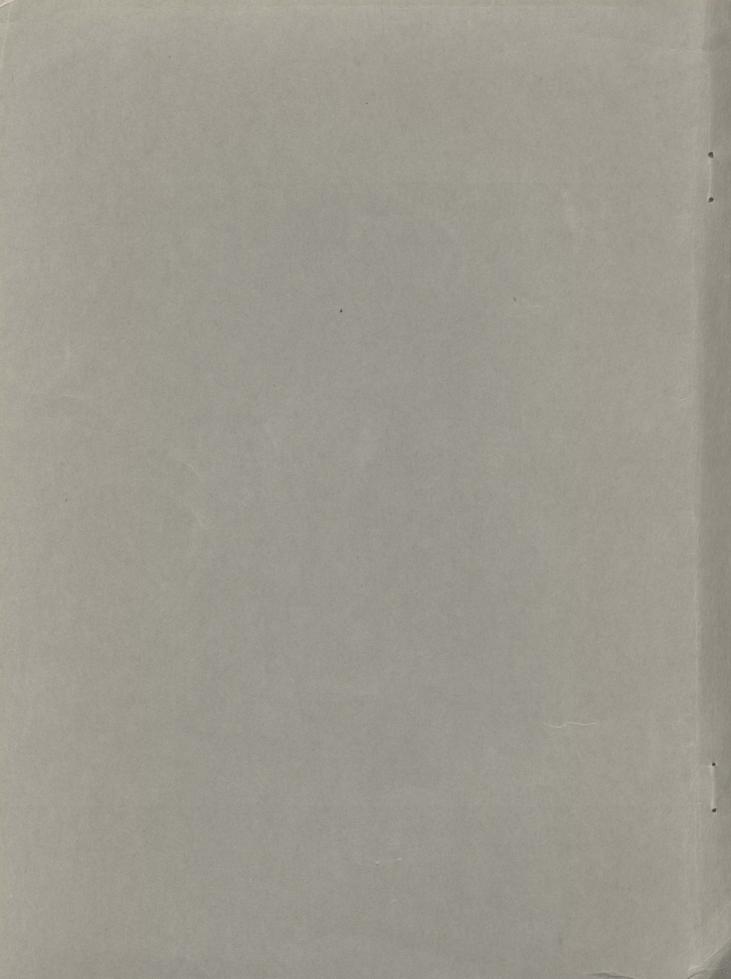
AUG 2 3 1956

LIBRARY GEOLOGICAL SCIENCES California Institute of Technology


SALETY DEFICENCY A

Bureau of Mines Report of Investigations 5225

FUNDAMENTAL FLASHBACK, BLOWOFF, AND YELLOW-TIP LIMITS OF FUEL GAS-AIR MIXTURES

BY JOSEPH GRUMER, MARGARET E. HARRIS, AND VALERIA R. ROWE

United States Department of the Interior — July 1956

FUNDAMENTAL FLASHBACK, BLOWOFF, AND YELLOW-TIP LIMITS OF FUEL GAS-AIR MIXTURES

BY JOSEPH GRUMER, MARGARET E. HARRIS, AND VALERIA R. ROWE

. Report of Investigations 5225

UNITED STATES DEPARTMENT OF THE INTERIOR
Fred A. Seaton, Secretary
BUREAU OF MINES
Thos. H. Miller, Acting Director

Work on manuscript completed December 1955. The Bureau of Mines will welcome reprinting of this paper, provided the following footnote acknowledgment is made: "Reprinted from Bureau of Mines Report of Investigations 5225." The work on which this report is based was done under a cooperative agreement between the Bureau of Mines, United States Department of the Interior, and the American Gas Association.

FUNDAMENTAL FLASHBACK, BLOWOFF, AND YELLOW-TIP LIMITS OF FUEL GAS-AIR MIXTURES

by

Joseph Grumer, 1 Margaret E. Harris, 2 and Valeria R. Rowe 3

CONTENTS

	Page
Introduction and summary	1
Acknowledgments	
Equipment and experimental procedure	
Chapter I Flashback, blowoff, and flame-stability diagrams	
A. Flashback and blowoff	
B. Explanation of flame-stability diagrams	
C. Some uses of flame-stability diagrams	11
D. Limitations of flame-stability diagrams	16.
Chapter II Flame-stability data of fuels, calculation of	
flame-stability diagrams	22
A. Flame-stability diagrams of natural gases, liquid	
petroleum gases, and single-component fuels	22
B. Flame-stability diagrams of two-component fuels	
C. Flame-stability diagrams of multicomponent fuels	
1. Coke-oven gases	
2. Oil gases	
3. High-ethylene fuels containing hydrogen (more than	-
about 50 percent ethylene)	56
4. Fuels containing nitrogen and carbon dioxide	
Chapter III Yellow tipping and constant yellow-tip limits	
Theory	
Further consideration of the constant yellow-tip limit	63
Chapter IV Calculation of nonconstant yellow-tip limits of	
fuel gases	66

Physical chemist; chief, Flame Research Section, Division of Explosives Technology, Bureau of Mines, Pittsburgh, Pa.

^{2/} Physical chemist, Flame Research Section, Division of Explosives Technology, Bureau of Mines, Pittsburgh, Pa.

^{3/} Chemist, Flame Research Section, Division of Explosives Technology, Bureau of Mines, Pittsburgh, Pa.

CONTENTS (Con.)

		Page
Char	pter V Flashback, blowoff, and yellow tipping on burners	
	ith short ports (drill ports) or noncircular channels	
~ ·	square, rectangular, and triangular channels)	90
(A. Flashback and blowoff	90
		92
	Application of equation 13 to Poiseuille flow	
	Application of equation 13 to turbulent flow	92
	Application of equation 13 to sharp-edged short ports	
	(drill ports)	92
	Application of equation 13 to noncircular channels	
	with steady laminar flow	94
	B. Constant and nonconstant yellow-tip limits	98
	1. Sharp-edged short ports	98
	2. Noncircular channels	98
	3. Multiport burners	100
Cha	pter VI Temperature dependence of flame-stability and	
	ellow-tip limits	100
,	Flashback	102
	Blowoff	105
		113
01.	Yellow tipping	
CTO	sing comments	114
Der:	initions and nomenclature	115
	Definitions	115
	Nomenclature	117
	cial bibliography of Bureau of Mines publications on funda-	
	ental combustion characteristics of fuel gases	118
	endix Tables	120
Bib:	liography	197
	TEXT TABLES	
1.	Converting the flame-stability diagram of methane to limit	
	curves for a 0.25-inch port burner with steady laminar	
	flow	16
2.	Flashback and blowoff gradients for a two-component fuel,	
۷.	taken from composite flame-stability diagrams	47
3a.	Calculation of flashback curve for fuel No. 43 by linear	7,
Ja.	.	49
21	mixture rule	47
Зъ.	Calculation of blowoff curve for fuel No. 43 by linear	4.0
	mixture rule.	49
4a.	Calculation of flashback curve for fuel No. 55 by linear	
	mixture rule	53
4b.	Calculation of blowoff curve for fuel No. 55 by linear	
	mixture rule	53
5.	Constant yellow-tip limits for single-component fuels	63
6.	Comparison of experimental and calculated values of F_c for	
	two-component and multicomponent fuels	65
7.	Curves of constant yellow-tip fractions for fuel No. 68	80
8.	Sample calculations of yellow-tip curves for fuel No. 71	81
9.	Sample calculations of yellow-tip curves for fuel No. 57	83
10.	Sample calculations of yellow-tip curves in units of L and M	84

TEXT TABLES (Con.)

		Page
11. 12.	Calculation of ignition temperatures versus initial temperatures for methane-air flames	112
•	temperatures for propane-air flames	113
	APPENDIX TABLES	
la.	Critical boundary velocity gradients for flashback of	
1b.	single-component fuels	120
2a.	single-component fuels	121
	Methane-hydrogen mixtures	123
	Carbon monoxide-hydrogen mixtures	124
	Methane-carbon monoxide mixtures	126
	Propane-hydrogen mixtures	127
	Ethylene-hydrogen mixtures	128
	Nitrogen-hydrogen mixtures	129
01.	Other mixtures	129
2ъ.	Critical boundary velocity gradients for blowoff of two-component fuels:	
	Methane-hydrogen mixtures	130
	Carbon monoxide-hydrogen mixtures	131
	Methane-carbon monoxide mixtures	132
	Propane-hydrogen mixtures	133
	Ethylene-hydrogen mixtures	134
	Nitrogen-hydrogen mixtures	135
	Other mixtures	135
3a.	Critical boundary velocity gradients for flashback of	
	multicomponent fuels:	
	Mixtures of coke-oven-gas type	136
	Mixtures of oil-gas type	138
	Other mixtures	138
Зъ.	Critical boundary velocity gradients for blowoff of	
	multicomponent fuels:	140
	Mixtures of coke-oven-gas type	140
		142
4.	Other mixtures	143
	Two-component mixture	145
	Mixture of coke-oven-gas type	148
	Mixture of oil-gas type	160
_	Other mixture	163
5.	Yellow-tip limits of fuel gases; methane-propane group -	170
c	ethylene	173
6. 7.	Yellow-tip limits of fuel gases; methane-ethylene Yellow-tip limits of fuel gases; other fuels	180 182
7. 8a.	Calculation of coefficients of friction, λ , for sharp-	102
Ja.	edged short ports	185
вь.	Critical boundary velocity gradients using λ for sharp-	100
-	edged short ports	187

APPENDIX TABLES (Con.)

		Page
9.	Critical boundary velocity gradients for long cylindrical	
10	tubes at 348° and 423° K	188
10a.	Calculation of coefficients of friction, λ , for long	100
10ь.	square channels	189
100.	square channels	190
11a.	Calculation of coefficients of friction, λ , for long	170
	rectangular channels	191
11b.	Critical boundary velocity gradients using λ for long	
	rectangular channels	191
12a.	Calculation of coefficients of friction, λ , for long	
	triangular channels	192
12b.	Critical boundary velocity gradients using λ for long	
10	triangular channels	192
13.	Critical boundary velocity gradients for sharp-edged short	102
14.	ports at various initial temperatures	193
14.	temperatures	196
		170
	ILLUSTRATIONS	
.		
Fig.		
1.	Diagrammatic description of burning velocity, stream	
	velocity, and flame position near flashback limit	5
2.	Diagrammatic description of burning velocity, stream	
	velocity, and flame position near blowoff limit	5
3.	Parabolic velocity profile of a stream at a burner port	8
4.	Critical flows for flashback of natural gas-air flames	8
5.	Critical flows for blowoff of natural gas-air flames	9
6.	Critical flows in gas-industry units for flashback of	9
7.	natural gas-air flames	7
<i>,</i> .	blowoff of natural gas-air flames	10
8.	Critical boundary velocity gradients for flashback and	
•	blowoff of paraffin-air mixtures	10
9.	Flame-stability diagrams for paraffin-air mixtures	12
10.	Average flame-stability diagram for paraffin-air mixtures.	12
11.	Use of average flame-stability diagram for paraffin-air	
	mixtures to show performance of burners	15
12.	Gas-industry type of flashback and blowoff limit curves	1 -
10	for methane for 0.25-inch port with steady laminar flow.	15
13.	Effect of nature of surrounding atmosphere on blowoff of natural gas-air flames	18
14.	Critical boundary velocity gradients for flashback of	10
	methane-air and methane-oxygen mixtures	18
15.	Critical boundary velocity gradients for flashback of	
	propane-air and propane-oxygen mixtures	19
16.	Critical boundary velocity gradients for blowoff of	
	methane-air and methane-oxygen mixtures	19

Fig.		Page
17.	Critical boundary velocity gradients for blowoff of propane-air and propane-oxygen mixtures	20
18.	Quenching distances of tubes, slots, and plates for mixtures of several fuels with air	20
19.	Flame-stability diagram for fuel No. 1 (91.5% CH_4 , 5.2% C_2H_6 , 1.3% C_3H_8 , 0.2% C_3H_6 , 0.2% C_4H_{10} , 0.1% C_4H_8 , 0.9%	
	CO ₂ , 0.6% N ₂)	23
20. 21.	Flame-stability diagram for fuel No. 2 (100% CH ₄) Flame-stability diagram for fuel No. 3 (98.6% C_3H_8 , 1.4%	25
	c ₃ H ₆)	26
22.	Flame-stability diagram for fuel No. 4 (99.7% C ₂ H ₄ , 0.2% C ₄ H ₈ , 0.1% C ₃ H ₆)	27
23.	Flame-stability diagram for fuel No. 5 (99.2% C_3H_6 , 0.4% C_2H_6 , 0.4% C_3H_8)	28
24.	Flame-stability diagram for fuel No. 6 (100% C6H6)	29
25.	Flame-stability diagram for fuel No. 7 (99.7% H ₂ , 0.3% O ₂)	30
26.	•	30
20.	Flame-stability diagram for fuel No. 8 (88.9% CO, 9.7% CH ₄ , 1.3% H ₂ , 0.1% CO ₂)	31
27.	Flame-stability diagram for fuel No. 41 (79.4% CH ₄ , 20.6%	
	C2H4); comparison of calculated curves and experimental	
	points	32
28.	Critical boundary velocity gradients for flashback of methane-hydrogen fuels	34
29.	Critical boundary velocity gradients for blowoff of methane-hydrogen fuels	35
30.	Critical boundary velocity gradients for flashback of	
	carbon monoxide-hydrogen fuels	36
31.	Critical boundary velocity gradients for blowoff of carbon monoxide-hydrogen fuels	37
32.	Critical boundary velocity gradients for flashback of	38
33.	methane-carbon monoxide fuels	
34.	methane-carbon monoxide fuels	39
	propane-hydrogen fuels	40
35.	Critical boundary velocity gradients for blowoff of propane-hydrogen fuels	41
36.	Critical boundary velocity gradients for flashback of	7.
	ethylene-hydrogen fuels	42
37.	Critical boundary velocity gradients for blowoff of	43
38.	ethylene-hydrogen fuels	
J.,	nitrogen-hydrogen fuels	44
39.	Critical boundary velocity gradients for blowoff of	
	nitrogen-hydrogen fuels	45
40.	Flame-stability diagram for 83.3% CO, 16.7% H ₂	46

Fig.		Page
41.	Flame-stability diagram for fuel No. 43 (58.4% $\rm H_2$, 26.3% $\rm CH_4$, 10.6% CO, 4.6% $\rm N_2$, 0.1% CO ₂); comparison of cal-	
42.	culated curves and experimental points	51
	CO, 13.3% CH_4 , 7.2% C_2H_6 , 5.8% C_2H_4 , 1.9% C_3H_8 , 0.1%	
	$C_{3}H_{6}$, 9.8% N_{2} , 2.9% CO_{2}); comparison of calculated curve	s 52
43.	• • • • • • • • • • • • • • • • • • • •	72
	C_2H_4 , 15.2% H_2 , 14.0% N_2); comparison of calculated	E /.
44.	curves and experimental points	54
	C_2H_4 , 17.5% H_2 , 3.9% CO, 13.3% N_2 , 7.4% CO_2); comparison	
45.	of calculated curves and experimental points Flame-stability diagram for fuel No. 63 (56.5% C_2H_4 , 15.8%	55
	H_2 , 13.8% CH4, 0.1% C ₃ H ₆ , 13.8% N ₂); comparison of cal-	
46.	culated curves and experimental points	57
	H_{2} , 15.3% N_{2}); comparison of calculated curves and	
47.	experimental points	58
48.	radius, R*	61 64
49.	Flame-characteristics diagram for fuel No. 2 (100% CH ₄)	67
50.	Flame-characteristics diagram for fuel No. 68 (89.5% CH ₄ , 6.7% C_2H_6 , 2.7% C_3H_8 , 0.4% C_3H_6 , 0.4% C_4H_{10} , 0.3% CO_2).	68
51.	Flame-characteristics diagram for fuel No. 3 (98.6% C ₃ H ₈ , 1.4% C ₃ H ₆)	69
52.	Yellow-tip fractions for methane-propane group-ethylene fuels for g _v = 300	71
53.	Yellow-tip fractions for methane-propane group-ethylene fuels for g _y = 800	72
54.	Yellow-tip fractions for methane-propane group-ethylene fuels for g _y = 3,000	73
55.	Yellow-tip fractions for methane-propane group-ethylene fuels for g _v = 10,000	74
56.	Yellow-tip fractions for methane-propane group-ethylene fuels for g _y = 20,000 and above	75
57.	Yellow-tip fractions for methane-ethylene fuels for $g_y = 300$	76
58.	Yellow-tip fractions for methane-ethylene fuels for $g_y = 800$ and 3,000	77
59.	Yellow-tip fractions for methane-ethylene fuels for	••
٠,٠	$g_v = 10,000, 20,000$ and above	78

Fig.		Page
60.	Curves of constant yellow-tip fractions for fuel No. 68 (89.5% CH ₄ , 6.7% C ₂ H ₆ , 2.7% C ₃ H ₈ , 0.4% C ₃ H ₆ , 0.4%	70
61.	C_4H_{10} , 0.3% CO_2)	79
01.	35.5% C ₃ H ₈ , 2.4% C ₂ H ₆); comparison of experimental points	
62.	and calculated curves	82
63.	mental points and calculated curves	82 85
64.	natural gas	87
65.	Yellow-tip limits for fuel No. 84 (100% C7H8)	87
66.	Yellow-tip limits for fuel No. 85 (97.3% C ₂ H ₂ , 2.7%	
67	CH3COCH3)	88
67.	Yellow-tip limits for fuel No. 86 (84.2% CH_4 , 7.6% C_2H_2 , 5.3% C_2H_6 , 1.6% C_3H_6 , 0.6% C_4H_{10} , 0.3% C_3H_6 , 0.4% CO_2)	88
68.	Flame-characteristics diagram for fuel No. 87 (91.6% CH ₄ ,	
	$4.0\% \text{ c}_{7}\text{H}_{8}, 3.2\% \text{ c}_{2}\text{H}_{6}, 0.7\% \text{ c}_{3}\text{H}_{8}, 0.2\% \text{ c}_{3}\text{H}_{6}, 0.3\% \text{ co}_{2})^{\top}$	89
69.	Flame-stability diagram for fuel No. 17 (79.3% CO, 19.7% H_2 , 0.6% N_2 , 0.3% CO_2 , 0.1% O_2)	93
70.	Coefficients of friction for sharp-edged short ports (data obtained with a CO-H ₂ fuel with port depths of	93
71.	0.635 and 0.318 cm.)	95
72.	short ports and curves for long cylindrical tubes Flame-stability diagram for fuel No. 2 (100% CH ₄) at 348°	95
73.	and 423° K. for long cylindrical tubes	95
	noncircular channels	97
	sures; square channel, 1.068 x 1.075 cm.; B, effect of flame on flow profile in square channel, 1.068 x 1.075	
75	cm.; theoretical flame pressure, 0.010 cm	97 99
75. 76.	λ coefficients for several flow profiles (equations 13a-h). Venturi burner with exchangeable sharp-edged short hot	
77.	ports	101
78.	at 473° K. for sharp-edged short ports	101
	methane-air flames at various initial temperatures	103
79.	Critical boundary velocity gradients for blowoff of methane-air flames at various initial temperatures	103

Fig.		Page
80.	Critical boundary velocity gradients for blowoff of	
	propane-air flames at various initial temperatures	104
81.	Flame temperatures for methane-air	107
82.	Flame temperatures for propane-air	107
83.	Schematic temperature profiles for a flame	109
84.	Comparison of experimental points and calculated curves	
	for flashback of methane-air flames at various initial	
	temperatures	110
85.	Comparison of experimental and calculated curves for	
	blowoff of methane-air flames at various initial	
	temperatures	110
86.	Comparison of experimental and calculated curves for	
	blowoff of propane-air flames at various initial	
	temperatures	111
87.	A, Influence of initial temperature on yellow tipping of	
	propylene; \underline{B} , ambient air temperatures above a 7.95-cm.	
	O.D. plate, 0.346 -cm. I.D. drill port; no flame	111

INTRODUCTION AND SUMMARY

About a century ago Bunsen and his associates invented the famous burner that bears his name and was to become the ancestor of today's gas appliances. Over the years, Bunsen's invention became the starting point of a highly developed, practical technology that culminated in the gas industry as we now know it. However, it did not occur to the early workers to investigate the scientific potentialities of the new device, and as a result the science of gas-burner performance did not keep pace with the growing industry. It was with the objective of closing the rapidly widening gap between science and technology that the present research was undertaken Its immediate purpose was to provide basic information on the combustion characteristics of fuel gases, in particular as they affect flashback, blowoff, and yellow tipping.

Information obtained in the present research and contained within this report consists of the following:

- (1) Fundamental flashback and blowoff characteristics have been determined, it is believed, for all fuel-gas mixtures in which the gas industry may be interested. These are critical boundary velocity gradients for flames in free air, on burners with ports at room temperature and pressure. Burner aeration is characterized by the parameter, fraction of stoichiometric. These basic limits are explained, values are presented, and calculation procedure is given for deriving corresponding values of port loading and percent primary air (chs. I and II).
- (2) Fundamental yellow-tipping characteristics of fuel gases have been discovered and measured for burners in free air, with ports at room temperature and pressure. These constant yellow-tip limits, which occur on rather large ports only, are the foundation of a graphical method of correlating yellow tipping over the range of practical port diameters (chs. III and IV).
- (3) The influence of different port shapes, depths, and temperatures on the basic flashback, blowoff, and yellow-tip characteristics of fuel gases has been studied to establish the fundamental relationships and to provide needed data for some fuels (chs. V and VI).

The above is the extent of the subject matter of this report. However, the research has brought forth other matters that are reserved for a subsequent writing. Information has been obtained on the nature of flashback on turndown. Also a method of predicting exchangeability of fuel gases has been developed. Most of this information has appeared in the journal articles that are listed in the special bibliography at the close of this report (Bureau of Mines Publications on Fundamental Combustion Characteristics of Fuel Gases). The method of predicting exchangeability that is based on theory pertaining to upright ports in free air at room temperature and pressure appears to be applicable to burners operating in homes and industry.

However, it is planned to investigate the effect of nonideal conditions on the method before it is recommended for widespread use. To date, the method has been successful in every trial in which it has been tested against the known experience of gas utilities.

Although the fundamental studies of many aspects of burner and appliance design are still lacking, presentation of the current material at this date offers advantages to the gas industry and correspondingly to the public in that it is a compilation of generally applicable data that may become a part of the academic training of future gas engineers and that can stimulate and guide further applied research.

ACKNOWLEDGMENTS

The authors are grateful to their colleagues in the Bureau of Mines and to the members of the American Gas Association Supervising Committee for Project PDC-3-GU, the Domestic Gas Research Committee, and the Technical Advisory Group for General Utilization Research for the interest and advice received in the course of these investigations and in the preparation of the report. Particular acknowledgment for valuable assistance in preparing this report is offered to Dr. Robert W. Van Dolah, chief, and Mrs. Ruth Brinkley, technical assistant, of the Division of Explosives Technology, Bureau of Mines. Acknowledgment is extended to the American Gas Association for funds contributed to this research; Dr. Guenther von Elbe, formerly with the Bureau of Mines and now with Combustion and Explosives Research, Inc.; Dr. David S. Burgess, chief, Branch of Physical Sciences, Bureau of Mines; Dr. Channing W. Wilson, research chemist, Consolidated Gas Electric Light & Power Co. of Baltimore; Thomas Lee Robey, coordinator of research, and Roy A. Siskin, utilization research engineer, American Gas Association; John Corsiglia, chief utilization engineer, Surface Combustion Corp.; Earl J. Weber, research engineer, American Gas Association Laboratories; Lyman M. Van der Pyl, chief chemist, Rockwell Manufacturing Co.; John F. Anthes, assistant chief chemist, The Brooklyn Union Gas Co.; and C. C. Winterstein, special assistant, The Philadelphia Gas Works Co., for many helpful discussions. Much of the data on flame stability was obtained by Harold Schultz, chemical engineer, a former member of the Bureau of Mines staff.

EQUIPMENT AND EXPERIMENTAL PROCEDURE4/

Only premixed streams of fuel gas and air, flowing through single upright ports in free air, at room temperature and pressure, were used in these studies. Data obtained apply to both premix and air-entraining burners because the flame port cannot respond to the manner in which the mixture flowing through it was prepared. In general, the burners used were long cylindrical glass and, in some instances, metal tubes of constant cross section, 40 to 100 diameters long. The special burners used to study flame stability and yellow tipping on short ports and hot ports are described in chapter VI. The burners used in tests with noncircular ports consisted of long metal channels of constant, triangular, square, or rectangular cross section. Flame-port dimensions were varied to provide cross checks among burners and to permit measurements over a wide range of fuels and fuel-air mixtures. Except when otherwise noted, all burners were single ports in free, still air at room temperature (around 78° F.) and atmospheric pressure (around 730-750 mm. pressure) and in an upright position.

Fuel-air mixtures were prepared by flowmetering and mixing fuel and air from compressed-gas cylinders. Flows were regulated and maintained steady by very fine

needle valves. The mixing chambers were equipped with right-angled, high-velocity jets. Calibrated glass-wool flowmeters (13, 16, 21)5/ held at constant temperature and accurate to within ± 1 percent of the instantaneous flow were used. Since the flow through the glass-wool flowmetering element depends upon the viscosity of the gas, corrections for the effect of fluctuating barometric pressure were unnecessary. The perfect gas law was used to correct flowmeter readings to burner-port conditions when the pressures or temperatures at the two stations differed. This difference, except where noted, was always small or nonexistent.

Fuel mixtures were prepared by mixing gases in a compressed-gas cylinder. After standing for at least 2 weeks, the fuels were analyzed with the mass spectrometer.

In the conduct of a particular test the air and fuel flows were so adjusted that a stable flame was formed. The fuel flow was then varied until flashback, blowoff, or yellow tipping was just observed. This flow rate was taken as the blowoff, flashback or yellow-tip limit, as the case might be. The transition from stable flame to complete blowoff was usually very sharp; partly lifted flames were unusual or occurred only over a negligible range of flows. The flashback limits were usually sharp, tilted flames being either absent or appearing only over a very short range. Moreover, care was taken to select port diameters so that tilted flames of methane and natural gas. Before each run the port was checked to make certain that it was at room temperature. Enough determinations were made to delineate curves of flashback, blowoff, and yellow tipping for each fuel by varying total flow, fuelair composition, and burner diameter.

In running these tests certain elections were made. Premixed streams of gas and air were used instead of air-entraining burners to eliminate uncertainties about complete mixing. Flowmeters were used rather than wet-test meters to obtain steady and instantaneous readings of flows. Long ports with steady laminar flow were used in preference to short ones with unsteady laminar flow, so that the flow profile was known with certainty. Single-port burners eliminated uncertainties regarding distribution of the total flow among multiports and the possible interaction of flames on adjacent ports. The ports were held upright to exclude changes in the flow profile due to buoyancy. In all, the equipment was designed to yield experimental data as universally applicable and unambiguous as possible.

CHAPTER I. - FLASHBACK, BLOWOFF, AND FLAME-STABILITY DIAGRAMS

A. Flashback and Blowoff

It is of interest to inquire into the mechanism of stabilization of a stationary flame on a burner port. The answer requires introduction of the concept of the critical boundary velocity gradient, a fundamental physical parameter for representing flashback and blowoff characteristics of a fuel gas. This concept, first proposed by Lewis and von Elbe (19), describes the circumstances that cause a flame to flash back into the port or blow off from the port.

We can reason that a flame will remain stationary in space when the rate of consumption of unburned combustible mixture equals the rate at which combustible

^{5/} Underlined numbers in parentheses refer to items in the bibliography at the end of this report.

^{6/} See p. 21.

mixture is fed to the flame. Correspondingly, a flame is expected to stabilize on a burner port at a point in the approach stream where equality exists between the burning velocity and the stream velocity. This equality is generally found near the boundary of the stream where the stream velocity is reduced by friction with the wall. It is therefore at the boundary of the stream, that is, near the port wall, that we must look for relations describing flame-stability limits.

Let us first consider the phenomenon of flashback, taking for example an explosive gas-air mixture in a tube with a diameter large enough to allow flame to propagate. The combustion wave cannot come closer to the wall of the tube than the quenching distance at flashback as the burning velocity is zero within virtually the entire space defined by the quenching distance, and thus no flame exists here. At greater distances from the wall of the tube the burning velocity rises rather sharply to almost its standard value, as shown schematically by the heavy curves in figure 1. This figure gives only conditions near the edge of the stream. The other lines (a, b, and c) in the figure are lines of stream velocity for three different approach flows. The stream velocity is zero at the wall; over a short distance from the wall (boundary of the stream) it increases in virtually a linear fashion; toward the axis it rises to its maximum. If the flow corresponds to line a of figure 1, the stream velocity falls in part below the burning velocity. Here the flame will move upstream against the flow; that is, it flashes back because the burning velocity exceeds the stream velocity at some point over the stream cross section. At that point the combustible mixture can be consumed faster by the flame than mixture is being fed to the flame. Therefore the flame moves against the flow. If the flow increases (line b), the combustion wave remains stationary in an unstable equilibrium position within the mouth of the port. This is the condition at the flashback limit. The point of balance between the standard burning velocity and the stream velocity is at the point of tangency of line b with curve A. The tangent or slope of line b at this point is approximately the quotient of the standard burning velocity and the quenching distance at flashback of the gas-air mixture under consideration, that is, the ratio of ordinate to abscissa. This quotient of standard burning velocity and quenching distance equals the critical boundary velocity gradient for flashback for the gas-air mixture under consideration. If the flow corresponds to line c, the stream velocity is everywhere larger than the burning velocity, and the flame is swept out of the tube. A stable flame can form on top of the burner for the flow of line c.

Therefore, considerations of the nature of flashback lead to the conclusion that the critical boundary velocity gradient for flashback equals the quotient of two parameters - the burning velocity and the quenching distance at flashback. The burning velocity must be a fundamental parameter of the fuel-oxidant mixture, because, as defined, it is the manifestation of the chemical reaction rate. The quenching distance at flashback must also be a fundamental characteristic of the mixture, since it reflects the ability of a heat sink of large capacity to extract energy from the system rapidly enough to prevent flammation. The gradient, being a quotient of two fundamental parameters, must itself be a fundamental parameter and should be independent of port diameter (see pp. 17 and 21). This last conclusion may be used to test the validity of the proposed mechanism. In the course of their pioneering work (19) on the stability of Bunsen-burner flames, Lewis and von Elbe proposed this mechanism and showed the gradient to be independent of port diameter within explainable limits. Much corroborating evidence has come since then (1943) from many laboratories.

Let us now consider blowoff. When the flame moves out of the mouth of the port to a position atop the port, the combustion wave propagates in the free stream

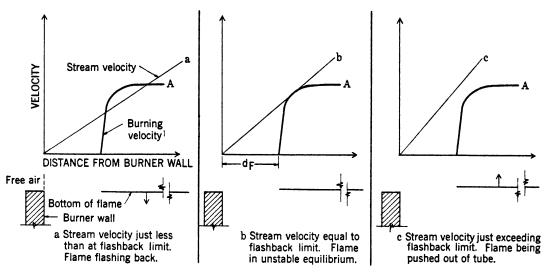


Figure 1. - Diagrammatic description of burning velocity, stream velocity, and flame position near flashback limit.

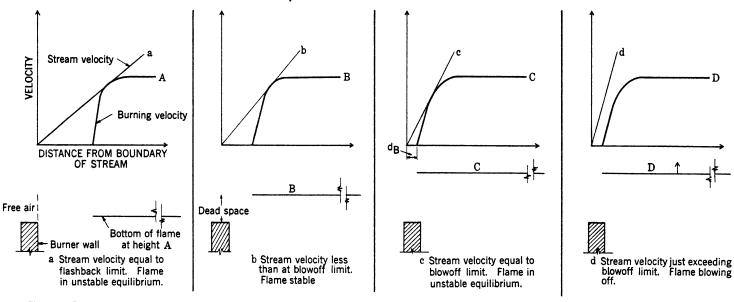


Figure 2. - Diagrammatic description of burning velocity, stream velocity, and flame position near blowoff limit.

above the rim of the tube, and correspondingly the quenching effect of the tube rim is reduced. Consequently, the curve of burning velocity shifts closer toward the stream boundary. This is illustrated in figure 2, which will be used to explain the phenomenon of blowoff. Four burning-velocity curves are shown, corresponding to four heights, A, B, C and D, of the flame base above the rim. At height A, close to the rim, the burning-velocity curve is about the same as in figure 1. slope of line a in figure 2 is the same as that of line b in figure 1. At height B the burning-velocity curve has shifted toward the boundary of the stream. The shift toward the boundary continues up to height C. Here the quenching effect of the tube rim is very small, but the burning-velocity curve drops to zero near the stream boundary because an outermost layer of nonexplosive gas is formed by interdiffusion with secondary air and transfer of momentum. At heights exceeding C the nonexplosive boundary layer broadens, and correspondingly the burning-velocity curve recedes from the boundary. Hence, if the approach velocity is large (line d), it exceeds the burning velocity everywhere, and the flame blows off the tube because it can find no point where a balance exists between the burning velocity and the stream velocity. The condition shown by curve C and line c of figure 2 is the blowoff limit. The critical slope of stream velocity in this instance is known as the critical boundary velocity gradient for blowoff, gB. It is approximately the quotient of the standard burning velocity and the quenching distance at blowoff of the gas-air mixture under consideration (again, the ratio of ordinate to abscissa).

However, the quenching distance at flashback differs from the quenching distance at blowoff. The quenching distance at flashback results from the loss of heat and active radicals to the wall of the port. On the other hand, the quenching distance at blowoff comes about largely through dilution with ambient air whereby a noncombustible fuel-air mixture is formed at the boundary of the stream and, to a small extent, by the loss of heat and chemical enthalpy downward toward the rim of the port. 7/

We note that the blowoff gradient is the quotient of two terms that depend on the identity of the fuel-oxidant mixture. These are the standard burning velocity and the quenching distance at blowoff. Accordingly, the blowoff gradient is also a fundamental quantity of the mixture. Evidence for this was first presented by Lewis and von Elbe (19), who showed that blowoff gradients are independent of tube diameter within wide limits. Again, as with regard to flashback, corroborating evidence has come from many laboratories since then.

If now we consider stable flames, we find that, at any flow between the limiting lines a and c of figure 2, the flame settles down to a height above the rim such that the stream-velocity curve and the burning-velocity curve meet each other tangentially. For example, let us suppose that the approach flow is adjusted to correspond to the stream-velocity line b. If the combustion wave drops below the height B, the burning-velocity curve shifts to the right, the stream velocity is larger everywhere than the burning velocity, and the combustion wave is forced to lift up again toward the height B. If it should exceed this height, the burning-velocity curve shifts to the left, the stream velocity falls below the burning velocity at some distance from the boundary, and the combustion wave moves back to its equilibrium position at height B. Thus the flame remains stable between a critical lower and upper gradient of the stream velocity at the stream boundary,

^{7/} Dead space is still another quantity and is not identical with quenching distances at flashback and blowoff. It is the distance between the base of a stable flame and the rim of the port beneath the flame. Dead space depends on the flow and varies between heights A and C of figure 2, for the reasons given on pp. 6 and 7.

corresponding to the slopes of lines a and c and to the flashback and blowoff limits, respectively. For a flame burning in air the blowoff gradient increases sharply when the mixture is enriched with fuel gas, because in this case the interdiffusing air at first increases the burning velocity at the boundary. Therefore rich flames are much more stable than lean flames. However, if the surrounding atmosphere does not consist of air but of some inert gas, rich flames blow off readily, the blowoff gradient decreasing with increasing fuel concentration.

It can be seen from these considerations that the critical boundary velocity gradients g_F and g_B (for flashback and blowoff, respectively) are based on properties of the gas-air mixture and are therefore essentially dissociated from burner characteristics. They depend upon the burning velocity of the combustible mixture, on its quenching distance at flashback, and on its quenching distance at blowoff in free air. Such factors as port diameter, shape, depth, and inclination should not, within definable limits, affect the critical boundary velocity gradients of flashback and blowoff. Therefore we may expect that, for a given fuel-oxidant system, there will be 1 flashback curve and 1 blowoff curve, independent of the port factors. We will see, as this discussion develops, that this is the case within certain limitations, some of which will be explained; others must await further study.

We may next consider the techniques of experimentally determining values of the critical boundary velocity gradients. It is generally more difficult to measure the standard burning velocity and the distance from the boundary of the stream over which the flame is quenched than it is to determine the slope of line b in figure 1 (for the flashback limit) or that of line c of figure 2 (for the blowoff limit). For example, the slope of such curves can be determined as follows: There are sketched in figure 3 a burner port and the velocity profile of a stream of combustible mixture flowing through it. When the velocity profile of the stream at the burner port is known, it is possible to calculate the slope of the curve of stream velocity versus distance from the axis of the port. The slope of this curve near the wall of the port is the boundary velocity gradient. For steady laminar flow the boundary velocity gradient, which is denoted by g, is calculated to be

$$g = 4 \text{ V}/_{\pi} \text{ R}^3,$$
 (1)

where V is the volume rate of flow through a burner port of radius R. If the value assigned to V is the flow at which the flame just flashes back into the burner, equation 1 gives the critical boundary velocity gradient for flashback, g_F . If V is the flow at which the flame just blows off from the burner, we obtain the critical boundary velocity gradient for blowoff, g_B . Any flow through a burner port can be expressed in units of g, the boundary velocity gradient, but the critical boundary velocity gradient refers only to the limiting condition, either for flashback or for blowoff. Equations for calculating g for other port shapes and types of flow are discussed later (ch. V).

B. Explanation of Flame-Stability Diagrams

The practical advantage of the above theoretical treatment of flame stability can be seen by examining figures 4-7,8 based on data in reference (19). The critical flows of natural gas-air mixtures at which flashback and blowoff were

^{8/} Data presented in figs. 4-11 and 13-18 were obtained with less accurate flow-meters than those employed to obtain data in subsequent chapters. However, the agreement between the 2 sets of data where they overlap is entirely adequate for the purpose of presenting theory.

Figure 3. - Parabolic velocity profile of a stream at a burner port.

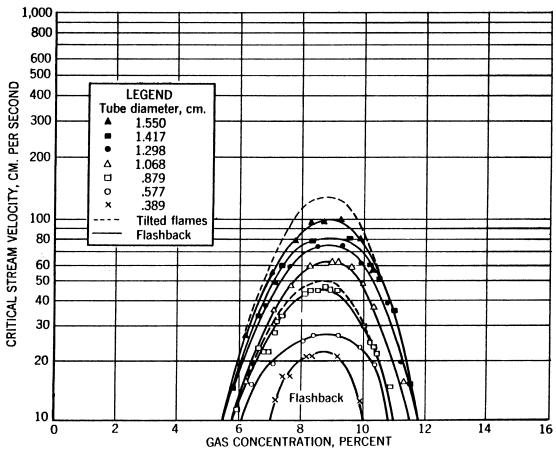


Figure 4. - Critical flows for flashback of natural gas-air flames (Lewis and von Elbe).

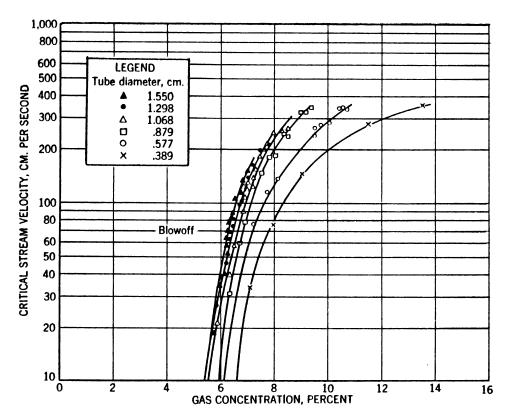


Figure 5. - Critical flows for blowoff of natural gas-air flames (Lewis and von Elbe).

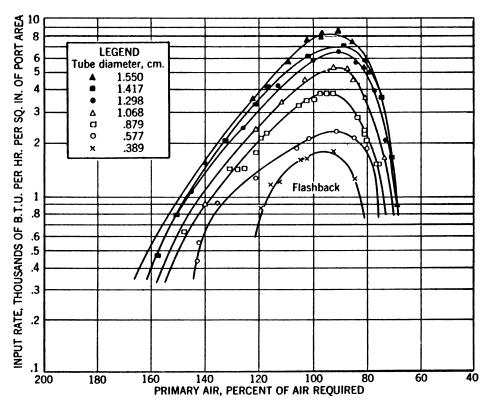


Figure 6. - Critical flows in gas-industry units for flashback of natural gas-air flames (Lewis and von Elbe).

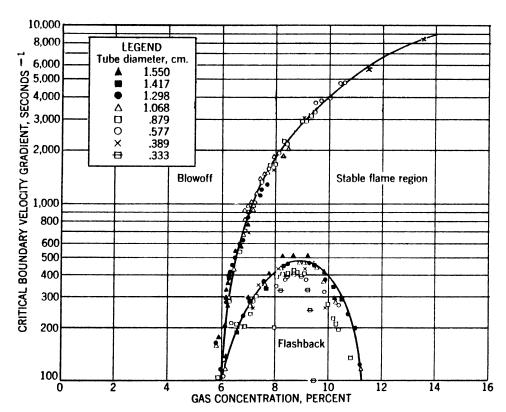


Figure 7. - Critical boundary velocity gradients for flashback and blowoff of natural gas-air flames (Lewis and von Elbe).

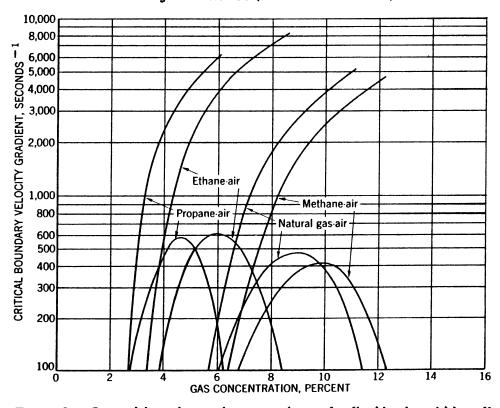


Figure 8. - Critical boundary velocity gradients for flashback and blowoff of paraffin-air mixtures.

observed with various burners are presented in figures 49/ and 5. There is a different set of curves for each size burner port, regardless of whether flow is in volumetric units (V) (19), linear units $(V/\pi R^2)$, or $(B.t.u./hr.in.^2)$. (See, for example, figure 6, in which the data of figure 4 are replotted in B.t.u./hr.in.² versus percent of primary air.) However, by plotting the data of figures 4 and 5 against critical boundary velocity gradients instead of $V/\pi R^2$, or V, or B.t.u./hr.in.², substantially a single curve is obtained for flashback and another for blowoff for ports of various sizes. This has been done in figure 7, in which both g_F and g_B are plotted and which defines the flame-stability region of natural gasair mixtures. Similar diagrams may be obtained for all combustible constituents of commercial fuel gases, among which are hydrogen, carbon monoxide, methane, ethane, ethylene, propane, propylene, and butane. The same is true for mixtures of these constituents with one another and with noncombustibles, such as oxygen, nitrogen, and carbon dioxide.

An additional simplification can be made in representing flame-stability limits. If critical boundary velocity gradients for flashback and blowoff are plotted against percent gas for several gases, the curves will lie apart from each other if the stoichiometric fuel percentages are different, as illustrated in figure 8 for several hydrocarbons. When the fuel percentage is divided by the stoichiometric fuel percentage, the function "fraction of stoichiometric," F, is obtained. The higher the value of this ratio, the richer the mixture will be. The stoichiometric fuel percentage for methane is 9.46, for this natural gas 8.49, for ethane 5.64, and for propane 4.02. A methane-air mixture containing 12 percent methane has an F value of 12.0/9.46 = 1.27.

When the ratio fraction of stoichiometric is used, flashback and blowoff data for all fuels center around the value of F = 1.0, as is illustrated in figure 9.

Figure 10 contains two curves roughly averaging those of figure 9. A flame-stability diagram, such as figure 10, contains 2 curves - 1 for flashback and 1 for blowoff. These 2 curves define 3 regions of flame behavior on burners - a region where flames flash back (beneath the flashback curve), one where flames blow off (above the blowoff curve), and a stable flame region (between the flashback and the blowoff curves). The diagram is characteristic of the fuel gas and correlates the flashback and blowoff limits of the fuel for all burners, except in certain definable instances. The flame-stability diagram of any fuel can be determined experimentally in the laboratory with comparative ease, or it can be calculated somewhat less accurately by procedures given in chapter II.

C. Some Uses of Flame-Stability Diagrams

The coordinates of a flame-stability diagram - the critical boundary velocity gradient and fraction of stoichiometric - are relatively new concepts and may require explanation beyond the theoretical arguments presented above. As a first step, let us see how the units of the flame-stability diagram are related into units familiar to the gas industry.

The abscissa of a flame-stability diagram is the fraction of stoichiometric F and may be used to calculate the percent primary air, which is the ordinate of the gas-industry type of diagram for representing flame characteristics. The equation

^{9/} The flashback curve for the 1.550-cm. tube has been drawn in accordance with revision by Lewis and von Elbe (17).

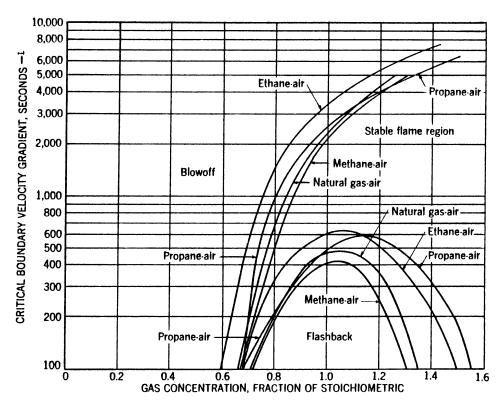


Figure 9. - Flame-stability diagrams for paraffin-air mixtures.

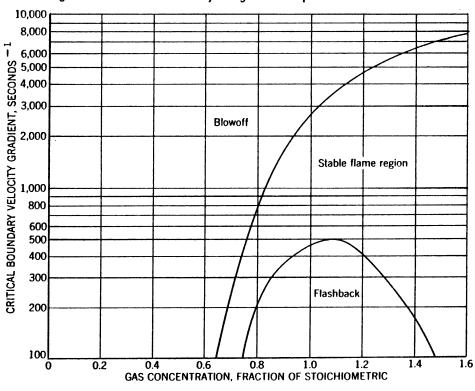


Figure 10. - Average flame-stability diagram for paraffin-air mixtures.

relating the fraction of stoichiometric and the percent primary air is

$$L = 100(1 - FS)/F(1 - S), = (50)$$
 (2)

 $L = 100(1 - FS)/F(1 - S), = (00) \left(\frac{1 - S}{F}\right)$ where L = percent primary air= 100 (air/gas)_{actual}/(air/gas)_{stoichiometric}; F = gas concentration, fraction of stoichiometric; S = mole fraction of fuel in a stoichiometric mixture. In addition, P, the volume of air required for complete combustion of 1 volume of fuel, and FS are

$$FS = 100/(LP + 100) = percent fuel/100,$$
 (2a)

$$P = (1 - S)/S.$$
 (2b)

An alternate to equation 2 is

$$L = \frac{100(P + 1 - F)}{FP} . (2c)$$

The ordinate of a flame-stability diagram is the critical boundary velocity gradient $(g_F \text{ or } g_B)$ and may be used to calculate the heat input, M, B.t.u./hr.in.², when the port diameter D_i is specified. If the port is cold, held upright, and long enough to establish steady laminar flow, then

$$M (B.t.u./hr.in.^2) = 0.26 gH_0D_iFS,$$
 (3)

where M = flow of fuel through port, B.t.u./hr.in.²; g = boundary velocity gradient,seconds $^{-1}$; H_0 = heating value of fuel, B.t.u./cu.ft.; D_i = diameter of port, inches; 0.26 = numerical constants. An alternate form of equation 3 is

$$M = \frac{0.26 \text{ gH}_0 D_1 F}{P + 1} . \tag{3a}$$

The advantages in using the flame-stability parameter critical boundary velocity gradient over the above heat-input factors are threefold:

- The critical boundary velocity gradient concept can be derived theoretically and used to explain the phenomena of flashback and blowoff, which cannot be done on the basis of heat-input units alone.
- (2) The flame-stability gradients are characteristic of the fuel-air mixture and are largely independent of the port size and shape and probably of its inclination. However, for a given fuel the heat-input limits differ for each port size (see figure 6), shape, and inclination.
- (3) Furthermore, the heat-input factor results in different exchangeability (interchangeability, supplementability, etc.) diagrams that depend upon the particular burner employed for the calculation. Other difficulties arise when predicting the exchangeability of fuel gases, which will not be discussed here.

