>22.0</td>
<td>.466</td>
<td>407.8</td>
<td>1.2</td>
<td>.010</td>
</tr>
<tr>
<td>364.9</td>
<td>21.2</td>
<td>1.504</td>
<td>389.3</td>
<td>21.7</td>
<td>.920</td>
<td>407.9</td>
<td>7.4</td>
<td>.292</td>
</tr>
<tr>
<td>365.9</td>
<td>19.8</td>
<td>.710</td>
<td>389.9</td>
<td>23.9</td>
<td>1.498</td>
<td>408.4</td>
<td>3.8</td>
<td>.062</td>
</tr>
<tr>
<td>366.4</td>
<td>13.2</td>
<td>.993</td>
<td>390.8</td>
<td>14.5</td>
<td>1.296</td>
<td>408.6</td>
<td>11.1</td>
<td>.340</td>
</tr>
<tr>
<td>367.4</td>
<td>18.8</td>
<td>1.357</td>
<td>392.0</td>
<td>15.4</td>
<td>.114</td>
<td>409.0</td>
<td>5.1</td>
<td>.205</td>
</tr>
<tr>
<td>368.4</td>
<td>16.7</td>
<td>1.224</td>
<td>392.1</td>
<td>23.1</td>
<td>.485</td>
<td>409.5</td>
<td>9.4</td>
<td>.729</td>
</tr>
<tr>
<td>369.4</td>
<td>13.6</td>
<td>1.020</td>
<td>392.4</td>
<td>14.4</td>
<td>.430</td>
<td>410.5</td>
<td>8.9</td>
<td>.693</td>
</tr>
<tr>
<td>370.4</td>
<td>20.8</td>
<td>1.480</td>
<td>392.8</td>
<td>26.7</td>
<td>1.823</td>
<td>411.5</td>
<td>8.3</td>
<td>.520</td>
</tr>
<tr>
<td>371.4</td>
<td>25.0</td>
<td>1.727</td>
<td>393.8</td>
<td>30.4</td>
<td>1.822</td>
<td>412.3</td>
<td>18.3</td>
<td>.132</td>
</tr>
<tr>
<td>372.4</td>
<td>22.5</td>
<td>1.266</td>
<td>394.7</td>
<td>13.7</td>
<td>1.027</td>
<td>412.4</td>
<td>10.2</td>
<td>.472</td>
</tr>
<tr>
<td>373.2</td>
<td>18.5</td>
<td>1.338</td>
<td>395.7</td>
<td>11.0</td>
<td>.168</td>
<td>413.0</td>
<td>10.8</td>
<td>.828</td>
</tr>
<tr>
<td>374.2</td>
<td>18.7</td>
<td>1.350</td>
<td>395.9</td>
<td>18.3</td>
<td>1.192</td>
<td>414.0</td>
<td>11.6</td>
<td>.884</td>
</tr>
<tr>
<td>375.2</td>
<td>13.2</td>
<td>.695</td>
<td>396.8</td>
<td>24.9</td>
<td>.688</td>
<td>415.0</td>
<td>17.2</td>
<td>1.256</td>
</tr>
<tr>
<td>375.9</td>
<td>11.9</td>
<td>.909</td>
<td>397.2</td>
<td>25.8</td>
<td>.177</td>
<td>416.0</td>
<td>16.1</td>
<td>.356</td>
</tr>
<tr>
<td>376.0</td>
<td>14.1</td>
<td>1.159</td>
<td>397.3</td>
<td>21.7</td>
<td>1.534</td>
<td>416.3</td>
<td>2.7</td>
<td>.089</td>
</tr>
<tr>
<td>377.1</td>
<td>10.7</td>
<td>.164</td>
<td>398.3</td>
<td>16.6</td>
<td>.608</td>
<td>416.7</td>
<td>10.2</td>
<td>.786</td>
</tr>
<tr>
<td>377.3</td>
<td>24.0</td>
<td>.835</td>
<td>398.8</td>
<td>9.1</td>
<td>.212</td>
<td>417.7</td>
<td>13.2</td>
<td>.993</td>
</tr>
<tr>
<td>377.8</td>
<td>29.0</td>
<td>1.950</td>
<td>399.1</td>
<td>12.9</td>
<td>.681</td>
<td>418.7</td>
<td>11.7</td>
<td>.178</td>
</tr>
<tr>
<td>378.8</td>
<td>27.2</td>
<td>1.111</td>
<td>399.8</td>
<td>11.7</td>
<td>.089</td>
<td>418.9</td>
<td>11.1</td>
<td>.085</td>
</tr>
<tr>
<td>379.4</td>
<td>23.3</td>
<td>1.629</td>
<td>399.9</td>
<td>10.4</td>
<td>.080</td>
<td>419.0</td>
<td>2.1</td>
<td>.052</td>
</tr>
<tr>
<td>380.4</td>
<td>26.2</td>
<td>.898</td>
<td>400.0</td>
<td>6.9</td>
<td>.547</td>
<td>419.3</td>
<td>7.7</td>
<td>.061</td>
</tr>
<tr>
<td>380.9</td>
<td>23.5</td>
<td>.984</td>
<td>401.0</td>
<td>6.4</td>
<td>.509</td>
<td>419.4</td>
<td>16.5</td>
<td>1.211</td>
</tr>
<tr>
<td>381.5</td>
<td>Missing</td>
<td>-</td>
<td>402.0</td>
<td>4.4</td>
<td>.356</td>
<td>420.4</td>
<td>15.1</td>
<td>1.232</td>
</tr>
<tr>
<td>382.6</td>
<td>20.2</td>
<td>1.587</td>
<td>403.0</td>
<td>4.5</td>
<td>.364</td>
<td>421.5</td>
<td>3.0</td>
<td>.172</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-16. - USBM Green River site 1 well 1—Continued

<table>
<thead>
<tr>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth, feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>422.2</td>
<td>0.6</td>
<td>0.010</td>
<td>443.9</td>
<td>6.4</td>
<td>0.407</td>
<td>464.4</td>
<td>17.1</td>
<td>1.249</td>
</tr>
<tr>
<td>422.4</td>
<td>0.0</td>
<td>0.000</td>
<td>444.7</td>
<td>Missing</td>
<td>-</td>
<td>465.4</td>
<td>16.4</td>
<td>1.204</td>
</tr>
<tr>
<td>422.5</td>
<td>1.0</td>
<td>0.025</td>
<td>446.1</td>
<td>7.5</td>
<td>.591</td>
<td>466.4</td>
<td>17.7</td>
<td>1.287</td>
</tr>
<tr>
<td>422.8</td>
<td>1.1</td>
<td>0.008</td>
<td>447.1</td>
<td>7.0</td>
<td>.554</td>