The use of either F values (fraction of stoichiometric) in a flame-stability diagram or percent primary air results in a similar grouping of flame-stability curves.

(1) However, use of percent primary air in plotting flashback and blowoff data spreads out the region of lean flames (values between 100 and infinity) and compresses the region of rich flames (values between 100 and 0) in which most burners operate. Use of F values leads to a more realistic relative emphasis on the lean (F < 1) and rich (F > 1) regions.

- (2) Moreover, the percent primary air function complicates the equations for the entrainment of air in gas burners, which are essential in any method for predicting the exchangeability of fuels on air-entraining burners.
- (3) In addition, use of percent primary air produces different limits for fuels consisting of a combustible (as propane) and fuels consisting of the same combustible mixed with air (as propane-air). This is not the case when the term fraction of stoichiometric is used as shown in the following example. Consider a mixture of fuel (propane) plus primary air, such that the percent primary air is 60. The percent propane in total air is $6.5 \left[P = 24, 0.60(24) = 14.4, \% = \frac{1(100)}{1+14.4} = 6.5 \right]$. Next take a mixture of fuel (1,120 B.t.u. propane-air, 43.3 percent C_3H_8 , 56.7 percent air) plus 60 percent primary air. The percent propane in total air is $6.3 \left[P = 9.8, 0.60(9.8) = 5.88, \% = \frac{0.433(100)}{1+5.88} = 6.3 \right]$. Obviously, we are dealing with two mixtures of fuel and total air. We have limits for each. On the other hand, take the same two fuels at some identical value of F, and we find that the percent propane in total air is identical for both fuels. To illustrate, at F = 1.4 the percent propane in total air for the pure porpane fuel is 1.4 (0.0402)(100) = 5.6, and the percent propane in total air for the 1,120-B.t.u. propane-air fuel, 43.3 percent propane in fuel, is 1.4(0.0928)(100)(0.433) = 5.6.

Apart from the question of units, a flame-stability diagram can be used in very much the same fashion as the well-known limit curves used by the gas industry (1, 23). For example, the performance of a particular burner can be shown on a flame-stability diagram. If the air shutter and gas rate are fixed, the burner can be represented by a single performance point, such as x in figure 11. If in another burner the gas rate is fixed and the air shutter is raised from partly open to wide open, as for instance in the Rochester test burner (RTB) (24), the performance points may form such a line as A, where point f corresponds to an RTB flashback number and point b to an RTB blowoff number (see fig. 11). For a third burner, with a fixed air shutter and a gas rate that is varied from off to wide open, the performance points of the burner may form a line such as B. More important still, the performance point x in figure 11 can represent many burners. This is a great advantage in dealing with vast numbers of burners with many port diameters and port loadings. Flame-stability diagrams can also be used to predict the exchangeability of fuels on gas distribution systems. (See refs. A, D, F, I, L and N of Special Bibliography, pp. 118-119.)

How can the flashback and blowoff limits of a specific burner port diameter be calculated from the flame-stability diagram of a given fuel in terms of B.t.u./hr.in.² versus percent primary air? Let us consider the case of a single-port burner with steady laminar flow through the port. The port is burning in free air, it is held upright, it is circular in cross section (diameter, 0.25 inch), the flow and ports are at room temperature and pressure, and the fuel is methane.

Intercepts of F_F , g_F , and F_B , g_B are read from the two curves in figure 20 (see table 1, columns 1 and 3). Using equation 2 (p. 13), F, the gas concentration, fraction of stoichiometric, is converted to L, the percent primary air (see table 1, column 2). Thus for F = 0.8 and S = 0.0946, we have:

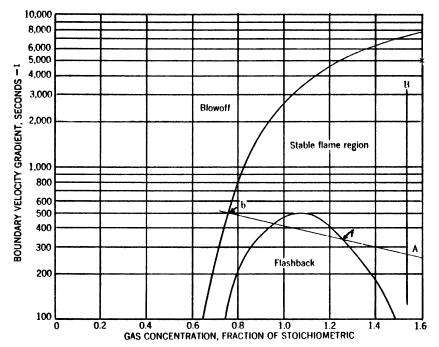


Figure 11. - Use of average flame-stability diagram for paraffin-air mixtures to show performance of burners.

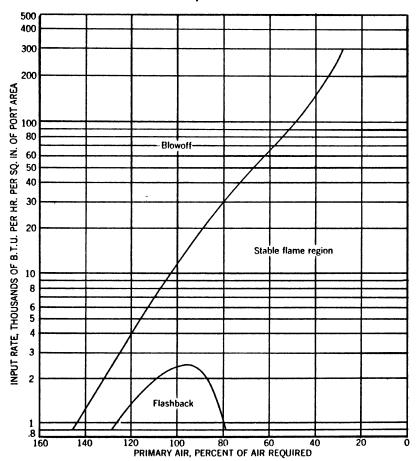


Figure 12. - Gas-industry type of flashback and blowoff limit curves for methane for 0.25-inch port with steady laminar flow.

TABLE 1.	-	Converting the flame-stability diagram
		of methane to limit curves for
		a 0.25-inch port burner with
		steady laminar flow

F.	L	T g	M
	F	lashback	
0.8	128	190	945
.9	112	330	1,848
1.0	100	390	2,425
1.1	90	340	2,325
1.2	82	180	1,345
		Blowoff	-
0.8	128	510	2,540
1.0	100	1,950	12,140
1.2	82	3,750	28,000
1.6	59	6,800	67,700
2.0	45	9,500	118,000
2.4	36	12,500	186,500
2.8	29	16,200	282,000

$$L = 100 (1 - 0.8(0.0946)) / 0.8(1 - 0.0946) = 128.$$

Using equation 3 (p. 13), the critical boundary velocity gradients are converted into M, B.t.u./hr.in.² (for the 0.25-inch-diameter port) (see table 1, column 4). These values hold only for a 1/4-inch port ($D_i = 0.25$); they apply to no other port size. To obtain values of M for another diameter, another value must be assigned to D_i . For the same condition as above:

$$M = 0.26(190)(1.013)(0.25)(0.8)(0.0946) = 945.$$

When the newly calculated intercepts (see table 1, columns 2 and 4) are plotted, the result is the usual gas-industry type of limit-curves diagram (figure 12). (The yellow-tip limit involves separate considerations discussed in chs. III and IV.)

It should be emphasized that figure 12 represents the condition for the particular burner described above. For other burner conditions, such as a hot port, a short drill port, a multiport burner, or a burner operating in an appliance with restricted secondary air, additional considerations are necessary.

D. Limitations of Flame-Stability Diagrams

Limits of applicability and reservations pertaining to the numerical values of gradients listed in this chapter must be recognized. In some instances we possess adequate knowledge to make necessary corrections; in others we have yet to learn the answers. However, these difficulties are not associated uniquely with the concept of critical boundary velocity gradients for flashback and blowoff; they arise also when burner performance is rated in terms of B.t.u./hr.in.2 or other units. In all these instances the following limitations must be considered:

(1) <u>Temperature</u>. Flashback and blowoff gradients are raised by increasing the initial temperature of the stream before it is ignited. The listed values are for room temperature (around 78° F.). The method for correlating these listed

values with temperature is known, but correction factors are known at present only for methane (natural gas) and propane. (See ch. VI on temperature dependence of fuel characteristics.)

- (2) <u>Pressure</u>. Flame-stability gradients are directly proportional to the ambient pressure; however, near atmospheric pressure the flame-stability gradients change little with the usual small fluctuations in barometric or ambient pressure in the appliance. The listed values were obtained around 74 cm. of mercury.
- (3) Chemical composition of secondary air. The listed values were obtained on monoports in free still air. The flashback gradients are not affected by partly vitiated secondary air that may occur in an appliance, but we know that the blowoff gradients are strongly affected, although adequate quantitative information is lacking. Figure 13 (19) gives an example of how partly vitiated secondary air lowers the blowoff gradient.
- (4) Chemical composition of primary air. The listed measurements are for primary air containing 20.9 percent oxygen. They do not apply to primary air containing much less or more oxygen or where nitrogen is replaced by another inert gas. The magnitude of this effect for methane and for propane can be judged from figures 14-17 (15), where the oxygen percentage in the primary "air" is either 20.9 or 100 percent oxygen while the secondary air remains at 20.9 percent oxygen.
- (5) Motion of secondary air. The basic aspects of this phase of burner performance has not been studied adequately, but it is expected that numerical values of critical boundary velocity gradients are unaffected by the motion of secondary air. However, the flow profile at the rim of the port can be altered by sufficient draft. Consequently, the boundary velocity gradient corresponding to the altered flow profile is not the same as for the stream flowing into free still air. This complication needs further study.
- (6) Angle of port axis with the vertical. Measurements reported in this chapter were made with upright ports and upward flow. Information for nonvertical ports and inclined or downward flow is inadequate. It appears probable that the critical boundary velocity gradients are not changed by varying the orientation of the port but that the flow corresponding to a particular gradient is affected.
- (7) <u>Diameter of port.</u> These critical flame-stability gradients are valid for all port diameters, with the following exceptions:
 - (a) Flashback is impossible when the port diameter is equal to or smaller than the quenching distance of the mixture, provided that the port depth is greater than about 1/16 inch. When the port diameter is only slightly greater than the quenching distance for the particular fuel-air mixture, the flashback gradient is decreased. It is lowered because the burning velocity of the mixture is appreciably decreased by ports of near quenching dimensions to a nonstandard value. Furthermore, the concept of critical boundary velocity gradients for flashback is increasingly inexact as the port diameter decreases to quenching distance. In such ports, owing to quenching by the wall, the flame cannot extend far enough from the axis to be thought of as existing near the boundary, and the stream-velocity profile across the quenched distance from the wall is not sufficiently linear. Linearity of the boundary velocity profile across the quenched distance is one of the requirements underlying the concept of critical boundary velocity gradients. This

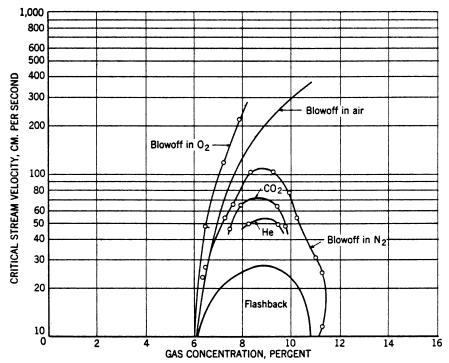


Figure 13. - Effect of nature of surrounding atmosphere on blowoff of natural gas-air flames; tube diameter, 0.577 cm. (Lewis and von Elbe).

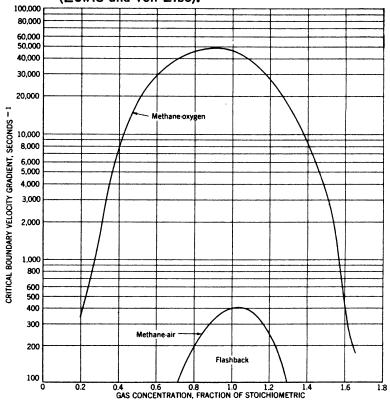


Figure 14. - Critical boundary velocity gradients for flashback of methane-air and methane-oxygen mixtures.

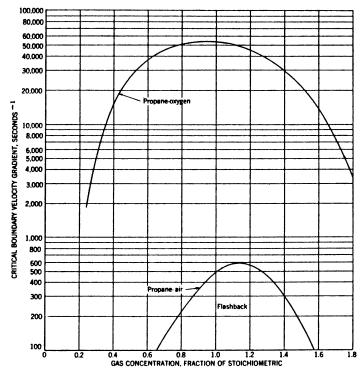


Figure 15. - Critical boundary velocity gradients for flashback of propane-air and propane-oxygen mixtures.

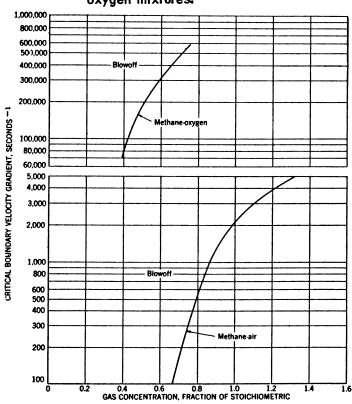


Figure 16. - Critical boundary velocity gradients for blowoff of methane-air and methane-oxygen mixtures.

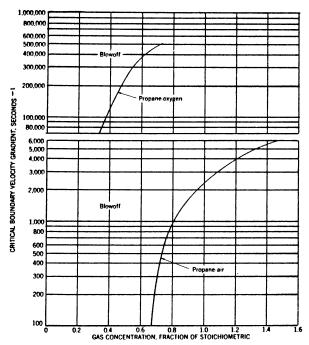


Figure 17. - Critical boundary velocity gradients for blowoff of propane-air and propane-oxygen mixtures.

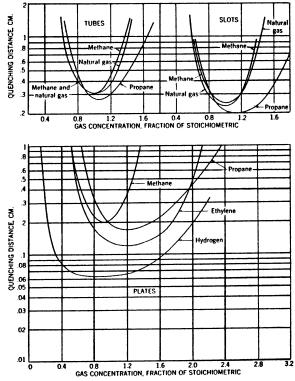


Figure 18. - Quenching distances of tubes, slots (von Elbe and Mentser), and plates (Blanc, Sikora, Guest, von Elbe and Lewis) for mixtures of several fuels with air.

limitation introduces a safety factor because the flashback gradients in this report represent upper limits for flashback on small ports, all factors other than diameter being excluded from consideration for the moment. 10^{1} The magnitude of quenching distances for ports at room temperature may be judged from figure 18 (2, 14, 15, 28).

Another exception exists for rather large diameter ports where the backward thrust of the flame can cause chance asymmetry in the stream-velocity profile for flows somewhat exceeding the flashback limit. The result may be a tilted flame (28) that flashes back with an irregular flame front, thus increasing the flashback region beyond the standard limits. Usually this effect is small, particularly for slow-burning fuels such as natural gas and on smaller ports. However, tilted flames could profitably bear further investigation.

- (b) Blowoff gradients are less affected by port diameters near quenching dimensions. Near blowoff the flame is stabilized above the port while near flashback the flame is virtually within the rim of the port. Thus less heat energy from the flame reaches the port at blowoff than at flashback, and the quenching effect of the port is less. For rich fuel-air flames in air the blowoff gradient is valid for all port diameters. Very rich flames (fraction of stoichiometric greater than about 3) are basically diffusion flames. Their blowoff limits are not treated in this report, as the blowoff characteristics of very rich flames are not described in the main by the concept of critical boundary velocity gradients (32). Lean flames blow off from ports of near quenching diameters at flows far below those corresponding to the critical boundary velocity gradients for blowoff, while very lean flames may even be extinguished (19).
- (8) <u>Multiport burners</u>. No conclusive tests were conducted with such burners. However, it is apparent that, if the flow from all ports on a burner were exactly the same and all ports were spaced far enough apart so that each was in free, still air, the performance of the burner would be that of a monoport. However, when the ports are close, the atmosphere surrounding each port contains combustion products that change the flame-stability characteristics. The operating temperature of the burner may also be affected, thus changing the stability gradients still more.
- 10/ All flashback measurements in this report have been made with ports large enough to avoid partial quenching of the flame. Otherwise, gradients that are characteristic of the fuel and independent of the burner would not be obtained. On ports where partial or complete quenching can occur, flashback takes place at less than standard gradients or not at all. A port that is small for a slow-burning gas, such as natural gas, may be large for a rapidly burning gas, such as a coke-oven gas. It is interesting to note that a 0.294-cm. port (about a D.M.S. 32-hole), which is too small for natural gas, is not too small for a hydrogen-carbon monoxide fuel consisting of 74.5 percent carbon monoxide, 25.1 percent hydrogen, and 0.4 percent carbon dioxide (A-T/2a-No./18). (Note. Material in the Appendix will be referred to in the text as in the following example: (A-T/2a-No./18). This means Appendix, table 2a, and fuel No. 18.) Flashback gradients obtained with this small port fall on the curve for the flashback data obtained with large ports.

If the total flow is divided unevenly among the ports, those ports receiving less than average flow flash back when their particular flow equals or falls below that corresponding to the critical boundary velocity gradient for flashback. The entire burner flashes back as soon as the flame from one of the ports strikes into the manifold. Thus flashback becomes possible, even when the average flow exceeds the flow corresponding to the critical gradient.

Similarly, those ports receiving more than average flow will blow off when the flow equals or exceeds that corresponding to the critical boundary velocity gradient for blowoff. The entire burner then shows lifting of flames or partial blowoff, which, for practical purposes, the industry rates as a blowoff condition. This partial blowoff is possible even though the average flow is less than that corresponding to the critical gradient.

(9) Flow profiles and port shape. In calculating boundary velocity gradients from data on volumetric or linear flows or the converse, it should be remembered that equations 1 and 3 are only for steady laminar flow through a long circular port. The critical boundary velocity gradients given in this report are correct for other types of flows and port shapes, but the equations relating the flow and the gradient differ (see ch. V).

CHAPTER II. - FLAME-STABILITY DATA OF FUELS; CALCULATION OF FLAME-STABILITY DIAGRAMS

Often, as, for example, when gas burners are being designed or the exchange-ability of fuels on gas burners is predicted, information on the flashback, blowoff, and yellow-tip limits of the fuels is needed by the gas industry. In principle, it is always possible to measure these limits, and it would always be best to do so. However, the gases and laboratory facilities may not always be available. Furthermore, it is clear that it would be a great advantage to the gas industry to have these measurements made once and for all. This chapter purposes to present flame-stability gradients or means of calculating these for all possible combinations of combustible gases and inerts likely to occur in a gas-distribution system and all mixtures of such fuels with air extending from very lean to very rich mixtures. These data are limited to flames on upright ports in free air at room temperature and pressure. Yellow-tip data are presented in chapters III and IV.

A. Flame-Stability Diagrams of Natural Gases, Liquid-Petroleum Gases, and Single-Component Fuels

Let us first consider the simplest case - a single-component fuel. There are about a half-dozen of these fuels that interest gas suppliers. Their flame-stability diagrams 11 have been measured, as well as the flame-stability diagram for natural gas (A-T/la,lb-No./1),12 which, though not truly a single-component fuel, nay conveniently be treated as such. The data for figure 19 were obtained with natural gas containing methane, 91.5 percent; ethane, 5.2 percent; propane, 1.3 percent; propylene, 0.2 percent; butane, 0.2 percent; butylene, 0.1 percent; carbon dioxide, 0.9 percent; and nitrogen, 0.6 percent. As the chemical compositions of natural gases do not differ greatly and because the flame-stability diagrams of the

^{11/} A flame-stability diagram need not show experimental points, as the curves suffice to characterize the fuel. Experimental points are usually given in this report to show experimental error and conditions.

^{12/} See footnote 10.

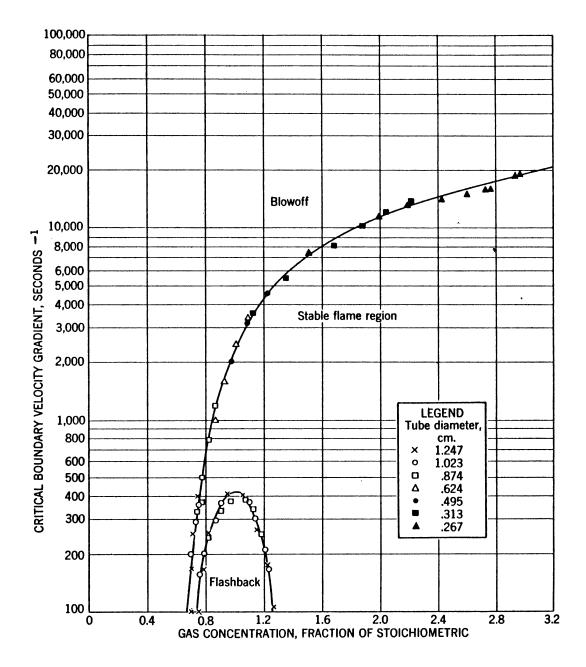


Figure 19. - Flame-stability diagram for fuel No. 1 (91.5% CH₄, 5.2% C₂H₆, 1.3% C₃H₈, 0.2% C₃H₆, 0.2% C₄H₁₀, 0.1% C₄H₈, 0.9% CO₂, 0.6% N₂).

components making up natural gas are very similar (see figure 9, p. 12), figure 19 may be used for all natural gases. Even natural gases containing low inerts can be represented by figure 19, as the data tabulated in (A-T/2a,2b-No./40) show that about 10 percent nitrogen does not seriously change the flame-stability limits of methane.

The diagram for 100 percent methane (A-T/la, 1b-No./2) is shown in figure 20.

Figure 21, for propane (A-T/la,1b-No./3), differs little from figure 19 or 20. Liquid petroleum-air fuels, such as propane-air, also are represented by figure 21, because it does not matter to the flame whether combustible and air are mixed in 1 or 2 steps. To use figure 21 for a liquid-petroleum fuel, we need only remember that S, the mole fraction of fuel in a stoichiometric mixture, varies with the composition of the fuel, for example, S = 0.0402 for pure propane, and S = 0.0928 for an 1,120-B.t.u. propane-air fuel (43.3 percent propane - 56.7 percent air). This distinction is needed when converting F into percent fuel or percent primary air. Although the flashback and blowoff gradients were not measured for butane, other authors (32) have found that the flame-stability gradients of butane nearly coincide with those of propane.

The next diagram, figure 22, is for ethylene (A-T/la, lb-No./4).

Figure 23 is for propylene (A-T/la, 1b-No./5).

Figure 24 is for the aromatic fuel benzene (A-T/la, 1b-No./6).

Figure 25 is for hydrogen (A-T/la, 1b-No./7).

Figure 26 is for a mixture of 88.9 percent carbon monoxide, 9.7 percent methane, 1.3 percent hydrogen, and 0.1 percent carbon dioxide (A-T/la,1b-No./8). The flame-stability characteristics of absolutely pure carbon monoxide are drastically changed by the presence of small quantities of water or other hydrogen-bearing materials, such as hydrocarbons. The fuel used here is more typical of carbon monoxide in mixtures than would be the diagram for the absolutely pure material.

These experimental flame-stability diagrams are believed to meet the needs of the gas industry as regards flashback and blowoff limits for single-component fuels.

B. Flame-Stability Diagrams of Two-Component Fuels

The simplest method of representing binary mixtures of fuels is to assume that the flame-stability limits correspond to weighted averages of the critical gradients of the single components making up the mixture. This is the case for combinations of alkanes and alkenes, such as methane, ethane, propane, butane, and ethylene. For example, figure 27 is the flame-stability diagram of a mixture consisting of 79.4 percent methane and 20.6 percent ethylene (A-T/2a,2b,4-No./41). The points shown were determined experimentally; the curves were calculated by taking a weighted average of the gradients of the single components of the mixture, in the same way as we calculate the heating value or the specific gravity of a mixture. Thus,

$$g_{a+b+c+...} = n_a g_a + n_b g_b + n_c g_c + ...,$$
 (4)

where g = the flashback or blowoff gradient of the component, and n = the mole fraction of each component in a multicomponent mixture. Values of g_a , g_b , etc., can

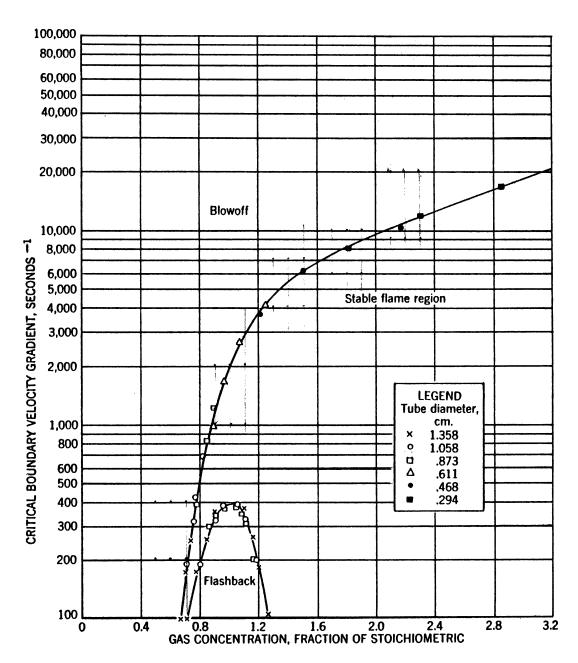


Figure 20. - Flame-stability diagram for fuel No. 2 (100% CH₄).

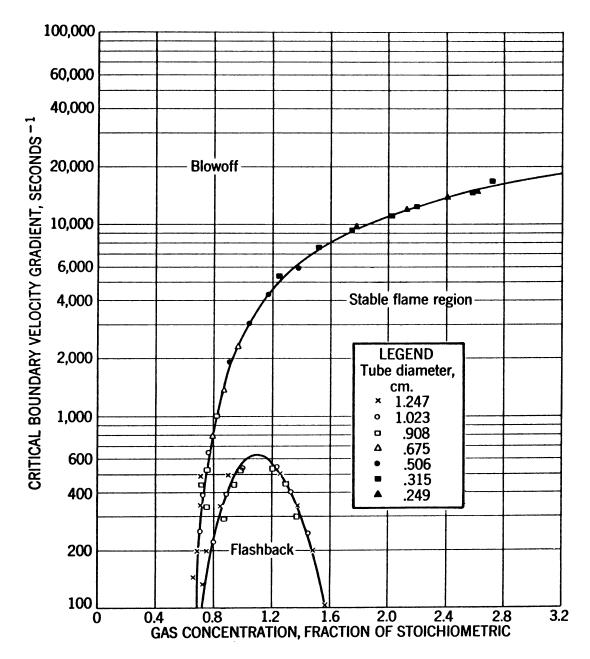


Figure 21. - Flame-stability diagram for fuel No. 3 (98.6% C₃H₈, 1.4% C₃H₆).

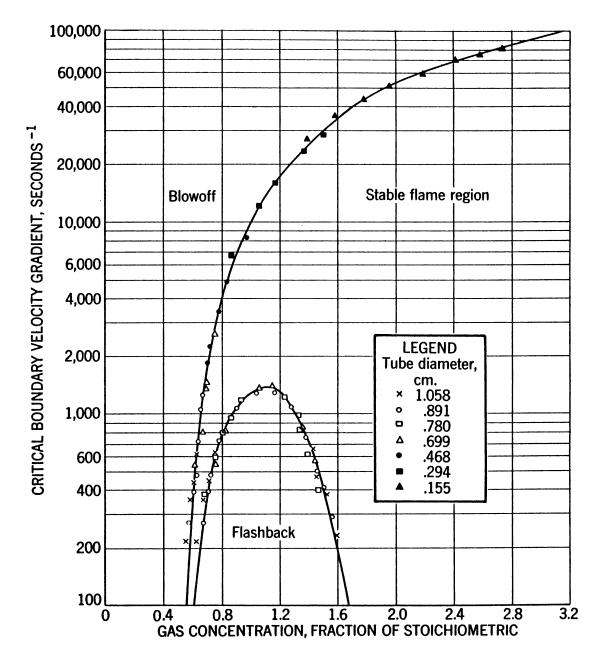


Figure 22. - Flame-stability diagram for fuel No. 4 (99.7% C₂H₄, 0.2% C₄H₈, 0.1% C₃H₆).

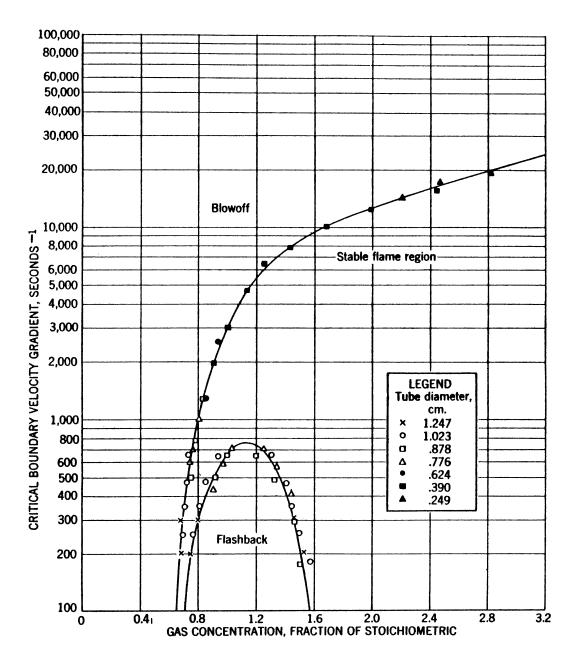


Figure 23. - Flame-stability diagram for fuel No. 5 (99.2% C_3H_6 , 0.4% C_2H_6 , 0.4% C_3H_8).

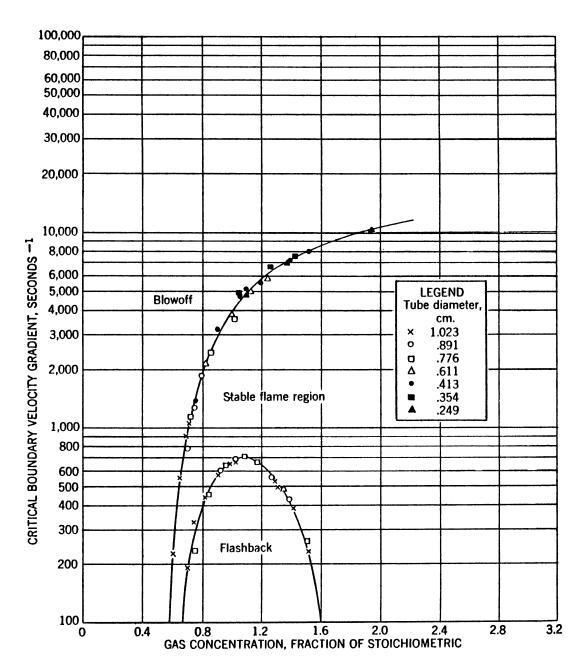


Figure 24. - Flame-stability diagram for fuel No. 6 (100% C₆H₆).

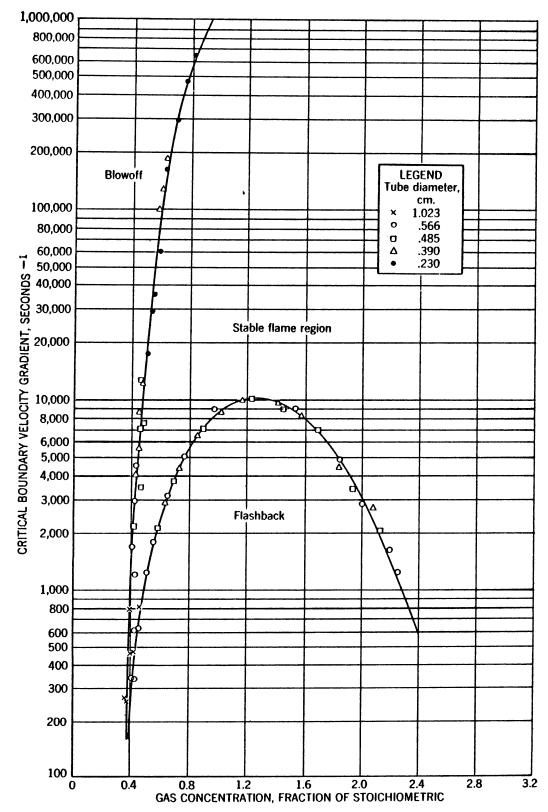


Figure 25. - Flame-stability diagram for fuel No. 7 (99.7% H₂, 0.3% O₂).

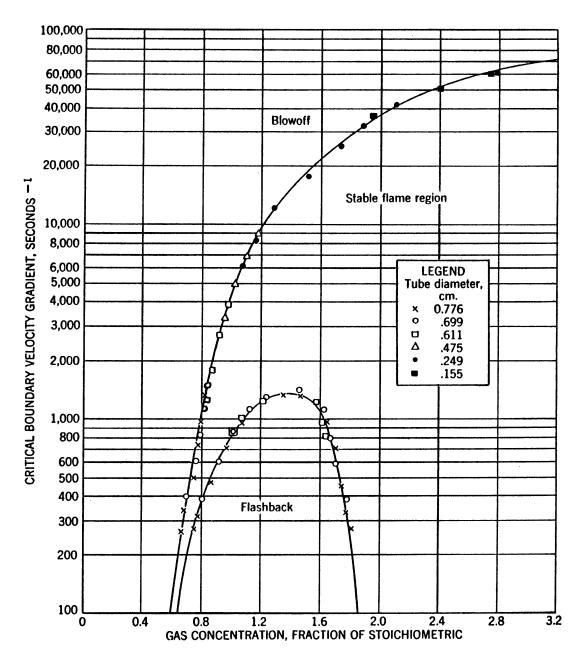


Figure 26. - Flame-stability diagram for fuel No. 8 (88.9% CO, 9.7% CH₄, 1.3% H₂, 0.1% CO₂).

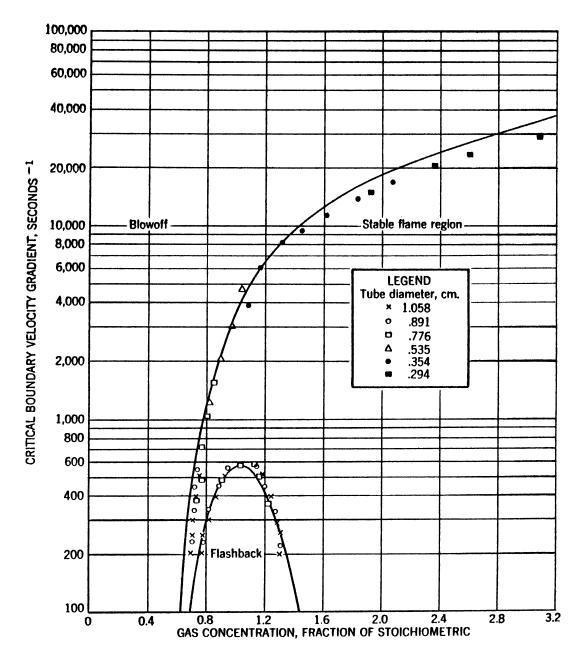


Figure 27. - Flame-stability diagram for fuel No. 41 (79.4% CH₄, 20.6% C₂H₄); comparison of calculated curves and experimental points.

be read from the pertinent flame-stability diagram in section A of this chapter. The agreement between the experimental points and the calculated curve is excellent for this fuel. A second mixture, containing 78.6 percent ethylene and 21.4 percent methane, shows equally good agreement with curves predicted by means of equation 4 (A-T/2a,2b,4-No./42).

33

However, not all binary mixtures of combustibles lend themselves to this simple procedure. In all these exceptions the binary mixture contains hydrogen or carbon monoxide. In such instances recourse is taken to the following graphical method.

Flame-stability diagrams are measured for a number of mixtures of two single gases, covering the concentration range of 0 to 100 percent for each gas. The resulting data obtained are used to construct composite flame-stability diagrams for corresponding binary mixtures, such as figure 28, which summarizes the flashback gradients for all mixtures of methane and hydrogen. Such graphs show a family of curves along each of which the fuel-air composition, F, expressed as gas concentration, fraction of stoichiometric, is constant. Each curve of constant fuel-air composition is a plot of critical boundary velocity gradients for flashback versus ratios of methane to hydrogen. From 0 to 50 percent hydrogen, the ratio plotted as the abscissa is hydrogen/methane; and from 50 to 100 percent hydrogen, it is methane/hydrogen. This avoids a value of infinity. Figure 28 can be used to draw the flashback curve of a particular methane-hydrogen fuel by taking the ordinates on each F curve corresponding to the desired hydrogen-methane ratio and plotting these ordinates (critical boundary velocity gradients for flashback) against the F values. Similarly, figure 29 summarizes the blowoff gradients for all methanehydrogen mixtures and makes it possible to plot the blowoff curve for any mixture (A-T/2a,2b-No./9,10,11,12,13,14,15). The graphical method is applicable to any binary system of gases. It makes for ready interpolation between measured data and eliminates the experimental measurement of flame-stability characteristics for every possible combination of two single fuels.

Similarly, figures 30 and 31 are for the binary system of carbon monoxide-hydrogen (A-T/2a,2b-No./16,17,18,19,20,21,22,23).

Figures 32 and 33 are for the binary system of methane-carbon monoxide (A-T/2a,2b-No./8,24,25,26,27).

Figures 34 and 35 are for binary mixtures of propane-hydrogen (A-T/2a,2b-No./28,29,30,31).

Figures 36 and 37 are for binary mixtures of ethylene-hydrogen (A-T/2a,2b-No./32,33,34,35,36).

Figures 38 and 39 are for binary mixtures of nitrogen-hydrogen (A-T/2a,2b-No./37,38,39).

To illustrate the use of these diagrams, let us calculate flashback and blowoff curves from composite flame-stability diagrams for an 83.3-percent carbon monoxide and 16.7-percent hydrogen fuel (see figures 30 and 31).

Intercepts for flashback (table 2, columns F_F and g_F) are obtained from figure 30, the composite diagram for flashback of carbon monoxide-hydrogen fuels. Similarly, intercepts for blowoff (table 2, columns F_B and g_B) are obtained from figure 31, the composite diagram for blowoff of carbon monoxide-hydrogen fuels. A plot of these intercepts is presented in figure 40, which is the flame-stability diagram for our particular carbon monoxide-hydrogen fuel.

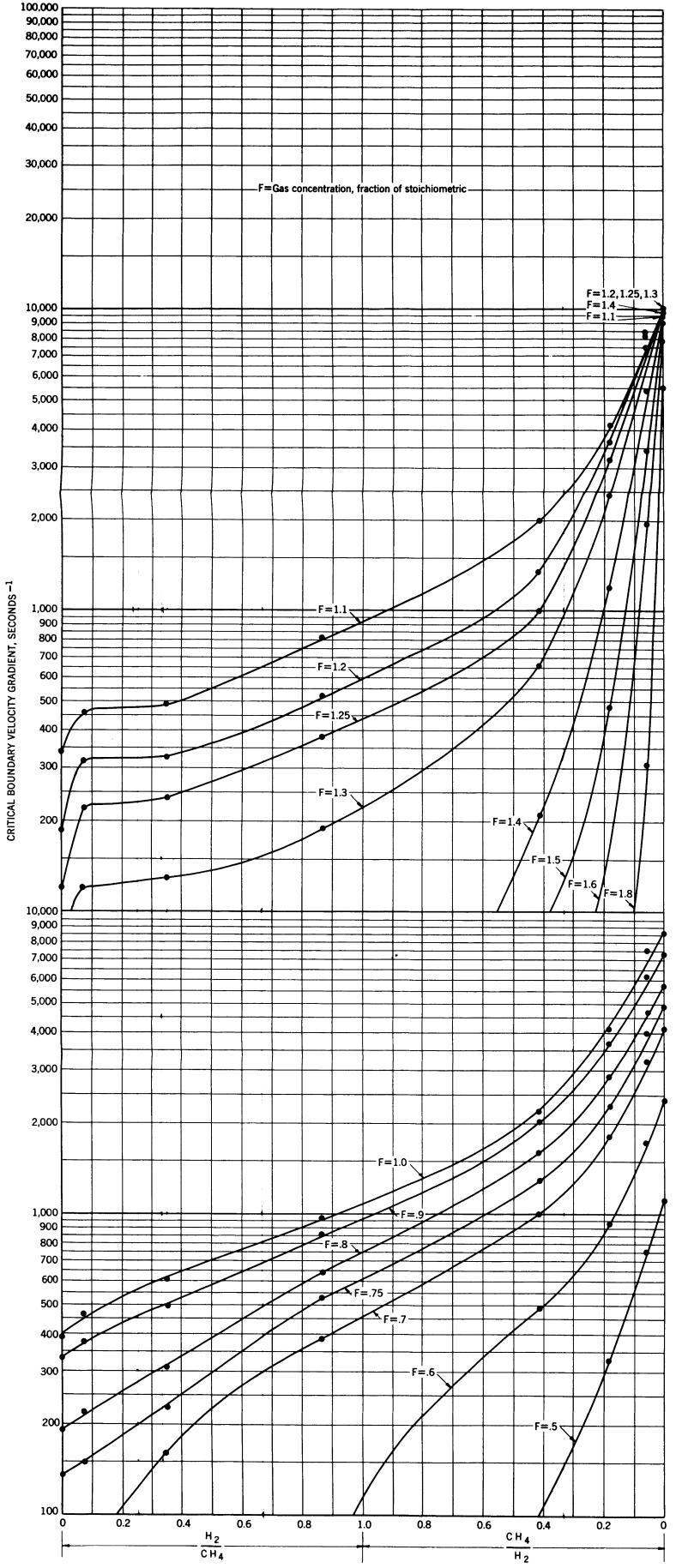


Figure 28. - Critical boundary velocity gradients for flashback of methane-hydrogen fuels; composite diagram.

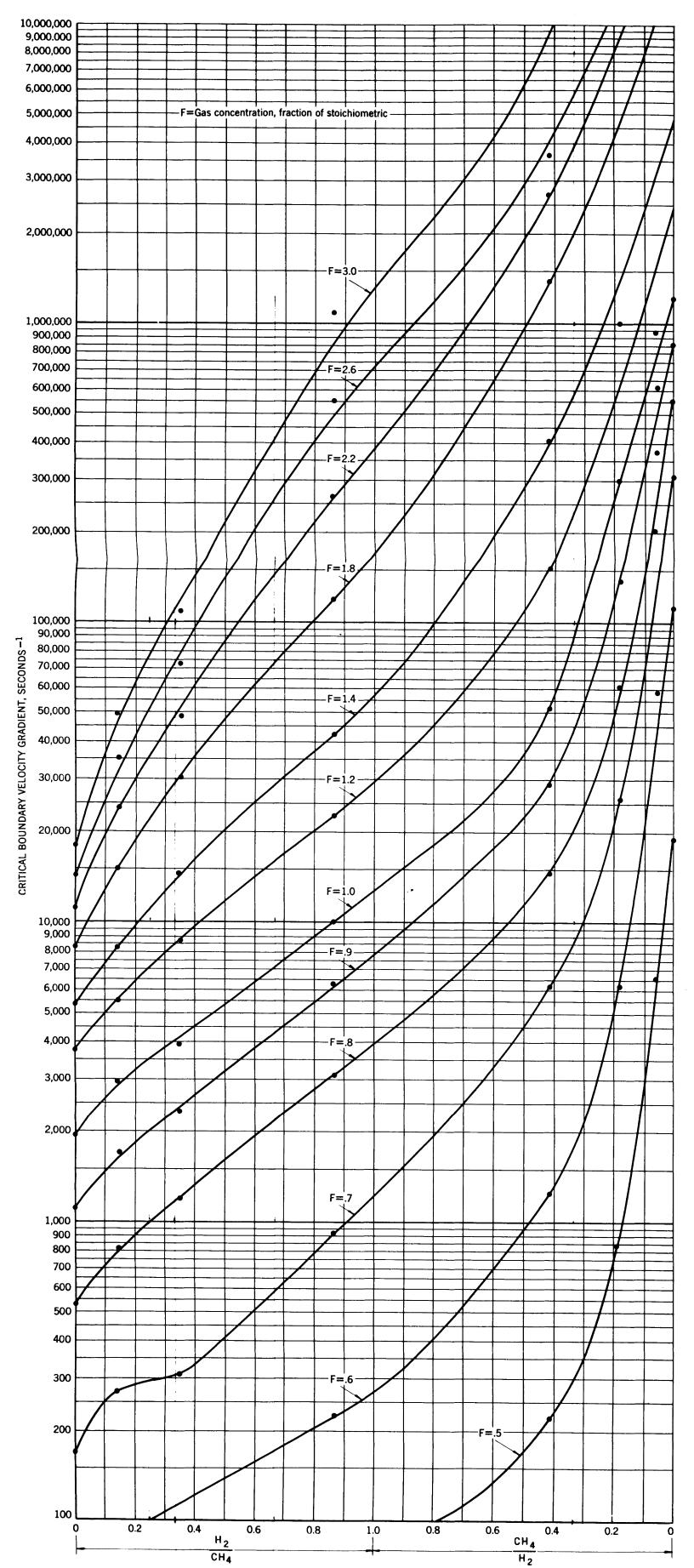


Figure 29. - Critical boundary velocity gradients for blowoff of methane-hydrogen fuels; composite diagram.

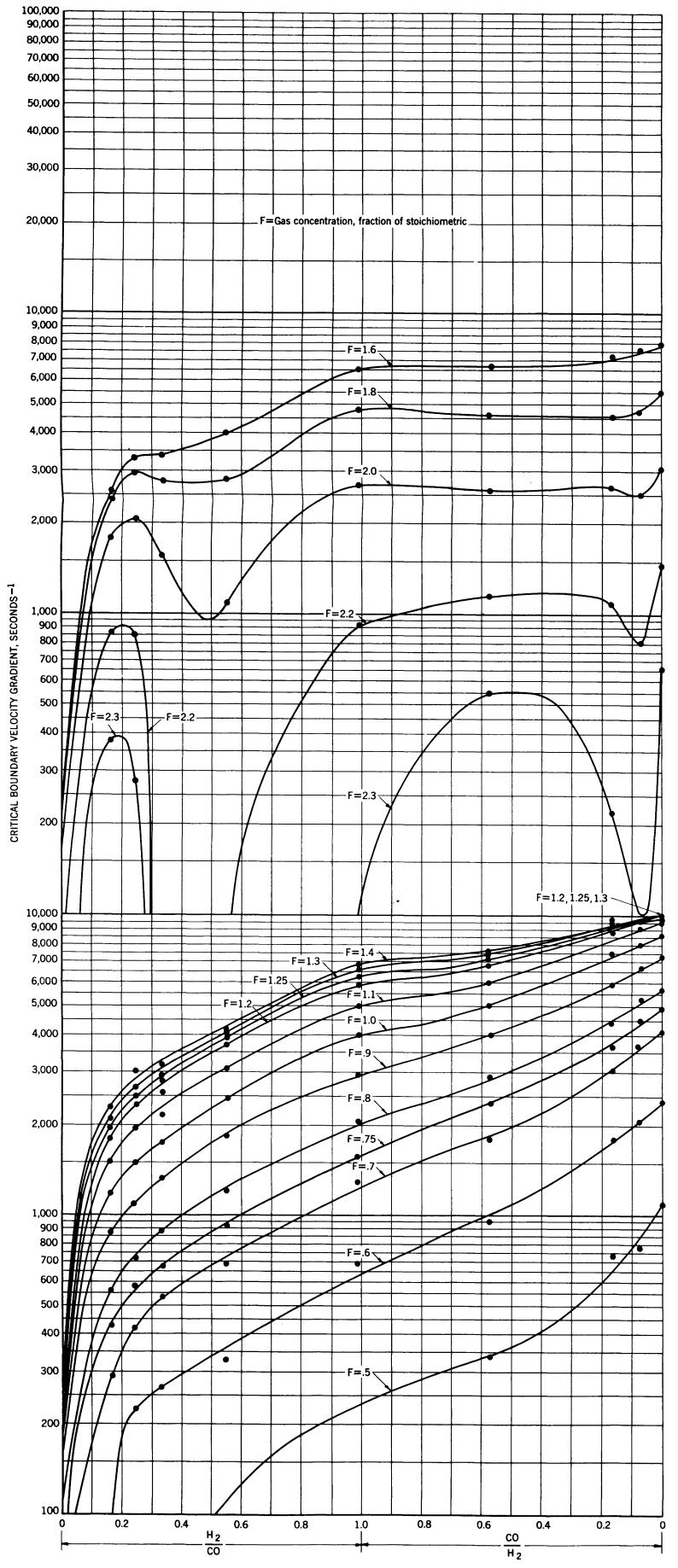


Figure 30. - Critical boundary velocity gradients for flashback of carbon monoxide-hydrogen fuels; composite diagram.