<td>467.4</td>
<td>15.0</td>
<td>1.113</td>
</tr>
<tr>
<td>423.8</td>
<td>0.0</td>
<td>0.000</td>
<td>448.1</td>
<td>7.2</td>
<td>.569</td>
<td>468.4</td>
<td>26.1</td>
<td>1.790</td>
</tr>
<tr>
<td>424.2</td>
<td>1.0</td>
<td>0.025</td>
<td>449.1</td>
<td>8.3</td>
<td>.650</td>
<td>469.4</td>
<td>22.5</td>
<td>1.740</td>
</tr>
<tr>
<td>424.5</td>
<td>0.0</td>
<td>0.000</td>
<td>450.1</td>
<td>12.0</td>
<td>.182</td>
<td>470.5</td>
<td>19.0</td>
<td>.274</td>
</tr>
<tr>
<td>424.9</td>
<td>1.2</td>
<td>0.010</td>
<td>450.3</td>
<td>15.7</td>
<td>1.159</td>
<td>470.7</td>
<td>17.1</td>
<td>1.249</td>
</tr>
<tr>
<td>425.0</td>
<td>0.5</td>
<td>0.021</td>
<td>451.3</td>
<td>8.7</td>
<td>.679</td>
<td>471.7</td>
<td>21.3</td>
<td>1.208</td>
</tr>
<tr>
<td>425.5</td>
<td>0.8</td>
<td>0.007</td>
<td>452.3</td>
<td>9.4</td>
<td>.219</td>
<td>472.5</td>
<td>Missing</td>
<td>-</td>
</tr>
<tr>
<td>425.6</td>
<td>0.0</td>
<td>0.000</td>
<td>452.6</td>
<td>16.6</td>
<td>1.217</td>
<td>474.5</td>
<td>24.8</td>
<td>1.716</td>
</tr>
<tr>
<td>429.9</td>
<td>0.1</td>
<td>0.009</td>
<td>453.6</td>
<td>13.6</td>
<td>1.020</td>
<td>475.5</td>
<td>23.2</td>
<td>.649</td>
</tr>
<tr>
<td>431.0</td>
<td>0.7</td>
<td>0.047</td>
<td>454.6</td>
<td>15.1</td>
<td>.224</td>
<td>475.9</td>
<td>26.6</td>
<td>1.818</td>
</tr>
<tr>
<td>431.8</td>
<td>0.6</td>
<td>0.035</td>
<td>454.8</td>
<td>10.3</td>
<td>.555</td>
<td>476.9</td>
<td>22.7</td>
<td>.478</td>
</tr>
<tr>
<td>432.5</td>
<td>4.5</td>
<td>.364</td>
<td>455.5</td>
<td>15.0</td>
<td>.779</td>
<td>477.2</td>
<td>16.8</td>
<td>1.230</td>
</tr>
<tr>
<td>433.5</td>
<td>4.8</td>
<td>.194</td>
<td>456.2</td>
<td>11.0</td>
<td>.926</td>
<td>478.2</td>
<td>12.8</td>
<td>.483</td>
</tr>
<tr>
<td>434.3</td>
<td>14.1</td>
<td>.211</td>
<td>457.3</td>
<td>19.6</td>
<td>.281</td>
<td>478.7</td>
<td>12.3</td>
<td>.932</td>
</tr>
<tr>
<td>434.5</td>
<td>14.1</td>
<td>.316</td>
<td>457.5</td>
<td>7.5</td>
<td>.236</td>
<td>479.7</td>
<td>4.5</td>
<td>.036</td>
</tr>
<tr>
<td>434.8</td>
<td>14.0</td>
<td>.314</td>
<td>457.9</td>
<td>9.6</td>
<td>.149</td>
<td>479.8</td>
<td>12.7</td>
<td>.767</td>
</tr>
<tr>
<td>435.1</td>
<td>14.5</td>
<td>.108</td>
<td>458.1</td>
<td>24.3</td>
<td>.337</td>
<td>480.6</td>
<td>17.2</td>
<td>.879</td>
</tr>
<tr>
<td>435.2</td>
<td>13.1</td>
<td>.887</td>
<td>458.3</td>
<td>27.7</td>
<td>.188</td>
<td>481.3</td>
<td>24.9</td>
<td>1.721</td>
</tr>
<tr>
<td>436.1</td>
<td>8.8</td>
<td>.686</td>
<td>458.4</td>
<td>31.8</td>
<td>1.260</td>
<td>482.3</td>
<td>22.6</td>
<td>1.746</td>
</tr>
<tr>
<td>437.1</td>
<td>9.4</td>
<td>.219</td>
<td>459.0</td>
<td>Missing</td>
<td>-</td>
<td>483.4</td>
<td>19.6</td>
<td>.844</td>
</tr>
<tr>
<td>437.4</td>
<td>5.9</td>
<td>.471</td>
<td>460.3</td>
<td>22.6</td>
<td>.317</td>
<td>484.0</td>
<td>21.5</td>
<td>1.522</td>
</tr>
<tr>
<td>438.4</td>
<td>8.1</td>
<td>.635</td>
<td>460.5</td>
<td>20.0</td>
<td>.286</td>
<td>485.0</td>
<td>23.5</td>
<td>.164</td>
</tr>
<tr>
<td>439.4</td>
<td>11.4</td>
<td>.870</td>
<td>460.7</td>
<td>14.6</td>
<td>.326</td>
<td>485.1</td>
<td>17.8</td>
<td>1.165</td>
</tr>
<tr>
<td>440.4</td>
<td>8.6</td>
<td>.671</td>
<td>461.0</td>
<td>18.8</td>
<td>1.357</td>
<td>486.0</td>
<td>21.6</td>
<td>1.375</td>
</tr>
<tr>
<td>441.4</td>
<td>7.9</td>
<td>.310</td>
<td>462.0</td>
<td>19.3</td>
<td>1.388</td>
<td>486.9</td>
<td>23.7</td>
<td>.661</td>
</tr>
<tr>
<td>441.9</td>
<td>8.8</td>
<td>.686</td>
<td>463.0</td>
<td>18.3</td>
<td>1.325</td>
<td>487.3</td>
<td>14.5</td>
<td>.648</td>
</tr>
<tr>
<td>442.9</td>
<td>6.7</td>
<td>.532</td>
<td>464.0</td>
<td>18.6</td>
<td>.538</td>
<td>487.9</td>
<td>8.8</td>
<td>.686</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
TABLE B-16. - USBM Green River site 1, well L--Continued

<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>488.9</td>
<td>14.7</td>
<td>0.328</td>
<td>493.0</td>
<td>3.3</td>
<td>0.108</td>
<td>497.5</td>
<td>4.4</td>
<td>0.356</td>
</tr>
<tr>
<td>489.2</td>
<td>16.3</td>
<td>.359</td>
<td>493.4</td>