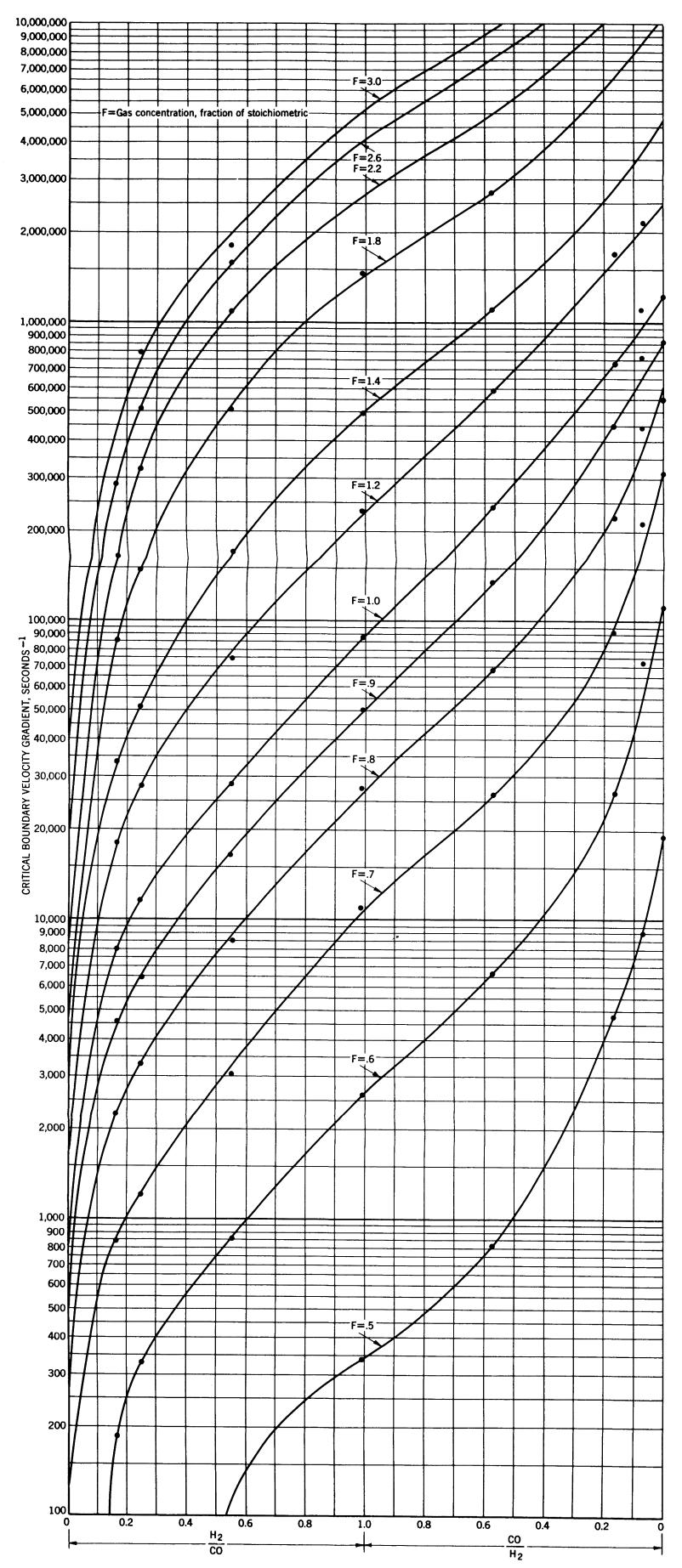


Figure 31. - Critical boundary velocity gradients for blowoff of carbon monoxide-hydrogen fuels; composite diagram.

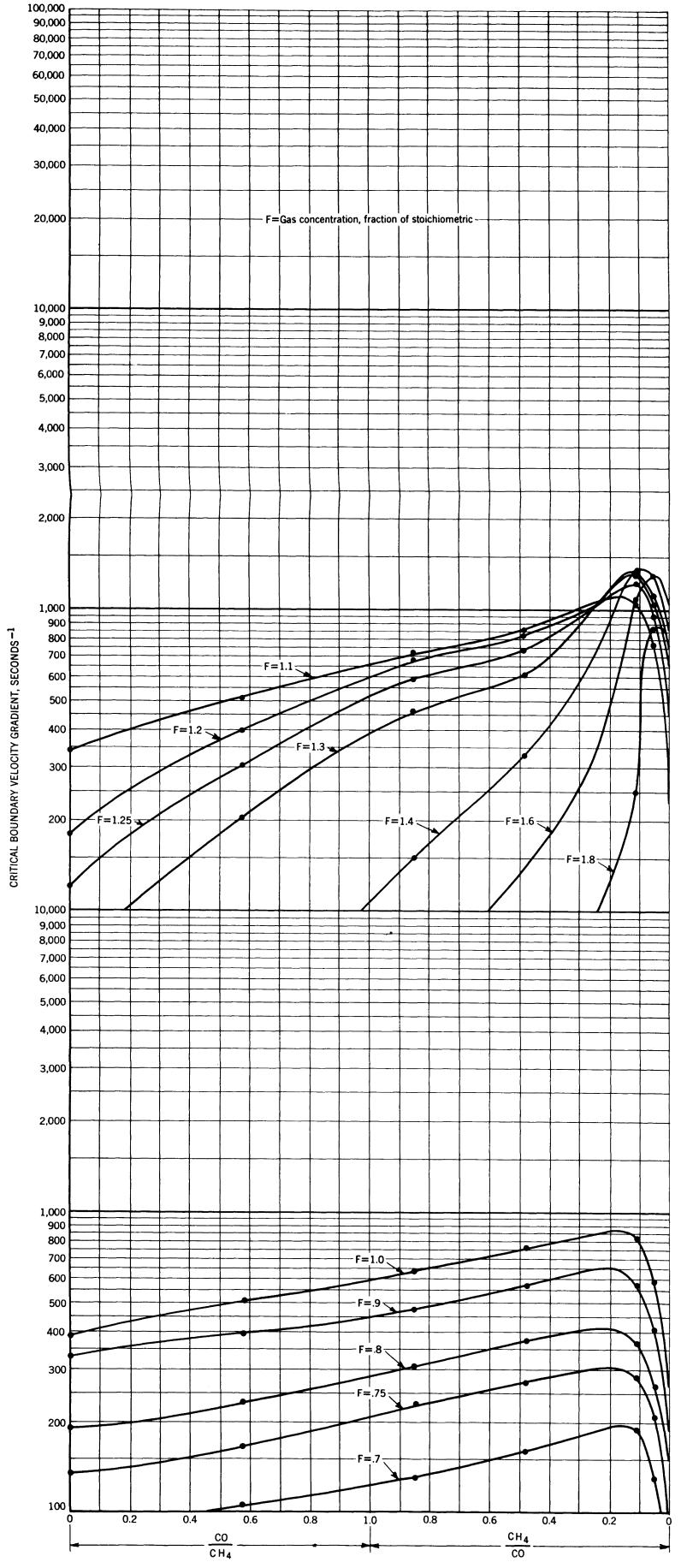


Figure 32. - Critical boundary velocity gradients for flashback of methane-carbon monoxide fuels; composite diagram.

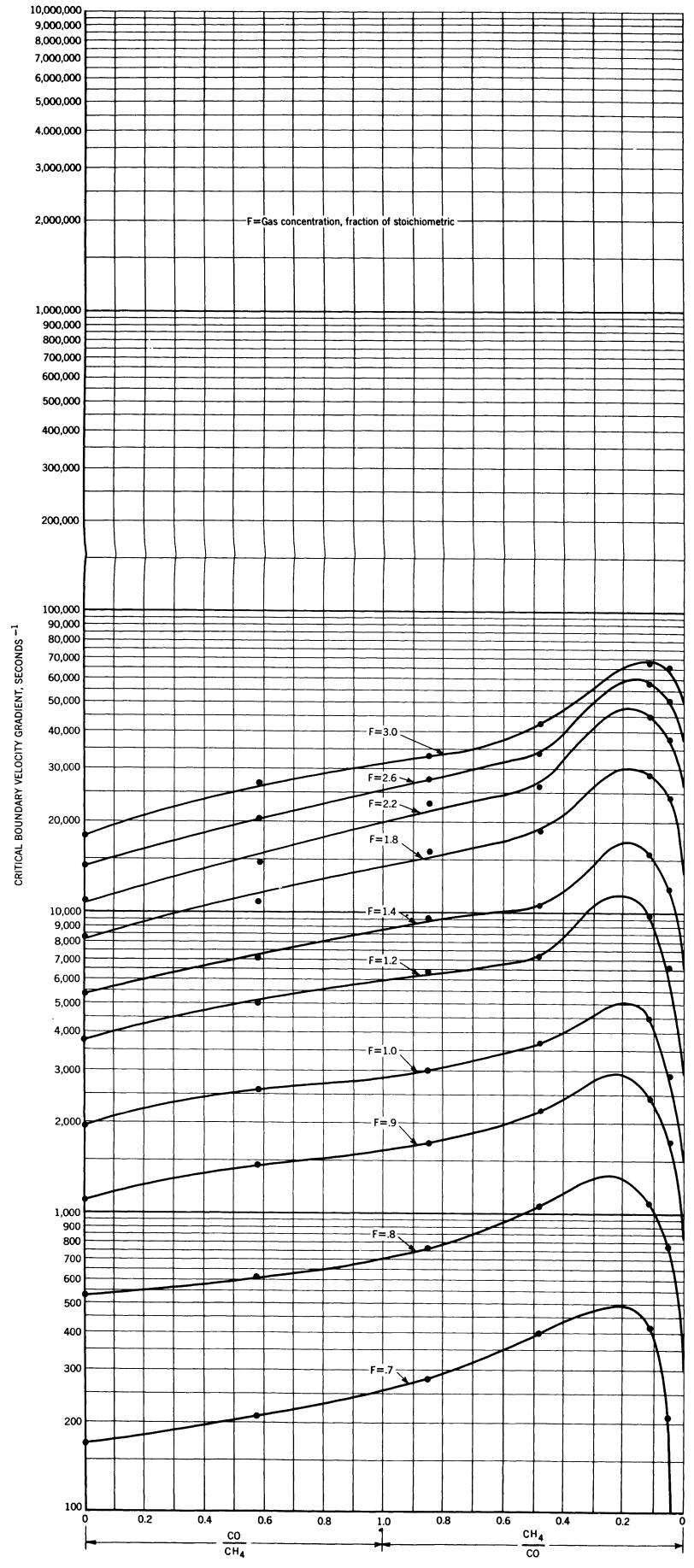


Figure 33. - Critical boundary velocity gradients for blowoff of methane-carbon monoxide fuels; composite diagram.

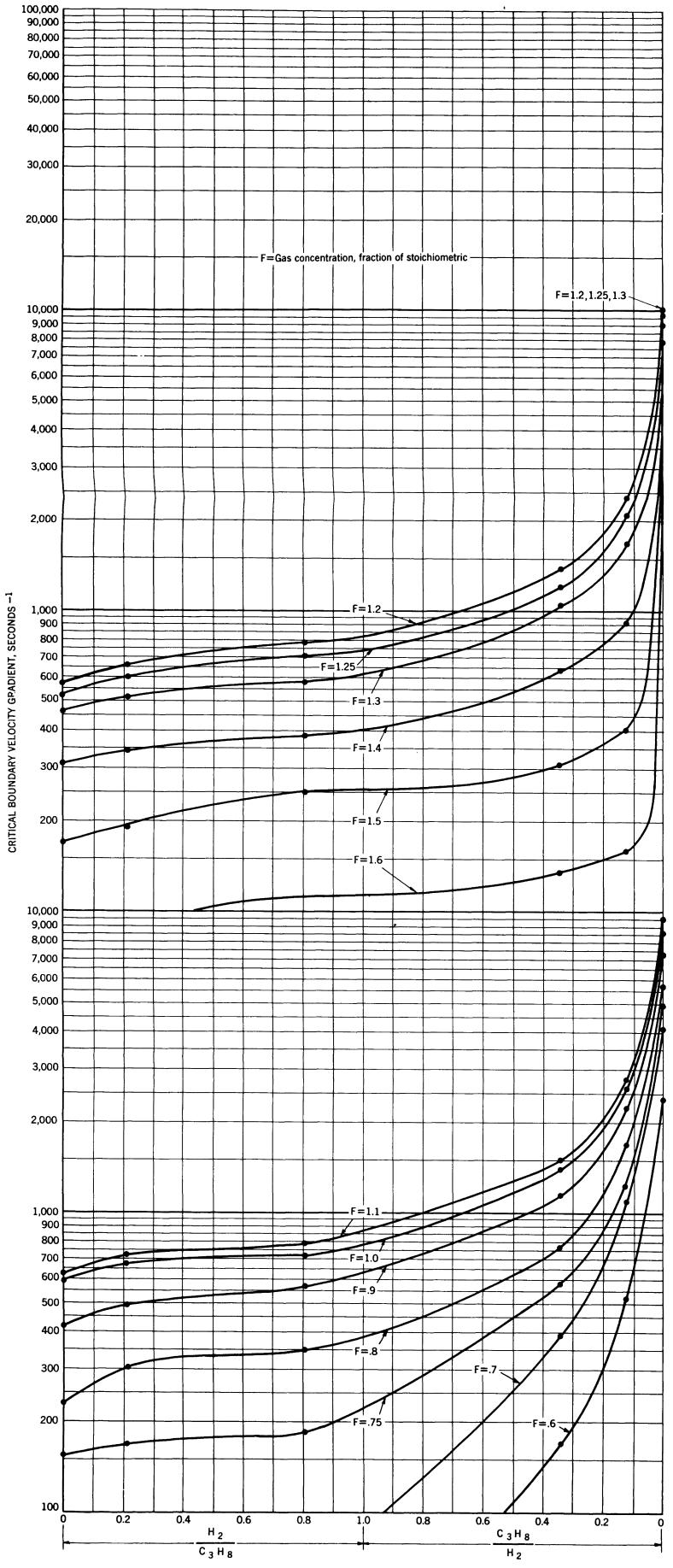


Figure 34. - Critical boundary velocity gradients for flashback of propane-hydrogen fuels; composite diagram.

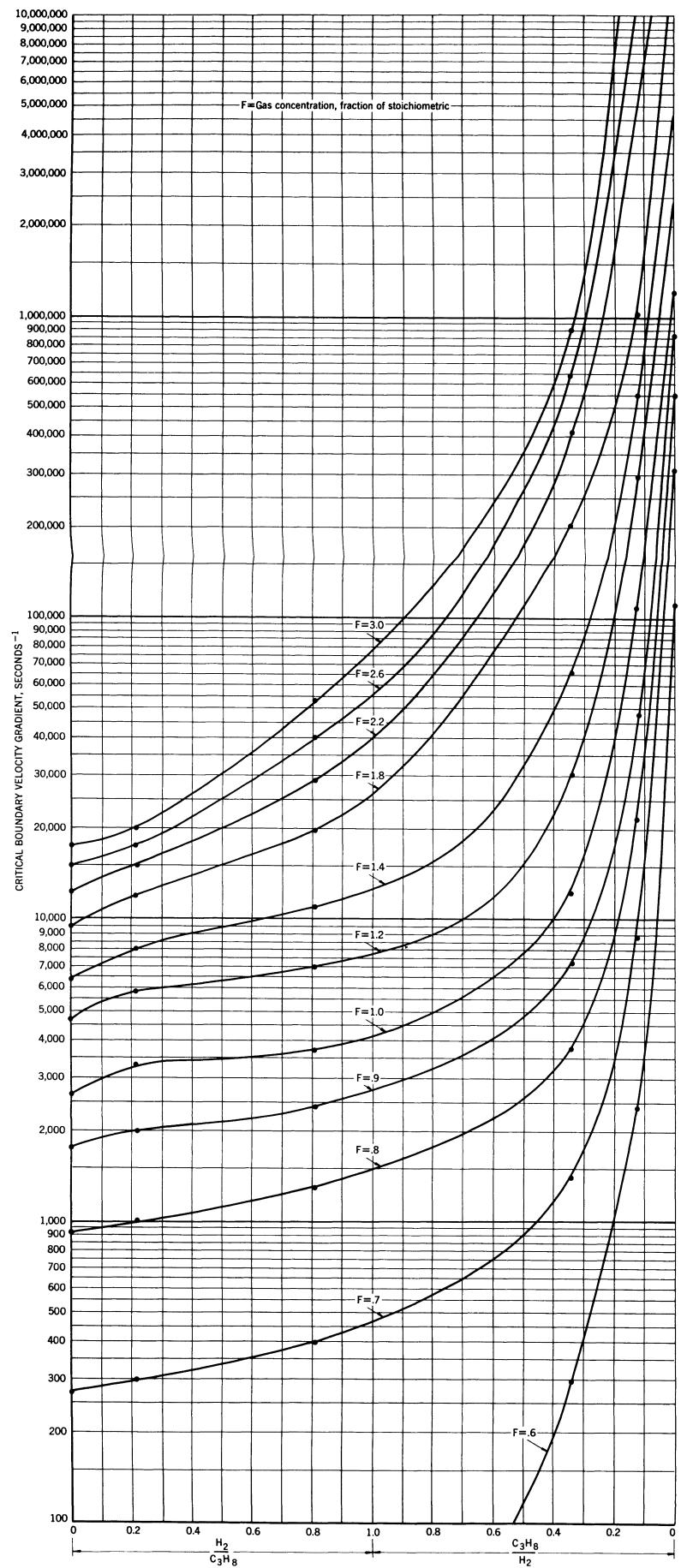


Figure 35. - Critical boundary velocity gradients for blowoff of propane-hydrogen fuels; composite diagram.

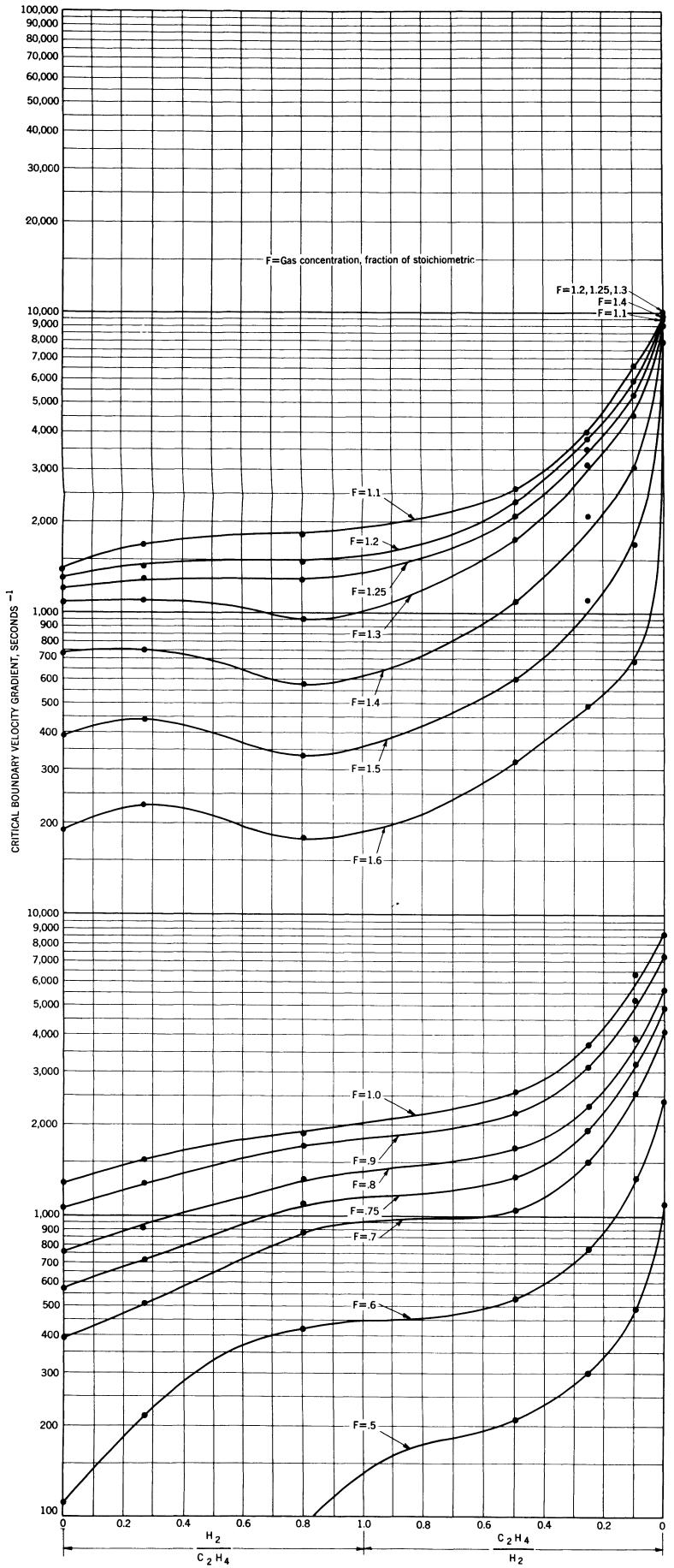


Figure 36. - Critical boundary velocity gradients for flashback of ethylene-hydrogen fuels; composite diagram.

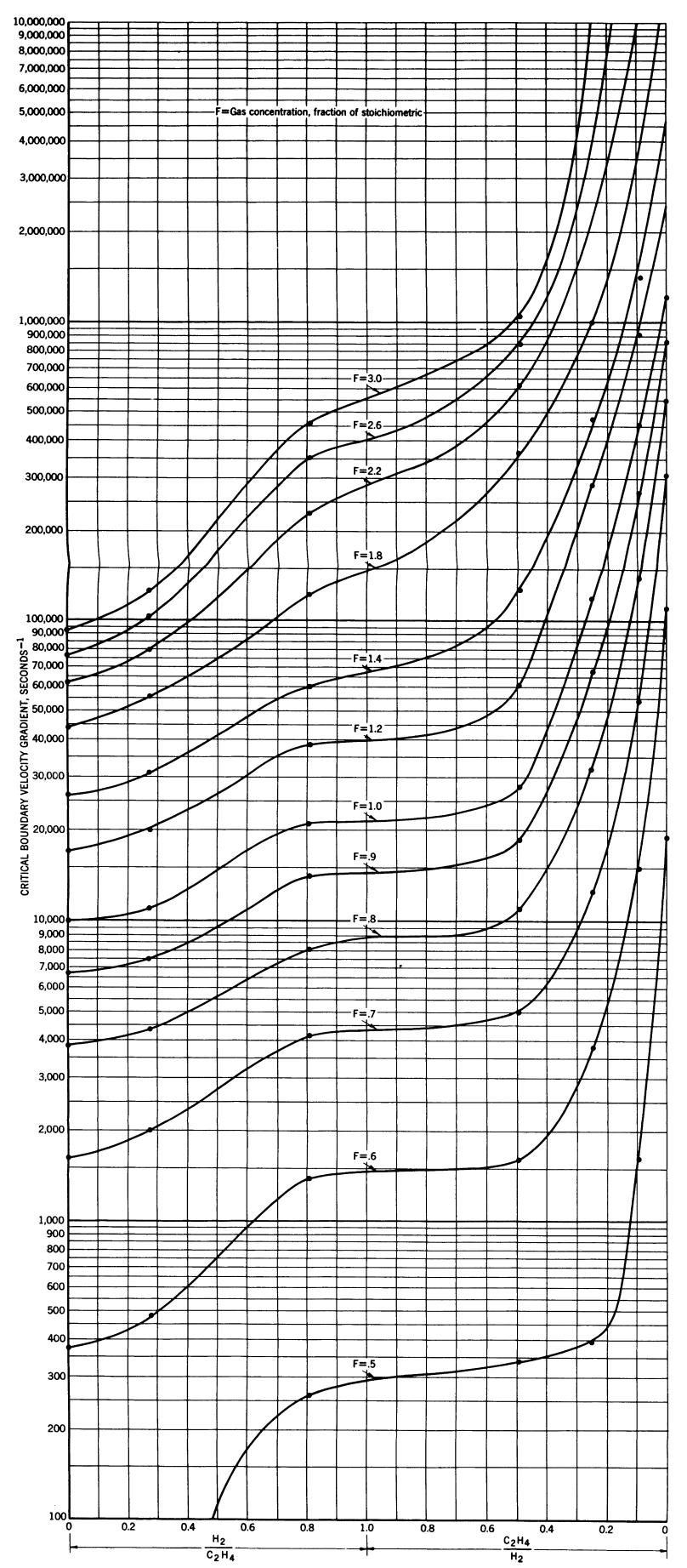


Figure 37. - Critical boundary velocity gradients for blowoff of ethylene-hydrogen fuels; composite diagram.

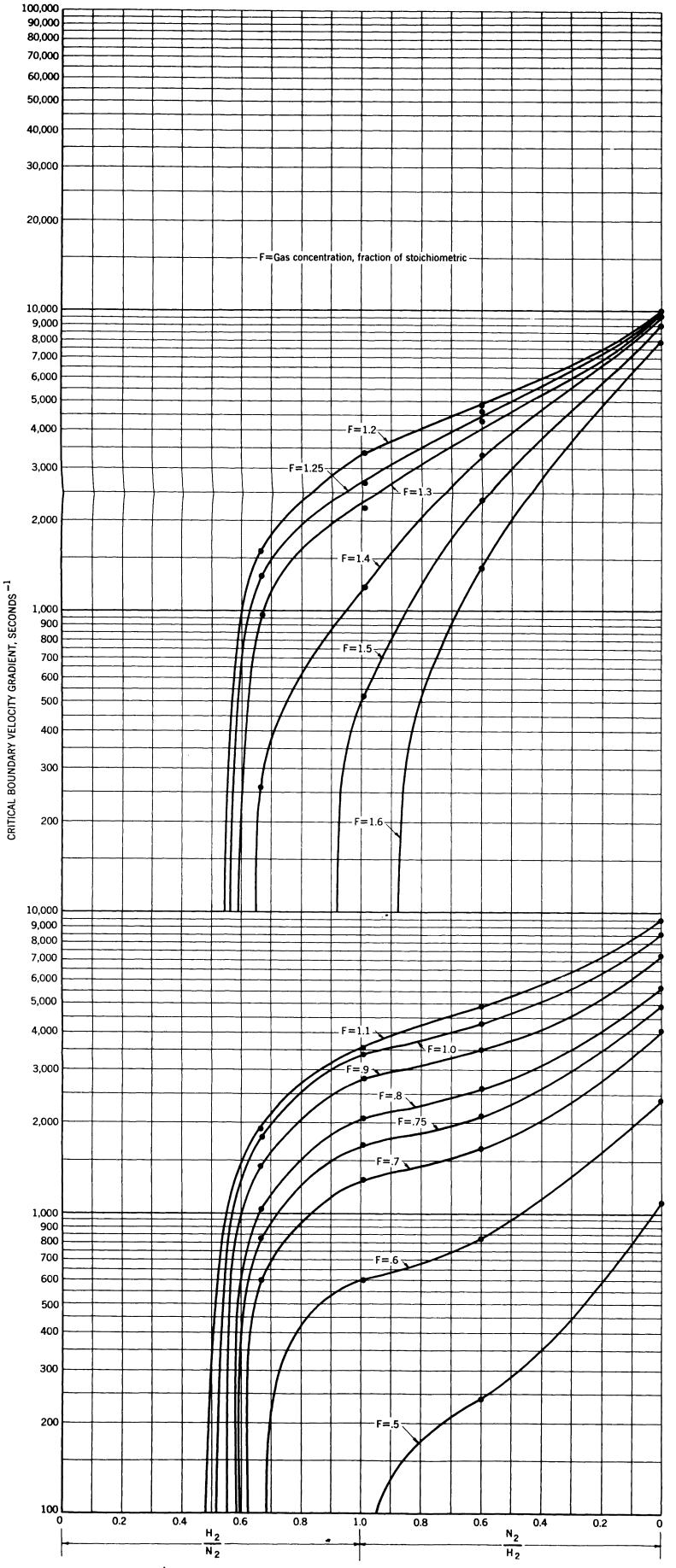


Figure 38. - Critical boundary velocity gradients for flashback of nitrogen-hydrogen fuels; composite diagram.

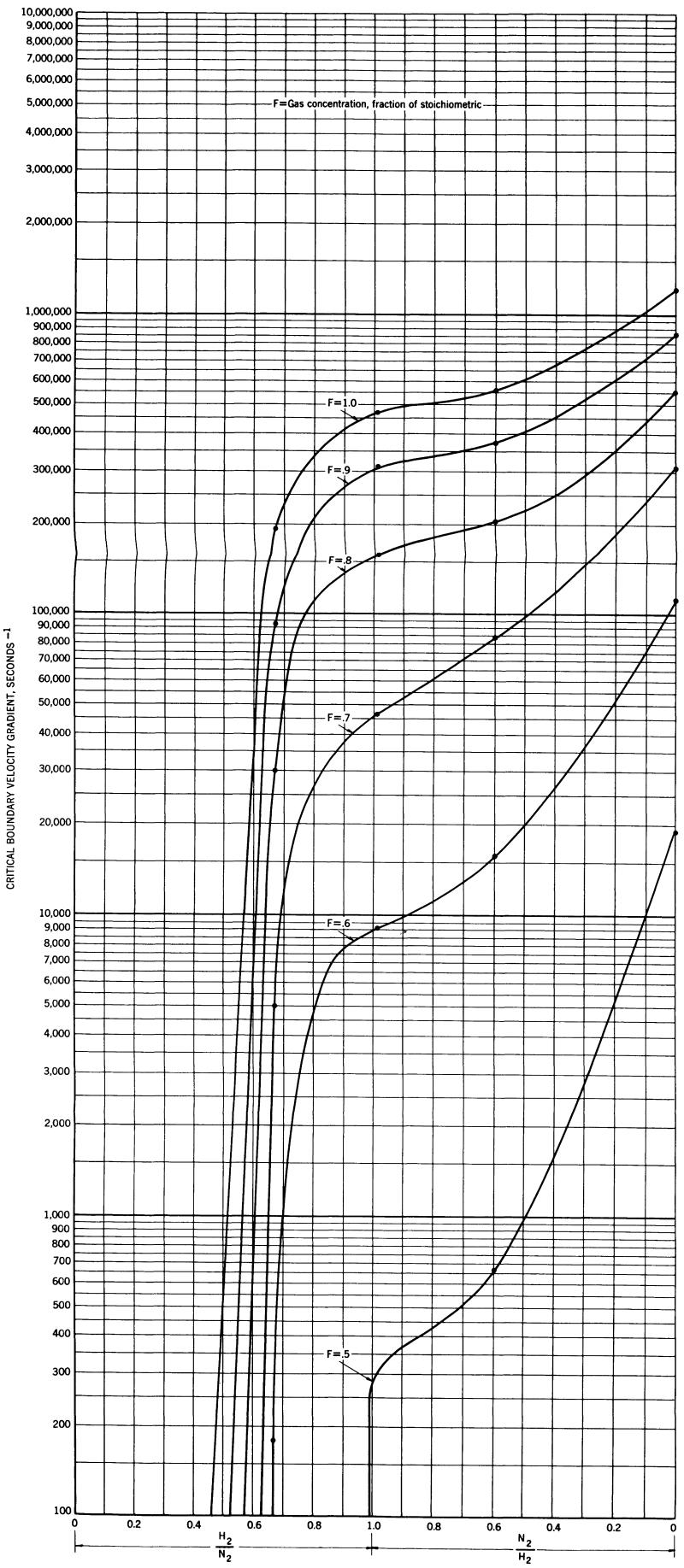


Figure 39. - Critical boundary velocity gradients for blowoff of nitrogen-hydrogen fuels; composite diagram.

46

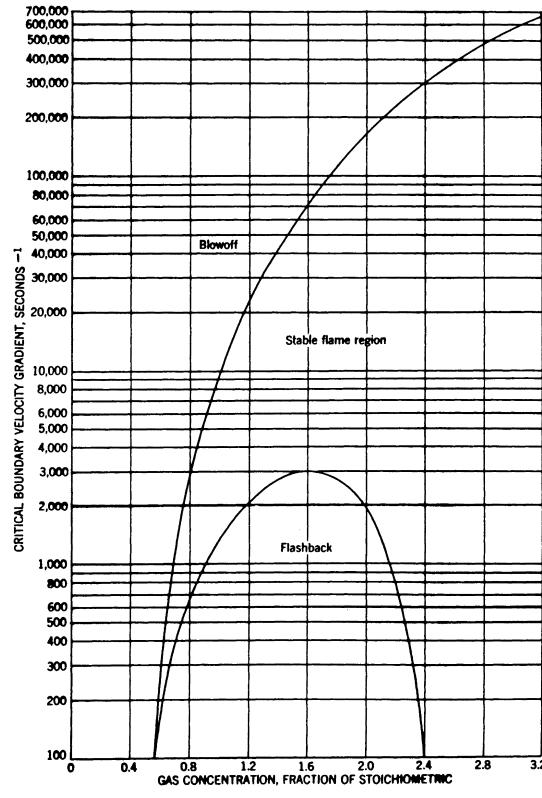


Figure 40. - Flame-stebility diagram for 83.3% CO, 16.7% H₂.

TABLE 2. - Flashback and blowoff gradients for a twocomponent fuel, taken from composite flame-stability diagrams

Composition, percent: 83.3 CO, 16.7 H_2 $H_2/CO = 16.7/83.3 = 0.20$

F _F or F _B	g _F (figure 30)	g _B (figure 31)
0.6	175	250
.7	345	1,000
.75	490	
.8	635	2,700
.9	965	5,300
1.0	1,310	9,500
1.1	1,700	
1.2	2,030	22,000
1.25	2,200	
1.3	2,400	
1.4	2,550	41,000
1.6	3,000	
1.8	2,750	111,000
2.0	1,970	
2.2	810	225,000
2.3	390	
2.6		380,000
3.0		560,000

C. Flame-Stability Diagrams of Multicomponent Fuels

The task of organizing flame-stability data for multicomponent fuels is more complex. As it would be impractical to make measurements with every possible combination of some dozen constituents that may occur in fuels distributed by utilities, a method of calculation was developed based on the flame-stability gradients of single- and two-component fuels. This method assumes that, although addition of the weighted averages of the flashback and blowoff gradients for two single-component fuels does not always yield the gradients of the corresponding binary mixture, the gradients of binary fuels and some single fuels probably can be combined satisfactorily to give the gradients of multicomponent fuels. In effect, it was decided to treat binary complexes as new, hybridlike, single-component fuels, wherein all the original nonlinearity of the single components would be absorbed in the measured behavior of the binary complex.

Let us consider a three-component mixture of methane, hydrogen, and carbon monoxide. Which are the hybrids? Is it methane-hydrogen, methane-carbon monoxide, carbon monoxide-hydrogen, or all three? The question must be answered empirically. The only restrictions on the method are that the hybrid or hybrids chosen must be reasonable and consistently applicable to an extensive group of fuels that are related by their chemical analyses. These specifications have been tested for 25 multicomponent fuels which may be grouped as follows:

(1) The coke-oven gases, consisting essentially of methane, hydrogen, and carbon monoxide, with or without inerts.

- (2) The oil gases, consisting essentially of ethylene, hydrogen, and methane with or without inerts, ethylene concentration varying between 10 to 50 percent.
- (3) High-ethylene fuels containing hydrogen, where the ethylene content exceeds 50 percent and hydrogen is present in fair amounts.

1. Coke-Oven Gases

These fuels consist essentially of hydrogen, methane, and carbon monoxide, although other components may be present in small amounts. A gas of this type is fuel No. 43 (A-T/3a,3b,4-No./43), which simulates a real coke-oven gas. It contains 58.4 percent H2, 26.3 percent CH4, 10.6 percent CO, 4.6 percent N2, and 0.1 percent CO₂. The method of calculating critical boundary velocity gradients for flashback and blowoff for this type of fuel is illustrated in tables 3a and 3b of this chapter, which are also part of table 4 of the Appendix.

The flashback and blowoff gradients of any multicomponent fuel are calculated by equation 4:

$$g_{a+b+c+...} = n_a g_a + n_b g_b + n_c g_c + ...,$$
 (4)

where g = the flashback or blowoff gradient of the hybrid component and n = the mole fraction of each component in a multicomponent mixture. It can be seen from table 3a that, to calculate the critical boundary velocity gradients for flashback of a coke-oven-type fuel, one considers the fuel as made up of the hybrids (methane + carbon monoxide) and (methane + hydrogen). As methane appears in both hybrids it must be proportioned between the carbon monoxide and the hydrogen. This is done on the basis of the relative amounts of carbon monoxide and hydrogen in the fuel:

$$\frac{10.6\% \text{ CO}}{10.6\% \text{ CO} + 58.4\% \text{ H}_2}$$
 (26.3% CH₄) = 4.04% (CH₄ going with CO);

$$CH_{L}/CO = 4.04/10.6 = 0.381.$$

$$\frac{58.4\% \text{ H}_2}{10.6\% \text{ CO} + 58.4\% \text{ H}_2} \text{ (26.3\% CH}_4) = 22.26\% \text{ (CH}_4 \text{ going with H}_2);}$$

$$CH_4/H_2 = 22.26/58.4 = 0.381.$$

Adding the indicated percentages of methane to the carbon monoxide and to the hydrogen, respectively, we obtain the percentage of each hybrid in the total fuel:

$$4.04\%$$
 CH₄ + 10.6% CO = 14.64% (methane + carbon monoxide);

$$22.26\% \text{ CH}_{\perp} + 58.4\% \text{ H}_{2} = 80.66\% \text{ (methane + hydrogen)}.$$

Columns F_F and A of table 3a give the flashback coordinates of a hybrid (methane + carbon monoxide) where the ratio of methane to carbon monoxide is 0.381. These coordinates are obtained from figure 32. The appropriate values of g_F are multiplied by the percent of this hybrid in the fuel (14.64%), and the answer is recorded in column B. This is the contribution of the (methane + carbon monoxide) hybrid to the flashback gradient of the total fuel. The contribution of the (methane + hydrogen) hybrid is obtained in the same way (see columns F_F , C, and D). Columns B and D are added to give column (B + D), which lists the critical boundary velocity gradient for flashback of the total fuel in accord with equation 4. Columns F_F and (B + D) list the coordinates for the calculated flashback curve of fuel No. 43.

TABLE 3a. - Calculation of flashback curve for fuel No. 43 by linear mixture rule

58.4 H₂, 26.3 CH₄, 10.6 CO, 4.6 N₂, 0.1 CO₂ Mixture composition, percent: Stoichiometric percentage:

 $(CH_4 + CO)(CH_4 + H_2)(N_2 \text{ and } CO_2).$ Complexes for flashback:

Calc. of complexes:

 $(10.6/10.6 + 58.4) \times 26.3 = 4.04$ (CH₄ going with CO); CH₄/CO = 4.04/10.6 = 0.381; $(58.4/10.6 + 58.4) \times 26.3 = 22.26$ (CH₄ going with H₂); CH₄/H₂ = 22.26/58.4 = 0.381. Total percentage of $CH_4/CO = 4.04 + 10.6 = 14.64$.

Total percentage of $CH_4/H_2 = 22.26 + 58.4 = 80.66$.

					B+D
	A (figure 32)	В	C (figure 28)	D	g _F for
$\mathbf{F}_{\mathbf{F}}$	g_{F} for $CH_{4}/CO = 0.381$	$A \times 0.1464$	g_{F} for $CH_4/H_2 = 0.381$	C x 0.8066	total fuel
0.5	1/	1/	117	94	94
.6	_		520	420	420
.7	170	25	1,070	864	889
.75	285	42	1,370	1,105	1,147
.8	390	5 7	1,700	1,370	1,427
.9	605	89	2,160	1,743	1,832
1.0	79 5	116	2,400	1,935	2,051
1.1	950	139	2,150	1,735	1,874
1.2	910	133	1,530	1,235	1,368
1.25	845	124	1,140	920	1,044
1.3	735	108	76 5	617	725
1.4	440	64	250	202	266
1.6	190	28	100	81	109

TABLE 3b. - Calculation of blowoff curve for fuel No. 43 by linear mixture rule

Complexes for blowoff: $(CH_4 + H_2)(H_2/CO = 0.20)(N_2 \text{ and } CO_2)$. Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 10.6 = 2.12$ (H_2 going with CO); $H_2/CO = 2.12/10.6 = 0.20$; 58.4 - 2.12 = 56.28 (H₂ going with CH₄); CH₄/H₂ = 26.3/56.28 = 0.467.

Total percentage of $H_2/CO = 2.12 + 10.6 = 12.72$.

Total percentage of $CH_4/H_2 = 26.3 + 56.28 = 82.58$.

		, , , , , , , , , , , , , , , , , , , 			B+D
	A (figure 31)	В	C (figure 29)	D	g _B for
$\mathbf{F}_{\mathbf{B}}$	g_{B} for $H_{2}/CO = 0.20$	$A \times 0.1272$	g_{B} for CH ₄ /H ₂ = 0.467	$C \times 0.8258$	total fuel
0.5	<u>1</u> /	1/	185	153	153
.6	250	32	1,050	866	898
.7	1,000	127	5,000	4,130	4,257
.8	2,700	343	12,500	10,320	10,660
.9	5,300	674	25,000	20,630	21,300
1.0	9,500	1,208	41,500	34,250	35,460
1.2	22,000	2,800	125,000	103,200	106,000
1.4	41,000	5,220	325,000	268,000	273,200
1.8	111,000	14,120	1,100,000	908,000	922,100
2.2	225,000	28,600	2,150,000	1,775,000	1,804,000
2.6	380,000	48,300	3,260,000	2,690,000	2,738,000
3.0	560,000	71,200	7,150,000	5,900,000	5,971,000

1/ Values of g low enough to be insignificant may be neglected in these calculations.

In the case of blowoff, the hybrids are the binary systems (methane + hydrogen) and (carbon monoxide + hydrogen), the ratio of hydrogen to carbon monoxide in the hybrid being kept at $0.2.\underline{13}$ / The remainder of the hydrogen is proportioned with the methane to make up the (methane + hydrogen) complex. This is done as follows: $H_2/CO = 0.20$; $0.20 \times 10.6\%$ CO = 2.12% (H_2 going with CO); $H_2/CO = 2.12/10.6 = 0.20$. 58.4% $H_2 - 2.12\%$ $H_2 = 56.28\%$ (H_2 going with CH₄); $CH_4/H_2 = 26.3/56.28 = 0.467$. By adding the proportioned percentages of hydrogen to the carbon monoxide and the methane, we obtain the percentage of each hybrid in the total fuel:

 $2.12\% H_2 + 10.6\% CO = 12.72\%$ (hydrogen + carbon monoxide);

 $26.3\% \text{ CH}_4 + 56.28\% \text{ H}_2 = 82.58\% \text{ (methane + hydrogen)}.$

Thus for the two hybrids for blowoff of fuel No. 43, we have a hydrogen/carbon monoxide ratio of 0.2 and a methane/hydrogen ratio of 0.467. Columns F_B and A of table 3b list the blowoff coordinates of the hybrid (hydrogen + carbon monoxide) for $H_2/CO = 0.2$. These coordinates can be obtained from figure 31 or 40. These values of g_B are multiplied by the percentage of this hybrid in the fuel (12.72%), and the answer is recorded in column B. This is the contribution of the (hydrogen + carbon monoxide) hybrid to the blowoff gradient of the total fuel. The contribution of the (methane + hydrogen) hybrid is obtained in the same way (see columns F_B , C and D. Addition of columns B and D gives column (B + D), which lists the critical boundary velocity gradients for blowoff of the total fuel in accord with equation 4. Columns F_B and (B + D) of table 3b list the coordinates for the calculated blowoff curve of fuel No. 43.

Thus the first and last columns of tables 3a and 3b give the coordinates for the calculated flashback and blowoff curves of fuel No. 43. These curves are plotted in figure 41, which also gives experimental points for flashback and blow-off of the same fuel. The agreement between experiment and prediction can be judged by the proximity of the experimental points to the calculated curves. Agreement of this order has been obtained with 10 other coke-oven gases (A-T/3a,3b,4-No./44,45,46,47,48,51,52,53,61,65). It can be seen from the chemical composition of these 11 fuels that most possibilities have been bracketed. An example of the linear mixture rule applied to an eight-component fuel (fuel No. 65) is shown in figure 42.

2. Oil Gases

The type of fuel considered here is obtained by the current practice of gasifying oils pyrolytically. It consists of ethylene (less than about 50 percent), hydrogen, methane, and sometimes inerts. An example of this type is fuel No. 55 (A-T/3a,3b,4-No./55), which will be used to illustrate the method of calculating flashback and blowoff gradients of oil gases. In calculating flashback gradients, fuels of this kind are treated as (ethylene + hydrogen) hybrid and (methane); in calculating blowoff gradients they are treated as (methane + hydrogen) and (ethylene)(see tables 4a and 4b). The values in the first and last columns of

The limitation that the hydrogen/carbon monoxide ratio is to be maintained at about 0.2 is based on the shape of the curves in figures 30 and 31, which show a considerable change of slope near this ratio of hydrogen/carbon monoxide. This is taken to indicate that the reactivity of carbon monoxide is strongly accelerated by the addition of hydrogen up to this point. When more hydrogen is added, there appears to be an averaging effect between pure hydrogen and the species (H_2/CO , about 0.2). (Figure 40 is the flame-stability diagram for the fuel $H_2/CO = 0.2$.)

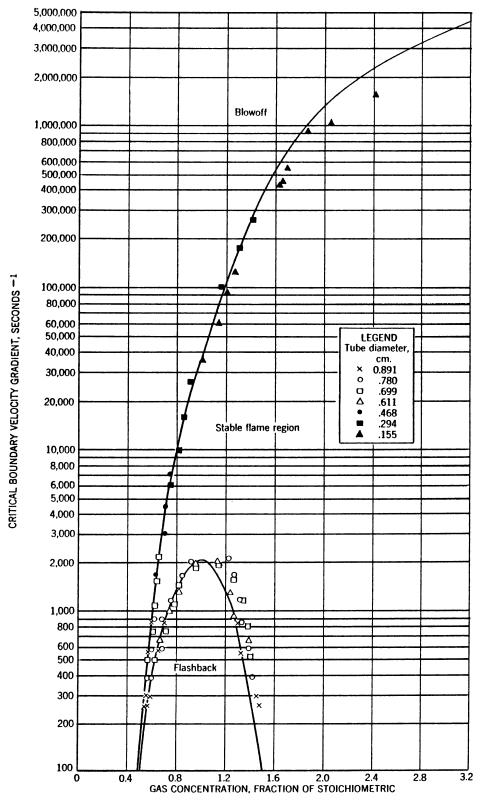


Figure 41. - Flame-stability diagram for fuel No. 43 (58.4% H₂, 26.3% CH₄, 10.6% CO, 4.6% N₂, 0.1% CO₂); comparison of calculated curves and experimental points.

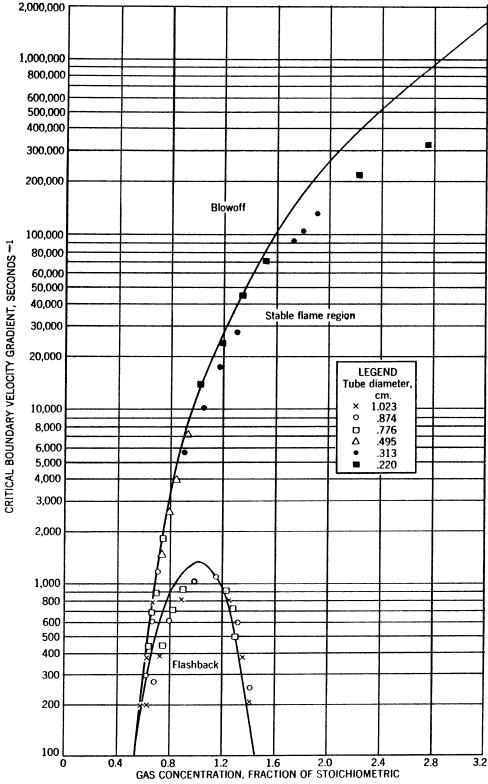


Figure 42. - Flame-stability diagram for fuel No. 65 (36.4% H₂, 22.6% CO, 13.3% CH₄, 7.2% C₂H₆, 5.8% C₂H₄, 1.9% C₃H₈, 0.1% C₃H₆, 9.8% N₂, 2.9% CO₂); comparison of calculated curves and experimental points.

tables 4a and 4b, respectively, are used as coordinates for the flame-stability diagram presented in figure 43. The adequacy of these calculations in predicting the flashback and blowoff curves of this fuel can be judged as before by comparing the calculated curves with the experimental points shown. Similar calculations were made for four other multicomponent oil-gas fuels (A-T/3a,3b,4-No./56,57,66,67). The agreement appears adequate for practical use. As a second illustration, experimental points and calculated curves are compared for a six-component fuel (fuel No. 67) in figure 44.

TABLE 4a. - Calculation of flashback curve for fuel No. 55 by linear mixture rule

Mixture composition, percent: 37.4 CH₄, 33.4 C_2H_4 , 15.2 H_2 , 14.0 N_2

Stoichiometric percentage: 10.3

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)(N_2)$.

Calc. of complexes:

 $H_2/C_2H_4 = 15.2/33.4 = 0.455$; use 100% CH₄ flame-stability diagram. Total percentage of $H_2/C_2H_4 = 15.2 + 33.4 = 48.6$; total percentage of CH₄ = 37.4.

	A (figure 36)	В	C (figure 20)	D	B+D
$\mathbf{F}_{\mathbf{F}}$	g_F for $H_2/C_2H_4 = 0.455$	$A \times 0.486$	$g_{ m F}$ for 100% CH ₄	$C \times 0.374$	g _F for total fuel
0.6	305	148	1/	1/	148
.7	615	299	_	_	299
.75	830	403	135	51	454
.8 .9	1,060	515	190	71	586
.9	1,430	695	330	124	819
1.0	1,680	816	390	146	962
1.1	1,770	860	340	127	987
1.2	1,480	719	180	67	786
1.25	1,300	632	120	45	677
1.3	1,090	530			530
1.4	715	348			348
1.5	413	201			201
1.6	220	107			107

TABLE 4b. - Calculation of blowoff curve for fuel No. 55 by linear mixture rule

Complexes for blowoff: $(CH_4 + H_2)(C_2H_4)(N_2)$.

Calc. of complexes:

 $H_2/CH_4 = 15.2/37.4 = 0.406$; use 100% C_2H_4 flame-stability diagram. Total percentage of $H_2CH_4 = 15.2 + 37.4 = 52.6$; total percentage of $C_2H_4 = 33.4$.

	A (figure 29)	В	C (figure 22)	D	B+D
$\mathbf{F}_{\mathbf{B}}$	$g_B \text{ for } H_2/CH_4 = 0.406$	$\mathbf{A} \times 0.526$	g_{B} for 100% $C_{2}H_{4}$	$C \times 0.334$	gB for total fuel
0.6	120	63	370	124	187
.7	330	174	1,600	534	708
.8	1,330	700	3,850	1,285	1,985
.9	2,650	1,395	6,700	2,240	3,635
1.0	4,500	2,370	10,000	3,340	5,710
1.2	9,650	5,080	17,000	5,680	10,760
1.4	15,900	8,360	26,000	8,680	17,040
1.8	35,500	18,700	44,000	14,700	33,400
2.2	61,000	32,100	61,500	20,550	52,650
2.6	95,000	50,000	76,000	25,400	75,400
3.0	143,000	75,200	92,000	30,700	105,900

^{1/} Values of g low enough to be insignificant may be neglected in these calculations.

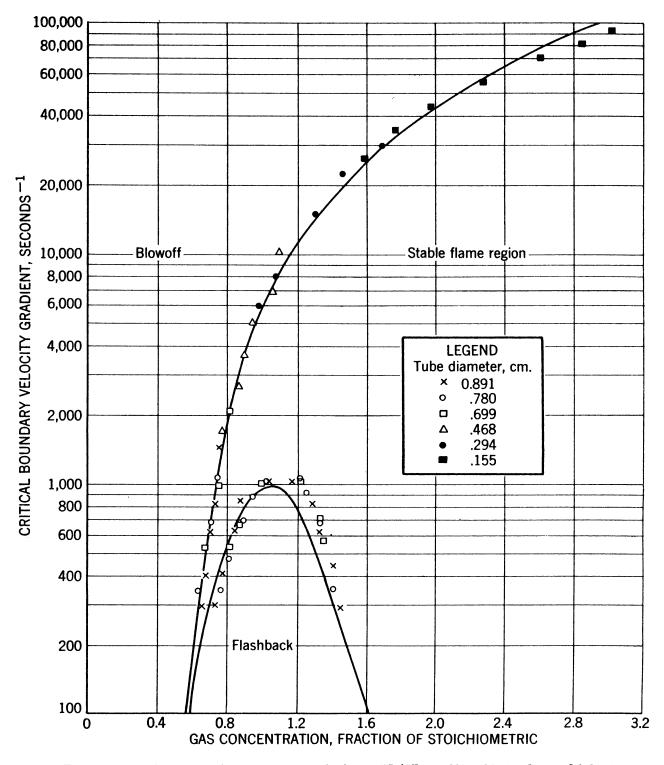


Figure 43. - Flame-stability diagram for fuel No. 55 (37.4% CH₄, 33.4% C₂H₄, 15.2% H₂, 14.0% N₂); comparison of calculated curves and experimental points.

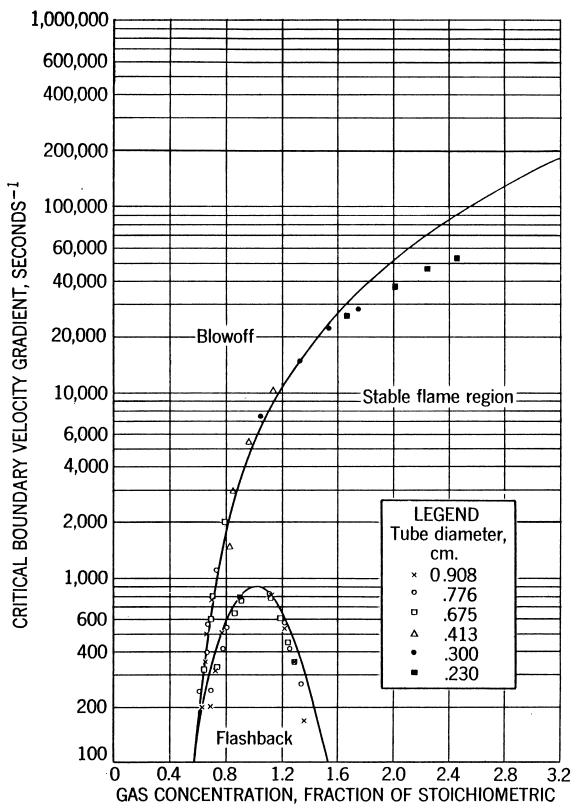


Figure 44. - Flame-stability diagram for fuel No. 67 (37.5% CH₄, 20.4% C₂H₄, 17.5% H₂, 3.9% CO, 13.3% N₂, 7.4% CO₂); comparison of calculated curves and experimental points.

3. High-Ethylene Fuels Containing Hydrogen (More Than About 50 Percent Ethylene)

Although not widely used at present, these fuels are considered here because a slightly different method of calculation is required to obtain their blowoff curves. Calculations are based on the assumption that the fuel consists of the hybrid (ethylene + hydrogen) and (methane) for both flashback and blowoff. Fuel No. 63 is an example of this class of fuels. Experimental data and calculations of flashback and blowoff gradients for this fuel are in tables (A-T/3a,3b,4-No./63). The resultant flashback and blowoff curves are plotted in figure 45, where experimental points again are given for comparison. The method has been checked with two other fuels (A-T/3a,3b,4-No./62,64).

4. Fuels Containing Nitrogen and Carbon Dioxide

Tests have shown that, except in binary mixtures with hydrogen and tertiary mixtures with hydrogen and carbon monoxide, nitrogen acts as an inert diluent. In other words, zero values are assigned to the gradients of the inerts in equation 4. Let us, for example, compare the experimental points and the calculated curves in figure 46 for a mixture of 62.5 percent methane, 22.2 percent hydrogen, and 15.3 percent nitrogen (A-T/3a,3b,4-No./58). The curves are calculated from equation 4 with satisfactory agreement, in view of the approximations involved. Similar agreement was found for 12 other fuels (A-T/3a,3b,4-No./40,43,45,47,52,55,56,57,63,65,66,67).

Anomalous results were obtained when calculating flashback gradients of producer-gas-type fuels consisting of carbon monoxide, hydrogen and nitrogen only. The disagreement can be illustrated by comparing the experimental data and calculated curves for flashback of these fuels $(A-T/3a,3b,4-No./59,60).\frac{14}{2}$

Carbon dioxide behaves like nitrogen up to concentrations of about 15 percent (A-T/3a,3b,4-No./53,61,65,66,67). At higher concentrations of carbon dioxide the greater heat capacity of the material as compared to nitrogen becomes evident, and the flame-stability gradients are lowered more than by equal quantities of nitrogen. The disagreement for concentrations of carbon dioxide above 15 percent can be seen by comparing the experimental data and calculated curves of these fuels (A-T/3a,3b,4-No./49,50,54).15/

- 14/ Experimental flashback gradients for fuels consisting only of carbon monoxide, hydrogen, and nitrogen were considerably lower than predicted on the assumption that the fuel consists of the complex (hydrogen + carbon monoxide) and (nitrogen), or the complex (hydrogen + nitrogen) and (carbon monoxide). Experimental blowoff gradients were adequately matched by values calculated on the basis of the first of these two alternatives. This exception does not impose a severe operating limitation in the use of these data, as gases consisting of only carbon monoxide, hydrogen, and nitrogen, which are of the producer and blue-gas type, are generally mixed with other fuels before going into the gasline. All tests to date have shown that in more complex mixtures, nitrogen behaves as a simple diluent.
- 15/ The observation that carbon dioxide when present in excess of about 15 percent depresses flame-stability gradients more strongly than the same percentages of nitrogen may be attributed to the greater heat capacity of carbon dioxide. No attempt has been made to cover the range of fuels containing more than about 15 percent carbon dioxide because such mixtures are rarely supplied to consumers of piped gas. When present in small percentages, carbon dioxide may be treated as equivalent to nitrogen.

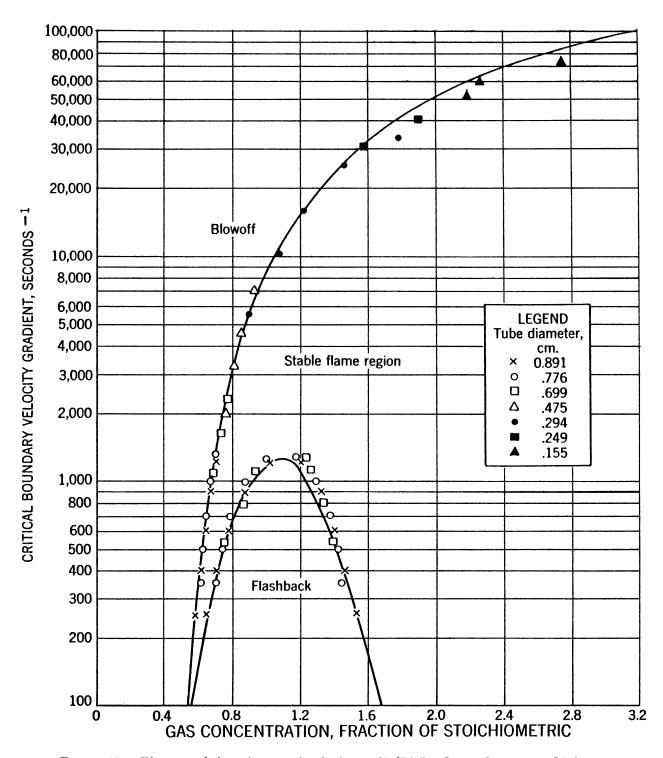


Figure 45. - Flame-stability diagram for fuel No. 63 (56.5% C₂H₄, 15.8% H₂, 13.8% CH₄, 0.1% C₃H₆, 13.8% N₂); comparison of calculated curves and experimental points.

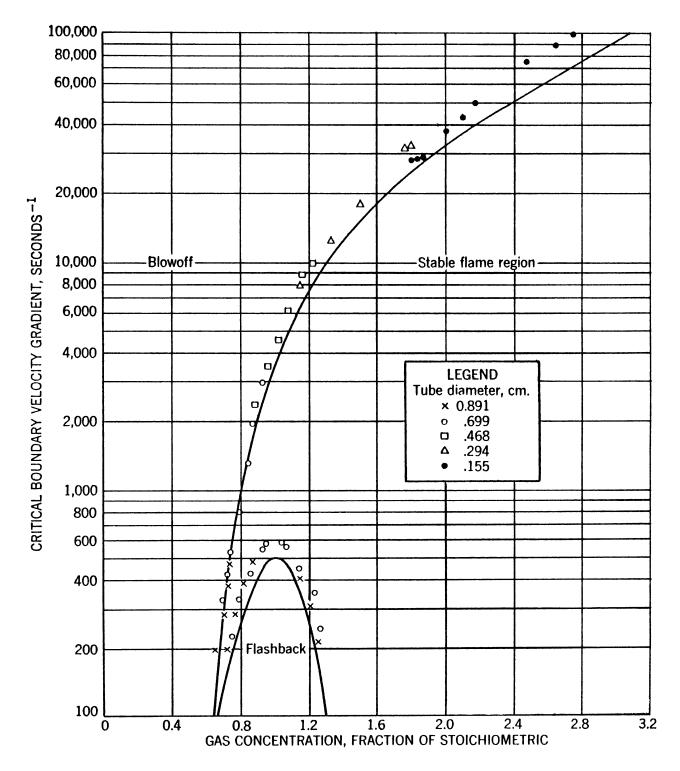


Figure 46. - Flame-stability diagram for fuel No. 58 (62.5% CH₄, 22.2% H₂, 15.3% N₂); comparison of calculated curves and experimental points.

The following listing may be useful to the reader in pointing up fuels of current special interest.

- (1) <u>Natural Gases</u>. This group consists of methane with or without small amounts of other saturated hydrocarbons, nitrogen, and carbon dioxide. The flame-stability diagram for natural gas (figure 19, p. 23), represents these gases adequately for practical purposes. Figure 20 (p. 25) for pure methane is nearly identical with figure 19.
- (2) <u>Liquid-Petroleum and Liquid Petroleum-Air Gases</u>. This category includes propane, butane, propylene, and the butylenes, also mixtures of these gases with air. Figure 21 (p. 26) for propane represents these fuels adequately; figure 23 (p. 28) for propylene is not different enough from the flame-stability diagram for propane to warrant distinction.
- (3) <u>Coke-Oven Gases</u>. Fuels that contain high percentages of hydrogen and carbon monoxide and lesser amounts of saturated hydrocarbons, particularly methane, as well as small amounts of unsaturated hydrocarbons, inert gases, and oxygen, are included in this group. The method of calculating flame-stability diagrams for these fuels is given in tables 3a and 3b of this chapter and requires the use of composite flame-stability diagrams for blowoff and flashback of three types of binary mixtures. Required composite diagrams are given for methane-hydrogen mixtures in figures 28 and 29 (pp. 34 and 35), for carbon monoxide-hydrogen mixtures in figures 30 and 31 (pp. 36 and 37), and for methane-carbon monoxide mixtures in figures 32 and 33 (pp. 38 and 39).
- (4) Oil Gases. Gases that are high in ethylene (up to about 50 percent) and methane, with lesser amounts of hydrogen and inerts and possibly small amounts of carbon monoxide or oxygen, fall into this class of fuels. The method of calculating flame-stability diagrams for such gases is explained in tables 4a and 4b of this chapter. These calculations make use of the composite flame-stability diagrams for flashback and blowoff of ethylene-hydrogen fuels (figures 36 and 37, pp. 42 and 43) and the flame-stability diagram for methane (figure 20, p. 25).

These four types of fuels cover most of the fuels that are currently of industrial interest. The procedures for obtaining flashback and blowoff curves for these fuels are based on direct measurement, interpolation between direct measurements, or tested calculations based on certain reasonable premises. Such calculations have been made successfully on 28 fuels with 2 to 8 constituents.

CHAPTER III. - YELLOW TIPPING AND CONSTANT YELLOW-TIP LIMITS

The phenomenon of yellow tipping differs completely from that of flashback and of blowoff and requires separate explanation.

Yellow tipping is not as serious a limitation in gas-burner operation as are flashback and blowoff. A burner that is in flashback or blowoff does not heat satisfactorily, but a burner operating with yellow flames can be used for heating. Many such burners are used, especially where radiant heat is desired. Yellow-tipped flames are undesirable for certain purposes because they deposit carbonaceous material, which fouls surfaces above the burner and decreases heating efficiency. Moreover, under some circumstances yellow-tipped flames may also give off irritating aldehydes, or carbon monoxide in concentrations exceeding safe limits. Therefore it may often be important to avoid yellow flames in designing burners or exchanging gases on existing burners and to understand the fundamental nature of the yellow-tipping phenomenon.

The yellow-tip limits of most yellow-tipping fuels have been measured and correlated as follows: Each fuel has a minimum characteristic fuel-air ratio for which yellow appears in the flame. The corresponding fuel-gas concentration, fraction of stoichiometric, is called the constant yellow-tip limit, $F_{\rm c}$. When secondary air diffuses into the entire flame, the fuel-air ratio in the flame is leaner than in the burner, and the apparent yellow-tip limit for the burner and fuel becomes richer. The corresponding fuel-gas concentration, fraction of stoichiometric, is called the nonconstant yellow-tip limit, $F_{\rm v}$.

Theory

In formulating a theory for yellow tipping of flames in free air, the following experimental facts must be considered:

- 1. The leanest limit for each fuel (in terms of fuel-air composition of the stream in the port) is independent of flow, burner diameter, and oxygen content of the secondary air (4).
- 2. For a given flow, the limit is richest for narrow flames (small diameters) and becomes independent of diameter for wide flames (large diameters).
- 3. For a given diameter, the limit is richest for small flames (low flows) and becomes independent of flow for tall flames (high flows).
- 4. At the limit, yellow does not appear below or as part of the primary combustion zone. For many hydrocarbon mixtures, particularly liquid-petroleum gases, the top of the primary cone is open. When a yellow ethylene flame is inverted, $\frac{16}{}$ the blue-green primary combustion surface is clearly visible under the yellow in the burned gas. The same result is obtained by inverting a yellow toluene-air flame and a yellow acetylene-air flame.

These observations lead to the conclusions that, for all flames at the yellow-tip limit:

- (1) There is a characteristic fuel-air composition for each yellow-tipping fuel at which the flame shows yellow. This value can be determined experimentally by finding the limit that is independent of increasing flow and increasing diameter.
- (2) Diffusion of secondary air into the flame can produce apparent limits that are richer than the characteristic limit. This happens only if secondary air can diffuse into the yellow zone of the flame in the time the gas takes to flow from the port to the yellow zone.
 - (3) Yellow tipping is not a primary-combustion-zone phenomenon.

These conclusions can be extended as follows to give a general method of correlating yellow-tip limits: Let us consider an idealized yellow-tip-limit flame (figure 47). The yellow zone is a spot at the axis at some height above the port. The flame is tall enough so that only radial diffusion of secondary air is

^{16/} These inverted flames are ones where the apex of the primary cone is the part of the flame nearest the plane of the port. Many rich flames can be inverted by holding a wire at the axis of the port and passing a slow coaxial stream of nitrogen around the port. This makes it possible to observe the primary cone without looking through the secondary mantle.

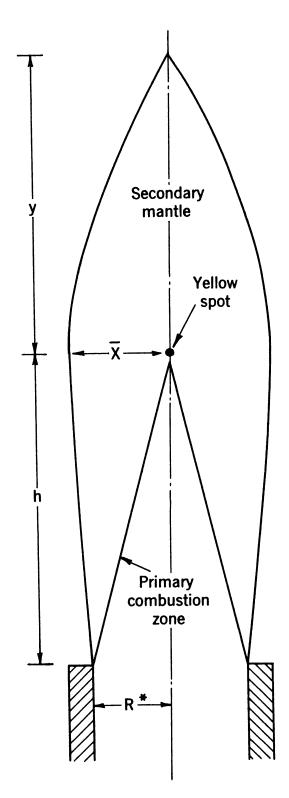


Figure 47. - A schematic yellowtip limit flame for the critical port radius, R*.

significant and the diameter (2R*) is such that secondary air just fails to reach the axis at the plane of the yellow spot in the time the gas takes to flow from the port to that plane. For such a flame $F_y = F_c$, and the yellow-tip fraction $F_c/F_y = 1.0$.

The average displacement \overline{X} of a diffusing molecule is given by the equation

$$\overline{X}^2 = 2 D't, (5)$$

where D' is the diffusion coefficient and t is the time available for diffusion. In figure 47 the distance \overline{X} is the width of the flame at the plane of the yellow spot. For large ports, this about equals the radius, and so for figure 47, $\overline{X} = R^*$. The time, t, is the quotient of the height h of the yellow spot in the flame and U_a the axial velocity. Accordingly,

$$(R^*)^2 = 2 D' \frac{h}{U_a},$$
 (6)

 U_a being related to the product of the radius and the boundary velocity gradient g. (For parabolic flow, $U_a = gR*/2$.) We then may write that

$$(R*)^3 = kD'h/g, (7)$$

where k is a proportionality constant.

Equation 7 shows the parameters that affect the yellow-tip limit, F_y , displacing it so that $F_c/F_y < 1$. By definition, $F_c/F_y > 1$ is impossible. These parameters affect F_v as follows:

- (a) If $R > R^*$, $F_c/F_y = 1$, because secondary air can only penetrate as far as R^* . As R increases beyond R^* , the yellow zone enlarges from a point to a streak of appreciable width and height.
- If R < R*, F_c/F_y < 1, because secondary air can reach the axis. More fuel has to be added to the burner stream to compensate for this excess secondary air if yellow is to be obtained.
- (b) k is some function essentially relating the velocity at the axis to the boundary velocity gradient. It reflects changes in velocity profiles brought about by changing port shape, depth, etc. As values of k for two types of ports need not differ appreciably, $\frac{17}{F_c/F_y}$ may or may not vary with port geometry and type of flow. Predictions are possible when the flow profiles are known.
- (c) D' should be approximately the same for all fuels or for large groups of fuels. The hot gases through which secondary air diffuses to the axis are composed largely of nitrogen, water, carbon dioxide, carbon monoxide, and some hydrogen. The temperatures of these hot gases do not differ enough for various fuels to affect the diffusion coefficient appreciably. Accordingly, the diffusion coefficient produces little if any change in $F_{\rm c}/F_{\rm y}$.

^{17/} See chs. V and VI for discussions of influences of port length, depth, and temperature on yellow tipping.

(d) h depends on the flow and on the average burning velocity of the primary combustion cone of the yellow-tipping flame. The flow is easily evaluated. The differences in average burning velocities of various yellow-tipping fuels will be treated in chapter IV.

The gross variations in the average burning velocity of yellow-tipped flames are illustrated by figure 48, which shows yellow-tipped flames of natural gas, propane, propylene, ethylene, and benzene. The natural gas flame is a long, soft, ill-defined, bushy flame, very similar in shape to diffusion flames. It has an extremely slow burning rate. Yellow-tip-limit flames of fuels such as propane and propylene have low burning rates, with soft primary cones that are often opentopped. Fuels containing large quantities of ethylene, such as rapidly burning oil gases, have yellow-tip-limit flames with fairly sharp, fully formed primary cones, showing that these flames have appreciable burning rates. Flames of pure aromatic fuels, such as benzene, also have sharply defined primary cones at the yellow-tip limit. The same is true of acetylene, which has a very high burning rate, as evidenced by short, sharp, full primary cones at the yellow-tip limit.

(e) If g (or $\rm U_a$) is low enough, the flame height above the yellow zone may be of the order of R*. It should be noted that this height is y of figure 47, not h of equation 7. In this case, secondary air reaches the yellow zone as readily from the top of the flame as from the side and as the amount of secondary air at the yellow is increased, $\rm F_c/F_V$ < 1.

This analysis of the influence of the parameters in equation 7 on F_c/F_y shows that, to systematize the yellow tipping of fuels, we need relationships of F_c/F_y to R and g for the various fuel compositions. The organization of the four parameters will be discussed in chapter IV.

Further Consideration of the Constant Yellow-Tip Limit

The basic quantity in characterizing yellow-tip limits is F_c , the constant yellow-tip limit. Only 11 single-component fuels can produce yellow and probably appear in significant quantities at burners connected to gas-distribution lines. These fuels are listed in table 5, with corresponding values of F_c determined experimentally.

Fuel	F _c , exp.	Fue1	F _c , exp.
Methane	1.80	Isobutylene	1.40
Ethane	1.87	Acetylene	2.10
Propane	1.61	Benzene	1.18
n-Butane	1.57	Toluene	1.34
Ethylene	1.88	Natural gas	1.78
Propylene Propylene	1.44	_	

TABLE 5. - Constant yellow-tip limits for single-component fuels

Tests have shown that the F_c of a mixture of these fuels can be calculated by taking a weighted average of the experimentally determined constant yellow-tip limits of the single-component fuels (table 5). Oxygen, inerts, hydrogen, and

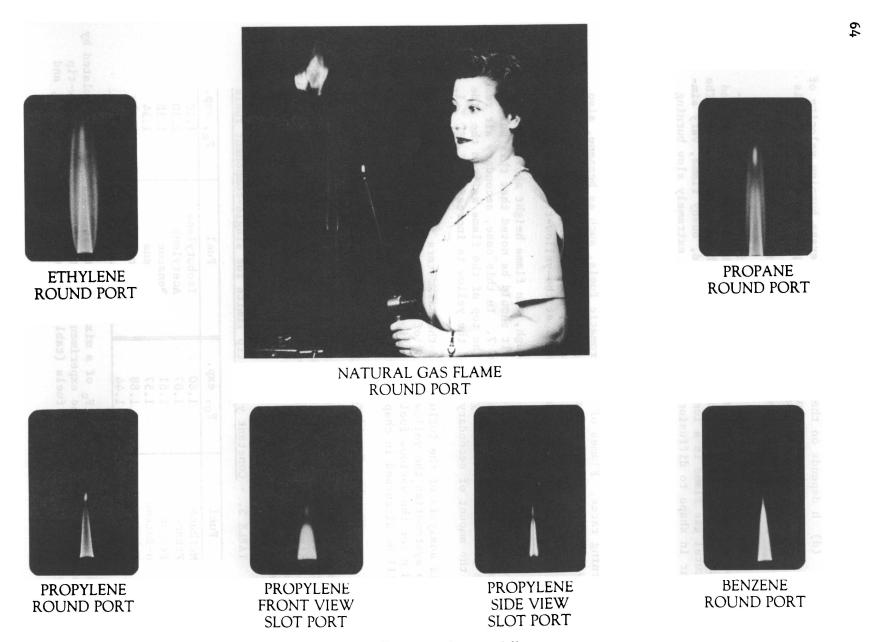


Figure 48. - Yellow-tipped aerated flames.

carbon monoxide were given zero weight. The averaging is done by the following linear rule. $\frac{18}{}$

$$(F_c)_{calc.} = \frac{1}{\sum n} \left[n_a(F_c)_a + n_b(F_c)_b + n_c(F_c)_c \dots \right],$$
 (8)

where n_a , n_b , n_c , etc., are the mole fractions of each of the yellow-tipping components, and $\Sigma n = n_a + n_b + n_c$... The validity of equation 8 is shown by the data in table 6, which lists experimental and calculated values of F_c for a wide variety of mixtures.

TABLE 6. - Comparison of experimental and calculated values of F_C for two-component and multicomponent fuels

Fuel compo	osition	F _c , exp.	F _c , calc.
	Two-component fuels		
Fuel No. 79:	(76.0% C ₂ H ₄ , 24.0% H ₂)	1.90	1.88
Fuel No. 83:	(72.5% C ₂ H ₄ , 27.5% CH ₄)	1.85	1.86
	(53.1% C ₂ H ₄ , 46.9% C ₃ H ₈)	1.72	1.75
	(74.4% C ₂ H ₄ , 25.6% C ₃ H ₈)	1.68	1.81
	(90.0% C ₂ H ₄ , 10.0% C ₃ H ₈)	1.78	1.85
	(55.4% C3H8, 44.6% H2)	1.76	1.61
Fuel No. 28:	$(81.6\% \text{ C}_3\text{H}_8, 17.4\% \text{ H}_2, 1.0\% \text{ C}_3\text{H}_6)$	1.61	1.61
	Multicomponent fuels		
	$(70.1\% \text{ C}_3\text{H}_8, 15.7\% \text{ H}_2, 13.7\% \text{ CO}, 0.5\% \text{ C}_3\text{H}_6) \dots$	1.60	1.61
	$(37.4\% \text{ CH}_4, 33.4\% \text{ C}_2\text{H}_4, 15.2\% \text{ H}_2, 14.0\% \text{ N}_2) \ldots$	1.90	1.84
Fuel No. 82:	(33.5% CH4, 30.1% C ₂ H ₄ , 13.4% H ₂ , 12.8% N ₂ ,		
	10.2% CO ₂)	1.88	1.84
Fuel No. 56:	$(29.1\% \text{ CH}_4, 26.2\% \text{ C}_2\text{H}_4, 22.1\% \text{ C}_3\text{H}_8, 11.8\% \text{ H}_2,$]	
	$0.2\% \text{ C}_3\text{H}_6$, $10.6\% \text{ N}_2$)	1.76	1.77
	$(32.1\% \text{ CH}_4, 28.4\% \text{ C}_2\text{H}_4, 12.5\% \text{ H}_2, 27.0\% \text{ N}_2) \dots$	1.90	1.84
Fuel No. 66:	(42.6% CH ₄ , 18.1% C ₂ H ₄ , 17.0% H ₂ , 9.1% CO,		
	$2.2\% \text{ C}_{2}\text{H}_{6}$, $1.9\% \text{ C}_{3}\text{H}_{8}$, $0.2\% \text{ C}_{3}\text{H}_{6}$, $0.2\% \text{ C}_{4}\text{H}_{10}$,]	
	$0.1\% \text{ C}_4\text{H}_8$, $5.2\% \text{ CO}_2$, $3.4\% \text{ N}_2$)	1.80	1.82
Fuel No. 69:	(75.2% CH4, 22.2% C3H8, 2.6% C2H6)	1.76	1.76
Fuel No. 71:	(62.1% CH ₄ , 35.5% C ₃ H ₈ , 2.4% C ₂ H ₆)	1.71	1.73
Fuel No. 70:	(74.2% CH4, 13.4% C3H6, 9.6% C3H8, 2.5% C2H6,		
	0.3% CO ₂)	1.66	1.74
Fuel No. 80:	(72.5% СН ₄ , 15.9% С ₂ Н ₄ , 7.7% Н ₂ , 2.6% С ₂ Н ₆ ,		
	$0.4\% C_3H_8$, $0.2\% C_3H_6$, $0.2\% C_4H_{10}$, $0.5\% Co_2$)	1.76	1.81
Fuel No. 81:	(67.6% CH ₄ , 26.8% C ₂ H ₄ , 2.3% C ₂ H ₆ , 2.2% H ₂ , 0.4%	Í	
	C_3H_8 , 0.2% C_3H_6 , 0.1% C_4H_{10} , 0.4% C_{02})	1.79	1.82
Fuel No. 86:	$(84.2\% \text{ CH}_4, 7.6\% \text{ C}_2\text{H}_2, 5.3\% \text{ C}_2\text{H}_6, 1.6\% \text{ C}_3\text{H}_8,$		
	$0.6\% \text{ C}_4\text{H}_{10}, 0.3\% \text{ C}_3\text{H}_6, 0.4\% \text{ CO}_2) \dots$	1.77	1.82
Fuel No. 87:	$(91.6\% \text{ CH}_4, 4.0\% \text{ C}_7\text{H}_8, 3.2\% \text{ C}_2\text{H}_6, 0.7\% \text{ C}_3\text{H}_8,$,	
	0.2% C ₃ H ₆ , 0.3% CO ₂)	1.74	1.78

^{18/} This rule is not expected to apply when the concentration of non-yellow-tipping components is very large.

CHAPTER IV. - CALCULATION OF NONCONSTANT YELLOW-TIP LIMITS OF FUEL GASES

In the preceding chapter, yellow-tip limits of fuels on ports of diameters $\geq R^*$ were considered. For such ports F_y is equal to F_c , except at low flows. Let us now consider yellow tipping on smaller ports, using a graphical method that also will include the low flames on large ports. For these flames, the yellow-tip fraction $F_c/F_y \leq 1.0$.

Figures 49, 50, and 51 (A-T/5-No./2,68,3) contain yellow-tip limits (F_y) for methane, natural gas, and propane, respectively, over a wide range of ports and flows. 19/ The yellow-tip curves in these three graphs are plots of F_y versus g_y . For each diameter, yellow-tipped flames occur to the right of the respective curve. This type of yellow-tip-limit plot has two disadvantages. Interpolation between diameters is difficult; and there appears to be no way of extrapolating data obtained for one fuel to a new and untested fuel.

Let us now systematize the yellow-tip limits of fuels, excluding those that are very largely made up of hydrogen, carbon monoxide, and inerts. As fuels containing much more than 50 percent non-yellow-tipping constituents have not been tested, it is not known how far beyond 50 percent the data to be presented are applicable. However, this is not a serious practical limitation.

It will be recalled that four parameters must be considered in dealing with nonconstant yellow-tip limits. One is the chemical composition of the fuel. The second is the fuel-air composition in the burner port. This is $F_{\mathbf{y}}$, which will be converted into the yellow-tip fraction, $F_{\mathbf{c}}/F_{\mathbf{y}}$, which weighs all fuels with respect to their fundamental yellow-tipping tendencies. The third parameter is the port diameter. The fourth is the flow expressed as the critical boundary velocity gradient $g_{\mathbf{y}}$. These four variables are organized for wide ranges of fuel composition

In figures 49-51 the stable blue-flame region marks the area where flashback, blowoff, and yellow tipping are absent. Yellow-tipped flames are possible but not necessarily present for values of F greater than F_C. Port diameter and flow must be taken into consideration in predicting yellow tipping when F is greater than F_C. Flame-characteristics diagrams such as these combine the flashback, blowoff, and yellow-tipping characteristics of the fuel gas in one plot of critical boundary velocity gradient versus fuel-air composition expressed as fraction of stoichiometric. The constant yellow-tip limit F_C, included in the diagram as a vertical line, is the measure of the yellow-tipping properties inherent in the fuel gas. The other yellow-tip curves involve a particular port diameter. Therefore these nonconstant yellow-tip limits are a combination of the inherent yellow-tipping qualities of the fuel and the interaction between this quantity and the port diameter, the latter being a burner-design factor. Other burner-design factors, namely port shape and port temperature, will be treated in chs. V and VI, respectively.

The yellow-tip-limit curves for methane and natural gas on large tubes bend back on themselves over a short range of flows (see figures 49 and 50). These may be characteristic of a breakdown within the flame into a transition region before turbulence. Once turbulence is established in the flame, the characteristic constant yellow-tip limit is again restored. The anomaly occurs over only a small range and has been observed exclusively with methane and natural gas. It can be ignored for practical purposes.

The yellow-tip curves for propane include points on small tube diameters at very low flows. The exact limits are somewhat in doubt but lie between the doublets shown.

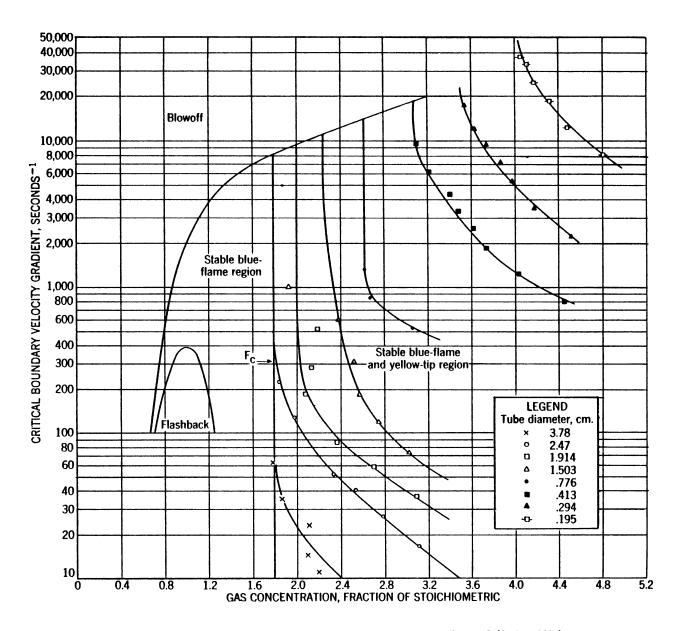


Figure 49. - Flame-characteristics diagram for fuel No. 2 (100% CH₄).

Figure 50. - Flame-characteristics diagram for fuel No. 68 (89.5% CH₄, 6.7% C₂H₆, 2.7% C₃H₈, 0.4% C₃H₆, 0.4% C₄H₁₀, 0.3% CO₂).

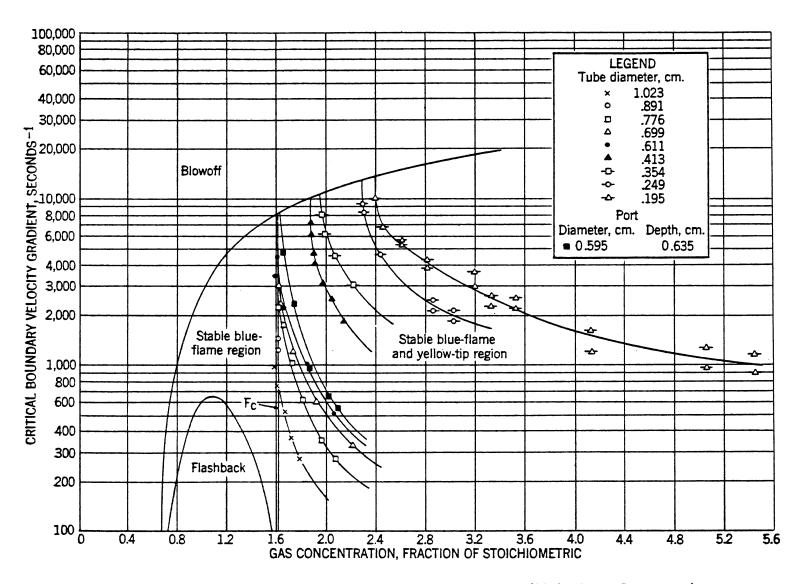


Figure 51. - Flame-characteristics diagram for fuel No. 3 (98.6% C₃H₈, 1.4% C₃H₆).

- (1) Starting with a fuel, such as natural gas (figure 50), values of F_y are selected so that $F_c/F_y=1.0$, 0.95, 0.90, etc. (see table 7, column 1). Corresponding values of F_y are obtained (column 2) by dividing F_c by F_c/F_y . For each diameter (column 3) and F_y (column 2), corresponding values of g_y (column 4) are obtained from figure 50. Plotting the values in column 3 as the abscissa and the values in column 4 as the ordinate, we obtain curves of constant F_c/F_y for natural gas (figure 60). This operation is repeated to prepare similar curves of constant F_c/F_y for each fuel to be used in constructing yellow-tip-fraction composites (figures 52-59).
- (2) Values of tube diameter for each value of F_c/F_y and for arbitrarily chosen critical boundary velocity gradients are obtained from these constant F_c/F_y curves. These diameters become the ordinates of a new set of graphs, the abscissa being the fuel composition expressed as ratios of the fuel constituents. Each graph of a given set is characterized by a constant value of the critical boundary velocity gradient ($g_y = 300, 800, 3,000, 10,000, 20,000$ and above) and includes a family of curves. Each curve is the locus of points of constant F_c/F_y for the selected flow and over the pertinent range of tube diameters and fuel compositions.

Thus this graphical method covers the four variables affecting nonconstant yellow-tip limits (fuel composition, fuel-air composition, diameter, and flow), to give composite yellow-tip-fraction diagrams.

The application of these composite yellow-tip-fraction diagrams can be illustrated by calculations of yellow-tip limits for a fuel composed of a mixture of natural and liquid petroleum gases, as follows: 62.1 percent C_{4} , 35.5 percent C_{4} , and 2.4 percent C_{4} (A-T/5-No./71).

(1) The chemical composition of the fuel places it in the methane-propane group - ethylene class of yellow-tipping fuels, and figures 52-56 are to be consulted. The fuel is located on the composite diagram by its ratio of $\text{CH}_4/\text{C}_3\text{H}_8$ group or $\text{C}_3\text{H}_8\text{group}/\text{CH}_4$ (the fuel-composition-ratio coordinate has been arranged to be between 0 and 1). In this case it is C_3H_8 group/CH $_4$ = 37.9/62.1 = 0.61.

^{20/} The midpoint of figures 52-56 is an average of ethane, propane, butane, propylene, and isobutylene. These five fuels make up the "propane group" and show about the same yellow-tip fractions.

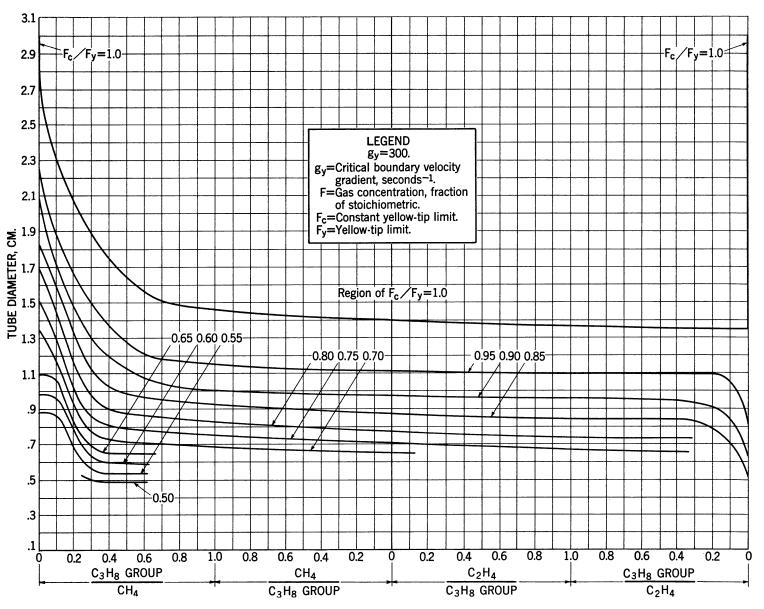


Figure 52. • Yellow-tip fractions for methane-propane group-ethylene fuels for $g_y = 300$; propane group is the average of ethane, propane, propylene, n-butane, and isobutylene; composite diagram.

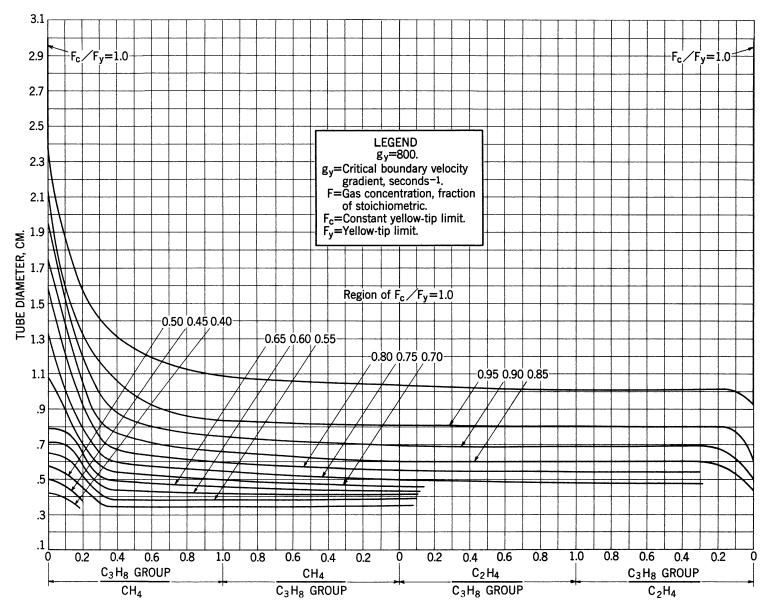


Figure 53. - Yellow-tip fractions for methane-propane group-ethylene fuels for $g_y = 800$; propane group is the average of ethane, propane, propylene, n-butane, and isobutylene; composite diagram.

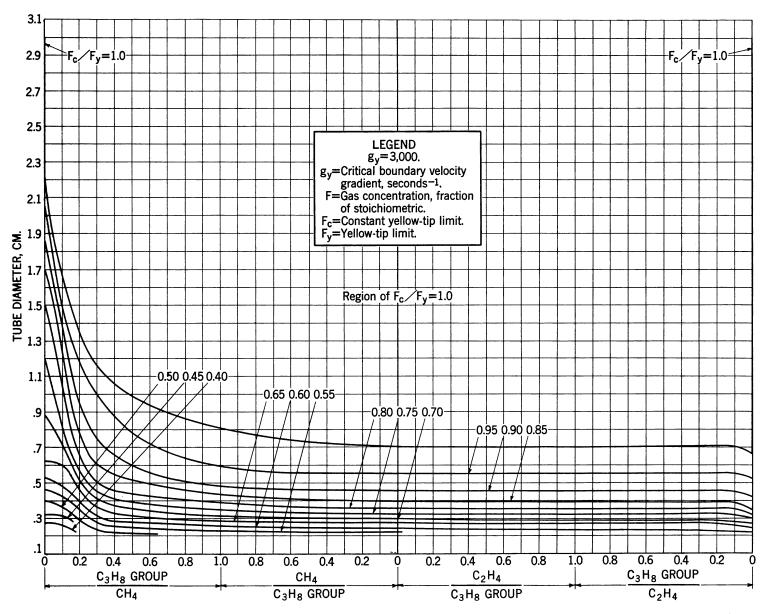


Figure 54. - Yellow-tip fractions for methane-propane group-ethylene fuels for $g_y = 3,000$; propane group is the average of ethane, propane, propylene, n-butane, and isobutylene; composite diagram.

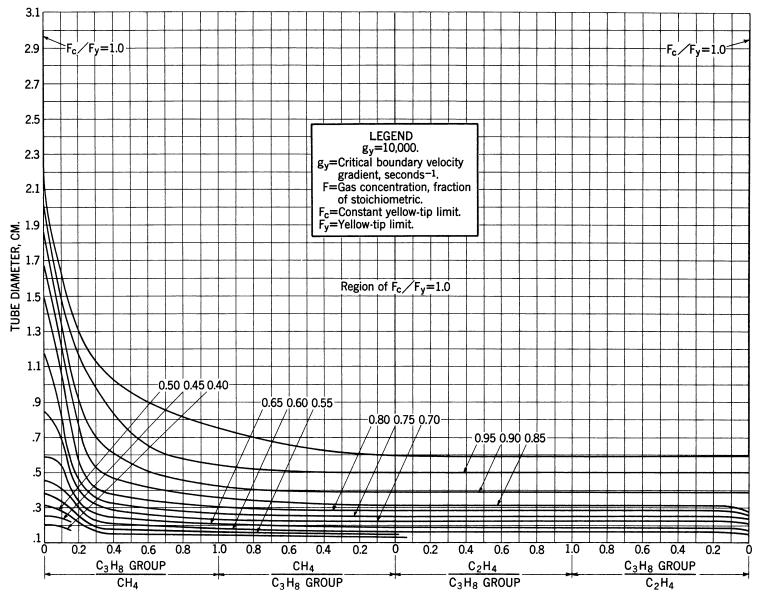


Figure 55. - Yellow-tip fractions for methane-propane group-ethylene fuels for $g_y = 10,000$; propane group is the average of ethane, propane, propylene, n-butane, and isobutylene; composite diagram.

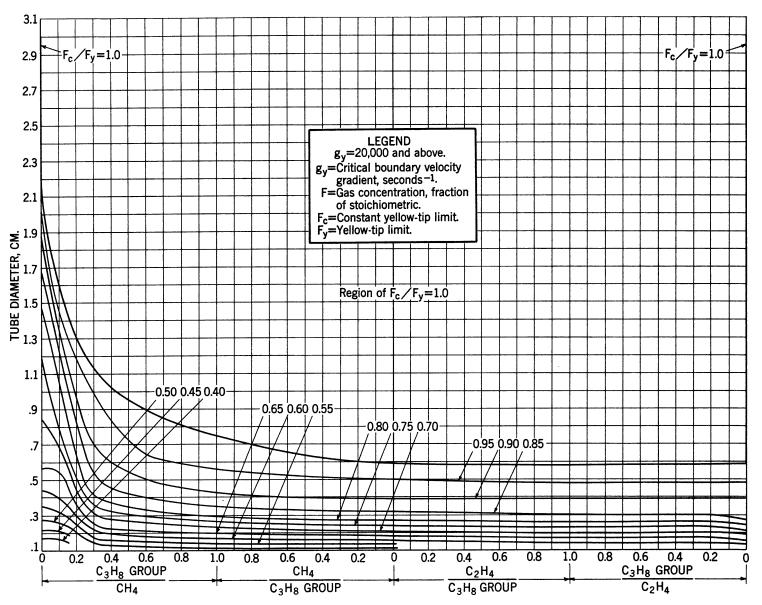


Figure 56. - Yellow-tip fractions for methane-propane group-ethylene fuels for $g_y = 20,000$ and above; propane group is the average of ethane, propane, propylene, n-butane, and isobutylene; composite diagram.