<td>1.7</td>
<td>.141</td>
<td>498.5</td>
<td>4.5</td>
<td>.364</td>
</tr>
<tr>
<td>489.5</td>
<td>16.2</td>
<td>.119</td>
<td>494.4</td>
<td>6.4</td>
<td>.204</td>
<td>499.5</td>
<td>4.6</td>
<td>.372</td>
</tr>
<tr>
<td>489.6</td>
<td>5.9</td>
<td>.236</td>
<td>494.8</td>
<td>3.5</td>
<td>.858</td>
<td>500.5</td>
<td>4.1</td>
<td>.333</td>
</tr>
<tr>
<td>490.1</td>
<td>9.8</td>
<td>.758</td>
<td>495.1</td>
<td>2.8</td>
<td>.092</td>
<td>501.5</td>
<td>4.0</td>
<td>.325</td>
</tr>
<tr>
<td>491.1</td>
<td>9.3</td>
<td>.578</td>
<td>495.5</td>
<td>3.4</td>
<td>.278</td>
<td>502.5</td>
<td>4.9</td>
<td>.276</td>
</tr>
<tr>
<td>491.9</td>
<td>14.1</td>
<td>1.159</td>
<td>496.5</td>
<td>4.2</td>
<td>.341</td>
<td>503.2</td>
<td>Bottom</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.

TABLE B-17. - USBM Green River site 2, well Q-12

<table>
<thead>
<tr>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
<th>Sample depth feet</th>
<th>Oil, gal per ton</th>
<th>Footage times gal per cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>0.1</td>
<td>0.008</td>
<td>395</td>
<td>23.9</td>
<td>1.664</td>
<td>415</td>
<td>20.7</td>
<td>1.474</td>
</tr>
<tr>
<td>376</td>
<td>.4</td>
<td>.034</td>
<td>396</td>
<td>28.1</td>
<td>1.901</td>
<td>416</td>
<td>16.5</td>
<td>1.211</td>
</tr>
<tr>
<td>377</td>
<td>.3</td>
<td>.025</td>
<td>397</td>
<td>20.0</td>
<td>1.431</td>
<td>417</td>
<td>17.5</td>
<td>1.275</td>
</tr>
<tr>
<td>378</td>
<td>.0</td>
<td>.000</td>
<td>398</td>
<td>16.8</td>
<td>1.230</td>
<td>418</td>
<td>33.7</td>
<td>2.198</td>
</tr>
<tr>
<td>379</td>
<td>.3</td>
<td>.025</td>
<td>399</td>
<td>14.0</td>
<td>1.047</td>
<td>419</td>
<td>31.7</td>
<td>2.094</td>
</tr>
<tr>
<td>380</td>
<td>.2</td>
<td>.017</td>
<td>400</td>
<td>18.5</td>
<td>1.338</td>
<td>420</td>
<td>33.1</td>
<td>2.167</td>
</tr>
<tr>
<td>381</td>
<td>.5</td>
<td>.042</td>
<td>401</td>
<td>12.7</td>
<td>.959</td>
<td>421</td>
<td>31.3</td>
<td>2.073</td>
</tr>
<tr>
<td>382</td>
<td>8.4</td>
<td>.657</td>
<td>402</td>
<td>12.4</td>
<td>.939</td>
<td>422</td>
<td>26.8</td>
<td>1.829</td>
</tr>
<tr>
<td>383</td>
<td>18.0</td>
<td>1.306</td>
<td>403</td>
<td>23.2</td>
<td>1.623</td>
<td>423</td>
<td>17.9</td>
<td>1.300</td>
</tr>
<tr>
<td>384</td>
<td>23.7</td>
<td>1.652</td>
<td>404</td>
<td>23.6</td>
<td>1.646</td>
<td>424</td>
<td>18.7</td>
<td>1.350</td>
</tr>
<tr>
<td>385</td>
<td>24.0</td>
<td>1.670</td>
<td>405</td>
<td>17.4</td>
<td>1.268</td>
<td>425</td>
<td>28.2</td>
<td>1.907</td>
</tr>
<tr>
<td>386</td>
<td>27.4</td>
<td>1.863</td>
<td>406</td>
<td>17.7</td>
<td>1.287</td>
<td>426</td>
<td>20.4</td>
<td>1.455</td>
</tr>
<tr>
<td>387</td>
<td>13.6</td>
<td>1.020</td>
<td>407</td>
<td>17.6</td>
<td>1.281</td>
<td>427</td>
<td>11.2</td>
<td>.856</td>
</tr>
<tr>
<td>388</td>
<td>3.1</td>
<td>.254</td>
<td>408</td>
<td>12.3</td>
<td>.932</td>
<td>428</td>
<td>25.0</td>
<td>1.727</td>
</tr>
<tr>
<td>389</td>
<td>.2</td>
<td>.017</td>
<td>409</td>
<td>11.6</td>
<td>.884</td>
<td>429</td>
<td>16.1</td>
<td>1.185</td>
</tr>
<tr>
<td>390</td>
<td>.8</td>
<td>.067</td>
<td>410</td>
<td>21.6</td>
<td>1.528</td>
<td>430</td>
<td>17.4</td>
<td>1.268</td>
</tr>
<tr>
<td>391</td>
<td>6.9</td>
<td>.547</td>
<td>411</td>
<td>27.9</td>
<td>1.890</td>
<td>431</td>
<td>8.3</td>
<td>.650</td>
</tr>
<tr>
<td>392</td>
<td>8.9</td>
<td>.693</td>
<td>412</td>
<td>24.3</td>
<td>1.687</td>
<td>432</td>
<td>6.9</td>
<td>.547</td>
</tr>
<tr>
<td>393</td>
<td>27.3</td>
<td>1.857</td>
<td>413</td>
<td>21.6</td>
<td>1.528</td>
<td>433</td>
<td>Bottom</td>
<td>-</td>
</tr>
<tr>
<td>394</td>
<td>24.8</td>
<td>1.716</td>
<td>414</td>
<td>18.1</td>
<td>1.313</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Depth to top of sample.
APPENDIX C.—SPECIMEN LITHOLOGIC DESCRIPTION

TABLE C-1. Core samples of the Green River Formation from USBM Green River site 1, well 1, drilled in 1967 in NW1/4NE1/4NE1/4 of sec 24, T 18 N, R 107 W, Sweetwater County, Wyo.

Surface elevation: 6,182.3 feet
Sampled interval: 360.0–503.2 feet