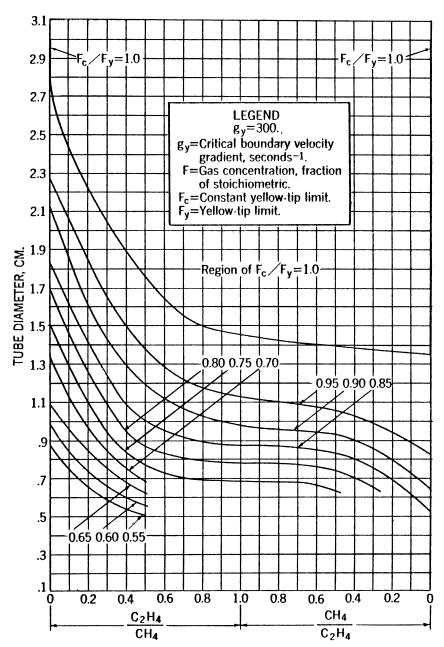


Figure 57. - Yellow-tip fractions for methane-ethylene fuels for g_y = 300; composite diagram.

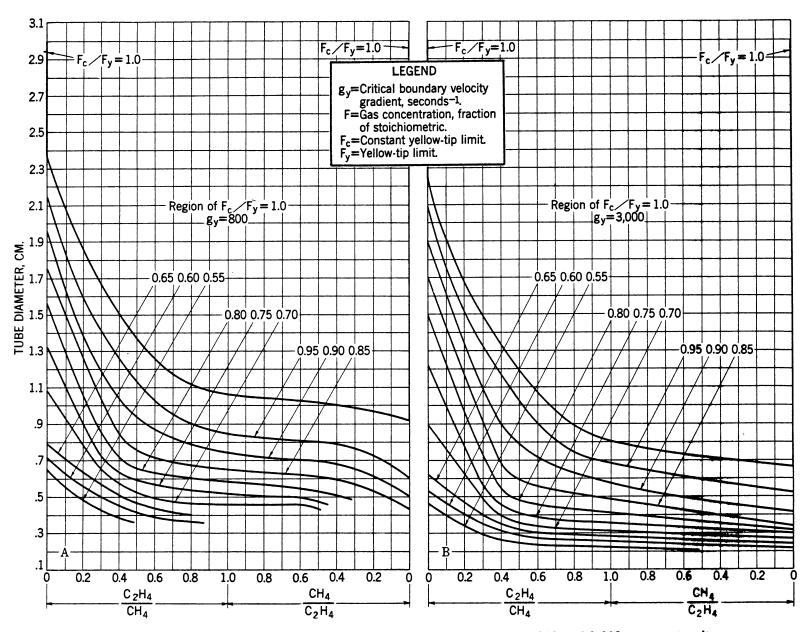


Figure 58. - Yellow-tip fractions for methane-ethylene fuels for $g_y = 800$ and 3,000; composite diagram.

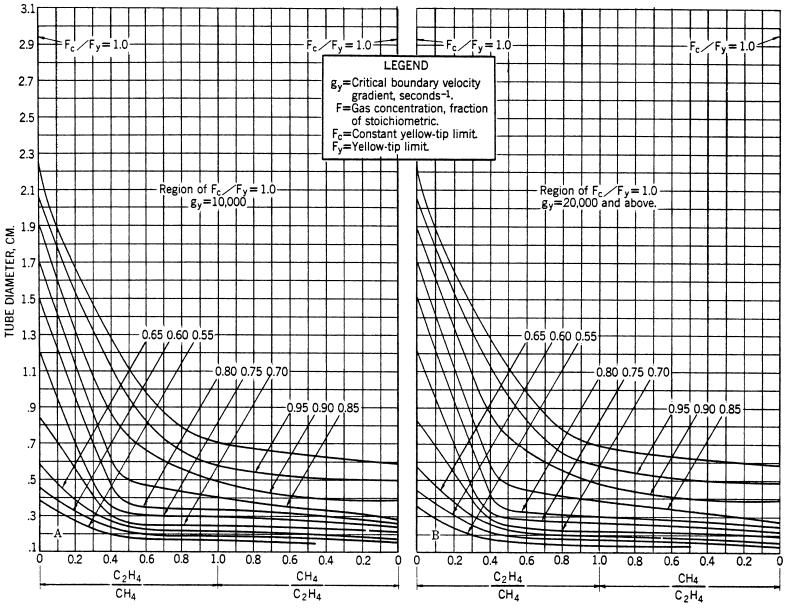


Figure 59. - Yellow-tip fractions for methane-ethylene fuels for $g_y = 10,000, 20,000$ and above; composite diagram.

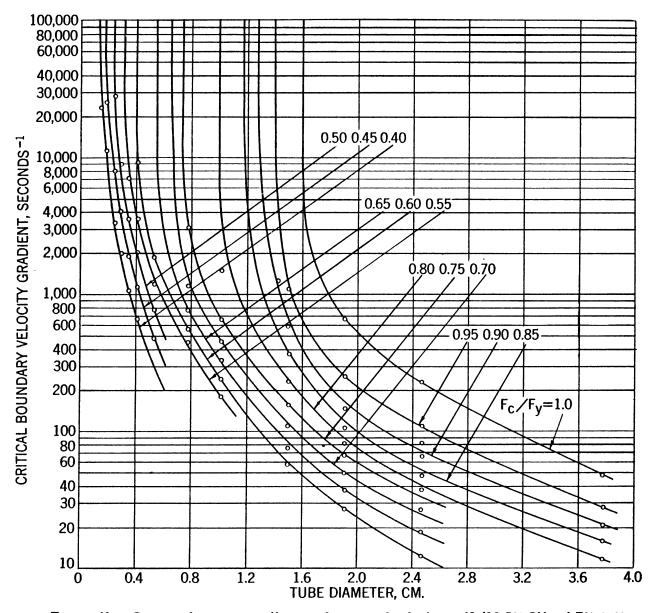


Figure 60. - Curves of constant yellow-tip fractions for fuel No. 68 (89.5% CH₄, 6.7% C₂H₆, 2.7% C₃H₈, 0.4% C₃H₆, 0.4% C₄H₁₀, 0.3% CO₂).

TABLE 7. - Curves of constant yellow-tip fractions for fuel No. 68

$F_{\rm c} = 1.78$							
(1)	(2)	(3) Tube diam.,	(4)	(1)	(2)	(3) Tube diam.,	(4)
F _c /F _y	Fy	cm.	gy	F _c /F _y	Fy	cm.	gy
1.0	1.78	3.78	48	0.65	2,74	2.47	19
		2.47	230			1.914	38
		1.914	660			1.503	76
						1.023	335
.95	1.87	3.78	28			.776	770
		2.47 1.914	110 255	.60	2.97	2.47	12
		1.503	1,100	.00	2.97	1.914	28
		1.43	4,100			1.503	58
		1.43	7,100			1.023	245
.90	1.98	3.78	21			.776	570
,,,,		2.47	82			.535	1,880
		1.914	148			.413	9,300
		1.503	590				
		1.43	1,280	.55	3.24	1.023	180
						.776	455
.85	2.09	3 .78	16			.535	1,200
		2.47	66			.413	3,600
		1.914	108			.354	7,100
		1.503	390	50	2.56	525	700
		1.43	550	.50	3.56	.535	780 2,030
.80	2.23	3.78	12			.413 .354	3,550
.60	2.23	2.47	48			.294	9,000
		1.914	82			.249	28,000
		1.503	235			•247	20,000
		1.023	1,500	.45	3.96	.535	480
		2,025	and up			.413	1,150
ļ						.354	1,900
.75	2.37	2.47	38			.294	4,050
		1.914	66			.249	8,000
		1.503	158			.195	25,300
		1.023	670				
		.776	3,100	.40	4.45	.413	670
]						.354	1,080
.70	2.54	2.47	27			.294	2,000
		1.914	50			.249	3,350
		1.503	110			.195	11,300
		1.023	460			.155	23,000
		.776	1,160	L	L	L	

(2) Next, let us select several tube diameters for which we have experimental data for comparison with predicted limits: 0.776-, 0.413-, and 0.249-cm. tubes. From figure 52, we find that, for an abscissa of 0.61 and an ordinate of 0.776, $F_{\rm C}/F_{\rm y}$ is about 0.75. This reading is noted in column 1 of table 8. The flow for this point is given in the legend of figure 52 and is found in column 2 of table 8. For the same abscissa and ordinate, other $F_{\rm C}/_{\rm y}$ values are obtained from figures 53-56, with the flows shown in the legends. The same procedure is used to obtain the data in columns 1 and 2 of table 8 for 0.413- and 0.249-cm. tubes.

TABLE 8. - Sample calculations of yellow-tip curves for fuel No. 71

$F_{c} = 1.71$							
Tube	(1)	(2)	(3)				
diameter, cm.	F _c /F _y	gy	Fy				
0.776	0.75	300	2.28				
	.89	800	1.92				
	.97	3,000	1.76				
	.98	10,000	1.75				
	.98	20,000	1.75				
	.98	40,000	1.75				
.413	.58	800	2.95				
	.79	3,000	2.17				
	.85	10,000	2.01				
	.86	20,000	1.99				
	.86	40,000	1.99				
.249	.56	3,000	3.05				
	.69	10,000	2.48				
	.69	20,000	2.48				
	.69	40,000	2.48				

- (3) The constant yellow-tip limit, F_c , is calculated from table 5 and equation 8. For the fuel considered here it is 1/1.0 [(0.621 x 1.8) + (0.355 x 1.61) + (0.024 x 1.87)] = 1.73. The experimental value of F_c , 1.71, was used in constructing table 8 and figure 61. Its calculated value, 1.73, could have been used equally well.
- (4) Dividing F_c by F_c/F_y (column 1), we obtain values of F_y (column 3).
- (5) Plotting g_y (column 2) versus F_y (column 3) for each tube diameter, we obtain the curves in figure 61. Comparison of these calculated curves with the experimental points shows a satisfactory order of agreement.

As a second illustration, let us take a fuel consisting of 32.1 percent C_{4} , 28.4 percent $C_{2}H_{4}$, 12.5 percent H_{2} , and 27.0 percent N_{2} (A-T/6-No./57).

(1) As its yellow-tipping constituents are mainly methane and ethylene, the composite yellow-tip fraction diagrams to be consulted are those for

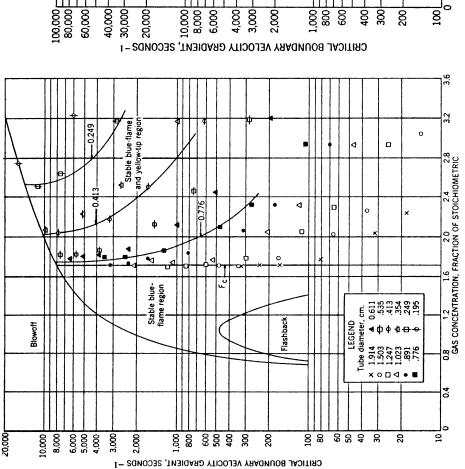


Figure 61. - Flame-characteristics diagram for fuel No. 71 (62.1% CH₄, 35.5% C₃H₈, 2.4% C₂H₆); comparison of experimental points and calculated curves.

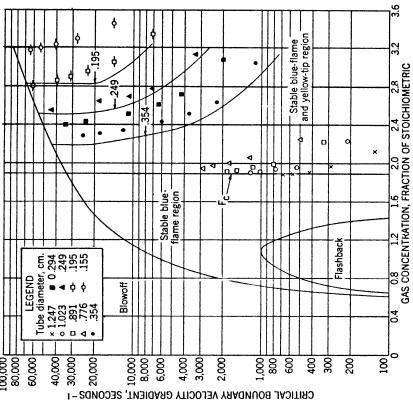


Figure 62. - Flame-characteristics diagram for fuel No. 57 (32.1% CH4, 28.4% C2H4, 12.5% H2, 27.0% N2); comparison of experimental points and calculated curves.

methane-ethylene fuels, namely, figures 57-59. The fuel is located on the composite diagram by its ratio of CH_4/C_2H_4 or C_2H_4/CH_4 . In this case it is $C_2H_4/CH_4 = 28.4/32.1 = 0.885$.

(2) Next let us select several tube diameters for which we have experimental data for comparison with predicted limits: 0.354-, 0.249-, and 0.195-cm. tubes. From figure 57 we find that, for an abscissa of 0.885 and an ordinate of 0.354, $F_{\rm c}/F_{\rm y}$ is about 0.60. This reading is noted in column 1 of table 9. The flow for this point is given in the legend of figure 57 and is found in column 2 of table 9. For the same abscissa and ordinate, other $F_{\rm c}/F_{\rm y}$ values are obtained from figures 58 and 59, with the flows shown in the legends. This same procedure is used to get columns 1 and 2 of table 9 for the 0.249- and 0.195-cm. tubes.

TABLE 9.	-	Sample calcul	ations	of	ye1	low-tip
		curves	for fu	≥1 N	lo.	57

$F_{C} = 1.84$						
Tube	(1)	(2)	(3) F _y			
diameter, cm.	F _c /F _y	g _y				
0.354	0.60	800	3.07			
	.75	3,000	2.45			
	.81	10,000	2.27			
	.83	20,000	2.2			
	.83	40,000	2.2			
.249	.59	3,000	3.12			
	.70	10,000	2.63			
	.73	20,000	2.52			
	.73	40,000	2.52			
.195	.60	10,000	3.07			
	.65	20,000	2.83			
	.65	40,000	2.83			

- (3) The constant yellow-tip limit, F_c , is calculated from table 5 and equation 8. For the fuel considered here, it is $1/0.605 [(0.321 \times 1.8) + (0.284 \times 1.88)] = 1.84$. This value was used in constructing table 9 and figure 62. However, the experimental value of F_c , 1.90, could have been used with almost perfect agreement between experimental points and calculated curves.
- (4) Dividing F_c by F_c/F_y (column 1), we obtain values of F_y (column 3).
- (5) Plotting g_y (column 2) versus F_y (column 3) for each tube diameter, we obtain the curves in figure 62. These calculated curves may be compared with the experimental points in the figure to note the order of agreement.

Another application of this procedure is the conversion of yellow-tip limits into the units percent primary air and B.t.u./hr.in.² (see ch. I, pp. 11 and 13). As an example, let us take Cleveland natural gas (91.6 percent $C_{2}H_{6}$, 4.3 percent $C_{2}H_{6}$, 1.0 percent $C_{3}H_{8}$, 0.4 percent $C_{4}H_{10}$, 1.9 percent N_{2} , and 0.8 percent C_{0}),

with a stoichiometric percent of 9.39. The diagrams representative of this fuel are figures 52-56. For comparison, the tubes selected have the same diameters as burners 8 and 9 in AGA Research Report 1192,21/ namely, 0.2705 and 0.2308 cm., respectively.

- (a) The fuel and each of these two diameters are located, respectively, on the abscissa at a ratio of C_3H_8 group/ CH_4 = 0.0622 and the ordinates of 0.2705 and 0.2308 cm. in figures 52-56. Each of these graphs yields a value of F_c/F_y versus g_y for each of the two diameters, and these are tabulated in columns 2 and 3 of table 10.
- (b) F_c for natural gas is 1.78 (table 5). Dividing F_c = 1.78 by the F_c/F_y values (table 10, column 2), we obtain values of F_y (column 4). The yellow-tip limit curves for the two diameters are obtained by plotting F_y (column 4) against g_y (column 3). The resulting curves are found in figure 63, \underline{A} . For each diameter, yellow-tipped flames will occur on the right of the corresponding curve.

	an diago of H die H					
(1) Port	(2)	(3)	(4)	(5)	(6)	
diameter, cm.	F _c /F _y	g _y	Fу	L	М	
0.2705	0.40 .47 .50 .50	3,000 10,000 20,000 40,000	4.45 3.79 3.56 3.56	14.4 18.8 20.7 20.7	35,600 101,000 190,000 380,000	
.2308	.43 .46	10,000 20,000	4.14 3.87	16.3 18.2	94,000 176,000	

.46 | 40,000 | 3.87 | 18.2 | 352,000

TABLE 10. - Sample calculations of yellow-tip curves in units of L and M

(c) Using equations 2 and 3 (ch. I, p. 13), and knowing that h = 1,025 B.t.u./cu.ft. (29) and that S is equal to 0.0939 (from P = 9.65) (29), F_y is converted into L, percent primary air (column 5), and g_y into M, B.t.u./hr.in.² (column 6).

For the first line in table 10,

$$L = \frac{100 \left(1 - 4.45(0.0939)\right)}{4.45(1 - 0.0939)} = 14.4,$$

M = 0.26(3,000)(1,025)(0.1065)(4.45)(0.0939) = 35,600.

L is plotted against M in figure 63, \underline{B} . The resulting curves are the yellow-tip limit curves predicted by the Bureau of Mines method. These are the curves in figure 63, \underline{B} , based on points marked $\underline{\bullet}$ and $\underline{\bullet}$ and are for the ports in free air. Figure 63, \underline{B} , also gives yellow-tip-limit curves for two contemporary burners with

^{21/} The data in AGA Research Report 1192 were obtained with multiport burners, many of which had inclined ports operating hot. Our calculations are for upright ports in free air (such as a monoport) at room temperature and pressure.

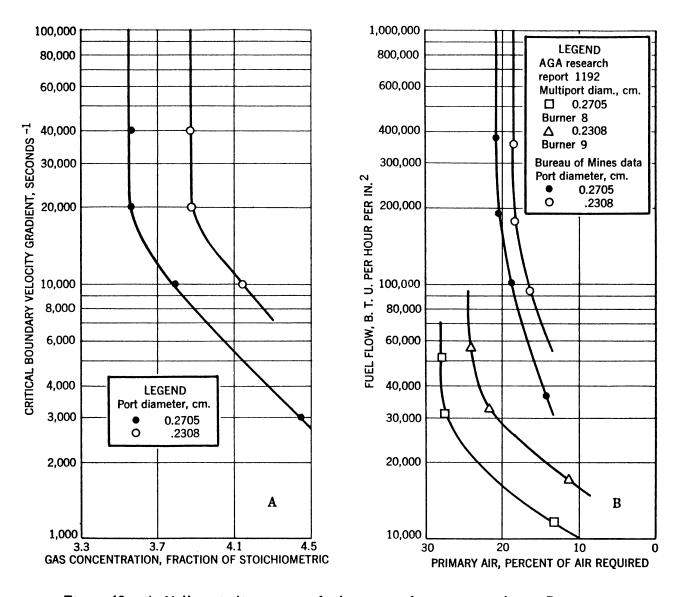


Figure 63. - A, Yellow-tip limit curves for burners in free air, natural gas; B, comparison of predicted yellow-tip limits for burners in free air and observed limits on multiports; natural gas.

multiports of the same diameter spaced one-fourth inch apart (data taken from AGA Research Report 1192 (29)). The yellow-tip limits on the multiport burners are leaner than predicted, because each port is partly surrounded by products of combustion from adjacent ports. Thus it will be seen that more factors are involved in predicting the yellow tipping of contemporary burners than for flames in free air on cold ports.

Figures 64, 65, and 66 (A-T/7-No./6,84,85) give additional data of laboratory interest for benzene, toluene, and acetylene. Figure 67 (A-T/7-No./86) is for a mixture of natural gas and acetylene, while figure 68 (A-T/7-No./87) is for a mixture of natural gas and toluene. These mixtures are not likely to appear as such in gas-distribution systems and accordingly have not been given the same treatment as the natural gases, liquid-petroleum fuels, and oil gases. They are included for their general interest and, in the case of figures 67 and 68, to show that small quantities of aromatics and acetylene, when mixed with natural gas increase yellow tipping of the mixture more than equal quantities of the ethylene or the propane group. The constant yellow-tip limits can be predicted from equation 8.

Fuels may, of course, consist of mixtures containing methane, the propane group, and ethylene. In such instances the procedure for calculating values of F_c/F_y outlined above is varied to divide the methane between the ethylene and propane groups in a manner similar to that employed in chapter II for calculating flashback and blowoff gradients (p. 48). The methane is proportioned in the ratio of percent C_3H_8 group/percent C_3H_8 group + C_2H_4 and percent C_2H_4 /percent C_3H_8 group + C_2H_4 . Values of F_c/F_y obtained from the CH_4 - C_3H_8 group composites (figures 52-56) and from the CH_4 - C_2H_4 composite (figures 57-59) are substituted in equation 9.

$$(F_c/F_y)_{calc.} = \frac{1}{n} \left[a(F_c/F_y)_{CH_4-C_3H_8 \text{ group}} + b(F_c/F_y)_{CH_4-C_2H_4} + \dots \right],$$
 (9)

where n = Σ a,b,..., and a = Σ (C₃H₈ group) + (CH₄ proportioned to the C₃H₈ group) and b = Σ (C₂H₄) + (CH₄ proportioned to C₂H₄). This procedure has been tested with two fuels (A-T/7-No./66,56). Good agreement between experiment and prediction was obtained with fuel No. 56, consisting of 29.1 percent CH₄, 26.2 percent C₂H₄, 22.1 percent C₃H₈, 11.8 percent H₂, 0.2 percent C₃H₆, and 10.6 percent N₂, but not with fuel No. 66, consisting of 42.6 percent CH₄, 18.1 percent C₂H₄, 17.0 percent H₂, 9.1 percent CO, 2.2 percent C₂H₆, 1.9 percent C₃H₈, 0.2 percent C₃H₆, 0.2 percent C₄H₁₀, 0.1 percent C₄H₈, 5.2 percent CO₂, and 3.4 percent N₂. Results with the latter fuel showed good agreement for the constant yellow-tip limit but only passable agreement for nonconstant limits, the predicted yellow-tip limits being leaner than the experimental. The combination of high non-yellow-tipping constituents (34.7 percent) plus methane (42.6 percent) may be responsible for this discrepancy.

It may be desired to evaluate fuels in the order of their tendency to yellowtip. This cannot be done by comparing $F_{\rm C}$ values of the fuels with the expectation that the tendency to yellow tip increases with decreasing $F_{\rm C}$. The R* value also must be considered. For extremely slow burning fuels, such as methane, R* is larger than 2 cm. It decreases progressively as other constituents are added to methane, until it reaches a value of about 6 mm. for all other fuels except acetylene. The value for acetylene is about 3 mm. Values of R* can be obtained for most fuels by locating the ratio of the fuel on diagrams 56 and 59B and noting the diameter for which $F_{\rm C}/F_{\rm Y}$ is unity.

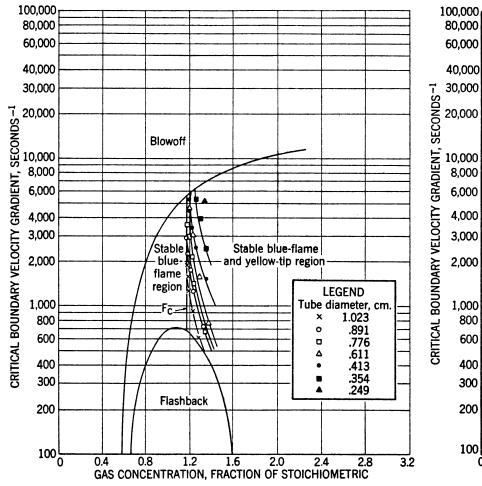


Figure 64. - Flame-characteristics diagram for fuel No. 6 (100% C₆H₆).

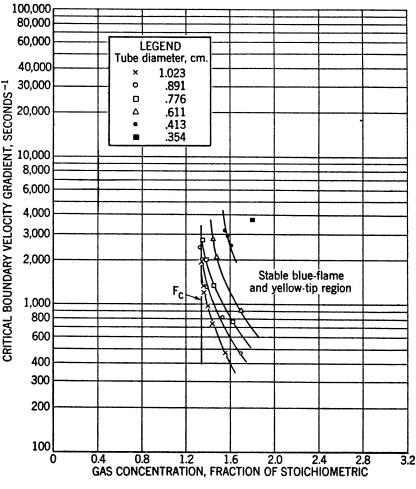


Figure 65. - Yellow-tip limits for fuel No. 84 (100% C7Hg).

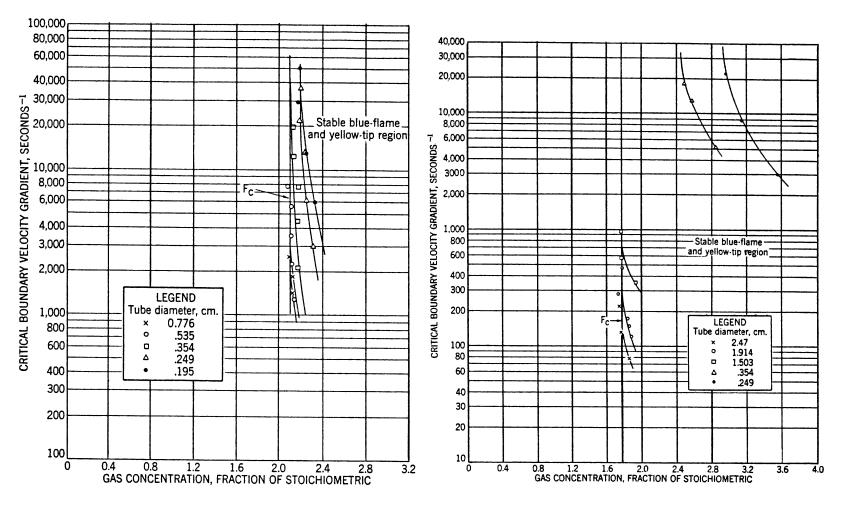


Figure 66. - Yellow-tip limits for fuel No. 85 (97.3% C₂H₂, 2.7% CH₃COCH₃).

Figure 67. - Yellow-tip limits for fuel No. 86 (84.2% CH₄, 7.6% C₂H₂, 5.3% C₂H₆, 1.6% C₃H₆, 0.6% C₄H₁₀, 0.3% C₃H₆, 0.4% CO₂).

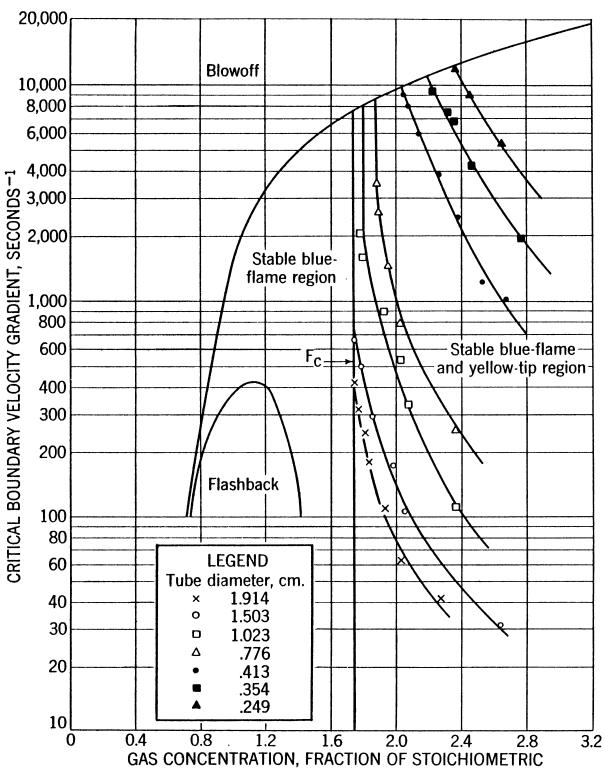


Figure 68. - Flame-characteristics diagram for fuel No. 87 (91.6% CH₄, 4.0% C₇H₈, 3.2% C₂H₆, 0.7% C₃H₈, 0.2% C₃H₆, 0.3% CO₂).

As an example, let us compare the yellow-tipping tendencies of acetylene and methane. The constant yellow-tip limit of acetylene is 2.10; that of methane is 1.80. Judging by this alone, we might conclude that methane is more prone to form yellow-tipped flames than acetylene; however, the reverse is true. For acetylene, F_c is observed on all tubes larger than about 3 mm. diameter, whereas for methane (figure 49, p. 67), F_c is observed on tubes larger than about 22 mm. On a 3-mm. tube the yellow-tip limits of methane flames are about double the Fc value. The difference between methane and acetylene is due to the nature of the flames each forms. Yellow-tipped methane flames are very soft, long, slow-burning diffusion flames. The yellow appears a long distance downstream of the port, and correspondingly the time t of equation 5 is large. When t is large, the distance ${f X}$ (also R*) over which secondary air diffuses radially is great. Such is the case for methane and natural gas. The yellow-tipped flame of acetylene burns rapidly, with a sharp, very short, inner cone, and yellow appears a very short distance downstream of the port. Correspondingly, t is much smaller for acetylene than for methane, and the critical diameter is very much smaller. Thus yellow-tipping tendencies of fuels can be compared by comparing values of Fc, if the values of R* are virtually the same for the fuels. If the R* values are very different, the comparison is not precise, and flow and port diameter must be taken into consideration.

CHAPTER V. - FLASHBACK, BLOWOFF, AND YELLOW TIPPING ON BURNERS WITH SHORT PORTS (DRILL PORTS) OR NONCIRCULAR CHANNELS (SQUARE, RECTANGULAR, AND TRIANGULAR CHANNELS)

A. Flashback and Blowoff

It has been well established that, for each fuel, the flashback and blowoff characteristics of burners with circular flame ports with steady laminar flow can be described by 1 curve of critical boundary velocity gradients versus gas-air mixture composition for flashback and 1 corresponding curve for blowoff. For steady laminar (Poiseuille) flow the boundary velocity gradient is given by the equation

$$g = 4V/\pi R^3, \qquad (1)$$

where V is the volumetric flow through a port of radius R. As most gas appliances do not have circular ports with Poiseuille flow, it is of theoretical and practical significance to demonstrate that the concept of critical boundary velocity gradients is generally applicable to burner ports of all types.

Let us first consider the distinctions between the variety of flow profiles possible in burner ports. The simplest case is that of steady laminar flow through a long tube. There are two ways of calculating a gradient for this type of flow. The surer method is to differentiate the equation for Poiseuille flow and solve the result for the slope near the wall of the port. The equation for a tube is

$$U = 2V / \pi R^2 \left(1 - \frac{r^2}{R^2} \right). \tag{10}$$

Differentiating for the limit $r \rightarrow R$ gives the boundary velocity gradient

g = 1imit (-dU/dr) =
$$4V/\pi R^3$$
. (11)
r \rightarrow R

In equation 10, U is the velocity at the distance r from the axis in a tube of radius R with a total volumetric flow V. The advantage of this formulation for the gradient g is that it requires no experimental measurements of the boundary velocity profile.

In principle, g may be determined by the extremely difficult feat of measuring the change in U as a function of r in the vicinity of the wall with some instrument such as a Pitot tube. The slope near the wall of the plot of U against r would be the desired gradient.

In both nonsteady and steady laminar flow, more general considerations can be applied to the evaluation of the gradient. Any stream, whether overall turbulent or laminar, $\frac{22}{}$ has a laminar boundary layer, and its boundary velocity gradient is related to the pressure drop, $\Delta p/\mathcal{L}$ (\mathcal{L} being the channel length), through the channel by equation 12:

$$\eta \, g \, 2\pi R = (\Delta \, p/\mathcal{L}) \, \pi \, R^2 = \lambda \, \rho \, V^2/4 \, \pi \, R^3,$$
 (12)

The gross difference between laminar and turbulent flow lies in the nature of radial motion for most of the stream. In laminar flow, except for molecular diffusion, there is no exchange of "particles" between stream tubes in a radial direction. In turbulent flow, there is such an exchange of "particles." Usually the change from laminar to turbulent flow occurs at a Reynolds number of about 2,000. However, laminar flow is possible at much higher Reynolds numbers, and turbulent flow is possible at very low Reynolds numbers. In the former instance great care is needed to free the stream of any precipitating disturbances, such as slightly rough walls or obstructions in the stream. In the latter instance some disturbance can be introduced into a slowly moving stream, such as a fast fuel jet into relatively slow moving air, and turbulence will persist for quite a distance downstream until viscous forces smooth out the flow. Moreover, there are various types of laminar flow: (a) If the tube is long enough (about 60 diameters or more) there is steady laminar flow of Poiseuille type. It is laminar because there is no radial interchange of matter from one stream tube to the other, apart from molecular diffusion; it is steady because there is no further change in the velocity profile with downstream travel. In tubes the velocity profile corresponding to this type of flow is a parabola. In nonsteady laminar flow the flow profile tends to become a parabola as the stream moves along the tube. (b) If the channel is noncylindrical, for example, square, rectangular, or triangular channels, but is long enough, the flow remains steady laminar but not Poiseuille because of the asymmetry of the channel. (c) Using a nozzle port of the Mach-Hebra type, we have a nonsteady laminar flow with a square profile where the velocity drops precipitously to zero at the boundary of the stream. Over almost the entire cross section of the stream, the local velocity equals the average stream velocity. (d) Nonsteady laminar flow is possible in short ports of the drill-port type if the flow enters the ports from a large chamber with nearly zero stream velocity. When the approach flow is rapid, a mixture of nonsteady laminar and turbulent flow is possible, with turbulence near the axis of the port and laminar flow over a relatively large stream width near the wall of the port. The boundary velocity gradient of each of the above types of flow can be correlated with the average velocity by means of the coefficient of friction, λ , which in turn can be determined experimentally as a function of the Reynolds number and channel geometry.

where η is the viscosity, poise; ρ is the density, gm./sec.; and λ is the coefficient of friction, relating the boundary velocity to the average velocity. Equation 12 relates the viscous force at the wall which retards the flow to the pressure that induces flow. Introducing the Reynolds number Re = $2V \rho / \pi R \eta$ reduces equation 12 to

$$g = \lambda V Re/16 \pi R^3.$$
 (13)

The task of converting values of V into g now hinges on the dependence of λ on Re, which in turn depends on V and R.

Application of Equation 13 to Poiseuille Flow

For Poiseuille flow in long tubes (parabolic flow), Hagen (22) found that

$$\lambda = 64/\text{Re}. \tag{13a}$$

The combination of equations 13 and 13a yields equation 1, showing agreement between equations 1 and 13.

Application of Equation 13 to Turbulent Flow

Similarly, Blasius (22) observed that for turbulent flow of Reynolds numbers from about 3,000 to 100,000, in tubes with hydraulically smooth walls,

$$\lambda = 0.316/\text{Re}^{1/4}$$
. (13b)

Wohl and others (32) and Bollinger and Williams (3) used equations 13 and 13b to calculate critical boundary velocity gradients for blowoff from observed volumetric flows at blowoff under turbulent flow conditions. These gradients agreed with those obtained with steady laminar flow, showing that the concept of critical boundary velocity gradients is valid for the blowoff of turbulent flames. However, Wohl (31), Edse (7), and this laboratory observed flashback of turbulent flames at flows very much in excess of those corresponding to the flashback gradient measured in steady laminar flow. Further study of the nature of flashback of turbulent flames is obviously in order.

Application of Equation 13 to Sharp-Edged Short Ports (Drill Ports)

Wilson $(\underline{30})$ used equation 13 to study blowoff of ethylene-air flames from sharp-edged, short, cylindrical ports, approximating the kind commonly employed in gas appliances. The dependence of λ on Re was determined from measurements of the pressure drop through the porthole. Wilson's results show excellent agreement between the critical boundary velocity gradient curve for blowoff of ethylene obtained with cylindrical burners and the blowoff points obtained with equation 13 for sharp-edged short ports.

 λ can be determined by another method. Measurements were made in this laboratory of the critical flows for flashback and blowoff on a number of sharp-edged short ports (0.635- and 0.318-cm. depth) using carbon monoxide-hydrogen as the fuel. In all, 74 points were obtained. Values of the critical flame-stability gradients obtained with tubes, figure 69 (A-T/2a,2b-No./17), were substituted in equation 13,

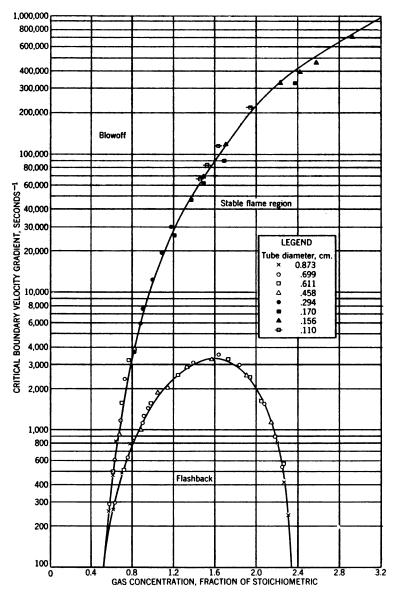


Figure 69. - Flame-stability diagram for fuel No. 17 (79.3% CO, 19.7% H₂, 0.6% N₂, 0.3% CO₂, 0.1% O₂).

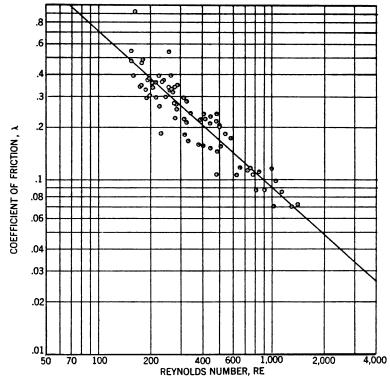


Figure 70. - Coefficients of friction for sharp-edged short ports (data obtained with a CO-H2 fuel with port depths of 0.635 and 0.318 cm.).

and the equation was solved for λ (A-T/8a-No./17). $\frac{23}{}$ The points scattered about a straight line as shown in figure 70. The best line was obtained by the method of least squares. It is represented by the equation

$$\lambda = 41.4/\text{Re}^{0.89}$$
 (CO - H₂). (13c) $\frac{24}{}$

The reverse procedure may be employed to calculate g_F and g_B for the same fuel (A-T/8b-No./17) from observed critical volumetric flows, using equations 13 and 13c. The points obtained in this manner are compared in figure 71 with the flame-stability diagram of the fuel for laminar flow with tubes. The agreement is of course attributable to the fact that the same data were used to obtain equation 13c. It is cited to show that flame-stability data provide a novel means of measuring coefficients of friction. Wilson (30) measured coefficients of friction by an independent method, and his experiments prove even more clearly that flame-stability gradients of cylindrical, sharp-edged short ports with nonsteady laminar flow are identical with those of long cylindrical tubes with steady laminar flow.

Further evidence may be obtained by using equation 13c to calculate flame-stability gradients of another fuel, such as methane. For reasons that are not clear, the agreement is only fair. Values of the critical boundary velocity gradients for methane obtained with tubes, figures 20 (A-T/la,1b-No./2) (p. 25) and 72 (A-T/9-No./2), and critical flows for sharp-edged short ports were substituted in equation 13 and solved for λ (A-T/8a-No./2). In all, 112 points were obtained. These tests were conducted at 300°, 348°, and 423° K. No dependence of λ on temperature was observed. The best line representing these data is given by the equation

$$\lambda = 20.4/\text{Re}^{0.80}$$
 (CH₄). (13d)

Although this is contrary to the expectation that coefficients of friction should not be a function of the chemical identity of the fuel, the difference between equations 13c and 13d is not enough to affect the argument of this chapter. It may stem from a second-order effect due to the different back pressures of flames of methane and of carbon monoxide-hydrogen mixtures.

Applications of Equation 13 to Noncircular Channels With Steady Laminar Flow

The effect of the shape of a flame-port cross section for a well-defined flow profile may be investigated on long channels of uniform square, rectangular, or triangular cross section. Such channels produce steady laminar flow at the port, but not the symmetrical flow of tubes. The symmetry of a long cylinder makes the flow velocity and burning velocity uniform at all points equidistant from the wall. Thus the probability of flashback or blowoff is the same for all points on the tube boundary. This is not the case for noncircular channels. Here the velocity and velocity gradients are higher near the midpoint of the sides than at the corners, where

These calculations were made using values of g_F and g_B for tubes obtained from figure 69 for the fuel containing 79.3 percent carbon monoxide, 19.7 percent hydrogen, 0.6 percent nitrogen, 0.3 percent carbon dioxide, and 0.1 percent oxygen; values of V_F and V_B for ports were obtained with a fuel containing 79.7 percent carbon monoxide, 20.1 percent hydrogen, and 0.2 percent carbon dioxide. Both fuels had virtually the same composition and were found experimentally to show identical flashback limits on a 0.611-cm. tube. They are treated as one fuel in this discussion.

^{24/} Equations 13c, e, g, and h differ slightly from 3c-3f of reference (12) because of added data, rearrangements, and a few corrections.

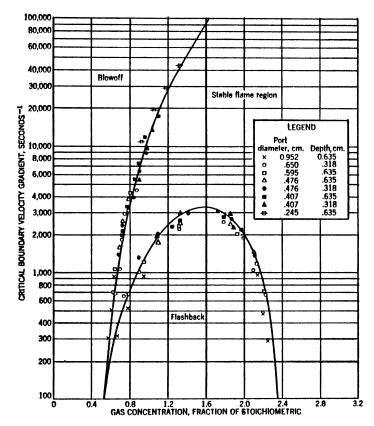


Figure 71. - Flame-stability diagram for fuel No. 17 (79.7% CO, 20.1% H₂, 0.2% CO₂); comparison of points for sharp-edged short ports and curves for long cylindrical tubes.

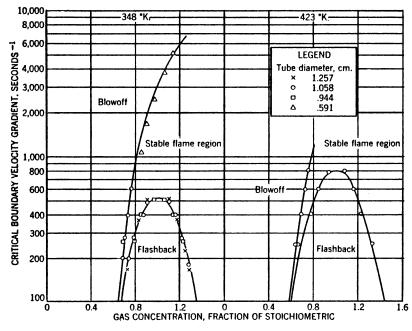


Figure 72. - Flame-stability diagram for fuel No. 2 (100% CH₄) at 348° and 423° K. for long cylindrical tubes.

increased quenching forces the flame deeper into the stream. Accordingly, in channels of noncircular cross section there is a specific location where the flame is stabilized. It was reasoned that, if the critical region for flame stabilization were near the midpoint of a side of an angular channel, flame-stability data for squares, rectangles, and triangles would agree among themselves. However, no such correlation was found, and the critical flame-stability gradients calculated in this way were much greater than those for tubes. When the critical region was assumed to be in the corners, the gradients were much lower than for tubes.

The apparent lack of agreement between flame-stability gradients for cylindrical tubes and noncircular channels may be explained as follows: Flame pressures are of the order of average velocity pressures at flashback and blowoff flows for these flames. For example, the flame pressure of a stoichiometric methane-air flame is about 0.01 cm. water, which is roughly equivalent to a flow of 130 cm./sec. This is approximately the velocity pressure at the axis for parabolic flow for flashback of a stoichiometric methane flame in a 1.3-cm. I.D. tube and blowoff from a 0.26-cm. I.D. tube. Examination of flames on noncircular channels, such as the methane flames near flashback in figure 73,a and b, clearly show that the primary cone does not cover the entire port, being nonexistent near the corners. The flame outlines in figure 73,a and b, are circular rather than angular. The dark lines are attributed to the fact that methane diffuses through the primary combustion zone more rapidly than oxygen (20), a phenomenon without bearing on this discussion. Cusps are visible near the corners of figure 73,c and d. (The burner in figure 73,c, is oriented so that one corner is in the center of the photograph.) These cusps suggest that the flame is going to flash back, starting at the corners. As the port is not completely covered by flame, part of the flow is opposed by the flame pressure, and part is not. The flame distorts the original velocity distribution, causing an increase at the corners and a decrease elsewhere. No such change in flow profile is suffered by a stream leaving a cylindrical tube, because the flame covers the channel uniformly.

It is extremely difficult to measure the flow profile in the unburned gas experimentally because the velocity pressures are low, the ports are small, and the flame may be affected by the measuring device. Notwithstanding these difficulties, measurements were made to determine whether, in an angular channel, the velocity profile of the unburned gas is changed by a flame. The following results prove the point at issue. A hypodermic needle serving as a Pitot tube was mounted on a mechanical stage and connected to a null-point slope gage mounted on a micrometer screw. The slope gage was filled with water and a trace of wetting agent. The liquid level was observed through the crosshairs of a telescope. Readings were reproducible to 0.003 cm. of water. A slightly rich methane-air stream was used in these experiments (F = 1.06, V = 269 cc./sec., channel dimensions = 1.068×1.075 cm.). Figure 74,A, shows that the apparatus is accurate enough for measuring total pressure profiles of the above stream. The traverse was made 1 mm. beneath the plane of the port, moving from the axis to the corner. The points were obtained experimentally in the absence of flame; the curve was calculated from steady laminar flow considerations (25). When a similar traverse was made in the presence of flame, the pressure increments given in figure 74, \underline{B} , were observed. In addition, the pressure increase 1 mm. beneath the tip of the flame was within the reading error of 0.003 cm. If the flame had no effect on the original flow, one would note everywhere the flame exists a uniform increase of total pressure equal to the flame pressure (0.01 cm. in this instance). Instead near the corners the increase is even greater than the flame pressure. This demonstrates that due to the absence of flame pressure in the corners and the presence of such pressure elsewhere over the port, there is greater flow at the corners with a flame than without a flame. Therefore, the critical boundary velocity gradients for a noncircular channel cannot be calculated from the flow

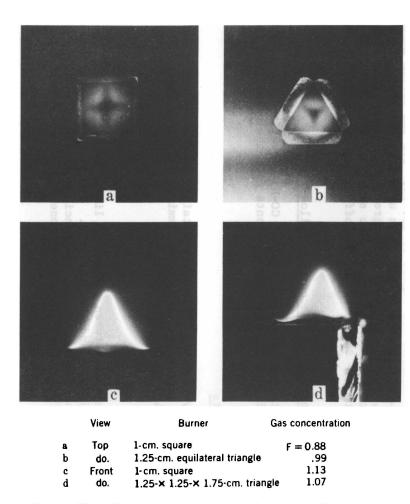


Figure 73. - Top and front views of methane flames near flashback on noncircular channels.

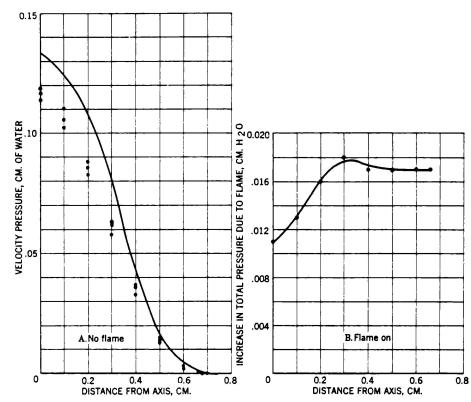


Figure 74. - A, Comparison of experimental and calculated velocity pressures; square channel, 1.068 x 1.075 cm.; B, effect of flame on flow profile in square channel, 1.068 x 1.075 cm.; theoretical flame pressure, 0.010 cm.

profile without flame. However, use may be made of the interdependence shown in equation 13 of the boundary velocity gradient and the pressure drop. (R becomes the equivalent hydraulic radius.) The constants in the equation, $\lambda = a/Re^b$, may be obtained from flame-stability data by the technique described above to determine equation 13c. The values of the constants a and b depend on the type of channel and reflect the magnitude of the change from steady laminar flow. Equations 13e and 13f (A-T/10a-No./2,17) were found for squares, 13g (A-T/11a-No./2) for rectangles, and 13h (A-T/12a-No./2) for triangles.

$$\lambda = 156.4/\text{Re}^{1.22}$$
 (CO-H₂), (13e)

$$\lambda = 61.4/\text{Re}^{1.09}$$
 (CH₄), (13f)
 $\lambda = 125.8/\text{Re}^{1.24}$ (CH₄), (13g)

$$\lambda = 125.8/\text{Re}^{1.24}$$
 (CH₄), (13g)

$$\lambda = 90.6/\text{Re}^{1.25}$$
 (CH₄). (13h)

The lines of λ versus Re are shown in figure 75 for equations 13a-13h. It is most unlikely that the correlations of equations 13c-13h are fortuitous. Furthermore, there are the experimental data of Hagen (22) (equation 13a), Blasius (22) (equation 13b), and Wilson (30) to be considered. In these instances the dependence of λ on Re was determined independent of any consideration of flame stability. Use of the values of λ determined in this way to calculate critical boundary velocity gradients for flashback and blowoff of sharp-edged short ports on square, rectangular, and triangular channels produces excellent agreement with gradients calculated by equation 1 for long tubes.

The correlation is illustrated by the comparison in figure 71 and like comparisons that can be made, using (A-T/10b-No./2,17) for square channels, (A-T/11b-No./2) for rectangular channels, and (A-T/12b-No./2) for triangular channels in conjunction with figure 20 (p. 25 for methane and figure 69 (p. 93) for the carbon monoxidehydrogen fuel. These show that when equation 13 is used with the appropriate forms of the relation $\lambda = a/Re^b$, there is satisfactory agreement between flame-stability data for tubes and noncircular channels. They also show that the concept of critical boundary velocity gradients for flashback and blowoff is widely applicable to burner ports of different shapes and depths.

B. Constant and Nonconstant Yellow-Tip Limits

Coefficients of friction obtained with CH4 or CO-H2 (equations 13c-13h) were used to calculate critical boundary velocity gradients from the volumetric flows at the yellow-tip limit.

1. Sharp-Edged Short Ports

Virtually identical yellow-tip limits were obtained on sharp-edged short ports of 1/4-inch length and on long tubes with steady laminar flow (see figure 51, p. 69 and (A-T/5-No./29,3,5,74,4).

2. Noncircular Channels

Some comparisons were made between yellow-tip limits on rectangular, square, and triangular channels (A-T/5-No./4 and A-T/7-No./56). Virtually identical constant yellow-tip limits were observed on circular and noncircular channels. The constant yellow-tip limits of the fuels were obtained when one side of the noncircular channel

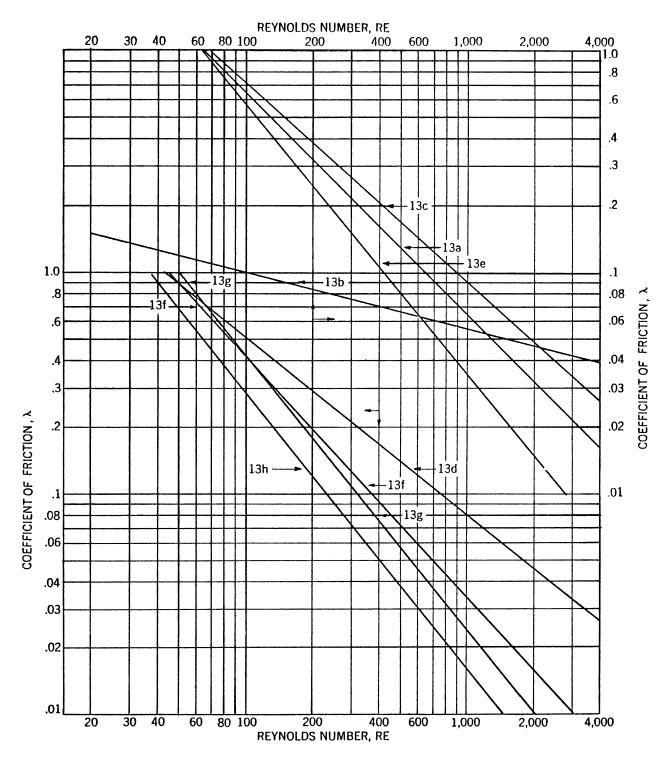


Figure 75. - λ coefficients for several flow profiles (equations 13 a-h).

was longer than R* (see ch. III, figure 47, p. 61). When, in addition, the short side was much smaller than R*, there was some evidence that the port behaved as a tube diameter 2 to 3 times the short side. This is attributable to the reduced availability of secondary air for this type of noncircular channel as compared to the circular port. For the latter, the yellow spot in a flame receives diffusing secondary air equally along radial paths from all points on the secondary mantle; for the former, secondary air can only reach the yellow spot from a small section along the center of the long sides of the channel.

3. Multiport Burners

No tests were conducted with multiport burners. However, it is apparent that, if the flow from each port on a burner were exactly the same and all ports were spaced far enough apart so that each was in free still air, the performance of the burner would be that of a monoport. On the other hand, if ports are close enough, the flames will more or less coalesce, and this system of ports will tend to behave as a single large port, probably showing the constant yellow-tip limit of the fuel.

It may be seen from this chapter that, in problems of overall gas-appliance performance, fuel factors can be largely dissociated from burner and appliance factors. Flashback and blowoff gradients and constant yellow-tip limits are characteristic of the fuel gas. The coefficient of friction, λ , reflects elements of burner design, such as port shape, depth, and flow profile. The effect of temperature - an appliance or ambient environmental factor - will be considered in chapter VI.

CHAPTER VI. - TEMPERATURE DEPENDENCE OF FLAME-STABILITY AND YELLOW-TIP LIMITS

To establish a standard state for flame-characteristics data, considerations in chapters I-V have been limited to burners where the ports and the flowing gases are at room temperature (approximately 78° F.). However, burners in practical use generally operate with their ports and the gases flowing through the ports at elevated temperatures. This chapter purposes to relate the data of the preceding five chapters to burners with hot ports. The range of temperature is limited to conditions excluding chemical reaction in the unburned gas upstream of the flame, so that we may know the composition of the unburned gas feeding the flame. $\frac{25}{}$ The burner employed in this study is diagramed in figure 76. The unburned-gas temperature (°K.) was regulated to within \pm 1 percent of desired values. To prevent appreciable fluctuations in the flow profile, port-wall temperatures were held to \pm 3 percent or better of the unburned-gas temperature. $\frac{26}{}$ For sharp-edged, short circular ports, as on the burner in figure 76, the boundary velocity gradient is given by

$$g = \lambda V Re/16 \pi R^3.$$
 (13)

The coefficient of friction, λ , has been determined empirically as explained in chapter V and is

$$\lambda = 20.4/\text{Re}^{0.80}$$
 (CH₄). (13d)

- Judging from the experience of this laboratory and the study at NACA of the effect of preflame reaction on burning velocity of propane-air mixtures (6), it is unlikely that an appreciable preflame reaction occurs up to temperatures in the unburned gas of roughly 500° C., provided that the heating time at this temperature is less than about 5 seconds.
- 26/ In contemporary appliances port-wall temperatures of burners are probably higher than the unburned-gas temperature because of limitations of heat transfer from hot walls to flowing gases. This factor makes the room-temperature data of chapters I-V more universal than might be concluded from considerations of burner-wall temperatures alone.

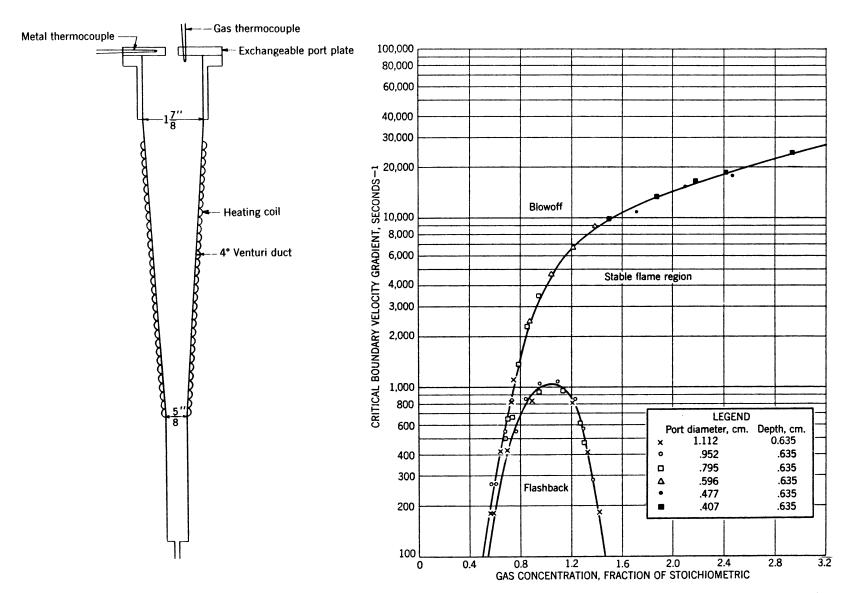


Figure 76. - Venturi burner with exchangeable, sharp-edged, short hot ports.

Figure 77. - Flame-stability diagram for fuel No. 2 (100% CH₄) at 473° K. for sharp-edged short ports.

The experiments were performed with methane, noting the flows and mixture composition at which flashback and blowoff occurred and using equations 13 and 13d to calculate the corresponding critical boundary velocity gradients for flashback and blowoff. Flashback and blowoff gradients for methane at 473° K. unburned-gas temperature are given in figure 77 (A-T/13-No./2) and show that the concept of critical gradients for flashback and blowoff is applicable at elevated temperatures. Figure 77 may be compared with the flashback and blowoff gradients for methane at room temperature (see figure 20, ch. II, p. 25); the increment due to the increase in the unburned-gas temperature is appreciable. All flashback data obtained with methane at a number of unburned-gas temperatures are summarized in figure 78 (A-T/13-No./2), and all blowoff data are summarized in figure 7927/ (A-T/13-No./2). In addition, data on the temperature dependence of blowoff gradients of propane-air mixtures (5) are found in the literature. These were obtained on long cylindrical burners with steady laminar flow at the port and are summarized in figure 80.

All of the above data may be correlated by means of the following theoretical considerations:

Flashback

The flashback gradient g_F is equal to the burning velocity S_u divided by d_F , the quenching distance at flashback (10, 18):

$$g_{F} = \frac{S}{d_{F}} . {14}$$

The burning velocity is the rate at which the flame tends to propagate into the unburned gas in a direction perpendicular to its surface. The quenching distance referred to in equation 14 is the depth of penetration of the chilling effect of the wall on the flame. At the flashback limit this particular quenching distance is the space between the wall and the edge of the flame. The temperature dependence of these two parameters is related to the temperature dependence of the flashback gradient as follows:

$$\frac{(g_F)_1}{(g_F)_2} = \frac{(S_u)_1}{(S_u)_2} \frac{(d_F)_2}{(d_F)_1} , \qquad (14a)$$

where subscripts 1 and 2 indicate two different initial temperatures.

One of the several available equations for burning velocity is that proposed by Mallard and Le Chatelier. It is an approximate dimensional analysis of the balance of the heat released by the flame against that required to raise the gases to the temperature of burning. It is preferred here because it is simple in form and is generally applicable to all usual flames and because it makes no assumptions about the kinetics that control the combustion. Mallard and Le Chatelier's equation may be written as

$$S_{u} = \frac{\mu}{\rho_{u}^{c} \rho_{u}^{b}} \frac{T_{b} - T_{\iota}}{T_{\iota} - T_{u}}, \qquad (15)$$

^{27/} No control was exercised over the temperature of the ambient secondary air, as tests showed that this temperature had no significant effect on the measurements.

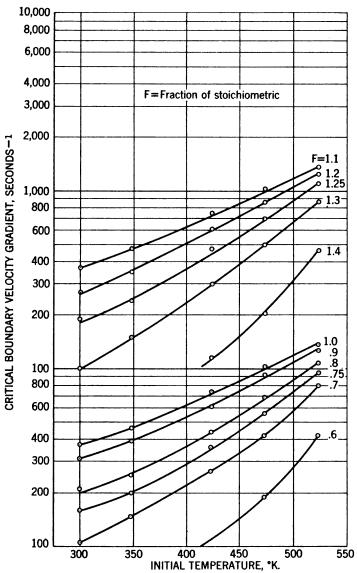


Figure 78. - Critical boundary velocity gradients for flashback of methane-air flames at various initial temperatures.

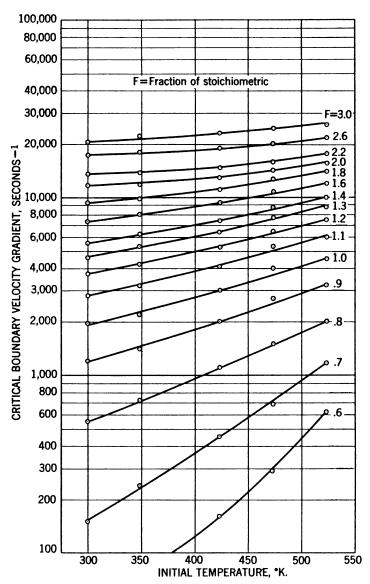


Figure 79. - Critical boundary velocity gradients for blowoff of methane-air flames at various initial temperatures.

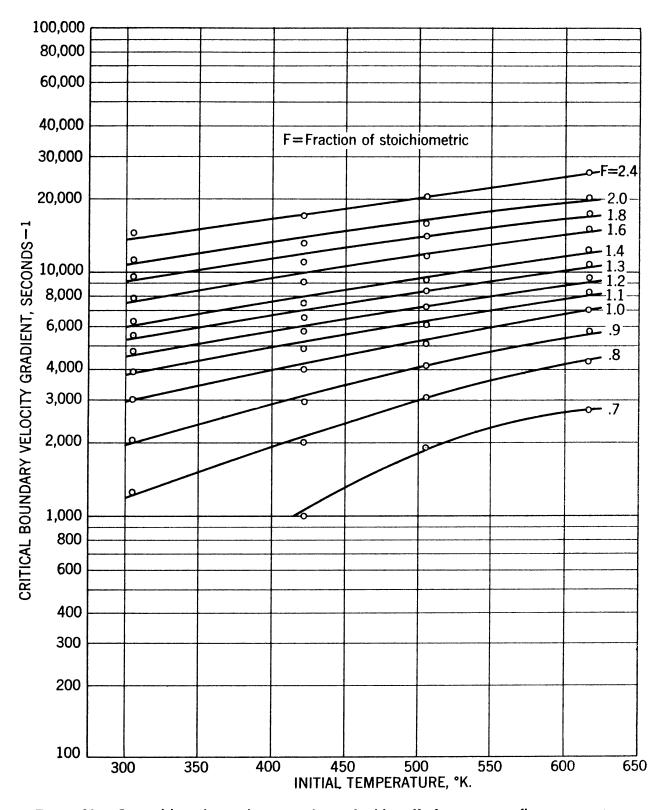


Figure 80. - Critical boundary velocity gradients for blowoff of propane-air flames at various initial temperatures (Dugger).

where μ is the coefficient of thermal conductivity, ρ_u is the density, c_p is the specific heat capacity at constant pressure, δ is the thickness of the combustion wave, T_b is the thermodynamic flame temperature, and T_u is the initial temperature. T_i is the minimum temperature possible in the primary combustion zone of a stationary flame of the mixture and would correspond to the temperature of the fringe of the flame near the port wall. Assuming also that the fraction $\mu/c_p\delta$ is independent of initial temperature, 28/ equations 15a and 15b follow from equation 15.

$$\frac{\left(\frac{\delta \rho_{u} c_{p}}{\mu}\right)}{\left(\rho_{u}\right)_{1} \left(\frac{\delta c_{p}}{\mu}\right)_{2}} = \frac{\left(S_{u}\right)_{2}}{\left(S_{u}\right)_{1}} \frac{\left(T_{u}\right)_{1}}{\left(T_{u}\right)_{2}} \frac{\left(T_{b} - T_{\iota}\right)_{1}}{\left(T_{b} - T_{\iota}\right)_{2}} \frac{\left(T_{\iota} - T_{u}\right)_{2}}{\left(T_{\iota} - T_{u}\right)_{1}} = 1.$$
(15a)

$$\frac{(S_{u})_{1}}{(S_{u})_{2}} = \frac{(T_{u})_{1}}{(T_{u})_{2}} \frac{(T_{b} - T_{\iota})_{1}}{(T_{b} - T_{\iota})_{2}} \frac{(T_{\iota} - T_{u})_{2}}{(T_{\iota} - T_{u})_{1}}.$$
(15b)

Assuming that the temperature gradient across the zone of flame quenching is linear and the same for all initial temperatures, $\frac{28}{}$

$$\frac{T_{c} - T_{u}}{d_{F}} = const., \qquad (16)$$

and

$$\frac{(T_{\iota} - T_{u})_{1}}{(T_{\iota} - T_{u})_{2}} - \frac{(d_{F})_{1}}{(d_{F})_{2}}.$$
 (16a)

Combining equations 14a, 15b, and 16a, we have

$$\frac{(g_F)_1}{(g_F)_2} = \frac{(T_u)_1}{(T_u)_2} \frac{(T_b - T_t)_1}{(T_b - T_t)_2} \frac{(T_t - T_u)_2^2}{(T_t - T_u)_1^2}.$$
 (17)

Blowoff

The blowoff gradient is equal to the burning velocity divided by the quenching distance at blowoff. In this instance, quenching takes place largely through dilution of the boundary layer by secondary air diffusing into it (10, 18). Accordingly,

$$g_{B} = \frac{S_{u}}{d_{B}} \quad , \tag{18}$$

where $d_{\tilde{B}}$ is the quenching distance at blowoff, that is the width of the boundary layer wherein a noncombustible fuel-air mixture exists. The temperature dependence

^{28/} These assumptions have been shown to be acceptable in ref. 11.

of these two parameters can be related to the temperature dependence of the blowoff gradient by equation 18a:

$$\frac{(g_B)_1}{(g_B)_2} = \frac{(S_u)_1}{(S_u)_2} \frac{(d_B)_2}{(d_B)_1} , \qquad (18a)$$

where subscripts 1 and 2 indicate two different initial temperatures.

Equation 15b applies to blowoff as well as to flashback, accounting for the dependence of $\mathbf{S}_{\mathbf{u}}$ on $\mathbf{T}_{\mathbf{u}}$.

With regard to the depth of dilution of $d_{\mbox{\footnotesize{B}}}$, let us assume that the equation for molecular diffusion applies. This equation states that

$$d_{B}^{2} = 2 D't,$$
 (19)

where D' is the diffusion coefficient of air and t is the time taken by molecules at the boundary of the primary stream to travel from the port to the base of the flame. The time t is the quotient of the distance between the base of the flame and the port and the local flow velocity at the point of flame stabilization. Both of them increase as the critical boundary velocity gradient for blowoff increases with initial temperature. Accordingly, t may be virtually independent of $T_{\rm u}$; this is difficult to confirm experimentally, but assuming it to be so,

$$\frac{\left(d_{\rm B}\right)_1}{\left(d_{\rm B}\right)_2} = \frac{\left(D'\right)_1^{1/2}}{\left(D'\right)_2^{1/2}} = \frac{\left(T_{\rm u}\right)_1^{3/4}}{\left(T_{\rm u}\right)_2^{3/4}} , \qquad (19a)$$

the diffusion coefficient being roughly proportional to the 3/2-power of the temperature, from kinetic theory. Equations 15b and 19a may now be substituted into equation 18a to given equation $20.\underline{29}$ /

$$\frac{\left(g_{B}\right)_{1}}{\left(g_{B}\right)_{2}} = \frac{\left(T_{u}\right)_{1}^{1/4}}{\left(T_{u}\right)_{2}^{1/4}} \frac{\left(T_{b} - T_{\iota}\right)_{1}}{\left(T_{b} - T_{\iota}\right)_{2}} \frac{\left(T_{\iota} - T_{u}\right)_{2}}{\left(T_{\iota} - T_{u}\right)_{1}}$$
(20)

Equations 17 and 20 relate flame-stability gradients, g_F and g_B , to the initial temperature T_u through two other temperatures, T_b , the thermodynamic flame temperature, and T_ℓ , the minimum primary combustion zone temperature. Values T_b (for each T_u) used in this report were taken from reference (26) and are presented in figures 81 and 82. Values of T_ℓ cannot as yet be gotten independently but have been

^{29/} Equation 20 is limited in that values of T_b are meaningless for mixtures richer than the rich limit of flammability; however, the usefulness of equation 20 may be extended to very rich mixtures, although the inaccuracy grows as the primary air concentration of the burner stream decreases. The experimental data of figure 79 show that, for very rich mixtures, the blowoff gradients change little with initial temperature. Accordingly, the effect of T_u on the blowoff gradients of a given very rich mixture is the same as on other similar mixtures. As the calculation can be made for the rich flammability limit, values of T_b (and T_l) of that mixture can be used for even richer mixtures.

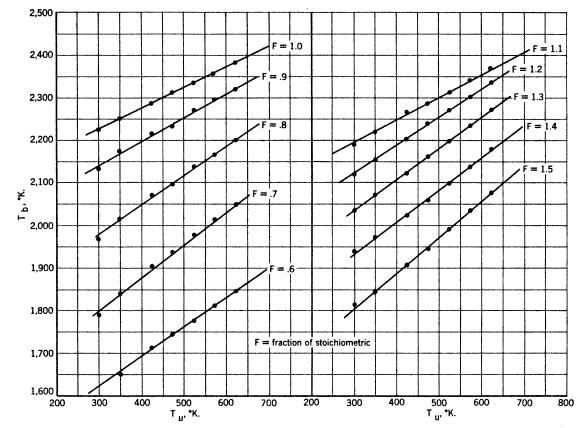


Figure 81. - Flame temperatures for methane-air (Smith, Edwards, and Brinkley).

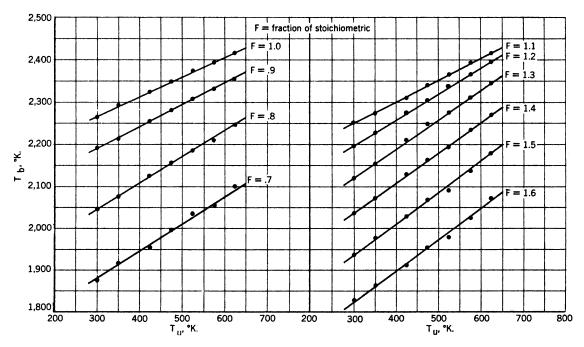


Figure 82. - Flame temperatures for propane-air (Smith, Edwards, and Brinkley).

obtained by substituting values of $(g_F)_1/(g_F)_2$ in equation 17 and $(g_B)_1/(g_B)_2$ in equation 20, and solving for T_ℓ .

Values of T_l calculated by means of these two equations may be used to test the validity of the above theory. For each mixture of fuel and air, T, should be independent of Tu. The lowest temperature at which flame is possible in a fuel-air mixture should not depend upon the temperature history of the nonreacting unburned stream and should not be strongly influenced by the nature of the quenching process at the boundary of the flame. Therefore, for each mixture, equations 17 and 20 should give the same T, for all initial temperatures, and no difference should exist between flashback and blowoff. Accordingly, the acceptability of these two equations may be tested by substituting experimental values of gr at various temperatures (see figure 78) in equation 17 and experimental values of g_B in equation 20 (see figure 79) and solving for T_i . If the theory is adequate, T_i must be reasonably constant for each mixture and within the limits of flammability and be about the same for flashback and for blowoff. This test is met successfully, particularly by $(T_i)_a$, as shown in table 11.30/ Equations 17 and 20 and values of T_i from table 11 may be used to calculate flashback and blowoff curves for methane as a function of Tu, starting with the room-temperature flame-stability diagram of methane. Predicted curves and experimental points are compared in figures 84 and 85. The agreement is satisfactory, which it would not be if the average values of T_{ℓ} were not correct for all values of Tu, as required by the above theory.

The same procedure can be followed for propane-air fuels, using the data obtained by Dugger (5). Values of T_i for propane-air are given in table 12. Experimental and calculated curves are compared in figure 86. The agreement is good.

The imaginary values in tables 11 and 12 are felt to be chance products of experimental difficulties and mathematics and not contradictory to the thesis of this chapter. Most of the imaginary values occur when the temperature interval is small or near the limits of flammability. The T_i values in tables 11 and 12 differ slightly from those in tables 1 and 2 of reference 11 owing to reasons given in footnote 24 and reaveraging of curves.

Equation 17 is cubic and 20 is quadratic, resulting in three roots of T_{ℓ} $((T_{\ell})_{a,b,c})$. The lowest root $(T_{\ell})_c$ is obviously without physical meaning, being roughly equal to T_u , and is not obtained from equation 20. The middle root $(T_{\ell})_b$ is generally lower than the minimum temperatures reported in such flames of hydrocarbon-air mixtures $(1,300^{\circ}-1,700^{\circ} \text{ K.})$ $(\underline{8},\underline{9})$. The highest root $(T_{\ell})_a$ is the most constant for all mixtures, as shown in tables 11 and 12, and is the preferred root. All three roots may be artifacts of the theory. However, physical meaning can be postulated for (T_{ℓ}) and $(T_{\ell})_b$. Figure 83 shows the probable temperature profile when passing from the unburned gas to the burned gas. $(T_{\ell})_b$ is at the inflection point in the temperature curve where chemical reaction sets in, generating heat. Below it the unburned gas is heated by conduction and diffusion from the flame and the unburned gas. At $(T_{\ell})_a$ chemical reaction has become so fast that a flame forms. On the burned gas side of the flame the thermodynamic flame temperature should exist. Where not otherwise specified, T_{ℓ} is $(T_{\ell})_a$ in this report.

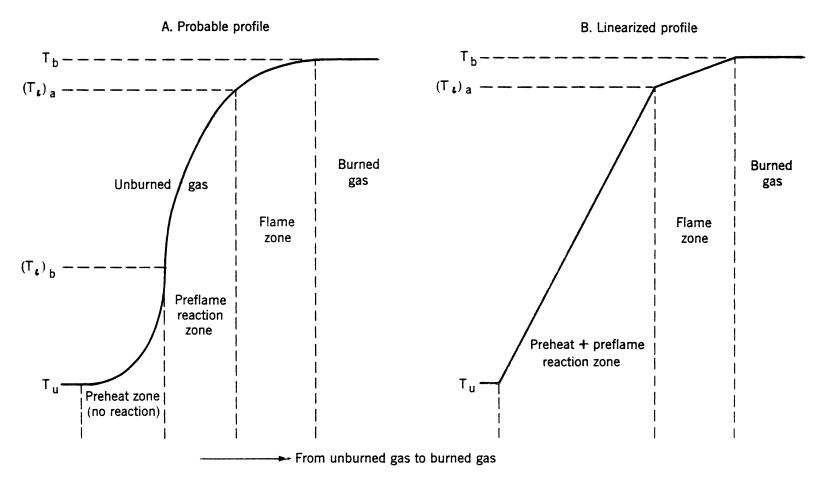


Figure 83. - Schematic temperature profiles for a flame.

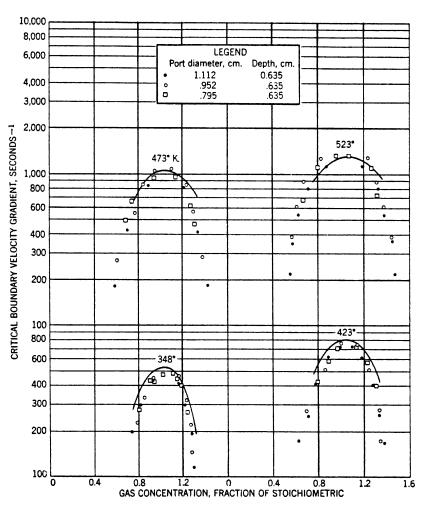


Figure 84. - Comparison of experimental points and calculated curves for flashback of methane-air flames at various initial temperatures.

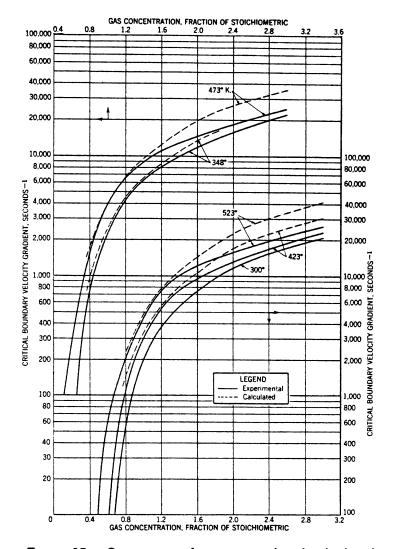


Figure 85. - Comparison of experimental and calculated curves for blowoff of methane-air flames at various initial temperatures.

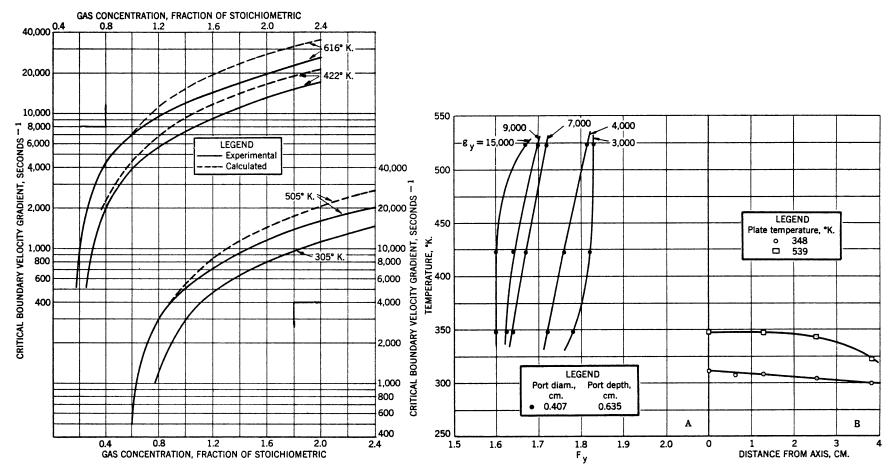


Figure 86. - Comparison of experimental (Dugger) and calculated curves for blowoff of propaneair flames at various initial temperatures.

Figure 87. - A, Influence of initial temperature on yellow tipping of propylene; B, ambient air temperatures above a 7.95-cm. O. D. plate, 0.346-cm. I. D. drill port; no flame.

TABLE 11. - Calculation of ignition temperatures versus initial temperatures for methane-air flames

	-,														
$(T_u)_1/(T_u)_2$, °K.	$(T_{\iota})_a$	F = 0.6			$F = 0.$ $(T_i)_b$			r = 0.8	(T,)c		F = 0.9		(T)	F = 1.	$\frac{0}{\left(T_{l}\right)_{c}}$
('u/1/('u/2; k.	(1, /a	(T,)b	(1, /c	(II)a	(1,1)	(1,/c	(1, /a	(1,)P	(1, /c	(L _L)a	(T,)b	(1,)c	(T,)	a (1,7b	(1,)c
	•	1 1	'	١,	ı Values	ι of Τ.	 from f:	ı Lashbad	l ck meas	uremeni	ı ts. ⁰K.		•	•	1
	1	1 1	ı		1	ı,	1	l	l	l	1	ı	l	1	1
300/348	1	1	1	Imagi		325	Imagir		324			324		inary	324
300/423	1			1,575		370	1,452		367	1,667	1,340	366		2 1,202	
300/473	1			1,643	827	404	1,758	954	401	1,927	1,028	399	2,020	1,108	397
300/523	1		i	1,706	767	447	1,817	903	438		1,019	433		1,099	430
348/423		1		1,700	778	392	1,817	943	388		1,029	388	2,09		388
348/473	1	1 1	- 1	1,731	784	421	1,890	840	420	2,042	912	418	2,10		418
348/523	1 647	699	/51	1,776	740	461	1,910	835	455		940	451	2,11		
423/473 423/523	1,647	667	451 486	1,791 1,832	779 726	450 483	1,956 1,961	769 798	450 481		822 904	450 479	2,12	1,030	449 478
473/523	1,703	651	502	1,866	700	501	1,967	825	500			499		7 1,075	499
Average	1,675	672	480	1,736	774	425	1,836	908	422	1,989	999	421		1,046	420
Deviation percent	1.7	2.6	4.0	4.1	4.7	10.1	6.1	11.7		5.0	9.3	9.9	2.5		1
$(T_b)_{300}$ - $(T_t)_{av}$				57			131			143			143		
. p. 300 av.	1	ll	l						l	1			1	ļ	ļ
					Values	of T	from b	lowoff	m ea su	rements	, °K.	,			
300/348				1,689	445		1,736	571		1,661	887		Imagi	 nary	
300/423]		- 1	1,722	503		1,828	594	1	1,927	705		2,022	788	
300/473			1	1,741	537		1,858	614		2,006	670		2,095		
300/523				1,756	568		1,869	646		2,003	721		2,079		l
348/423		l i	1	1,765	530		1,898	608		2,037	653		2,110		1
348/473 348/523			1	1,783 1,802	557		1,917	623		2,076	646		2,144		1
423/473	1,675	545	l	1,826	581 584		1,919	659 643		2,065 2,132	710 647		2,124		
423/523	1,691	563	i	1,845	599		1,944	680		2,098	739		2,141		
473/523	1,709	574	1	1,872	602		1,942	712		1,994	907			1,209	
Average	1,692	561	- 1	1,780	551		1,886	635		2,000	729		2,090		
Deviation percent	0.7	1.8	Ì	2.6	6.8		2.7	5.2		4.2	9.6		2.8		
$(T_b)_{300}$ - $(T_t)_{av}$			- 1	13		ļ	81			132			136	5	ł
														'	
(m) //m) 9y	(m)	F = 1.			<u></u>	F = 1.	2	T		F = 1.3) (m.)		F \	r = 1.4	<u> </u>
(T _u) ₁ /(T _u) ₂ , °K.	(T,)a	F = 1.	1 (T,)	:	(T,)a	F = 1.			(T,) _a	$F = 1.3$ $\left(T_{\iota}\right)_{b}$	(T,) _c	- ($T = 1.4$ T_{i}	(T,) _c
(T _u) ₁ /(T _u) ₂ , °K.	(T,)a	F = 1.		+	(T,)a	(T,) _b	(T,)c	+	(T,) _a	(T,) _b	(T,)c	+	T,)a		(T,) _c
(T _u) ₁ /(T _u) ₂ , °K.	(T,)a	F = 1.		+	(T,)a	(T,) _b	(T _t) _c	+	(T,) _a	(T,) _b	(T,)c	+	T,)a		(T,) _c
(T _u) ₁ /(T _u) ₂ , °K.	(T,)a	(T _t) _b	(T,)	- 	(T,)a	of T,	(T,)c	lashba	(T,) _a	(T _t) _b	(T,)c		T,)a		(T,) _c
300/348 300/423	Imagin	(T _i) _b	325 367	- 	(T _i) _a Values Imagin 1,896	of T, lary 976	from f	lashba	(T,) _a ick mea Imagin 1,928	surements of the state of the s	(T _t) _c ats, °K 325 372	 	T,)a		(T,)c
300/348	(T,)a Imagin 1,876 1,965	(T _i) _b	325 367 398	; ;	Values Imagin 1,896 1,934	of T, lary 976	from f 325 368 400	lashba	(T,) _a uck mea Imagin 1,928 1,958	(T _t) _b surement l ary 723 714	(T _i) _c ats, °K 325 372 410		T _i) _a		(T,)c
300/348	Imagin 1,876 1,965 1,996	(T _i) _b	325 367 398 431	5 3	(T _i) _a Values Imagin 1,896 1,934 1,974	of T, lary 976 961 939	from f 325 368 400 436	lashba	(T,) _a ick mea Imagin 1,928 1,958 1,979	surements surements ry 723 714 724	(T _i) _c ats, °K 325 372 410 452		T ₍) _a		(T,)c
300/348	Imagin 1,876 1,965 1,996 1,972	(T _i) _b	325 367 398 431 388	5 3 3	(T ₁) _a Values Imagin 1,896 1,934 1,974 1,990	of T, lary 976 961 939 852	from f 325 368 400 436 389	lashba	(T _i) _a ick mea Imagin 1,928 1,958 1,979 1,959	surement lary 723 714 724 715	(T _i) _c ats, °K 325 372 410 452 390		T _t) _a		(T,) _c
300/348	Imagin 1,876 1,965 1,996 1,972 2,037	(T _i) _b lary 1,167 1,086 1,086 1,057 1,020	325 367 398 431 388 417	5 7 3 L 3 1 1 1 1 1 1 1 1 1	(T ₁) _a Values Imagin 1,896 1,934 1,974 1,990 2,005	of T, lary 976 961 939 852 885	from f 325 368 400 436 389 419	lashba	(T _i) _a Lck mea Imagin 1,928 1,958 1,979 1,959 1,986	(T _t) _b surement lary 723 714 724 715 710	(T _i) _c 325 372 410 452 390 424		T _t) _a		(T _t) _C
300/348	Imagin 1,876 1,965 1,996 1,972 2,037 2,052	(T _i) _b lary 1,167 1,086 1,086 1,057 1,020 1,040	325 367 398 431 388 417 449	3 3 3 3 3 3 3 3 3 3	(T ₁) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029	of T, l ary 976 961 939 852 885 881	from f 325 368 400 436 389 419 453	lashba	(T _i) _a ick mea Imagin 1,928 1,958 1,979 1,959 1,986 2,009	(T _t) _b surement lary 723 714 724 715 710 723	(T _i) _c 325 372 410 452 390 424 462	•	T ₍) _a	(T,) _b	
300/348	Imagin 1,876 1,965 1,965 1,972 2,037 2,052 2,125	(T _i) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980	325 367 398 431 388 417 449 449	5 7 3 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031	of T, l ary 976 961 939 852 885 891 933	from f 325 368 400 436 389 419 453 449	lashba	(T _i) _a ack mea Imagin 1,928 1,958 1,979 1,959 1,986 2,009 2,031	surement lary 723 714 724 715 710 723 706	(T ₁) _c 325 372 410 452 390 424 462 450		T ₁) _a	(T,) _b	451
300/348 300/423 300/473 300/523 348/423 348/473 348/523 423/473 423/523	Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114	(T _i) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030	325 367 398 431 388 417 449	5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064	of T, l ary 976 961 939 852 885 881	from f 325 368 400 436 389 419 453 449	lashba	(T _t) _a ick mea Imagin 1,928 1,958 1,979 1,959 1,986 2,009 2,031 2,057	(T _t) _b surement lary 723 714 724 715 710 723	(T _i) _c 325 372 410 452 390 424 462		,942	(T,) _b	
300/348	Imagin 1,876 1,965 1,965 1,972 2,037 2,052 2,125	(T _i) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980	325 367 398 431 388 417 449 449	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031	of T, lary 976 961 939 852 885 891 933 914	from f 325 368 400 436 389 419 453 449 479 500	lashba	(T _i) _a ack mea Imagin 1,928 1,958 1,979 1,959 1,986 2,009 2,031	(T _t) _b surement lary 723 714 724 715 710 723 706 726	(T ₁) _C 1ts, °K 325 372 410 452 390 424 462 450 483	. 1 1 2	T ₁) _a	678 653	451 487
300/348 300/423 300/473 300/523 348/423 348/473 348/523 423/473 423/523 473/523	Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100	(T,) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084	325 367 398 431 388 417 449 478 499	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097	of T, lary 976 961 939 852 885 891 933 914	from f 325 368 400 436 389 419 453 449 479 500	lashba	(T _t) _a ick mea Imagin 1,928 1,959 1,959 1,986 2,009 2,031 2,057 2,093	surement 723 714 724 715 710 726 726 743	(T ₁) _c its, °K 325 372 410 452 390 424 462 450 483 500	. 1 1 2	,942 ,982 ,025	678 653 641	451 487 503
300/348 300/423 300/473 300/523 348/423 348/473 348/523 423/473 423/523 473/523 Average	Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026	(T,)b hary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061	325 367 398 431 388 417 449 449 478 499 420	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002	of T, 976 961 939 852 885 891 933 914	from f 325 368 400 436 389 419 453 449 500 422	lashba	(T _t) _a ack mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000	surement 723 714 724 715 710 723 706 743 720	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	. 1 1 2	,942 ,982 ,025 ,983	678 653 641 657	451 487 503 480
300/348	Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3	(T,)b hary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061	325 367 398 431 388 417 449 449 478 499 420	5 7 7 8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120	of T, l ary 976 961 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37	surement ary 723 714 725 710 726 743 720 1.1	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	. 1 1 2	,942 ,982 ,025 ,983	678 653 641 657	451 487 503 480
300/348	Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3	(T,)b hary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061	325 367 398 431 388 417 449 449 478 499 420	5 7 7 3 L L L 3 3 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120	of T, l ary 976 961 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 500 422	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37	surement ary 723 714 725 710 726 743 720 1.1	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	. 1 1 2	,942 ,982 ,025 ,983	678 653 641 657	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164	(T,) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,025 2,031 2,064 2,097 2,002 2.4 120 Values	of T, lary 976 961 939 852 881 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,)a ack mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu	surements 1 723 714 724 715 710 723 706 726 743 720 1.1	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1	,942 ,982 ,025 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3,33 164	(T,) _b ary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120 Values	of T, l ary 9761 961 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,)a ack mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345	surement 1	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1	,942 ,982 ,025 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164	(T,) _b ary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3	Values Imagin 1,896 1,974 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2,4 120 Values	of T, l ary 976 961 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2,11 37 measu 1,345 1,603	surement lary 723 714 715 710 723 706 726 743 720 1.1 rements 1,238 995	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1	,942 ,982 ,025 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348	Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164	(T,) _b eary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3	Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831	of T, l ary 9761 961 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,959 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,603 1,617	(T _t) _b surement lary 723 714 715 710 723 706 726 743 720 1.1 rements 1,238 995 1,038	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1	,942 ,982 ,025 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348 300/423 300/473 300/523 348/423 348/423 348/523 423/473 423/523 473/523 Average Deviation percent (T _b)300° - (T _c)av	(T,)a Imagin 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164	(T,) _b ary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Values Imagin 1,896 1,974 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2,4 120 Values	of T, l ary 9761 939 852 885 891 939 914 900 917 3.4 of T, 965 866 913	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2,11 37 measu 1,345 1,603	surements 723 724 724 715 710 723 706 726 743 720 1.1 rements 1,238 995 1,038 ary	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1	,942 ,982 ,025 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164	(T,) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831 1,811	of T, lary 976 961 939 852 8851 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,)a ack mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,603 1,617 Imagin	surement 723 714 724 715 710 723 706 726 743 720 1.1 rements 1,238 995 1,038 ary 1,001	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1 1 II	,942 ,982 ,025 ,983 1.4 magina Do. Do.	678 653 641 657 2.1	451 487 503 480
300/348	(T ₁) _a Imagir 1,876 1,965 1,996 1,972 2,032 2,125 2,114 2,100 2,026 3.3 164 1,883 2,004 1,990 1,946 2,064 2,042 2,170	(T,) _b lary 1,167 1,086 1,086 1,057 1,020 980 1,040 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2,4 120 Values 1,709 1,828 1,831 1,811 1,901 1,888 1,898	of T, lary 9766 9611 939 852 885 891 933 914 900 917 3.4	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,)a ick mea Imagin 1,928 1,958 1,979 1,956 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,603 1,617 Imagin 1,627 1,638 1,638	surement 723 714 724 715 710 723 706 726 743 720 1.1 1.1 rements 1,238 995 1,038 ary 1,001 1,051 840	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 1 2 1 1 II	,942 ,982 ,025 ,983 1.4 magina Do. Do.	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,125 2,114 2,100 2,026 3.3 164 1,883 2,004 1,946 2,042 2,170 2,106	(T,) _b lary 1,167 1,086 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831 1,811 1,901 1,888 1,998 1,945	of T, ary 976 961 939 852 8851 933 914 900 917 3.4 of T, 965 866 913 894 825 888 774 885	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,)a ack mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,603 1,617 Imagin 1,627 1,638 1,821 1,786	Surement 723 714 724 715 710 723 706 726 743 720 1.1 7238 729 720	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1 1 In	,942 ,982 ,982 ,983 1.4	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,114 2,100 2,026 3,33 164 1,883 2,004 1,996 1,946 2,064 2,042 2,170 6 1,904	(T,) _b lary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831 1,901 1,888 1,945 1,841	of T, l ary 9761 9611 939 8522 8851 9933 914 9000 917 3.4 of T, 855 888 774 8855 1,058	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,617 1,638 1,617 1,638 1,821 1,786 1,716	surement 723 714 724 715 710 723 706 726 743 720 1.1 723 720 1.1 723 720 720 7	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1 1 In	,942 ,982 ,025 ,983 1.4 magina Do. Do. ,369 magina ,649 magina	678 653 641 657 2.1	451 487 503 480
300/348 300/423 300/473 300/523 348/423 348/473 423/523 423/473 423/523 4verage Deviation Dercent (Tb) 300° - (Ti) av	Imagir 1,876 1,965 1,996 1,972 2,057 2,052 2,125 2,114 2,100 2,026 3,33 164	(T,) _b ary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3	(T _t) a Values Imagin 1,896 1,974 1,990 2,005 2,029 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831 1,901 1,888 1,998 1,945 1,841 1,861	of T, l ary 976 961 939 852 885 891 933 914 900 917 3.4 666 913 894 825 888 774 885 1,058 896	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a lck mea Imagin 1,928 1,959 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,603 1,617 1,638 1,821 1,786 1,716 1,644	surement	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1 1 In	,942 ,982 ,025 ,983 1.4 magina Do. Do. ,369 magina ,649 ,570 magina	678 653 641 657 2.1	451 487 503 480
300/348	(T,)a Imagir 1,876 1,965 1,996 1,972 2,037 2,052 2,114 2,100 2,026 3,33 164 1,883 2,004 1,996 1,946 2,064 2,042 2,170 6 1,904	(T,) _b lary 1,167 1,086 1,057 1,020 1,040 980 1,030 1,084 1,061 3.7	325 367 398 431 388 417 449 449 478 499 420	3	(T _t) _a Values Imagin 1,896 1,934 1,974 1,990 2,005 2,031 2,064 2,097 2,002 2.4 120 Values 1,709 1,828 1,831 1,901 1,888 1,945 1,841	of T, l ary 9761 9611 939 8522 8851 9933 914 9000 917 3.4 of T, 855 888 774 8855 1,058	from f 325 368 400 436 389 419 453 449 479 500 422 9.9	lashba	(T,) a ick mea Imagin 1,928 1,958 1,979 1,986 2,009 2,031 2,057 2,093 2,000 2.1 37 measu 1,345 1,617 1,638 1,617 1,638 1,821 1,786 1,716	surement 723 714 724 715 710 723 706 726 743 720 1.1 723 720 1.1 723 720 720 7	(T,) _c 325 372 410 452 390 424 462 450 483 500 427	1 1 2 1 1 In	,942 ,982 ,025 ,983 1.4 magina Do. Do. ,369 magina ,649 magina	678 653 641 657 2.1	451 487 503 480

	F =	0.7	$\mathbf{F} = 0$	8.0	F = 0		F = 1	
$(T_u)_1/(T_u)_2$, °K.	$(T_i)_a$	(τ _ι) _b	$(T_i)_a$	$(T_{\iota})_{b}$	$(T_{\iota})_{a}$	(Τ _ι) _b	$(T_i)_a$	$(T_i)_b$
		1				1	0	
	1	Values	of T _i fi	om plow	off mea:	surement	s, K.	
305/422			1,815	750	1,914	872	1,759	1,216
305/505		ł	1,902	715	1,993	823	1,953	1,034
305/616`			1,896	826	2,010	908	2,026	1,035
422/505	1,891	614	1,991	704	2,099	774	2,127	895
422/616	1,860	770	1,950	863	2,079	914	2,125	993
505/616	1,699	1,041	1,866	1,043	2,037	1,042	2,135	1,052
Average	1,817	808	1,903	817	2,022	889	2,021	1,038
Deviation percent	4.3	19.2	2.3	11.5	2.5	7.4	5.4	6.2
$(T_b)_{300}$ ° - $(T_t)_{av}$	68		142		168		249	
	F =				-			
	<u> </u>	1.1		1.2	F = 1	<u>.3</u>	F = 1	<u>.4</u>
$(T_u)_1/(T_u)_2$, °K.	$(T_{\iota})_a$	(T _i) _b		(T _i) _b	$(T_i)_a$	(T ₁) _b	$(T_i)_a$	
$\frac{(T_{\rm u})_1/(T_{\rm u})_2, {}^{\circ}K.}$		(T ₁) _b	$(T_{\iota})_{a}$	(T,)b	$(T_i)_a$	(T,)b	(T _i) _a	
$(T_u)_1/(T_u)_2$, °K.		(T ₁) _b		(T,)b	$(T_i)_a$	(T,)b	(T _i) _a	
(T _u) ₁ /(T _u) ₂ , °K.		(T _i) _b	$(T_{\iota})_{a}$	(T _i) _b	$(T_i)_a$	(T,)b	(T _i) _a	(T ₍) _b
	(T,)a	(T _i) _b	of T, fr	(T _i) _b	$(T_i)_a$	(T,)b	(T _i) _a	
305/422	(T _t) _a	(T _i) _b	of T, fr	(T _i) _b	$(T_i)_a$	(T,)b	(T _i) _a	
305/422	(T _t) _a Imaginado.	(T _i) _b Values	of T, from Imagina do.	(T _i) _b	(T _t) _a roff mea	(T _l) _b surement	(T _i) _a	(T,) _b
305/422	Imagina do. 1,861 2,028 2,056	(T _i) _b Values ary 1,191 978 1,029	(T _t) _a of T _t from the do. do. 1,965 1,881	(T _i) _b com blow lary 957 1,152	(T _t) _a roff mea 1,881 1,805	(T _l) _b surement 941 1,142	(T _i) _a s, °K. 1,661 1,613	(T _t) _b
305/422	Imagina do. 1,861 2,028 2,056 2,075	Values ary 1,191 978 1,029 1,071	(T _t) _a of T _t from the do. do. 1,965 1,881 1,756	(T _i) _b com blow lary 957 1,152 1,356	(T _t) _a roff mea 1,881 1,805 1,627	941 1,142 1,423	(T _i) _a 1,661 1,613 Imagin	1,074 1,245
305/422	Imagina do. 1,861 2,028 2,056 2,075 2,005	Values ary 1,191 978 1,029 1,071 1,067	of T, from the do. do. 1,965 1,881 1,756 1,867	(T _i) _b com blow lary 957 1,152 1,356 1,155	(T _t) _a roff mea 1,881 1,805 1,627 1,771	941 1,142 1,423 1,169	(T _i) _a 1,661 1,613 Imagin 1,637	1,074 1,245 ary 1,160
305/422	Imagina do. 1,861 2,028 2,056 2,075	Values ary 1,191 978 1,029 1,071	(T _t) _a of T _t from the do. do. 1,965 1,881 1,756	(T _i) _b com blow lary 957 1,152 1,356	(T _t) _a roff mea 1,881 1,805 1,627	941 1,142 1,423	(T _i) _a 1,661 1,613 Imagin	1,074 1,245 ary

TABLE 12. - Calculation of ignition temperatures versus initial temperatures for propane-air flames

Although the experiments discussed in this chapter have been limited to propaneair and methane-air fuels, the theory applies to all fuels. Room-temperature flame-stability diagrams are available for all fuels, as in chapter II of this report. Flame temperatures can be calculated thermodynamically as functions of T_u . Values of T_t are lacking for most fuels but may be determined experimentally, as has been done for methane and propane. Until such determinations are made, it may suffice to make educated guesses of values of T_t by assuming it to be less than T_b (when $T_u = 300^{\circ}$ K.) by the order of difference shown in the last lines of tables 11 and 12.