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>360.0</td>
<td>361.3</td>
<td>Oil shale: Brownish-gray to sooty black, varved, abundant scattered crystal faces.</td>
</tr>
<tr>
<td>361.3</td>
<td>361.5</td>
<td>Oil shale: Greenish-gray and brownish-gray dense, occasional crystals.</td>
</tr>
<tr>
<td>361.5</td>
<td>363.9</td>
<td>Oil shale: Medium brown, grayish-brown, dark to sooty and waxy black, abundant small individual crystals.</td>
</tr>
<tr>
<td>363.9</td>
<td>366.4</td>
<td>Oil shale (?) and siltstone: Light tannish-gray, light gray, slightly dolomitic, zones and streaks of clustered crystals, dense, hard.</td>
</tr>
<tr>
<td>366.4</td>
<td>370.4</td>
<td>Oil shale: Medium gray, finely laminated, occasional scattered crystals, slightly silty becoming darker gray with depth.</td>
</tr>
<tr>
<td>370.4</td>
<td>373.2</td>
<td>Oil shale: Medium brown, tannish-brown, brownish-gray, scattered individual crystals, partly pyritic.</td>
</tr>
<tr>
<td>373.2</td>
<td>375.9</td>
<td>Oil shale: Medium and dark gray with tannish-gray laminae, some sooty black, pyritic streaks horizontal, occasional crystals.</td>
</tr>
<tr>
<td>375.9</td>
<td>376.0</td>
<td>Sandstone or tuff: Yellowish-brown, grayish-tan, gray, very fine to fine-grained, slight porosity, some shale partings, calcareous.</td>
</tr>
<tr>
<td>376.0</td>
<td>377.1</td>
<td>Oil shale: Same as in 373.2–375.9 feet.</td>
</tr>
<tr>
<td>377.1</td>
<td>377.3</td>
<td>Oil shale: Dark gray, injected with and distorted by tan silty shale, slightly dolomitic.</td>
</tr>
<tr>
<td>377.3</td>
<td>377.8</td>
<td>Oil shale: Same as in 376.0–377.1 feet.</td>
</tr>
<tr>
<td>377.8</td>
<td>379.4</td>
<td>Oil shale: Medium gray to light brownish-gray, some crystal faces, fine varves.</td>
</tr>
<tr>
<td>379.4</td>
<td>380.9</td>
<td>Oil shale: Medium gray to dark gray, some vertical fractures along which minor movement and subsequent crystal filling has taken place, possibly dolomite.</td>
</tr>
<tr>
<td>380.9</td>
<td>381.5</td>
<td>Oil shale: Sooty black, minor scattered crystals.</td>
</tr>
<tr>
<td>381.5</td>
<td>382.6</td>
<td>Missing.</td>
</tr>
<tr>
<td>382.6</td>
<td>383.7</td>
<td>Oil shale: Same as in 380.9–381.5 feet.</td>
</tr>
</tbody>
</table>
TABLE C-1. Core samples of the Green River Formation from USBM Green River site 1, well 1--Continued

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>383.7</td>
<td>385.6</td>
<td>Oil shale: Medium to dark gray, laminated with some lighter shale layers, vertical fractures filled with lighter, pyritic shale, some of which has been injected into darker shale.</td>
</tr>
<tr>
<td>385.6</td>
<td>389.0</td>
<td>Oil shale: Medium to dark gray, some black, with pods and layers of purple, very dense dolomite, some tan dolomite has same features, abundant larger scattered pyritic crystal clusters.</td>
</tr>
<tr>
<td>389.0</td>
<td>389.3</td>
<td>Sandstone or tuff: Gray to brown, very fine-grained, very slightly calcareous, abundant oil stain, fair porosity, shale partings.</td>
</tr>
<tr>
<td>389.3</td>
<td>389.9</td>
<td>Oil shale: Banded black and medium brown to tan, distinctly varved.</td>
</tr>
<tr>
<td>389.9</td>
<td>390.8</td>
<td>Oil shale: Dark gray to black, trace brownish-gray, dense, featureless.</td>
</tr>
<tr>
<td>390.8</td>
<td>392.0</td>
<td>Oil shale: Tan to brown to grayish-brown, partly banded.</td>
</tr>
<tr>
<td>392.0</td>
<td>392.1</td>
<td>Sandstone or tuff: Light gray to brown with gray shale partings, quite distorted, some porosity, oil-stained, minor iron stain.</td>
</tr>
<tr>
<td>392.1</td>
<td>392.4</td>
<td>Oil shale: Dark gray, finely laminated, larger pyrite crystal clusters.</td>
</tr>
<tr>
<td>392.4</td>
<td>392.8</td>
<td>Oil shale: Tan, brown, medium gray, fine laminated, slightly dolomitic, silty.</td>
</tr>
<tr>
<td>392.8</td>
<td>394.7</td>
<td>Oil shale: Dark gray to black with minor brownish-gray laminae, pyritic in part.</td>
</tr>
<tr>
<td>394.7</td>
<td>395.9</td>
<td>Oil shale: Tan to medium brown to grayish-brown, slightly dolomitic.</td>