Yellow Tipping

With propylene as the test fuel the effect of preheat was found to be very small. The experimental equipment is identical with that used in the study of the effect of preheat on flashback and blowoff limits (figure 76). Propylene was chosen because it is a fairly typical yellow-tipping gas. The temperature range covered was from room temperature to 523° K. The experimental results need to be examined to show the effect of preheat with respect to the constant yellow-tip limit, F_c (for large ports and large flows, see ch. III) and of the yellow-tip fraction, F_c/F_y (on small ports or small flows, see ch. IV). F_y is the nonconstant yellow-tip limit on

small ports and depends on flow and port diameter as well as on the fuel; F_c is the constant yellow-tip limit and is characteristic of the fuel alone.

The constant yellow-tip limit for propylene was observed to be invariant with preheat within experimental error, the data between 300° and 523° K. varying from 1.44 to 1.47. The yellow-tip limit for a given port diameter and flow (critical boundary velocity gradient) was found to vary slightly with the initial temperature. Figure 87,A, for propylene illustrates the change in the yellow-tip limit with preheat. This figure is derived from data in (A-T/14-No./5). The change in F_v is small and is attributed to a combination of experimental uncertainty and the observation that the secondary air around the flame was heated by the burner. Measured temperatures of ambient air above the port, with the burner at 348° and 539° K., are given in figure 87,B. The secondary air temperature at the height of the yellow in the test flame was about 40°-50° above room temperature when the port was at roughly 523° K. With the port at 348° K., the ambient air was about 10° above room temperature. Thus in most experiments dealing with yellow tipping on hot ports, secondary air surrounding the flame was virtually at room temperature in the plane of the yellow zone. Had the secondary air been kept at exactly room temperature for all experiments, it is likely that the yellow-tip fraction (F_c/F_v) would be independent of the initial temperature. This conclusion is corroborated by the experiments of Street and Thomas (27) for propane, propylene, benzene, and kerosine. They observed that increasing the temperature up to 773° K. slightly reduced the critical air-fuel ratio for suppressing yellow in flames. Clark (4) noted an appreciable lowering of air-fuel ratios for yellowing of preheated benzene flames but did not evaluate the ambient air temperature. Except for the latter, these observations support the judgment that, for practical purposes, the yellow-tip limits are independent of the initial temperature of the burner stream, provided that temperatures are low enough and flows rapid enough to preclude chemical reaction within the burner.

CLOSING COMMENTS

The purpose of this investigation has been to provide theoretical foundation and data for the flashback, blowoff, and yellow-tipping characteristics of fuel gases, as distinct from factors inherent in the burner or appliance design. This has been accomplished through the critical boundary velocity gradients for flashback and blowoff (chs. I and II), the constant and nonconstant yellow-tip limits (chs. III and IV), the effect of port depth and shape on flashback, blowoff, and yellow tipping (ch. V), and the effect of preheat on flashback, blowoff, and yellow tipping (ch. VI). From a practical point of view, the resulting picture is incomplete because information still is needed on air entrainment; on the effects of adjacent ports on one another; on the effect of port direction; on the effect of flow and chemical content of secondary "air," etc. Once such studies have been completed, it should be possible to coordinate this report with new information on burner and appliance-design characteristics. Very limited experience to date indicates that the data in this report are rough approximations of the behavior of contemporary burners.

This study has given considerable attention to the problem of exchangeability of fuel gases under peak load or complete exchange situations. The nature of flash-back on turndown has also been examined briefly.

These two studies have been reported in references A, B, D, F, I, L and N on pages 118 and 119.

Although detailed burner and appliance-design data at the drafting-desk level are not given, the present report includes fundamental concepts and principles that should be widely applicable in training engineers for the gas industry and in developing a science of gas-burner and appliance design. The application of fundamental knowledge often is advanced most advantageously by men in industry rather than by men in research who supply such knowledge. It is with this in mind that the engineer is invited to experiment with the concepts and test the data presented in this report.

DEFINITIONS AND NOMENCLATURE

Definitions

- 1. Flashback is the passing of flame into a port counter-current to a steady stream of combustible mixture flowing through the port.
- 2. Blowoff is the nonpropagation of flame above a port in a steady stream of combustible mixture issuing from the port.
- 3. A stable flame is a stationary flame propagating on a port in a flowing mixture; it may be blue or yellow.
- 4. A yellow-tipped flame is one in which yellow is perceptible anywhere in the flame on the port.
- 5. The fraction of stoichiometric, F, is the volumetric gas percentage divided by the percentage of gas in a stoichiometric mixture of fuel with air. For a stoichiometric mixture (equivalent quantities of fuel and oxygen), F is equal to unity; for lean mixtures, F is less than unity; and for rich mixtures, F is greater than unity;
- $F = \frac{\text{Volumetric flow of fuel}}{\text{Volumetric flow of fuel + flow of air}} \times \begin{array}{c} 1 + \text{volumes of air required to} \\ \text{burn stoichiometrically a unit volume of fuel.} \end{array}$
- 5a. The nonconstant yellow-tip limit, F_y , is the fuel-air composition in the burner manifold for which yellow is just perceptible anywhere in the flame on the port. This limit depends on the fuel, the flow rate, the port characteristics, and the properties of the atmosphere around the flame.
- 5b. The constant yellow-tip limit, F_C , is the characteristic and leanest fuelair composition which, if ignited in the absence of a secondary atmosphere, produces yellow. For a given temperature and pressure of the unburned mixture, this limit depends only on the fuel and is characteristic of the fuel.
- 5c. The yellow-tip fraction is $F_{\rm c}/F_{\rm y}$. It can have values only from zero to unity, and values below 0.4 rarely appear.
- 6. The boundary velocity gradient, g, seconds⁻¹, is the rate of change of stream velocity at the edge of the stream mixture at the exit plane of the burner port. For steady laminar flow through a round port, $g = 4V/\pi R^3$, where V is the volumetric rate of flow, cc./sec.; and R is the radius of port, cm. (V and R must be in related units).

- 6a. The critical boundary velocity gradient for flashback, g_F in seconds⁻¹, is the boundary velocity gradient at which flashback just occurs for a given fuelair mixture. This quantity is a characteristic property of the fuel-air mixture.
- 6b. The critical boundary velocity gradient for blowoff, g_B in seconds⁻¹, is the boundary velocity gradient at which blowoff just occurs for a given fuel-air mixture. This quantity is a characteristic property of the fuel-air mixture.
- 7. A flame-stability diagram is a coplot of fundamental flashback and blowoff curves of the fuel, bounding the regions of flashback, blowoff, and stable flames of the fuel.
- 8. A flame-characteristics diagram is a flame-stability diagram plus fundamental yellow-tip-limit data.
- 9. A composite flame-stability diagram for flashback is a summary diagram of all characteristic flashback curves of a family of two-component fuels.
- 9a. A composite flame-stability diagram for blowoff is a summary diagram of all characteristic blowoff curves of a family of two-component fuels.
- 9b. A composite yellow-tip diagram is a summary diagram of yellow-tip limits of a group of yellow-tipping fuels related by their burning velocities at the yellow-tip limit.
- 10. The standard burning velocity, $S_{\rm u}$, in centimeters per second, is the rate at which an adiabatic plane combustion wave moves relative to the oncoming fuel-oxidant mixture in a direction perpendicular to the flame surface, the unburned stream being at room temperature and atmospheric pressure. Nonstandard burning velocities depend on the standard burning velocity and such matters as curvature of flame, proximity to liquid or solid surfaces, ambient pressure and temperature, etc.
- 11. The quenching distance, in centimeters, is the minimum spacing of walls of a channel, through which a given flame can propagate in quiescent mixture. There are several quenching distances for each flame, depending upon the geometry of the channel (tubes, slots, triangles, etc.).
- lla. The quenching distance at flashback, d_F , in centimeters, is the depth of penetration of the chilling effect of the wall on the flame whose base is in the same plane as the wall. This particular quenching distance is the space between the wall and the edge of the flame near it as the flame flashes back. It differs from the dead space, which is the space between the top of a port and the base of a stable flame above it, in that the dead space varies with the flow rate through the port, whereas the quenching distance at flashback is a fundamental property of the mixture and does not vary with flow rate.
- 11b. The quenching distance at blowoff, d_B , in centimeters, reflects quenching of the flame, largely through dilution of the boundary layer by secondary air diffusing into it and partly, to a lesser degree, through loss of heat to the top face of the port. It is the radial width of the annular boundary layer of the stream as it leaves the port, wherein a noncombustible fuel-air mixture exists.
- 12. The coefficient of friction, λ , relates the boundary velocity of a stream to the average velocity. It can be expressed as a function of the Reynolds number.

13. Mole fraction equals volumetric percent/100.

The following parameters are fundamental properties of the flame of a fuel-air mixture flowing through a port in free air, the port and the mixture being at a given pressure and temperature: S_u , the burning velocity; d_F , the quenching distance at flashback; d_B , the quenching distance at blowoff; g_F , the critical boundary velocity gradient at flashback; g_B , the critical boundary velocity gradient at blowoff; and F_c , the constant yellow-tip limit. They are highly useful because they make it possible to describe the combustion characteristics of each fuel-oxidant mixture, independent of burner-design parameters and environmental parameters.

Nomenclature

```
= specific heat capacity at constant pressure, cal./(gram)(°C.).
       = quenching distance at blowoff, cm.
d_{\mathbf{R}}
\mathbf{d}_{\mathbf{F}}
       = quenching distance at flashback, cm.
       = diameter of port, inches.
D₁
D1
       = diffusion coefficient, sq.cm./sec.
F
       = fuel-gas concentration, fraction of stoichiometric.
       = fuel-gas concentration for blowoff, fraction of stoichiometric.
\mathbf{F}_{\mathbf{R}}
       = fuel-gas concentration for the constant yellow-tip limit, fraction of
Fc
           stoichiometric.
       = fuel-gas concentration for flashback, fraction of stoichiometric.
\mathbf{F}_{\mathbf{F}}
       = fuel-gas concentration for the nonconstant yellow-tip limit, fraction of
\mathbf{F}_{\mathbf{y}}
           stoichiometric.
F_c/F_v = yellow-tip fraction.
       = boundary velocity gradient, seconds<sup>-1</sup>.
g
       = critical boundary velocity gradient for blowoff, seconds-1.
g<sub>R</sub>
       = critical boundary velocity gradient for flashback, seconds-1.
gF
       = critical boundary velocity gradient for yellow tipping, seconds-1.
g_v
h
       = height, cm.
       = heating value of fuel, B.t.u./cu.ft.
H
k
       = proportionality constant.
       = percent primary air \sqrt{100} (air/gas)<sub>actual</sub>/(air/gas)<sub>stoichiometric</sub>7.
L
       = flow of fuel through port, B.t.u./hr.in.<sup>2</sup>
M
n
       = mole fraction of each component in a multicomponent mixture.
       = (air/gas)<sub>stoichiometric.</sub>
P
R
       = radius of port, cm.
R*
       = minimum radius of port for constant yellow-tip limit, cm.
       = radial distance from axis of port.
r
Re
      = Reynolds number.
S
      = mole fraction of fuel in a stoichiometric mixture.
      = burning velocity, cm./sec.
S,,
```

- T_b = burned-gas temperature, °K.
- T₁₁ = temperature of unburned gas, °K.
- T_t = minimum temperature in primary combustion zone, °K.
- t = time, sec.
- U = flow velocity, cm./sec.
- U_a = flow velocity at axis of port, cm./sec.
- V = volumetric rate of flow, cm.³/sec.
- X = displacement of molecule by diffusion.
- δ = flame thickness, cm.
- η = viscosity, poise.
- λ = coefficient of friction.
- μ = coefficient of thermal conductivity, cal./(sec.)(cm.)(°C.).
- $_{o}$ = density, grams/cm.³
- ρ_{11} = density of unburned gas, grams/cm.³
- $\Delta p/L$ = pressure gradient in port along direction of flow.

SPECIAL BIBLIOGRAPHY OF BUREAU OF MINES PUBLICATIONS ON FUNDAMENTAL COMBUSTION CHARACTERISTICS OF FUEL GASES

- A. GRUMER, J. Combustion Characteristics of Fuel Gases. Proc. Am. Gas Assoc., 1952, pp. 852-6.
- B. _____. Nature of Gas-Burner Flashback on Turndown. Ind. Eng. Chem., vol. 45, 1953, pp. 1775-1776.
- C. New Theories of Gas Burner Performance Calculating the Old From the New. Special Report to Am. Gas Assoc., May 20, 1953, 16 pp.; pub. in Gas, vol. 30, March 1954, pp. 47-51.
- D. _____. Predicting Burner Performance With Interchanged Fuel Gases. Ind. Eng. Chem., vol. 41, 1949, pp. 2756-2761.
- E. _____. A Study of Combustion Characteristics of Fuel Gases. Am. Gas Assoc., Project PDC-3-GU, Interim Rept. 1, October 1951.
- F. GRUMER, J., and HARRIS, M. E. Flame-Stability Limits of Methane, Hydrogen, and Carbon Monoxide Mixtures. Ind. Eng. Chem., vol. 44, 1952, pp. 1547-1553.
- G. _____. Temperature Dependence of Stability Limits of Burner Flames. Ind. Eng. Chem., vol. 46, 1954, pp. 2424-2430.
- H. GRUMER, J., HARRIS, M. E., and ROWE, V. R. Study of the Yellow-Tipping Characteristics of Fuel Gases. Am. Gas Assoc., Project PDC-3-GU, Interim Rept. 2, April 1954.

- I. GRUMER, J., HARRIS, M. E., and ROWE, V. R. Yellow-Tipping of Bunsen-Burner Flames and Related Exchangeability of Fuels In Gas Utility Systems. Pub. in Ind. Eng. Chem. (in press).
- J. GRUMER, J., HARRIS, M. E., and SCHULTZ, H. Flame-Stability Limits of Ethylene, Propane, Methane, Hydrogen, and Nitrogen Mixtures. Ind. Eng. Chem., vol. 47, 1955, pp. 1760-1767.
- K. ____. Flame Stabilization on Burners With Short Ports or Noncircular Ports. 4th Symposium (International) on Combustion, Williams & Wilkins Co., Baltimore, Md., 1953, pp. 695-701.
- L. _____. Predicting Interchangeability of Fuel Gases; Interchangeability of Oil Gases or Propane-Air Fuels With Natural Gases. Ind. Eng. Chem., vol. 44, 1952, pp. 1554-1559.
- M. HARRIS, M. E., GRUMER, J., VON ELBE, G., and LEWIS, B. Burning Velocities, Quenching and Stability Data on Nonturbulent Flames of Methane and Propane With Oxygen and Nitrogen. Application of the Theory of Ignition, Quenching, and Stabilization to Flames of Propane and Air. 3d Symposium on Combustion, Flame and Explosion Phenomena, Williams & Wilkins Co., Baltimore, Md., 1949, pp. 80-89.
- N. LEWIS, B., and GRUMER, J. Application of Fundamental Concepts to the Problem of Mixing and Changeover in the Gas Industry. Gas Age, May 11, 1950, pp. 25-28, 72-80.
- O. LEWIS, B., and VON ELBE, G. Ignition and Flame Stabilization in Gases. Trans. Am. Soc. Mech. Eng., May 1948, pp. 307-316.
- P. Stability and Structure of Burner Flames. Jour. Chem. Phys., vol. 11, 1943, pp. 75-97.
- Q. VON ELBE, G., and GRUMER, J. Air Entrainment in Gas Burners. Ind. Eng. Chem., vol. 40, 1948, pp. 1123-1129.
- R. VON ELBE, G., and MENTSER, M. Further Studies on the Structure and Stability of Burner Flames. Jour. Chem. Phys., vol. 13, 1945, pp. 89-100.

Table la. - Critical boundary velocity gradients for flashback of single-component fuels

						ingle-component fue	
F _F	g _F	Fp	g _F	FF	g _p	FF	s _F
	Fuel No. 1 compo Stoichiometric p	sition, percent: ercentage:	(Natural gas) 9.04	91.5 CH ₄ , 5.2 C ₂	H ₆ , 1.3 C ₃ H ₈ , (Points fo	0.2 C ₃ H ₆ , 0.2 C ₄ H ₁₀ r figure 19)	, 0.1 C4H8, 0.9 CO2, C
	diam. 7 cm.	Tube 1.02	diam.	- 	diam.		
0.745	100	0.756		0.806	Ι .		1
1.26	106	1.23	157 165	1.18	246 252		i
.780 1.22	167 175	•795	201	.898	336		
.815	258	1.21	210 298	1.12 .968	343 377		
1.15	266	1.14	306	1.07	381	į	
.943 1.05	403 406	.908 1.09	368 375				
	Fuel No. 2 compos Stoichiometric p	sition, percent:	100 сн ₄ 9.46		(Points for	figure 20)	
Tube	diam.	Tube	diam.		diam.		
	8 сm. Т	1.058	cm.	0.873	cm.		
0.712	100	0.800	193	1.17	204		i
1.26 .776	106 178	1.18 .912	202 323	.861 1.11	301 309	ļ	
1.20	186	1.10	329	•909	341		
.846	257	.963	382	1.08	347		
1.16 .904	265 362	1.05	385	.964 1.04	373 376		
1.10	370			1.04	J,0		
1	Fuel No. 3 compos Stoichiometric po	sition, percent:	98.6 C ₃ Hg, 1.	4 С3Н6	(Points for	figure 21)	
	diam.	Tube 1.023		Tube 0.908	diam.	T	
	T			†		1	
0.730 1.57	134 102	0.800 1.45	222 246	0.863 1.37	292 300		
.756	200	.882	394	.941	440		
1.48	200	1.33	401	1.30	447		
.847 1.38	347 346	•997	540	•986	534	1	
.900	498	1.23	546	1.21	540	}	
1.25	505					<u> </u>	
	Fuel No. 4 compo Stoichiometric p	sition, percent: percentage:	99.7 C ₂ H ₄ , 0 6.51	.2 С4нв, О.1 С3Н6	(Points i	or figure 22)	
	diam. 8 cm.		diam. 1 cm.		diam. O cm.	Tube 0.69	diam.
					J.	1	
0.621	218	0.665	272	0 .68 0	383	0.760	548
0.621 1.59	218 233	0.665 1.56	272 290	0.680 1.46	383 404	0.760 1.44	548 574
1.59 .674	233 359	1.56 .705	290 393	1.46 .746	404 596	1.44 .822	574 825
1.59 .674 1.52	233 359 381	1.56 .705 1.50	290 393 415	1.46 .746 1.39	404 596 624	1.44 .822 1.35	574 825 856
1.59 .674 1.52 .710	233 359 381 449	1.56 .705 1.50 .731	290 393 415 483	1.46 .746 1.39 .806	404 596 624 803	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753	233 359 381 449 473 628	1.56 .705 1.50 .731 1.46	290 393 415 483 508 728	1.46 .746 1.39 .806 1.34 .863	404 596 624 803 834 952	1.44 .822 1.35	574 825 856
1.59 .674 1.52 .710 1.45	233 359 381 449 473	1.56 .705 1.50 .731 1.46 .780	290 393 415 483 508 728 756	1.46 .746 1.39 .806 1.34 .863 1.33	404 596 624 803 834 952 984	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753	233 359 381 449 473 628	1.56 .705 1.50 .731 1.46 .780 1.38	290 393 415 483 508 728 756 1,070	1.46 .746 1.39 .806 1.34 .863 1.33	404 596 624 803 834 952 984 1,187	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753	233 359 381 449 473 628	1.56 .705 1.50 .731 1.46 .780 1.38 .912	290 393 415 483 508 728 756 1,070 1,097	1.46 .746 1.39 .806 1.34 .863 1.33	404 596 624 803 834 952 984	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753	233 359 381 449 473 628	1.56 .705 1.50 .731 1.46 .780 1.38	290 393 415 483 508 728 756 1,070	1.46 .746 1.39 .806 1.34 .863 1.33	404 596 624 803 834 952 984 1,187	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295	1.46 .746 1.39 .806 1.34 .863 1.33	404 596 624 803 834 952 984 1,187 1,212	1.44 .822 1.35 1.06	574 825 856 1,387
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent:	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23	404 596 624 803 834 952 984 1,187 1,212	1.44 .822 1.35 1.06 1.15	574 825 856 1,387 1,395
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage:	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23	404 596 624 803 834 952 984 1,187 1,212 (Points f	1.44 .822 1.35 1.06 1.15 or figure 23)	574 825 856 1,387 1,395
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23	404 596 624 803 834 952 984 1,187 1,212 (Points f	1.44 .822 1.35 1.06 1.15 or figure 23)	574 825 856 1,387 1,395
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage:	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99-2 C ₃ H ₆ , 0.4.45 diam. 3 cm.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆	404 596 624 803 834 952 984 1,187 1,212 (Points f	1.44 .822 1.35 1.06 1.15 or figure 23)	574 825 856 1,387 1,395 diam.
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 8 cm.	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.900 1.44 .970 1.34	574 825 856 1,387 1,395 diam. o cm.
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , 0. 4.45 diam. 3 cm. 181 250 256 351 351	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.990 1.44 .970 1.34 1.03	574 825 856 1,387 1,395 diam. 0 cm. 438 417 590 568 704
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 8 cm.	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.900 1.44 .970 1.34	574 825 856 1,387 1,395 diam. o cm.
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850 1.41	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , 0.4.45 diam. 181 250 256 351 351 472 461	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.990 1.44 .970 1.34 1.03	574 825 856 1,387 1,395 diam. 0 cm. 438 417 590 568 704
1.59 .674 1.52 .710 1.45 .753 1.43	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.990 1.44 .970 1.34 1.03	574 825 856 1,387 1,395 diam. 0 cm. 438 417 590 568 704
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent;	290 393 415 483 508 728 756 1,070 1,087 1,282 1,295 99.2 C ₃ H ₆ , 0. 4.45 diam. 3 cm. 181 250 256 351 351 472 461 652 657	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 488 654 657	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.990 1.44 .970 1.34 1.03	574 825 856 1,387 1,395 diam. 0 cm. 438 417 590 568 704
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Fuel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 esition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850 1.41 .940 1.30 sition, percent:	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , 0. 4.45 diam. 3 cm. 181 250 256 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 .4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.900 1.44 .970 1.34 1.03 1.25	574 825 856 1,387 1,395 diam. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm.	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.41 .940 1.30 sition, percent: ercentage:	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. cm.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850 1.41 .940 1.30 sition, percent: ercentage: Tube 0.891	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , 0. 4.45 diam. 3 cm. 181 250 256 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam.	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ Hg, 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657 (Points f	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.776 0.900 1.44970 1.34 1.03 1.25	574 825 856 1,387 1,395 diam. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichicmetric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichicmetric p diam. 3 cm.	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent: ercentage: Tube 0.891 1.39 .919 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600 681	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77 0.750 1.51 .852	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm. 193 234 229 1/ 381	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .850 1.41 .940 1.30 sition, percent: ercentage: Tube 0.891	290 393 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , 0. 4.45 diam. 3 cm. 181 250 256 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 4. C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657 (Points f	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm. 193 234 329 1/381 439	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent: ercentage: Tube 0.891 1.39 .919 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600 681	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77 0.750 1.51 .852 .960 1.17	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm. 193 234 329 1/ 381 439 579 654	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent: ercentage: Tube 0.891 1.39 .919 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600 681	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 4. C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657 (Points f diam. 232 1/ 263 455 642 664	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Fuel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm. 193 234 327 1/ 381 439 579 654 1/ 495	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent: ercentage: Tube 0.891 1.39 .919 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600 681	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77 0.750 1.51 .852 .960 1.17	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657 (Points f diam. 232 1/ 263 455 642 664	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711
1.59 .674 1.52 .710 1.45 .753 1.43 Tube 1.24 0.750 1.53 .800 1.46	233 359 381 449 473 628 660 Puel No. 5 compo Stoichiometric p diam. 7 cm. 201 202 302 305 Fuel No. 6 compo Stoichiometric p diam. 3 cm. 193 234 329 1/ 381 439 579 654	1.56 .705 1.50 .731 1.46 .780 1.38 .912 1.28 1.04 1.17 sition, percent: ercentage: Tube 1.02 1.57 .760 1.50 .810 1.44 .940 1.30 sition, percent: ercentage: Tube 0.891 1.39 .919 1.02	290 393 415 483 508 728 756 1,070 1,097 1,282 1,295 99.2 C ₃ H ₆ , O ₄ 4.45 diam. 3 cm. 181 250 256 351 351 351 472 461 652 657 100 C ₆ H ₆ 2.71 diam. 1 428 600 681	1.46 .746 1.39 .806 1.34 .863 1.33 .930 1.23 1.4 C ₃ H ₈ , 0.4 C ₂ H ₆ Tube 0.87 1.50 1.46 .920 1.32 1.00 1.20 Tube 0.77 0.750 1.51 .852 .960 1.17	404 596 624 803 834 952 984 1,187 1,212 (Points f diam. 3 cm. 176 296 506 488 654 657 (Points f diam. 232 1/ 263 455 642 664	1.44 .822 1.35 1.06 1.15 or figure 23) Tube 0.774 .970 1.34 1.03 1.25 or figure 24) Tube 0.611	574 825 856 1,387 1,395 diam. 6 cm. 438 417 590 568 704 711

^{1/} Yellow flame.

TABLE la, - Critical boundary velocity gradients for flashback of single-component fuels (Con.)

P _F	g _F	F _F	8p	F _F	8 _F	P _F	g _p
1	Fuel No. 7 comp Stoichiometric	osition, percent: percentage:	99.7 H ₂ , 0.3 29.7	02	(Points fo	or figure 25)	
Tube 1.02	diam. 3 cm.		diam. 6.cm.		diam. 35 cm.		diam.
0.375 .415 .461	256 463 813	0.427 .452 .517 2.25 2.19 .556 .650 2.00 .762 1.84 .978	335 622 1,244 1,235 1,610 1,775 3,160 2,840 5,090 4,860 8,860 9,080	0.578 2.12 .683 1.93 .892 1.68 1.44 1.22	2,120 2,060 3,740 3,420 7,000 6,980 8,860 10,030	0.636 2.07 .724 1.83 .852 1.01 1.57 1.16 1.41	2,900 2,735 4,400 4,450 6,490 8,540 8,380 10,040 9,640
1	Fuel No. 8 comp Stoichiometric	osition, percent: percentage:	88.9 CO, 9.7 24.5	CH4, 1.3 H2, 0.1	CO ₂ (Points for	figure 26)	
Tube 0.776	diam.		diam. 9 cm.		diam. Ll cm.		
0.744 1.81 .772 1.77 .865 1.74 .972 1.70 1.07	270 274 316 331 471 456 718 712 962 968	0.800 1.77 .914 1.70 1.01 1.66 1.12 1.62 1.23	385 388 604 590 861 794 1,115 1,105 1,295 1,400	1.00 1.63 1.07 1.61 1.21 1.56	861 821 1,000 962 1,265 1,220		

TABLE 1b. - Critical boundary velocity gradients for blowoff of single-component fuels

P _B	g _B	FB	g _B	F _B	€ _B	F _B	g _B	P _B	g _B	F _B	€ _B	F _B	g _B
	uel No. 1 itoichiomet	-		t: (Natura 9.04	al gas) 91.	5 CH4, 5.			2 C ₃ H ₆ , 0.2 figure 19)	C4H10,	0.1 C4Hg, O	9 002, 0	.6 N ₂
Tube 1,247	diam.	Tube 1.023	diam.		diam.		diam. 4 cm.		diam. 5 cm.		e diam. 13 cm.		e diam. 67 cm.
0.693 .700 .712 .740	100 166 255 396	0.707 .728 .753	200 294 363	0.737 .761 .775 .820 .864	331 370 508 782 1,194	0.876 .928 1.01 1.09	1,005 1,590 2,490 3,400	0.976 1.08 1.22	2,032 3,210 4,550	1.12 1.35 1.68 1.88 2.04 2.21	3,640 5,500 8,180 10,350 12,050 13,830	1.51 2.00 2.20 2.43 2.61 2.73 2.77 2.94 2.97	7,460 11,520 13,500 14,030 15,950 16,200 18,800 19,160
	Vel No. 2 Stoichiomet			9.46	4		(Pe	ints for	figure 20)				
Tube 1.358	diam.	Tube 1.058	diam.		diam.		diam. l cm.		diam. 8 cm.		e diam. 94 cm.		
0.672 .706 .737	100 176 254	0.717 .759 .778 .820	192 318 425 697	0.780 .854 .896	3 8 9 837 1,246	0.896 .966 1.07 1.25	976 1,675 2,695 4,180	1.21 1.50 2.17	3,700 6,220 10,340	1.81 2.30 2.85	8,120 11,940 16,770		

	vel No. 3 Stoichiomet			98.6 C 4.02	3Hg, 1.4 C ₃)H6	(Pe	oints for	figure 21)				
Tube 1.247	diam. 'cm.	Tube 1.023	diam.		diam. 8 cm.		diam. 5 cm.		diam. 6 cm.		e diam. 15 cm.		e diam. 49 cm.
0.665 .680 .714 .714	147 200 348 494	0.706 .730 .760	251 391 648	0.746 .718 .757 .813	338 440 530 1,000	0.790 .860 .964	788 1,384 2,310	0.906 1.04 1.17 1.38	1,900 3,030 4,250 5,840	1.24 1.51 1.74 2.02 2.19 2.57 2.71	5,340 7,560 9,280 10,950 12,200 14,450 16,500	1.77 2.12 2.40 2.61	9,450 11,870 13,650 14,800

Table 1b. - Critical boundary velocity gradients for blowoff of single-component fuels (Con.)

F _B	g _B	F _B	g _B	FB	g _B	FB	g _B	F _B	g _B	F _B	€B	P _B	g _B
		compositi		1t: 99.7 C 6.51	2H4, 0.2 (4Hg, 0.1 С	3H6 (1	oints fo	r figure 22)			•	
	diam.		diam.		diam. 9 cm.		diam.		be diam. 294 cm.		e diam. 55 cm.		•
0.557 .588 .605 .622	217 357 443 623	0.572 .608 .626 .642 .655 .672	270 390 479 720 1,050 1,250	0.615 .664 .688 .690 .756	542 816 1,352 1,457 2,584	0.698 .720 .788 .841 .978	1,824 2,255 3,420 4,870 8,340	0.867 1.06 1.17 1.37 1.50 3.57 4.31	6,600 12,170 15,970 23,420 28,270 1/95,600 1/121,200	1.39 1.58 1.78 1.96 2.19 2.41 2.58 2.73	26,800 35,220 44,000 52,000 59,850 69,600 74,500 81,800		
		compositi		tı 99,2 C 4.45	346, 0.4 С	зна, 0.4 0		oints fo	r figure 23)				
	diam. 7 cm.		diam.		diam. 8 cm.		diam. 6 cm.		be diam. 624 cm.		e diam. 90 cm.		oe diam. 249 cm.
∪.680 .680	203 302	0.700 .710 .720 .730	250 351 471 655	0.750 .780 .830	502 788 1,292	0.740 .760 .800	600 706 1,006	0.840 •930	1,297 2,521	0.913 1.00 1.13 1.25 1.43 1.68 1.99 2.44	1,990 2,988 4,708 6,519 7,952 9,981 12,390 15,560	2.20 2.46 2.82	14,190 17,340 19,240
		compositi tric perce		t: 100 C ₆	н6		(P	oints fo	r figure 24)				
Tube 1.023	diam.		diam. 1 cm.		diam.		diam. 1 cm.		be diam. 413 cm.		e diam. 54 cm.		e diam. 49 cm.
0.604 .645 .683 .718 .711	225 556 905 1,050 1,058	0.701 .752 .798	774 1,266 1,830	0.722 .857 1.01	1,136 2,435 3,653	0.826 1.00 1.12 1.24	2,110 3,775 4,990 5,780	0.748 .898 1.05 1.09 1.19 1.39 1.52	1,363 3,170 4,605 5,080 5,430 7,100 2/7,860	1.05 1.26 1.42	4,850 2/6,610 <u>2</u> /7,410	1.10 1.37 1.95	4,810 2/7,040 <u>2</u> /10,280
Fi St	uel No. 7 toichiomet	composition	n, percent	1 99.7 H ₂ 29.7	, 0.3 02		(Pc		figure 25)				
Tube (Tube 0.566	diam.	Tube 0.485		Tube 0.390	diam.		e diam. 30 cm.				
•363 •399 •390	265 460 785	0.422 .436 .424 .411 .430 .432	337 618 1,200 1,690 2,920 4,530	0.418 .459 .443 .475 .453	2,175 3,450 7,060 7,520 12,740	.603 17/	4,060 5,600 8,600 12,080 99,400 127,800 182,700	.702 .766	17,100 28,700 45,500 60,000 1/159,000 1/291,000 1/472,000 1/633,000				
		compositio		88.9 CO 24.5	, 9.7 СН4,	1.3 H ₂ , 0	.1 CO ₂ (Po	ints for	figure 26)				
Tube d 0.776		Tube 0.699	diam.	Tube 0.611		Tube 0.475			e diam. 49 cm.		diam. 5 cm.		
.660 .682 .741 .774 .790 .816	263 340 496 738 974 1,335	0.694 .761 .794 .816 .839	395 616 826 1,130 1,495	0.833 .869 .918 .972	1,270 1,765 2,700 3,830	0.950 1.02 1.09 1.17	3,260 4,890 6,840 8,890	1.07 1.16 1.28 1.51 1.73 1.88 2.10	6,020 8,210 12,050 17,700 25,500 32,200 41,400	1.94 2.40 2.78 2.74	36,700 50,100 61,200 61,800		

^{1/} Turbulent flow. 2/ Yellow flame.

TABLE 2a. - Critical boundary velocity gradients for flashback of two-component fuels; methane-hydrogen mixtures

F _F	8p	F _F	8 _F	F _F	g _F	P _F	8p	P _F	8 p
	Fuel No. 9 comp	osition, percent:	93.0 CH4, 7.0 9.95	Н2	(Data for	figure 28)			
	diam.	T	diam.	7	T				
1.023		0.893		<u> </u>					,
U.714	142	1.29	173						
1.30	140	.785	238						
1.28 .786	197 202	1.24 .890	241 343	1					ŀ
.836	279	1.19	355	1	ì				İ
1.24	291	•956	428						1
.917	400	1.14	437						
1.17	405 Fuel No. 10 com	position, percent:	. 74.0 СН ₄ , 26.	. I — — — — — — — — — — — — — — — — — —	L1				L
	Stoichicmetric	T	11.5	·	(Data for	figure 28)	1		
1.058	diam. 8 cm.	0.873	diam.	0.611	diam.				
1.27	211	1.28	215	0.926	520				
.736	197	.721	200	1.05	529				ı
1.17	392	1.16	405						
.823	375	.850	389	1		i			1
1.06	578	1.08	550			ŀ			1
.924	568	.949	540	<u>.l</u>			l		L
	Tuel No. 11 com Stoichiometric	position, percent: percentage:	13.6 CH ₄ , 46.	4 н ₂	(Data for	figure 28)			
Tube 1.058	diam.	Tube 0.873	diam.	Tube 0.611	diam. i cm.				
0.644	206	0.649	230	0.926	876				
1.29	228	1.27	254	1.05	892				I
.718	414	.746	477		.,.	j			į.
1.21	448	1.20	512	1					}
.814	668	.836	736						l
1.14	704	1.13	772	1					1
			1 990						
.960 1.05	930 944	•986 •995	990 991.						l
1.05	944 Puel No. 12 co	•995	991.	3 CH ₄	(2)				
1.05	944 Puel No. 12 con Stoichiometric	•995 mposition, percent percentage:	991. 1 70.7 H ₂ , 29. 18.2	·		figure 28)	diam		
1.05	944 Puel No. 12 co	•995 mposition, percent percentage:	991.	Tube	(Data for	Tube	diam. 8 cm.		
Tube 0.87	944 Puel No. 12 con Stoichiometric ediam.	.995 mposition, percent percentage: Tube 0.69	991. 2: 70.7 H ₂ , 29. 18.2 3: diam. 39 cm.	Tube	diam.	Tube 0.45	8 cm.		
Tube 0.87 0.524 1.38	944 Puel No. 12 con Stoichiometric	•995 mposition, percent percentage:	991. 1 70.7 H ₂ , 29. 18.2	Tube 0,61	diam.	Tube	diam. 8 cm. 1,030 1,160		
Tube 0.87 0.524 1.38 .620	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648	991. 1 70.7 H ₂ , 29. 18.2 2 diam. 19 cm. 364 433 691	0.604 1.32 .682	464 540 870	Tube 0.45 0.692 1.23 .828	1,030 1,160 1,640		
Tube 0.87 0.524 1.38 .620 1.31	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680	.995 sposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794	0.604 1.32 .682	e diam. L1 cm. 464 540 870 990	Tube 0.45 0.692 1.23 .828 1.12	1,030 1,160 1,640 1,750		
Tubes 0.87 0.524 1.38 .620 1.31 .693	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015	.995 mposition, percent percentage: Tube 0.66 0.561 1.35 .648 1.28 .730	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202	Tube 0.604 1.32 .682 1.26	464 540 870 990 1,330	Tube 0.45 0.692 1.23 .828 1.12 .925	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680	.995 sposition, percent percentage: Tube 0.65 C.561 1.35 .648 1.28 .730 1.22	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20	464, 540, 870, 990, 1,330, 1,465	Tube 0.45 0.692 1.23 .828 1.12	1,030 1,160 1,640 1,750		
Tube 0.87 0.524 1.38 .620 1.31 .693	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330 2,150	Tube 0,604 1.32 .682 1.26 .769 1.20	464, 540, 870, 990, 1,330, 1,465, 1,767	Tube 0.45 0.692 1.23 .828 1.12 .925	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31 .693	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015	.995 sposition, percent percentage: Tube 0.65 C.561 1.35 .648 1.28 .730 1.22	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20	464 540 870 970 1,330 1,465 1,767 1,888 2,215	Tube 0.45 0.692 1.23 .828 1.12 .925	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22	944 Puel No. 12 con Stoichiometric diam. (3 cm. 238 287 584 680 1,015 1,140	.995 sposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330 2,150 2,195	7ube 0.60. 0.604. 1.32 .662 1.26 .769 1.20 .854 1.15 .959 1.07	464 540 870 990 1,330 1,465 1,767	Tube 0.45 0.692 1.23 .828 1.12 .925	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22	944 Puel No. 12 con Stoichiometric diam. (3 cm. 238 287 584 680 1,015 1,140	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330 2,150 2,195	7ube 0.60. 0.604. 1.32 .662 1.26 .769 1.20 .854 1.15 .959 1.07	464, 540, 870, 990, 1,330, 1,465, 1,767, 1,888, 2,215, 2,270	Tube 0.45 0.692 1.23 .828 1.12 .925	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015 1,140 Fuel No. 13 con	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage:	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 19 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07	464, 540, 870, 990, 1,330, 1,465, 1,767, 1,888, 2,215, 2,270	Tube 0.45 0.692 1.23 .628 1.12 .925 1.06	1,030 1,160 1,640 1,750 1,995		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm.	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364, 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm.	Tube 0.45	464, 540 870 970 1,330 1,465 1,767 1,888 2,215 2,270 (Data for elements of the control of the co	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28)	1,030 1,160 1,640 1,750 1,995 2,055		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm.	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,195 1 84.6 H ₂ , 15. 22.2 1 diam. 527	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07	464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for a diam. 8 cm.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35	1,030 1,160 1,640 1,750 1,795 2,055		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327	.995 mposition, percent percentage: Tube	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 527 688	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37	0 diam. 11 cm. 464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for diam. 18 cm.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27	1,030 1,160 1,640 1,750 1,995 2,055		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.67 1.54 .508 1.48	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 : 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07	464, 540, 870, 990 1,330, 1,465, 1,767, 1,888, 2,215, 2,270 (Data for diam. 8 cm. 1,250, 1,540, 2,380, 2,3	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.48	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm. 527 688 1,499 1,830 2,610	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.4646 1.37 .728 1.29	464, 540 870 970 1,330 1,465 1,767 1,888 2,215 2,270 (Data for 1,540 2,030 2,380 3,880	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880	1,030 1,160 1,640 1,750 1,995 2,055		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 1 diam. 527 688 1,499 1,830 2,610 3,010	Tube 0.60 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29	464, 540, 870, 990 1,330, 1,465, 1,767, 1,888, 2,215, 2,270 (Data for diam. 8 cm. 1,250, 1,540, 2,380, 2,3	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .989	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.4646 1.37 .728 1.29	464, 540 870 970 1,330 1,465 1,767 1,888 2,215 2,270 (Data for 1,540 2,030 2,380 3,880	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.43	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 240 327 425 561 747 958	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .989 1.15	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240 4,440	Tube 0.61 0.601 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11	464, 540 870 970 1,330 1,465 1,767 1,888 2,215 2,270 (Data for 1,540 2,030 2,380 3,880	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.43	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 240 327 425 561 747 958	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .989 1.15 mposition, percent	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 2 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240 4,440	Tube 0.61 0.601 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11	464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for dam. 8 cm. 1,250 1,540 2,030 2,380 3,880 4,000	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 8.558 1.43	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958	.995 mposition, percent percentage: Tube	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240 4,440	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11	464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for dam. 8 cm. 1,250 1,540 2,030 2,380 3,880 4,000	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28)	1,030 1,160 1,640 1,640 1,750 1,995 2,055 diam. 4 cm.		diam.
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 8.558 1.43	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric diam. 3 cm.	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .999 1.15 mposition, percent percentage:	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 99 cm. 364, 433 691 794 1,202 1,330 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 1 94.4 H ₂ , 5.6 diam. 8 cm.	Tube 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11	diam. 464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for diam. 8 cm. 1,250 1,540 2,030 2,380 3,880 4,000 (Data for diam. 0 cm.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28)	1,030 1,160 1,640 1,750 1,995 2,055 diam. 4 cm. 2,830 3,240 3,710 4,060	0.39	Ю сm.
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 .508 1.43	944 Puel No. 12 con Stoichiometric diam. 3 cm. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric	.995 mposition, percent percentage: Tube	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 99 cm. 364, 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 1 94.4 H ₂ , 5.6 diam. 8 cm. 400 394	Tube 0.61 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11	diam. 464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for diam. 1,250 1,540 2,030 2,380 3,880 4,000 (Data for	figure 28) Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.603 1.59	diam. 2,830 3,240 3,710 4,060 diam. 1,633	0.39 0.688 1.54	2,780 3,010
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.43 Tube 1.02 0.418 1.83 1.476	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric diam. 3 cm. 284 275 553	.995 mposition, percent percentage: Tube 0.69 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .989 1.15 mposition, percent percentage: Tube 0.61	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 1 44.4 H ₂ , 5.6 26.4 diam. 8 cm.	Tube 0.604 1.32 .662 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 CH4 Tube 0.60 0.576 1.655 .677	0 diam. 1 cm. 1 644 5440 8770 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for diam. 1,250 1,540 2,030 2,380 3,880 4,000 (Data for diam. 0 cm.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28)	diam. 2,830 3,240 3,710 4,060 diam. 4 cm. 2,830 3,240 3,710 4,060	0.39 0.688 1.54 .944	2,780 3,010 6,140
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 .508 1.43	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric diam. 3 cm. 284 275	.995 mposition, percent percentage: Tube	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 2 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 4,440 1 94.4 H ₂ , 5.6 diam. 8 cm. 400 394 870 876	Tube 0.601 0.601 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11 CH4 Tube 0.60 0.576 1.65 .677 1.55	### diam.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28) Tube 0.48 0.603 1.59 .790 1.49	diam. 2,830 3,240 3,710 4,060 diam. 1,633 1,950 4,250 3,960	0.39 0.688 1.54 .944 1.36	2,780 3,010 6,140 6,220
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.43 Tube 1.02 0.418 1.83 .476	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric diam. 3 cm. 284 275 553	.995 mposition, percent percentage: Tube 0.65 0.561 1.35 .648 1.28 .730 1.22 .976 1.07 mposition, percent percentage: Tube 0.61 0.528 1.45 .672 1.37 .785 1.28 .989 1.15 mposition, percent percentage: Tube 0.61	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,195 1 84.6 H ₂ , 15. 22.2 diam. 1 cm. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 1: 94.4 H ₂ , 5.6 diam. 8 cm. 400 394 870 876 1,850	Tube 0.604 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11 CH4 Tube 0.66 1.65 .677 1.55 .833	diam. 464 540 870 990 1,330 1,465 1,767 1,888 2,215 2,270 (Data for diam. 8 cm. 1,250 1,540 2,030 2,380 3,880 4,000 (Data for diam. 0 cm. 1,360 1,360 2,500 2,460 5,110	figure 28) Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28)	diam. 2,830 3,240 3,710 4,060 diam. 4, cm. 1,633 1,633 1,633 1,950 4,250 3,960 7,100	0.688 1.54 .944 1.36 1.02	2,780 3,010 6,140 6,220 6,970
Tube 0.87 0.524 1.38 .620 1.31 .693 1.22 Tube 0.87 0.471 1.54 .508 1.43 Tube 1.02 0.418 1.83 .476	944 Puel No. 12 con Stoichiometric diam. 238 287 584 680 1,015 1,140 Fuel No. 13 con Stoichiometric diam. 3 cm. 240 327 425 561 747 958 Fuel No. 14 con Stoichiometric diam. 3 cm. 284 275 553	.995 mposition, percent percentage: Tube	991. 1 70.7 H ₂ , 29. 18.2 1 diam. 9 cm. 364 433 691 794 1,202 1,330 2,150 2,150 2,195 2 84.6 H ₂ , 15. 22.2 diam. 527 688 1,499 1,830 2,610 3,010 4,240 4,440 4,440 1 94.4 H ₂ , 5.6 diam. 8 cm. 400 394 870 876	Tube 0.601 0.601 1.32 .682 1.26 .769 1.20 .854 1.15 .959 1.07 4 CH4 Tube 0.45 0.646 1.37 .728 1.29 1.01 1.11 CH4 Tube 0.60 0.576 1.65 .677 1.55	### diam.	Tube 0.45 0.692 1.23 .828 1.12 .925 1.06 figure 28) Tube 0.35 0.788 1.27 .880 1.19 figure 28) Tube 0.48 0.603 1.59 .790 1.49	diam. 2,830 3,240 3,710 4,060 diam. 1,633 1,950 4,250 3,960	0.39 0.688 1.54 .944 1.36	2,780 3,010 6,140 6,220

TABLE 2a. - Critical boundary velocity gradients for flashback of two-component fuels (Con.);

carbon monoxide-hydrogen mixtures

				carbon monox	ide-hydrogen mi	ktures			
Pp	gp	FF	g _F	FF	g _F	F _F	g _F	F _F	87
	Fuel No. 16 com Stoichiometric	position, percent percentage:	: 85.6 CO, 14. 29.6	о н ₂ , о.4 со ₂	(Data for	figure 30)			
	diam.		diam. 9 cm.		diam.		diam. 8 cm.		
0.689 2.35 .752 2.29 .834 2.24 1.02	264 236 407 367 658 602 1,287	0.784 2.30 .902 2.19 1.14 2.08 1.36 1.69	517 466 870 899 1,580 1,587 2,224 2,660	0.854 2.24 .986 2.16 1.32 1.40	706 728 1,115 1,085 2,063 2,280 2,448	1.06 2.06 1.17 1.98 1.57	1,370 1,280 1,798 1,664 2,535 2,460		
	Fuel No. 17 co Stoichiometric	mposition, percen percentage:	t: 79.3 CO, 19 29.7	.7 н ₂ , 0.6 н ₂ , о.	3 CO ₂ , O.1 O ₂ (Data for :	figure 30)			
	diam. 3 cm.	Tube 0.699	diam.		diam. 1 cm.	Tube	diam. 8 cm.		
0.632 2.32 .707 2.27 .784 2.21	261 241 488 418 790 810	0.640 .761 2.26 .906 .919 .960 2.08 1.15 1.84 1.40	295 631 548 1,138 1,270 1,440 1,574 2,036 2,970 3,093 3,520	0.722 2.27 .816 2.19 .980 2.06 1.25 1.94 1.73	509 561 881 894 1,558 1,610 2,535 2,420 3,280	0.882 2.15 1.05 1.92 1.33 1.57	996 1,140 1,846 2,480 2,865 3,240		
	Fuel No. 18 com Stoichiometric	position, percent percentage:	: 74.5 CO, 25. 29.6	1 H ₂ , 0.4 CO ₂	(Data for	figure 30)			
	diam.		diam.		diam.				
0.598 2.19 .628 2.17 .684 2.16 .765 2.11 2.09 2.08 .862 2.01 .936 1.90 1.90 1.10 1.86 1.23 1.26 1.79 1.64	243 255 299 354 446 538 633 692 803 878 956 1,150 1,220 1,560 1,595 1,900 2,120 2,185 2,360 2,570 2,605 2,780 2,910 2,910 3,320 3,350	0.584 2.17 2.18	243 349 378 448 461 564 630 693 718 814 1,050 1,250 1,265 1,288 1,475 1,815 1,890 2,340 2,580 2,745 2,845 3,150 3,245 3,245 3,255	1.94 1.83 1.51	2,250 2,850 3,370				
	Stoichiometric p		29.5		(Data for	1	diam.	Tuba	diam.
Tube 0.891	diam. l cm.	Tube 0.699	diam.	0.61	diam. 1 cm.	0.46	8 cm.	0.35	cm.
0.584 2.07 .604 2.05 .679 2.06 .754 2.03	277 260 412 400 600 590 916 897	0.614 2.06 .659 2.05 .702 2.04 .752 2.01 .856 1.95 .980	357 314 520 460 684 670 962 966 1,537 1,560 2,270 2,335	0.738 2.05 .840 1.97 1.11 1.81 1.23 1.65	791 811 1,344 1,284 2,960 2,990 3,730 3,880	0.905 1.88 1.23 1.74 1.52	1,960 1,990 3,580 3,270 4,150	1.03 1.85 1.05 1.75 1.18 1.69	2,610 2,490 2,950 3,290 3,860 3,630

TABLE 2a. - Critical boundary velocity gradients for flashback of two-component fuels (Con.); carbon monoxide-hydrogen mixtures (Con.)