</tr>
<tr>
<td>395.9</td>
<td>396.8</td>
<td>Oil shale: Tan to dark gray, both thinly and thickly banded with pods and inclusions of brown to purple dolomite, crystal zone at 396.1 to 396.3 feet.</td>
</tr>
<tr>
<td>396.8</td>
<td>397.2</td>
<td>Oil shale: Medium gray, numerous crystal faces.</td>
</tr>
<tr>
<td>397.2</td>
<td>397.3</td>
<td>Sandstone or tuff: Bluish-gray, brown, tan, fine-grained, some porosity, shaley, slight oil stain.</td>
</tr>
<tr>
<td>397.3</td>
<td>398.8</td>
<td>Oil shale: Medium brownish-gray to dark gray, finely laminated, one purple dolomite inclusion at 397.6 feet.</td>
</tr>
<tr>
<td>398.8</td>
<td>399.1</td>
<td>Oil shale: Light gray to tannish-gray, slightly silty, occasional crystal faces.</td>
</tr>
<tr>
<td>399.1</td>
<td>399.8</td>
<td>Oil shale: Medium gray, finely laminated, minor pyritic zone at 399.2 feet.</td>
</tr>
</tbody>
</table>
TABLE C-1. - Core samples of the Green River Formation from USBM Green River site 1, well 1—Continued

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>399.8</td>
<td>399.9</td>
<td>Tuff: White to gray, sandy, minor shale fragments, very porous.</td>
</tr>
<tr>
<td>399.9</td>
<td>400.0</td>
<td>Sandstone or tuff: Buff to maroon, fine-grained, interbedded with salt and pepper to gray sandstone, fine-grained, both fair porosity.</td>
</tr>
<tr>
<td>400.0</td>
<td>404.0</td>
<td>Oil shale: Tan, light brown, medium brown, light gray, brownish-gray and medium gray broadly banded, silty in part, trace crystal faces at 402.7 to 404.0, conchoideal fracturing, dense.</td>
</tr>
<tr>
<td>404.0</td>
<td>407.5</td>
<td>Oil shale: Medium to dark gray and black, thinly banded and laminated with tan to brown dolomitic bands, some exhibit distortion and flow, occasional pods tan dolomite.</td>
</tr>
<tr>
<td>407.5</td>
<td>407.7</td>
<td>Tuff: Limey to dolomitic, tan to buff, silty to sandy in part, very porous, earthy to chalky in part.</td>
</tr>
<tr>
<td>407.7</td>
<td>407.8</td>
<td>Oil shale: Medium to dark gray.</td>
</tr>
<tr>
<td>407.8</td>
<td>407.9</td>
<td>Tuff: Same as in 407.5-407.7 feet.</td>
</tr>
<tr>
<td>407.9</td>
<td>408.4</td>
<td>Oil shale: Same as in 404.0-407.5 feet.</td>
</tr>
<tr>
<td>408.4</td>
<td>408.6</td>
<td>Limestone: Bluish-gray, finely crystalline, injected into tan dolomitic shale.</td>
</tr>
<tr>
<td>408.6</td>
<td>409.0</td>
<td>Oil shale: Brownish-gray to dark gray.</td>
</tr>
<tr>
<td>409.0</td>
<td>409.5</td>
<td>Oil shale (?): Tan to gray, very fine laminae, very calcareous, fractures filled with calcite.</td>
</tr>
<tr>
<td>409.5</td>
<td>412.3</td>
<td>Oil shale: Medium to dark gray, finely laminated with bluish-gray and tan layers, several thin layers of light gray silty tuffs at 411.7, 411.8, and 411.9 feet.</td>
</tr>
<tr>
<td>412.3</td>
<td>412.4</td>
<td>Sandstone or tuff: Brown, gray to dark gray, fine-grained, some massive quartz, some calcite crystals, poor porosity, some oil stain.</td>
</tr>
<tr>
<td>412.4</td>
<td>413.0</td>
<td>Oil shale: Light and dark gray, thinly varved with tan dolomitic layers and small pods, very calcareous and limey.</td>
</tr>
<tr>
<td>413.0</td>
<td>416.3</td>
<td>Oil shale: Medium to dark gray, dense, slightly calcareous.</td>
</tr>
<tr>
<td>416.3</td>
<td>416.7</td>
<td>Tuff: White to gray and salt and pepper, earthy, chalky, silty, very friable, very porous.</td>
</tr>
<tr>
<td>416.7</td>
<td>418.7</td>
<td>Oil shale: Medium to dark gray to black, some light tan layers.</td>
</tr>
<tr>
<td>418.7</td>
<td>418.9</td>
<td>Dolomite: Tan to brown, very finely crystalline, fossiliferous to oolitic, slight porosity, silty in part, oil-stained streak at 418.8 feet.</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>418.9</td>
<td>419.0</td>
<td>Oil shale: Same as in 416.7-418.7 feet.</td>
</tr>
<tr>
<td>419.0</td>
<td>419.3</td>
<td>Sandstone or tuff: Gray salt and pepper, fine-grained, micaceous, silty to chalky in part, very calcareous, very porous, slightly friable.</td>
</tr>
<tr>
<td>419.3</td>
<td>419.4</td>
<td>Oil shale: Brownish-gray, finely laminated, vertical fractures filled with gray, crystalline quartz-like material, which is very hard.</td>
</tr>
<tr>
<td>419.4</td>
<td>421.5</td>
<td>Oil shale: Brown, brownish-gray, grayish-brown, dark gray, some zones of fine laminae of tan dolomitic shale, thin layers of gilsonite (?) or coal (?) from 420.6-420.8 feet, poker chip fracturing below 420.9 feet.</td>
</tr>
<tr>
<td>421.5</td>
<td>422.2</td>
<td>Oil shale (?): Grayish-brown, dense, dolomitic, conchoidal fracturing.</td>
</tr>
<tr>
<td>422.2</td>
<td>422.4</td>
<td>Oil shale: Grayish-green, silty, calcareous, blocky fracturing.</td>
</tr>
<tr>
<td>422.4</td>
<td>422.5</td>
<td>Oil shale (?): Same as in 421.5-422.2 feet.</td>
</tr>
<tr>
<td>422.5</td>
<td>422.8</td>
<td>Oil shale: Same as in 422.2-422.4 feet.</td>
</tr>
<tr>
<td>422.8</td>
<td>424.2</td>
<td>Shale and siltstone: Light to medium gray, sandy in part, minor banding, very calcareous, porous.</td>
</tr>
<tr>
<td>424.2</td>
<td>424.5</td>
<td>Oil shale: Medium gray, greenish in part, calcareous.</td>
</tr>
<tr>
<td>424.5</td>
<td>424.9</td>
<td>Shale and siltstone: Same as in 422.8-424.2 feet.</td>
</tr>
<tr>
<td>424.9</td>
<td>425.0</td>
<td>Oil shale: Tan to medium brown, dolomitic, dense, conchoidal fracturing, slightly silty.</td>
</tr>
<tr>
<td>425.0</td>
<td>425.5</td>
<td>Oil shale: Gray to greenish-gray, some brownish-gray, silty, calcareous, brown layer at 425.2 feet, the top of which is a gilsonite layer.</td>
</tr>
<tr>
<td>425.5</td>
<td>425.6</td>
<td>Oil shale: Same as in 424.9-425.0 feet.</td>
</tr>
<tr>
<td>425.6</td>
<td>427.3</td>
<td>Siltstone and shale: Light gray, sandy, layered in part, very porous, very calcareous, gilsonite in parting at 426.0 feet.</td>
</tr>
<tr>
<td>427.3</td>
<td>429.9</td>
<td>Sandstone: Light gray, salt and pepper, fine to medium-grained, very porous, very calcareous, micaceous in part, some minor shale partings.</td>
</tr>
<tr>
<td>429.9</td>
<td>431.0</td>
<td>Shale and siltstone: Tan to light gray, sandy in part, slightly calcareous to calcareous, minor vertical fractures.</td>
</tr>
<tr>
<td>431.0</td>
<td>431.8</td>
<td>Oil shale (?): Medium gray with darker shale layers, sandy to silty, very calcareous, thin layer of fish scales at 431.1 feet.</td>
</tr>
</tbody>
</table>
TABLE C-1. Core samples of the Green River Formation from USBM Green River site 1, well 1—Continued

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>431.8</td>
<td>432.5</td>
<td>Shale: Tan to gray, nearly a dolomite, dense, hard, conchoidal fracturing, well-indurated.</td>
</tr>
<tr>
<td>432.5</td>
<td>434.0</td>
<td>Oil shale: Light gray, brownish-gray, medium gray, silty to sandy in part, dolomitic, slightly calcareous to very calcareous, occasional fish scales.</td>
</tr>
<tr>
<td>434.0</td>
<td>434.3</td>
<td>Oil shale: Black, featureless.</td>
</tr>
<tr>
<td>434.3</td>
<td>434.5</td>
<td>Oil shale: Tan, dolomitic, silty, dense, hairline fractures filled with dark shale, granular texture.</td>
</tr>
<tr>
<td>434.5</td>
<td>434.8</td>
<td>Oil shale: Greenish-brown and dark gray, broadly banded.</td>
</tr>
<tr>
<td>434.8</td>
<td>435.1</td>
<td>Oil shale: Brownish gray, finely laminated with tan dolomitic layers, calcareous.</td>
</tr>
<tr>
<td>435.1</td>
<td>435.2</td>
<td>Oil shale: Dark gray to black, with globular concentrations of waxy black shale (?) or material.</td>
</tr>
<tr>
<td>435.2</td>
<td>436.1</td>
<td>Oil shale: Light to dark gray, distinctly varved with thin layers and some pods of tan dolomitic shale, somewhat calcareous.</td>
</tr>
<tr>
<td>436.1</td>
<td>437.1</td>
<td>Oil shale: Light to medium gray and tan to light brown, banded, occasional buff dolomitic shale pods, nahcolite-filled fracture at 436.9 feet.</td>
</tr>
<tr>
<td>437.1</td>
<td>437.4</td>
<td>Oil shale: Dark gray to black, with a thin dolomitic shale streak at 437.3 feet.</td>
</tr>
<tr>
<td>437.4</td>
<td>441.9</td>
<td>Oil shale: Tan, light brown, light gray, medium gray, banded with concentrations (pods) of tan dolomitic shale, silty in part, very calcareous, dense, hard.</td>
</tr>
<tr>
<td>441.9</td>
<td>442.9</td>
<td>Oil shale: Medium to dark gray, distinctly varved with tan dolomitic shale, occasional fish scales.</td>
</tr>
<tr>
<td>442.9</td>
<td>444.7</td>
<td>Oil shale (?): Light to medium gray with some tan, banded, similar to 437.4-441.9 feet but grayer.</td>
</tr>
<tr>
<td>444.7</td>
<td>446.1</td>
<td>Missing.</td>
</tr>
<tr>
<td>446.1</td>
<td>450.3</td>
<td>Oil shale and/or mudstone: Light to medium gray and some light brown faint banding.</td>
</tr>
<tr>
<td>450.3</td>
<td>452.6</td>
<td>Oil shale: Very similar to 446.1-450.3 feet but medium to dark gray.</td>
</tr>
</tbody>
</table>
TABLE C-1. - Core samples of the Green River Formation from USBM Green River site 1, well 1—Continued

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>452.6</td>
<td>454.6</td>
<td>Oil shale: Medium to dark gray, brown to grayish-brown, very thinly laminated with tan to brown dolomitic shale, calcareous, occasional stringer of bluish-gray shale.</td>
</tr>
<tr>
<td>454.6</td>
<td>454.8</td>
<td>Oil shale: Dark gray, faint laminae.</td>
</tr>
<tr>
<td>454.8</td>
<td>455.5</td>
<td>Oil shale: Light to medium gray, finely laminated as in 452.6-454.6 feet.</td>
</tr>
<tr>
<td>455.5</td>
<td>456.2</td>
<td>Oil shale: Brownish-gray to dark gray, one tan streak at 455.9 feet, faintly laminated, blocky fracturing.</td>
</tr>
<tr>
<td>456.2</td>
<td>457.3</td>
<td>Oil shale: Grayish-tan, brownish-gray, medium gray and greenish-gray distinctly laminated with tan to light brown layers, slightly silty in part, fish backbone at 457.1 feet.</td>
</tr>
<tr>
<td>457.3</td>
<td>457.5</td>
<td>Oil shale: Dark brownish-gray to black, featureless.</td>
</tr>
<tr>
<td>457.5</td>
<td>457.9</td>
<td>Oil shale (?): Tan, very dolomitic, silty, dense, hard.</td>
</tr>
<tr>
<td>457.9</td>
<td>458.1</td>
<td>Oil shale: Gray to greenish-gray, occasional thin layers of tan dolomitic shale.</td>
</tr>
<tr>
<td>458.1</td>
<td>458.3</td>
<td>Oil shale: Grayish-green to light green with abundant massive, finely crystalline limestone, some porosity, poor permeability.</td>
</tr>
<tr>
<td>458.3</td>
<td>458.4</td>
<td>Oil shale: Medium greenish-gray to dark gray, banded.</td>
</tr>
<tr>
<td>458.4</td>
<td>459.0</td>
<td>Oil shale: Light to dark grayish-green, broadly banded, calcareous with some finely crystalline white limestone streaks and concentration.</td>
</tr>
<tr>
<td>459.0</td>
<td>460.3</td>
<td>Missing.</td>
</tr>
<tr>
<td>460.3</td>
<td>460.5</td>
<td>Oil shale: Dark brownish-gray and greenish-gray with thin bed of gray, conglomeratic sandstone at 460.3 feet, calcareous.</td>
</tr>
<tr>
<td>460.5</td>
<td>460.7</td>
<td>Oil shale: Greenish-gray, silty with numerous concentrations of gray to white, finely crystalline limestone, some sand grains, oolitic in part.</td>
</tr>
<tr>
<td>460.7</td>
<td>461.0</td>
<td>Oil shale: Tan to brownish-gray, irregularly laminated.</td>
</tr>
<tr>
<td>461.0</td>
<td>463.0</td>
<td>Oil shale: Gray to greenish-gray, with abundant medium crystalline limestone, white to light gray, as individual crystals and as veinlets of crystals, vertical, horizontal, and diagonal, trace dark gray shale partings.</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>463.0</td>
<td>464.4</td>
<td>Oil shale: Tan to medium brown, some grayish-brown, some pods and streaks of dolomite and sandy limestone, white to gray, finely crystalline.</td>
</tr>
<tr>
<td>464.4</td>
<td>470.5</td>
<td>Oil shale: Light to dark brown, some grayish-brown, dolomitic, faintly laminated in part, thin gray crystalline limestone streak at 469.7 feet.</td>
</tr>
<tr>
<td>470.5</td>
<td>470.7</td>
<td>Oil shale (?): Tan, nearly dolomite, silty, dense, hard.</td>
</tr>
<tr>
<td>470.7</td>
<td>471.7</td>
<td>Oil shale: Gray to dark gray, distinctly laminated with shale as above, occurring also as pods and inclusions.</td>
</tr>
<tr>
<td>471.7</td>
<td>472.5</td>
<td>Oil shale: Medium to dark gray, clayey, some faint and occasional banding with tan dolomitic varves.</td>
</tr>
<tr>
<td>472.5</td>
<td>474.5</td>
<td>Missing.</td>
</tr>
<tr>
<td>474.5</td>
<td>475.9</td>
<td>Oil shale: Same as in 471.7-472.5 feet.</td>
</tr>
<tr>
<td>475.9</td>
<td>477.2</td>
<td>Oil shale: Dark gray, medium brownish-gray, broadly banded with tan to light brown dolomitic shale, fractured in part, fractures filled with overlying shale.</td>
</tr>
<tr>
<td>477.2</td>
<td>478.7</td>
<td>Oil shale: Medium to dark gray, finely laminated, injected at 478.4 feet with bluish-gray shale which is slightly calcareous.</td>
</tr>
<tr>
<td>478.7</td>
<td>479.7</td>
<td>Oil shale: Medium gray with light tannish-gray streak at 478.8 feet.</td>
</tr>
<tr>
<td>479.7</td>
<td>479.8</td>
<td>Limestone: Gray, finely crystalline, dense.</td>
</tr>
<tr>
<td>479.8</td>
<td>480.6</td>
<td>Oil shale: Gray to tan, dolomitic, banded both broadly and thinly.</td>
</tr>
<tr>
<td>480.6</td>
<td>481.3</td>
<td>Oil shale: Medium to dark gray, clayey, dolomitic, homogeneous.</td>
</tr>
<tr>
<td>481.3</td>
<td>483.4</td>
<td>Oil shale: Medium to dark gray, broadly banded with tan to brown dolomite and dolomitic shale, dense, hard, silty.</td>
</tr>
<tr>
<td>483.4</td>
<td>484.0</td>
<td>Oil shale (?): Tan to light gray, dolomitic, hard, dense, with streaks and layers of black oil shale.</td>
</tr>
<tr>
<td>484.0</td>
<td>485.0</td>
<td>Oil shale: Dark gray, clayey, blocky fracturing, tan, dolomitic and sandy shale streaks at 484.2 and 484.9 feet.</td>
</tr>
<tr>
<td>485.0</td>
<td>485.1</td>
<td>Oil shale (?): Tan to buff, dolomitic, clayey and silty.</td>
</tr>
<tr>
<td>485.1</td>
<td>486.0</td>
<td>Oil shale: Dark gray and black, featureless.</td>
</tr>
<tr>
<td>486.0</td>
<td>486.9</td>
<td>Oil shale: Same as in 485.0-485.1 feet, broadly banded with medium to dark gray shale.</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>486.9</td>
<td>487.3</td>
<td>Oil shale: Medium brown to light brown, blocky fracturing, minor contorted dark gray shale streak.</td>
</tr>
<tr>
<td>487.3</td>
<td>487.9</td>
<td>Oil shale (?) and mudstone: Gray to brownish gray, sandy and silty, calcareous, some fossil spines or stems and fish scales.</td>
</tr>
<tr>
<td>487.9</td>
<td>488.9</td>
<td>Oil shale: Medium to dark gray, some brownish-gray, clayey, calcareous.</td>
</tr>
<tr>
<td>488.9</td>
<td>489.2</td>
<td>Oil shale: Tan to medium brown, blocky fracturing.</td>
</tr>
<tr>
<td>489.2</td>
<td>489.5</td>
<td>Oil shale: Same as in 487.9-488.9 feet.</td>
</tr>
<tr>
<td>489.5</td>
<td>489.6</td>
<td>Shale: Medium to bright brown, thinly laminated with several layers of gilsonite.</td>
</tr>
<tr>
<td>489.6</td>
<td>490.1</td>
<td>Mudstone and shale: Gray to brownish-gray, soft and crumbly, very calcareous, sandy in part.</td>
</tr>
<tr>
<td>490.1</td>
<td>491.9</td>
<td>Oil shale: Medium to dark gray, some greenish-gray, clayey.</td>
</tr>
<tr>
<td>491.9</td>
<td>493.0</td>
<td>Oil shale: Greenish-gray, brownish-gray, dark gray, finely laminated, occasional layer light gray siltstone.</td>
</tr>
<tr>
<td>493.0</td>
<td>493.4</td>
<td>Mudstone: Limey facies, chalky in part, white to light gray, abundant bits of brown waxy residue, probably congealed oil and wax.</td>
</tr>
<tr>
<td>493.4</td>
<td>494.8</td>
<td>Limestone: Gray, very finely crystalline, very sandy and silty, minor amounts of fossils, occasional pod of dolomitic tan shale.</td>
</tr>
<tr>
<td>494.8</td>
<td>495.1</td>
<td>Limestone: Buff to gray, fine to medium crystalline, fossiliferous.</td>
</tr>
<tr>
<td>495.1</td>
<td>495.5</td>
<td>Shale: Tan to gray, dolomitic to limey, occasional fossils, silty in part, partly banded.</td>
</tr>
<tr>
<td>495.5</td>
<td>503.2</td>
<td>Shale: Very limey, gray crumbly to fairly hard, abundant white fossil shells principally Goniobasis, sandy streaks at 496.3 and 498.2 feet, gilsonite layer at 503.0 feet. Top of basal bed in Tipton Member at 495.5 feet.</td>
</tr>
</tbody>
</table>