FF	8 _F	F	8 _F	F _F	gF	FF	8 _F	FF	gF	FF	gp
		O composit	ion, percent	nt: 49.9 29.6	CO, 49.5 H	2, 0.3 N ₂ ,	0.3 CO ₂	(Data	for figure	30)	•
	diam. 3 cm.		diam. 9 cm.		diam. 1 cm.		diam.		diam. 4 cm.		diam. 3 cm.
0.519 2.27 .572 2.25 .623 2.21 .689 2.16	296 280 472 462 826 819 1,320 1,345	0.582 2.24 .670 2.10 .841 1.90	586 714 992 1,840 2,440 4,260	0.562 2.26 .632 2.22 .746 2.08 .943 1.96 1.18 1.72	476 502 888 932 1,735 2,098 3,430 3,550 5,870 6,060	0.744 2.14 .940 1.94 1.11 1.74 1.30 1.46	1,611 1,570 3,070 3,023 4,415 5,060 5,570 6,030	0.933 1.89 1.01 1.81 1.13 1.71 1.20 1.52	3,825 3,972 4,550 5,040 5,780 6,340 6,440 7,570	1.70 1.11 1.64 1.20 1.50	5,220 5,480 5,720 6,350 7,350
		l composit tric perce	ion, percen	nt: 63.4 29.5	H ₂ , 36.5 C	0, 0.1 CO ₂	!	(Data	for figure	30)	
	diam. 1 cm.		diam. 9 cm.		diam. 8 cm.		diam.		diam. 3 cm.		
0.483 2.35 .526 2.33 .582 2.25	284 287 463 465 820 81.8	0.538 2.31 .622 2.19 .718 2.09	568 664 1,098 1,105 2,090 2,100	0.685 2.16 .814 1.97 .990 1.85 1.19 1.65 1.30 1.36	1,575 1,447 2,770 2,570 4,520 4,060 6,310 6,100 6,860 7,070	0.820 1.95 .951 1.81 1.19 1.65 1.22 1.32	3,280 3,310 5,080 4,830 7,050 6,820 7,510 7,900	0.916 1.83 1.04 1.65 1.27 1.47	3,930 3,870 5,690 5,600 7,540 6,940		
		2 composit tric perce	ion, percen	nt: 85.9 29.5	H ₂ , 14.1 C	0		(Data	for figure	30)	
	diam. l cm.		diam.		diam. 8 cm.		diam.		diam.		
2.31 .442 2.31 .470 .505 2.27 .540 2.18	243 304 353 434 719 658 1,115 1,065	0.453 2.26 .512 2.26 .563 2.18 .630 2.06	427 539 818 803 1,308 1,266 2,050 1,886	0.607 2.17 .664 2.03 .792 1.89 .873 1.75 1.01 1.58 1.06 1.47	1,665 1,646 2,470 2,302 4,035 3,725 5,280 5,160 8,180 7,990 8,470 9,000	0.722 1.97 .902 1.70 1.01 1.52	3,430 3,280 5,960 5,920 6,920 8,700	0.814 1.79 .950 1.57 1.11 1.41	4,730 4,630 6,900 6,750 8,900 9,200		
		3 composit: tric percen	ion, percer ntage:	1t: 93.0 29.8	н ₂ , 6.6 со	, 0.4 02		(Data	for figure	30)	
	diam.		diam. 4 cm.		diam. 6 cm.		diam.		diam. O cm.		
.408 2.27 .455 2.27 .506 2.17	248 251 498 538 1,015 978	0.450 2.25 .502 2.23 .536 2.08	360 346 771 778 1,740 1,660	0.606 2.13 .644 1.99 .724 1.87 .943 1.58	1,570 1,570 2,500 2,430 4,000 3,990 8,390 8,600	0.566 2.06 .682 1.91 .853 1.71 1.05	1,510 2,110 3,400 3,580 5,750 6,080 8,700 8,970	0.854 1.77 1.07 1.50	5,080 4,890 8,700 8,620		

	F		I		Γ	
F _F	g _F	F _F	g _F	F _F	g _F	
	Fuel No. 24 co Stoichiometric	mposition, percent:	63.1 CH ₄ , 36.4 12.6	CO, 0.4 H ₂ , 0.		r figure 32)
	diam.	Tube			diam.	
1.058	s cm.	0.891	cm.	0.77	6 cm.	
0.696	111	0.732	171	0.810	273	
1.37 .739	110 151	1.32 .824	169 249	1.26 .883	292 360	į
1.33	149	1.27	244	1.20	376	
•780	204	.846	348	•998	475	
1.30	199	1.23	342	1.15	485	
.830 1.26	287 306	.956 1.17	455 437			į
.895	404	1.02	518	1		
1.21	399	1.12	524			
.950 1.16	496 506					
	ruel No. 25 co Stoichiometric	mposition, percent: percentage:	54.0 CO, 46.0 C	:H4	(Data for	figure 32)
Tube	diam.	Tube	diam.	Thihe	diam.	T
0.891		0.776		0.69		
0.766	259	0.779	307	0.930	541	
1.35	258	1.36	311	1.27	537	1
.833	358 353	.859	388	1.00	642	İ
1.35 .902	352 496	1.30 .930	392 541	1.22	642	1
1.28	509	1.28	544			
1.06	702 706	1.03 1.21	677 674			1
F S	uel No. 26 con toichiometric	mposition, percent: percentage:	66.6 CO, 32.3 C 17.5	н ₄ , 1.0 н ₂ , 0.1	CO ₂ (Data for	figure 32)
Tube 0.891		Tube o		Tube 0.699	diam. cm.	
0.771	259	0.771	299	0.854	463	
1.42	254	1.44	296	1.33	422	
.832	400	.891	510	-894	540	
1.39 .908	388 601	1.35 .990	470 706	1.30 1.02	530 7 42	
1.34	576	1.29	672	1.25	716	1
1.07	874 803	1.07	828 847	1.08	820 838	
1.17	893 Fuel No. 8 c	1.17 omposition, percent		H ₄ , 1.3 H ₂ , 0.1	L CO ₂	
	Stoichiometri	c percentage:	24.5	1		or figure 32)
	diam.	Tube 0.699	diam. cm.	1	e diam. Ll cm.	
0.744	270	0.800	385	1.00	861	
1.81	274	1.77	388	1.63	821	1
.772	316 331	.914	604 590	1.07	1,000 962	1
1.77 .865	331 471	1.70 1.01	590 861	1.21	1,265	-
1.74	456	1.66	794	1.56	1,220	
.972	718 712	1.12	1,115			1
1.70	712 962	1.62 1.23	1,105 1,295	1		
1.64	968	1.45	1,400	1		1
1.35	1,330 1,315					
		omposition, percent;	93.7 CO, 4.5 C 27.0	H ₄ , 1.5 H ₂ , 0.3	CO ₂ (Data fo	or figure 32)
Tuba	diam. l cm.	Tube 0.776	diam.			
				 		
0.89	105	ו וחו	61X	1		
0.89 0.731 2.01	195 197	1.01 1.88	618 596			
0.89 0.731 2.01 .838	197 310	1.88 1.09	596 774			
0.89 0.731 2.01	197	1.88	596			

TABLE 2a. - Critical boundary velocity gradients for flashback of two-component fuels (Con.);

propane-hydrogen mixtures

							
$\mathbf{F}_{\mathbf{F}}$	g _F	$\mathbf{F}_{\mathbf{F}}$	$g_{\mathbf{F}}$	F _F	g _F	$F_{\mathbf{F}}$	g _F
	Fuel No. 28 com Stoichiometric	position, percent percentage:	: 81.6 С3Н8, 4.73	17.4 н2, 1.0 сзн6	(Data for	figure 34)	
	diam.	a l	diam.		diam.		
1.02	3 cm.	0.89	1 cm.	0.77	76 cm.		,
0.754	197	0.776	251	0.856	382		
1.48	200	1.43	251	1.36	380		
•793	299	.842	343	•934	543		1
1.47	300	1.39	345	1.30	544		1
-854	428	•909	503	.981	654		1
1.38	428	1.31	508 643	1.21	654		
•974 1•26	592 600	1.01	644				l
	Fuel No. 29 com	position, percent	: 55.4 C3Hg,	ц.6 н ₂		L 	•
	Stoichiometric	percentage:	6.52	-	(Data for	figure 34)	
	diam.		diam.		diam.		
0.90	08 cm.	0.77	6 cm.	0.67	75 cm.		
0.778	241	0.772	303	0.905	518	l l	1
1.49	260	1.41	319	1.32	534	}	
.814	349	.878	495	1.05	738		
1.43	344 596	1.34	511 750	1.22	748		
			760			l	
.8 70					1	1	1
.870 1.28	613	1.24	, 00	1	1	i	1
.8 70		1.024					
.870 1.28 1.02 1.21	613 767 777 Fuel No. 30 com	position, percent	: 74.5 H ₂ , 25	•5 C ₃ H ₈	(Data for	figure 34)	
.870 1.28 1.02 1.21	613 767 777 Fuel No. 30 com Stoichiometric	position, percent percentage:	: 74.5 H ₂ , 25	Т		figure 34)	
.870 1.28 1.02 1.21	613 767 777 Fuel No. 30 com	position, percent percentage:	: 74.5 H ₂ , 25	Tube	(Data for e diam.	figure 34)	
.870 1.28 1.02 1.21 Tube 0.777	613 767 777 Fuel No. 30 com Stoichiometric p	position, percent percentage: Tube 0.67	11.3 H ₂ , 25	Tube 0.60	e diam. OO cm.	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770	613 767 777 Fuel No. 30 com Stoichiometric diam. 6 cm.	Tube 0.67	: 74.5 H ₂ , 25 11.3 diam. 5 cm.	Tube 0.60 0.684	e diam. 00 cm.	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770	613 767 777 Fuel No. 30 comp Stoichiometric diam. 6 cm. 216 242	Tube 0.67	: 74.5 H ₂ , 25 11.3 diam. 5 cm. 328 362	7ube 0.66 0.684 1.47	e diam. 00 cm. 378 418	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770	613 767 777 Fuel No. 30 com Stoichiometric diam. 6 cm.	Tube 0.67	: 74.5 H ₂ , 25 11.3 diam. 5 cm.	Tube 0.60 0.684	e diam. 00 cm.	figure 34)	
.870 1.28 1.02 1.21 Tube 0.777 0.619 1.52 .700 1.47 .834	613 767 777 Fuel No. 30 com Stoichiometric p diam. 6 cm. 216 242 428 452 904	Tube 0.67 0.696 1.49 .792 1.36 1.10	11.3 diam. 5 cm. 328 362 728 770 1,520	7ube 0.66 0.684 1.47 -763 1.39 -950	378 418 586 635 1,217	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.34	613 767 777 Fuel No. 30 com Stoichiometric p diam. 6 cm. 216 242 428 452 904 839	O.696 0.696 1.49 .792 1.36	11.3 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770	7ube 0.664 1.47 .763 1.39 .950 1.24	378 418 586 635 1,217 1,263	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770 7.619 1.52 .700 1.47 .834 1.34	613 767 777 Fuel No. 30 com Stoichiometric 1 diam. 6 cm. 216 242 428 452 904 839 1,374	Tube 0.67 0.696 1.49 .792 1.36 1.10	11.3 diam. 5 cm. 328 362 728 770 1,520	7ube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00	378 418 586 635 1,217 1,263 1,390	figure 34)	
.870 1.28 1.02 1.21 Tube 0.770 2.619 1.52 .700 1.47 .834 1.34 1.04 1.17	613 767 777 Fuel No. 30 com Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400	Ossition, percent percentage: Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14	11.3 diam. 5 cm. 328 362 728 770 1,520 1,460	7ube 0.66 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	378 418 586 635 1,217 1,263	figure 34)	
.870 1.28 1.02 1.21 Tube 0.77 0.619 1.52 .700 1.47 .834 1.34 1.04 1.17	613 767 777 Fuel No. 30 com Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400	Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 osition, percent:	11.3 diam. 5 cm. 328 362 728 770 1,520 1,460	7ube 0.66 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	378 418 586 635 1,217 1,263 1,390		
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.04 1.17 Fr. St.	file for the file	Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 position, percent:	274.5 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770 1,520 1,460 89.0 H ₂ , 11.1	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	378 418 586 635 1,217 1,263 1,390 1,320 (Data for f	Figure 34)	diam.
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.04 1.17	file for the file	Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 Desition, percent:	274.5 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770 1,520 1,460 89.0 H ₂ , 11.1	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	378 418 586 635 1,217 1,263 1,390 1,320 (Data for f	Figure 34)	diam.
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.04 1.17 Fig. Tube 0.874 0.540	fila 767 777 Fuel No. 30 composition of the fila 18 of the fila 1	Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 position, percent:	: 74.5 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770 1,520 1,460 89.0 H ₂ , 11.1	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for idiam.	Tube 0.600	0 cm.
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.04 1.17 Fig. 51 Tube 0.874 0.540 1.59	613 767 777 Fuel No. 30 composition of cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 composition of com	Tube 0.676 0.696 1.49 .792 1.36 1.10 1.14 Desition, percent: recentage: Tube 0.776 0.550 1.56	246 275	Tube 0.667 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23	diam. 20 diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for i	Tube 0.600	0 cm. 475 570
.870 1.28 1.02 1.21 Tube 0.77: 0.619 1.52 .700 1.47 .834 1.04 1.17 Tube 0.874	613 767 777 Fuel No. 30 comp Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 competoichiometric per diam. cm. 204 199 350	Dosition, percent percentage: Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 Dosition, percent: Percentage: Tube 0.776 0.550 1.56 .577	246 275 40.5 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770 1,520 1,460	Tube 0.66 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23 0.3H8 Tube 0.672 0.659 1.37 .826	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for fine) diam. cm. 877 983 1,840	Tube 0.600	0 cm. 475 570 872
.870 1.28 1.02 1.21 Tube 0.770 0.619 1.52 .700 1.47 .834 1.04 1.17 Fig. 51 Tube 0.874 0.540 1.59	613 767 777 Fuel No. 30 composition of cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 composition of com	Dosition, percent percentage: Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 position, percent: ercentage: Tube 0.776 0.556 .577 1.49	246 275 402 426	Tube 0.669 1.47 .763 1.39 .950 1.24 1.00 1.23 0 C ₃ Hg Tube 0.672 0.659 1.37 .826 1.29	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for fine) diam. cm. 877 983 1,840 1,810	Tigure 34) Tube 0.600 0.610 1.47 .668 1.36	475 570 872 1,010
.870 1.28 1.02 1.21 Tube 0.77: 0.619 1.52 .700 1.47 .834 1.04 1.17 Tube 0.874	613 767 777 Fuel No. 30 comp Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 competoichiometric per diam. cm. 204 199 350	Tube 0.676 0.550 1.56 2.577 1.49 2.633	: 74.5 H ₂ , 25 11.3 diam. 5 cm. 328 362 728 770 1,520 1,460 89.0 H ₂ , 11.1 17.4 diam. cm.	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23 0 C ₃ H _B Tube 0.672 0.659 1.37 .826 1.29 .924	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for idlam. e.cm. 877 983 1,840 1,810 2,360	Tube 0.600 0.600 1.47 .668 1.36 .756	0 cm. 475 570 872 1,010 1,510
.870 1.28 1.02 1.21 Tube 0.77: 0.619 1.52 .700 1.47 .834 1.04 1.17 Tube 0.874	613 767 777 Fuel No. 30 comp Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 competoichiometric per diam. cm. 204 199 350	Dosition, percent percentage: Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 Dosition, percent: recentage: Tube 0.776 0.550 1.56 .577 1.49 .633 1.43	246 275 402 426 734 691 1.205	Tube 0.669 1.47 .763 1.39 .950 1.24 1.00 1.23 0 C ₃ Hg Tube 0.672 0.659 1.37 .826 1.29	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for fine) diam. cm. 877 983 1,840 1,810	Tube 0.600 0.610 1.47 .668 1.36 .756 1.31	475 570 872 1,010
.870 1.28 1.02 1.21 Tube 0.77: 0.619 1.52 .700 1.47 .834 1.04 1.17 Tube 0.874	613 767 777 Fuel No. 30 comp Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 competoichiometric per diam. cm. 204 199 350	Dosition, percent percentage: Tube 0.67 0.696 1.49 .792 1.36 1.10 1.14 position, percent: ercentage: Tube 0.776 0.550 1.56 .577 1.49 .633 1.43 .705 1.36	246 275 402 426 734 691 1,205 1,180	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23 0 C ₃ H _B Tube 0.672 0.659 1.37 .826 1.29 .924	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for idlam. e.cm. 877 983 1,840 1,810 2,360	Tube 0.600 0.600 1.47 .668 1.36 .756	475 570 872 1,010 1,510 1,480
.870 1.28 1.02 1.21 Tube 0.77: 0.619 1.52 .700 1.47 .834 1.04 1.17 Tube 0.874	613 767 777 Fuel No. 30 comp Stoichiometric p diam. 6 cm. 216 242 428 452 904 839 1,374 1,400 uel No. 31 competoichiometric per diam. cm. 204 199 350	Tube 0.676 0.696 1.49 .792 1.36 1.10 1.14 Desition, percent: Tube 0.776 0.550 1.56 .577 1.49 .633 1.43 .705	246 275 402 426 734 691 1.205	Tube 0.60 0.684 1.47 .763 1.39 .950 1.24 1.00 1.23 0 C ₃ H _B Tube 0.672 0.659 1.37 .826 1.29 .924	diam. 378 418 586 635 1,217 1,263 1,390 1,320 (Data for idlam. e.cm. 877 983 1,840 1,810 2,360	Tube 0.600 0.610 1.47 .668 1.36 .756 1.31 .948	0 cm. 475 570 872 1,010 1,510 1,480 2,400

TABLE 2a. - Critical boundary velocity gradients for flashback of two-component fuels (Con.); ethylene-hydrogen mixtures

FF	gr	F _F	8F	FF	8F	FF	8 _F	FF	8F
	Fuel No. 32 comp Stoichiometric p	position, percent percentage:	78.4 C2H4, 2	1.6 н ₂	(Data for	figure 36)			L
	diam.		diam. 4 cm.		e diam. 21 cm.	Tube	diam.		diam.
0.592 1.61 .636 1.57 .713 1.49	215 232 292 316 496 530	0,815 1.33 .954 1.20	926 967 1,290 1,320	0.675 1.49 .740 1.42 .923 1.27	383 406 676 728 1,303 1,350	0.712 1.45 .774 1.37 1.30 1.16 1.23	571 592 792 839 1,156 1,470 1,400 1,520	0.846 1.29 .893 1.26 1.05	1,040 1,080 1,210 1,250 1,600 1,610
	Fuel No. 33 comp Stoichiometric p	osition, percent ercentage:	: 55.3 C ₂ H ₄ , 4 9.98	4.6 H ₂ , 0.1 C ₃ H ₆	(Data for	figure 36)			
	diam. 4 cm.		diam. 1 cm.		e diam. 24 cm.				
0.560 1.57 .602 1.47 .690 1.35 .745 1.27 .845 1.22	243 245 395 399 828 804 1,120 1,108 1,540 1,540	0.559 1.49 .656 1.40 .772 1.25 1.00	294 326 608 603 1,226 1,274 1,850 1,763	0.610 1.41 .657 1.38 .729 1.28 .781 1.23 .878 1.08	503 490 720 694 1,024 1,088 1,305 1,370 1,697 1,880				
	Stoichiometric p	osition, percent: ercentage:	13.6	1 С2Н4, О.1 С3Н6	(Data for	figure 36)			
	diam. 6 cm.	Tube diam. 0.624 cm.			diam. 95 cm.		•		
0.515 1.64 .649 1.44 .805 1.29	245 257 794 785 1,780 1,920	0.582 1.52 .740 1.36 .952 1.22	44.6 51.8 1,295 1,305 2,270 2,370	0.689 1.40 .785 1.34 .920 1.20 .988 1.15	1,017 952 1,500 1,462 2,230 2,330 2,480 2,550				
F	uel No. 35 compo tolchiometric pe	osition, percent:	80.0 H ₂ , 20.0 17.3	C2H4	(Data for	figure 36)			
Tube 0.721		Tube diam. 0.624 cm.			diam. 5 cm.				
0.511 1.69 .600 1.56 .771	290 355 798 708 2,155 2,140	0.573 1.57 .665 1.51 1.00 1.18	550 680 1,160 1,011 3,700 3,850	0.626 1.51 .722 1.46 .805 1.35 .907	858 1,037 1,535 1,480 2,270 2,552 3,040 3,292				
F	uel No. 36 compo toichiometric pe	esition, percent:	91.4 H ₂ , 8.5 22.6	с ₂ н ₄ , 0.1 с ₂ н ₆	(Data for	figure 36)			
Tube diam. 0.535 cm.		Tube diam. 0.506 cm.			diam.	Tube 0.354			
0.472	394	1.63 .515 1.65 .582 1.57 .620 1.46 .778 1.37 1.32 1.01	281 576 572 1,100 1,014 1,550 1,990 3,590 3,460 4,330 5,670 5,510	0.522 1.60 .618 1.53 .697 1.41 .778 1.33 .910	708 732 1,410 1,400 2,665 2,570 3,920 4,130 5,960 6,080	0.728 1.40 .856 1.25 .953 1.19	2,575 3,140 4,560 5,070 5,820 6,240		

			nitrogen-hydr	ogen mixtures			•
Fp	g _F	FF	g _F	FF	8 _F	F _F	8 _F
	Auel No. 37 com	position, percent	59.8 N ₂ , 40.	1 H ₂ , 0.1 A	(Data for	figure 38)	
Tube	diam.	Tube	diam.		diam.	T	
0.630 336 1.40 250		0.62	. cm.	0,49	5 cm.		
		0.608	260	0.651	417	1	
.664	505	1.37 .713	327 587	.720 1.35	678 622	1	
1.38	446	1.34	626	.856	1,207	1	
.770 1.32	930 744	.769 .836	642 1,216	1.25 .964	1,200 1,760		
.863	1,400	1.28	932	1.17	1,730		
1.23	1,460					<u> </u>	
	Stoichiometric	position, percent	45.8	.6 N2, U.3 U2	(Data for	figure 38)	
Tube 0.874	diam.	Tube 0.72	diam.		diam. 4 cm.		diam. 5 cm.
0.491	180	0.530	302	1.50	324	C.694	1,200
.540	362	1.55	258	•572	515	1.37	1,204
.617	740	.564 1.54	1412 1422	1.51 .658	453 917	1.28	2,000
	i	.632	818	1.41	1,070	.926	2,130 2,950
		1.46	743	•747	1.646	1.20	3,060
		•686	1,340	1.34	1,678		
		1.38 .809	1,376 2,230	.874	2,660	}	
		1.29	2,340	1.24	2,770]	
	uel No. 39 comp Stoichiometric p		62.4 H ₂ , 37.	3 N2, 0.1 CH4, 0.		figure 38)	
	diam.		diam.		diam.	Tube	diam.
0.874	· v	0.72	UM.	0.62	4 cm.	0.49	5 см.
0.465	173	0.513	315	0.681	1,487	0.658	1,046
1.75	292	1.74	425	1.57	1,450	.780	2,350
.540	455	•570	614	•794	2,670	1.53	1.972
1.72 •593	576 787	.624 1.67	1,033 960	1.44	2,980	1.940	3,970
1.65	1,023	.730	1,964	1.29	4,340 4,320	1.33	4,020
.629	1,173	1.55	1,890		4,,,		
1.60	1,400	.840 1.49	2,970 2,500			1	
	L		Other mixture	<u> </u>	<u> </u>	1	
FF	7 -	Fp	-	F_		T	
	Fuel No. 40 com	L	88.5 CH., O	.6 C ₂ H ₆ , 10.8 N ₂ ,	0.1 CO2	1	
	Stoichiometric	percentage:	10.5			·	
Tube 1.24	diam. 7 cm.		diam. 8 cm.	Tube 0.89	diam.		
0.765	115	n.762	112	0.730	129		
1.25	122	1.27	119	1.28	137	1	
.742	133	.766	143	•750	159		
1.26 .814	141	1.24	154 222	1.27 .778	169 201	1	
1.22	189	1.18	228	1.23	212	1	
.858	258	.862	297	.814	240		
1.18	268	1.17	308	1.19	251	1	
.943 1.11	389 397	.871 1.15	342 353	.871	317 327	1	
•956	430	1.15	353 352	1.14	430		
1.08	436	.918	369	1.04	432		
	1	1.11	377	i	İ	1	
		.944 1.10	403 410			1	
	Fuel No. 41 com Stoichiometric	position, percent percentage:	: 79.4 СН ₄ , 20 8.66	0.6 C2H4	(Points f	or figure 27)	
Tube	diam.	Tube	diam.		diam.		
	T			· · · · · · · · · · · · · · · · · · ·	1		
0.760	205	0.784	233	1.22	366	l	
1.30 .776	201	1.31 .816	221 31.2	.919	493 506	1	
1.30	251 258	1.27	342 331	1.16	574	1	
.818	303	.892	451	1.13	580	1	
1.28	297	1.20	451	I	I		
.866 1.24	398 401	•945 1-14	561 572	1	I		
.922	516	1.14	572	1	l	1	
1.18	522	L	<u></u>	L	l	L	
	Fuel No. 42 com Stoichiometric	position, percent percentage:	: 78.6 С ₂ Н ₄ , 2 6.98	21.4 CH ₄			
Tube 0.87	diam.	Tube 0.77	diam. 6 cm.		diam.		
0.687	249	0.683	299	0.746	490	· ·	
1.52	265	1.45	317	1.37	526		
.734 1.43	396 418	.782	505 528	.804	597		
.834	706	1.38 .883	528 788	1.34	622 861	1	
1.31	732	1.30	81.4	1.25	882	1	
.965	986	.980	1,018	.951	1,030	ł	
1.24	896	1.22	994	1.19	1,050	_l	

TABLE 2b. - Critical boundary velocity gradients for blowoff of two-component fuels;
methano-hydrogen mixtures

									mixture	-							
g _B	r	g g _B	F _B	g _B	FB	gB	F _B	8B	F _B	gB	FB		ßВ	r _B	€ _B	FB	8 _B
Fuel N Stoich	vo. 15	composit	ion, per		7.4 CH ₄ 0.4	, 12.6 H ₂		(Da	ta for fi	gure 29)							
diam.			Tube 0.600	diam.													
247 431 702	.76	7 584	.968	989 1,664 2,476 3,800	0.941 1.17 1.39 1.60	2,312 4,790 7,760 10,860	1.35 1.97 2.47	8,230 19,630 33,200	2.04 2.48 3.11 3.41	20,200 32,400 50,200 59,200							
					4.0 CH ₄ ,	26.0 H ₂		(Dat	ta for fi	gure 29)					***************************************	•	
diam.	Tu 0.	be diam. 873 cm.	Tube	diam.	Tube	diam.		diam.	Tub	e diam.							
196 371 577 740	0.66 .71 .79	6 198 4 612 0 984	0.788 .861 .913	816 1,607 2,750	0.910 .989 1.12 1.27	2,034 3,850 7,230 10,800	1.19 1.45 1.80	7,740 16,550 31,100	2.08 2.25 2.60 2.90	41,600 52,000 70,800 98,100							
					3.6 CH ₄ ,	46.4 H ₂		(Dat	A for fi	gure 29)	L	1			1,	4	L
Tube diam. Tube diam. Tube di 1.058 cm. 0.873 cm. 0.611 c				diam.	Tube			diam.	Tub	e diam.						e diam. 69 cm.	
205 410 710 890	0.590 .660 .69°	228 470 7 936	0.716	936 2,250	0.825 .892 .950	2,940 6,060 8,870	0.977 1.11 1.18 1.34	7,700 16,100 23,800 37,400	1.31 1.48 1.69 2.35	29,800 50,100 80,900 1/344,500	1.56	1/4 1/4	68,800 12,000 40,000 58,000	1.59 1.81 2.03	70,100 138,000 221,000	2.17 2.41 2.69	237,000 396,000 694,000
Fuel N Stoich	o. 12	compositi	on, perc	ent: 70).7 H ₂ ,	29.3 CH ₄		(Dat	a for fi	gure 29)							
Tube diam. Tube diam. Tube d					Tube diam. 0.294 cm.												
237 577 989			.613 .636	1,6 8 0 2,650	0.601 .636 .692 .732	1,565 2,050 4,330 7,560	0.694 .778 .814 .864	5,460 12,600 18,650 31,200	0.905 1.01 1.13 1.43	27,400 52,800 107,000 1/480,000	1.24 201,000 1.58 1/789,000 1.81 1/1,403,000 2.17 1/2,580,000						
g	В	F _B	g _B	Ť		g _B	F _B .	g _B	F _B	gı	В	F _B		6B			
				cent: 8	4.6 H ₂ , 2.2	15.4 CH ₄		(Data	for fig	ıre 29)							
diam.														•			
42	23	0.504 .534 .540 .549	524 1,445 2,450 3,770	.60	2 3	700 740	.625 .650 .693	8,860 16,600 31,300	.801 .854	54,00 97,80 1/365,00	00 00 00	0.963 1.10 1.54	1/ 74	0,000			
				cent: 9	4.4 H ₂ , 6.4	5.6 CH4		(Data	for figu	re 29)							
Tube diam. 1.023 cm.		Tube 0.878	diam.			diam.		Tube diam. 0.485 cm.		Tube diam.				•			
29		0.424 .439 .429	416 848 1,765	0.44	2 1 2	,307 ,340		2,135 3,860 6,960	0.492 -518 -510 -528 -536 -588 -620 -652	3,88 6,07 7,94 114,10 11,80 1 / 64,00 1 / 87,00 2 1/125,40 1 1/177,50	70 40 50 50 50 50 50 50	0.565 .578 .612 .748 .856 .944 1.03	16 23 40 1/ 232 1/ 507	3,600 0,000 2,000 7,000			
	Fuel I Stolch diam. 227 710 890 81 Stolch diam. 227 7710 850 cm. 225 225 244 73 73 73 73 75 77 75 77 75 77 75 77 75 77 75 77 77	Fuel No. 15 Stoichiomet diam. Tu cm. O. 247 0.70 431 .76 702 .86 Fuel No. 10 Stoichiomet diam. Tu cm. O. 196 0.66 371 .71 577 .79 740 .82 Fuel No. 11 Stoichiomet diam. Tu cm. O. 205 0.594 410 .667 710 .69 890 .72: Fuel No. 12 Stoichiomet diam. Tu cm. O. 237 0.582 Fuel No. 12 Stoichiomet diam. Tu cm. O. 237 0.582 577 5989 8B Fuel No. 13 Stoichiomet diam. 7 om. 239 423 734 Fuel No. 14 Stoichiomet diam. 7 om. 239 423 734	Fuel No. 15 composits Stoichiometric percent of the composits of the compo	Puel No. 15 composition, per Stoichiometric percentage	Puel No. 15 composition, percent Stoichiometric percentage 1	Real No. 15 composition, percent: Stoichiometric percentage: 10.4	Tube diam. Tube diam. Tube diam. O.873 cm. O.600 cm. O.468 cm.	Puel No. 15 composition, percent 87.4 CH _h , 12.6 H ₂	Tube Composition Percent Stoichiometric percentages 10.4 CH _k 12.6 H ₂ (Data Cem. O.873 cm. O.600 cm. O.468 cm. O.294 cm. O.270 O.706 401 O.816 989 O.941 2.312 1.35 8.230 A.11 O.767 584 .890 1.664 1.17 A.790 1.97 19.630 O.866 O.873 cm. O.611 cm. O.602 cm. O.468 cm. O.873 cm. O.611 cm. O.604 cm. O.603 cm. O.604 cm. O.604 cm. O.673 cm. O.611 cm. O.468 cm. O.873 cm. O.611 cm. O.468 cm. O.294 cm. O.873 cm. O.611 cm. O.458 cm. O.294 cm. O.874 cm. O.878 cm. O.611 cm. O.458 cm. O.294 cm. O.878 cm. O.611 cm. O.458 cm. O.294 cm. O.878 cm. O.611 cm. O.458 cm. O.294 cm. O.878 cm. O.611 cm. O.458 cm. O.294 cm. O.878 cm. O.610 cm. O.468 cm. O.294 cm. O.878 cm. O.610 cm. O.468 cm. O.294 cm. O.878 cm. O.600 cm. O.469 cm. O.294 cm.	Number N	Stock Stock	Number N	Such No. 15 composition, percent: 87.4 CHz, 12.6 Hz 10.4 Hz 10	Number N	Such Such Composition Percentage 10.4 Chig. 12.6 Hg Chig. Seal No. 13 composition, percents Fl. CHig. 12.6 Hg 10.4 10.6 Hg 10.7 Hg 10.7 Hg 10.7	Seal No. 15 composition, percents 27.4 CHg, 12.6 Hg 10.4 Section 10.4 Se	

^{1/} Turbulent flow.

TABLE 2b. - Critical boundary velocity gradients for blowoff of two-component fuels (Con.); carbon monoxide-hydrogen mixtures

							Car oon	HOHOKTOB	-hydrogen mi	xtures					
F _B	g _B	F _B	g _B	F _B	gp	FB	€B	FB	€ _B	FB	g _B	FB	8 _B	FB	€ _B
		o. 16 co			ent: 85.		O H ₂ , O.4	co ₂	(Data	for figur	·• 31)				
Tube 0.891	diam.	Tube 0.611	diam.	Tube 0.468	diam.		e diam. 94 cm.		e diam. 60 cm.						
0.627 .650 .676 .703	258 392 619 854	^.679 .723 .754 .794	705 1,055 1,394 2,005	0.757 .846 .907 .966	1,670 3,140 5,110 7,800	0.963 1.12 1.22 1.36 1.65 1.81 2.02	6,630 12,850 20,220 30,800 1/74,400 1/104,200 1/145,000	1.36 1.51 1.62 1.74 1.86 1.91 2.01 2.28 2.45	26,350 40,300 52,200 67,500 85,500 89,200 111,500 1/214,000 1/249,000						
		lo. 17 co			ent: 79		9.7 H ₂ , 0.6	N ₂ , 0.3		for figur	·a 31)				
Tube 0.873	diam.		diam.		diam.	Tube	diam.		e diam.	Tub	oe diam.		be diam. 156 cm.		e diam. 10 cm.
0.582 .624 .643	256 473 826	0.588 .640 .690 .734	289 602 1,160 2,330	0.628 .708 .764	491 1,580 3,210	∩.687 .823	924 3,815	0.835 .884 .909 1.00 1.09 1.18	3,720 5,960 7,580 12,300 19,300 29,900	1.21 1.37 1.49 1.69 2.38	25,700 46,200 61,100 90,000 1/325,000	1.49 1.71 2.24 2.43 2.59 2.93	68,200 118,200 1/329,000 1/391,000 1/458,000 1/704,000	1.47 1.53 1.64 1.95	66,500 83,000 113,000 217,000
		lo. 19 co			ent: 64 29		5.5 H ₂ , 0.1	co ₂	(Data	for figu	re 31)				
	Tube diam. Tube diam. Tube 0.891 cm. 0.699 cm. 0.611					diam.	Tube diam. 0.354 cm.		Tube diam. 0.294 cm.		Tube diam. 0.155 cm.				
0.551 .567 .586 .600	292 417 625 913	0.566 .582 .592 .604 .643 .659	355 506 682 968 1,573 2,300	0.607 .634 .670 .714	804 1,315 2,820 4,310	0.670 .712 .760	1,980 3,220 4,600	0.698 .722 .770 .808 .851	2,560 3,870 5,800 8,880 14,800	0.793 .862 .942 1.07 1.30	7,970 12,600 26,650 42,900 1/141,500	1.02 1.08 1.19 1.29 1.38 1.65 1.73 1.77 1.89 2.06 2.49	25,100 40,500 67,200 98,900 133,500 1/ 349,000 1/ 439,000 1/ 450,000 1/ 614,000 1/ 877,000 1/1,467,000 1/1,467,000		
	Fuel No Stoichi	. 20 co	mposition percent	on, perce	ent: 49. 29.	9 CO, 49	.5 H ₂ , 0.3 N	i ₂ , 0.3	CO ₂ (Data for	r figure :	31)				
Tube 0.873			diam.		diam.		e diam. 54 cm.		ube diam. .170 cm.		ube diam.				
0.498 .514 .530 .547	294 462 799 1,315	0.518 .544 .569 .598	522 895 1,740 3,400	0.578 .632 .667	1,586 3,169 7,030	0.642 .682 .714 .736	5,810 9,880 15,850 22,670	0.824 .909 .975 1.02 1.17 1.26 1.24 1.42	22,700 43,250 65,400 98,400 1/241,000 1/288,000 1/471,000 1/589,000	1.73	1/ 462,500 1/ 716,000 1/1,234,000				
	Fuel No Stoich	o. 21 co	mposition percent	on, perce	ent: 63.		.5 CO, 0.1 C	202	(Data for	r figure	31)				
Tube (diam.		diam.		e diam. 54 cm.		ube diam.						
0.476 .488 .500	284 457 814	0.491 .519 .534	593 1,080 2,125	0.539 .564 .587 .604 .629	1,640 2,720 4,230 6,500 9,400	0.562 .580 .608 .637 .660 .715	3,410 4,950 8,610 13,000 20,100 30,750	0.736 .754 .794 .804 .892 .944 1.19 1.47	15,540 24,200 42,300 61,200 90,800 143,000 1/574,000 1/1,386,000 1/2,210,000						
		o. 22 co Lometric		on, perce	ent: 85. 29.	9 H ₂ , 14 5	.1 CO			r figure	31)				
Tube 0.891			diam. 1 cm.		e diam. 68 cm.		e diam. 54 cm.		ube diam. .303 cm.		ube diam.		ube diam.		
0.433 .467 .438 .446	303 434 720 1,130	0.438 .464 .468 .470	424 862 1,365 2,100	0.471 .483 .483	1,704 2,560 4,200 5,320	0.497 .526 .520 .546	3,450 6,000 8,450 17,050	0.505 .544 .539 .573	4,670 7,180 13,300 23,500	0.556 .563 .596	14,450 20,400 35,000 1/109,000	0.637 .671 .728 .744 .878 .963	49,650 92,800 123,000 1/ 403,000		

TABLE 2b. - Critical boundary velocity gradients for blowoff of two-component fuels (Con.);

carbon monoxide-hydrogen mixtures (Con.)

FB	g _B	FB	g _B	FB	g _B	F _B	gB	FB	gB	FB	g _B		
	Fuel No	. 23 cor	mposition percenta	, perc	1	H ₂ , 6.6				r figure 3			
Tube 1.023	diam.		diam.	Tub	e diam.	Tube 0.485			e diam.	Tub	e diam. 30 cm.		
0.391 .424 .409	0.391 246 0.414 .424 492 .426		356 750 1,670	0.474 .450 .460 .455 .459	1,500 2,500 2,520 4,870 7,020	0.451 .455 .471 .474 .574	1,900 3,490 6,080 11,180 /83,500	0 •493 •506 •513 •487 •657	5,100 8,280 9,520 17,500 <u>1</u> /195,000	0.540 .558 .576 .606 .684 .754 .849	13,500 24,600 39,800 54,600 1/183,000 1/339,000 1/541,000 1/784,000))))	
					methan	e-carbon m	onoxide r	nixtures					
F _B	g _B	F	3	gB	FB	g _B	FB	g _B	r _B	g _B	FB	g _B	
			position, percentag		nt: 63.1 12.6	сн ₄ , 36.4	. co, 0.4	H ₂ , 0.1 CO)2 (Data f	or figure	33)		
	Stoichiometric percentage: Tube diam. Tube diam. 1.058 cm. 0.891 cm.				Tube 0.776	diam.		e diam. 35 cm.		diam.	Tube diam. 0.294 cm.		
0.639 110 .676 149 .720 204 .742 309 .754 396 .767 497		49 .737 246 .8 04 .759 344 .8 09 .784 444 .8 96 8		0.790 .818 .844 .865	483 656 898 1,200	0.840 .917 .982 1.02 1.10	1,078 1,538 2,170 2,910 3,950	1.05 1.22 1.32 1.49 1.66 1.76	3,440 4,950 6,400 8,000 9,370 10,450	1.59 1.74 1.95 2.12 2.23 2.40 2.54	8,720 10,000 11,860 13,950 14,800 17,250 19,900		
			osition, percentag		nt: 54.0 15.0	co, 46.0	СН4		(Data f	or figure	33)		
	Tube diam. Tube diam. 0.891 cm. 0.776 cm.				Tube 0.480	diam.		Tube diam. 0.294 cm.		diam. 9 cm.			
.701 .728 .756 .781	256 352 495 702	0.68 .72 .76 .79 .82 .85	28 66 97 22 8 1,	302 380 544 672 902 327 812	0.896 .960 1.02 1.09 1.16	1,620 2,300 3,350 4,350 5,800 7,730	1.54 1.87 2.31	11,100 17,400 24,500	1.21 1.41 1.55 1.73 1.87 2.10 2.49 2.78	6,860 9,800 12,430 14,850 17,500 20,800 26,800 30,800			
			osition, ercentage		nt: 66.6 17.5	co, 32.3	CH ₄ , 1.0	H ₂ , 0.1 CO		or figure	33)		
Tube diam. 0.891 cm.		Tube diam. 0.776 cm.		•	Tube diam. 0.699 cm.			e diam. 75 cm.		diam. 4 cm.		e diam. 49 cm.	
.698 .733 .752 .777	255 400 594 996	0.69 •74 •76	3	294 498 684	0.708 .748 .796 .823 .844	450 542 762 900 1,295 1,895	0.836 .934 1.02 1.11 1.20	1,455 2,700 3,910 5,880 7,800	1.18 1.38 1.53 1.70 1.83 2.08	7,360 10,400 13,450 17,100 19,800 22,900	2.00 2.19 2.39 2.66 2.88 3.02	21,900 26,750 29,700 34,600 37,300 43,400	

^{1/} Turbulent flow

TABLE 2b. - Critical boundary velocity gradients for blowoff of two-component fuels (Con.); methane-carbon monoxide mixtures (Con.)

PB	€ _B	r _B	g _B	r _B	€ _B	F _B	g _B	FB	€ _B	F _B	g _B		
		8 compositetric perce		ent: 88.9 24.5	CO, 9.7 C	14, 1.3 H	2, 0.1 002	(Data f	or figure 33)			
Tube 0.776	diam.	Tube 0.69	diam.	Tube 0.61	diam.		e diam. 75 cm.		diam. 9 cm.	Tube 0.155			
.660 .682 .741 .774 .790	263 340 496 738 974 1,335	0.694 .761 .794 .816 .839	395 616 826 1,130 1,495	0.833 .869 .918 .972	1,270 1,765 2,700 3,830	0.950 1.02 1.09 1.17	3,260 4,890 6,840 8,890	1.07 1.16 1.28 1.51 1.73 1.88 2.10	6,020 8,210 12,050 17,700 25,500 32,200 41,400	1.94 2.40 2.78 2.74	36,700 50,100 61,200 61,800		
		27 compositetric perce		ent: 93.7 27.0	CO, 4.5 CI	ц, 1.5 ң	2, 0.3 CO ₂	(Data f	or figure 33)			
Tube 0.776	diam.	Tube 0.48	diam.	Tube 0.24	diam.								
.782 .814 .848	588 790 1,274	0.915 1.05 1.13	1,850 3,430 5,500	1.29 1.44 1.70 1.97 2.30 2.62	8,820 13,500 21,900 29,500 42,400 52,100								
						propane	hydrogen mix	tures					
F _B	g _B	F _B	€ _B	F _B	8 _B	FB	8 _B	F _B	g B	r _B	ε _B	P _B	€ _B
		26 composi etric perc		ent: 81.6 4.73	C3Hg, 17.	4 H ₂ , 0.1	C3H6	(Data	for figure 3	35)	······································		
Tube 1.02	diam. 3 cm.		diam. 1 cm.		diam. 6 cm.		be diam. 535 cm.		be diam. 354 cm.		be diam. 249 cm.		
.685 .696 .714 .742	199 300 427 599	0.683 .751 .738	250 345 507	0.736 .782 .797 .864	544 702 999 1,600	0.840 .936 1.04 1.18	1,408 2,495 3,684 5,190	1.05 1.26 1.44 1.63 1.83 2.05	4,308 6,430 8,270 9,940 11,840 13,880	1.99 2.27 2.86	12,900 15,150 18,860		
		29 composi etric perc		ent: 55.4 6.52	С3Н8, 44.	6 н ₂	L	(Data	for figure	35)	l,,		
Tube 0.900	diam.	Tube	diam.		diam.		be diam. 413 cm.	Tu	be diam. 300 cm.	Tu	be diam. 230 om.		
0.716 •754 •730 •764 •791	262 347 590 788 1,617	0.684 .718 .780	342 490 994	0.776 .801 .890	694 1,262 2,360	0.905 .994 1.10 1.26	1,670 3,350 5,300 8,500	1.21 1.44 1.67 1.87 2.29	6,870 11,850 16,850 22,900 29,700	1.60 1.89 2.09 2.24 2.39 2.63 2.83	13,480 20,900 25,300 27,450 34,000 40,000 47,600		
		30 composi etric perc		ent: 74.5 11.3	H ₂ , 25.5	СЗНВ		(Data	for figure	35)			
Tube 0.77	diam.		diam. 5 cm.		diam.		be diam. 390 cm.		be diam. 230 cm.				
.552 .628 .668 .686 .698	214 425 887 1,315 1,600	0.640 .676 .720	325 718 2,300	0.604 .652 .722 .698 .768	427 578 1,182 1,222 3,000	0.730 .832 .883 .949 1.05 1.39 1.53 1.65 1.87	1,740 4,200 6,870 9,500 18,150 1/81,000 1/120,000 1/161,000 1/242,000	0.956 1.06 1.14 1.21 1.35 1.79 2.06 2.31 2.57 2.86	8,480 13,800 21,000 28,000 44,000 1/68,000 1/328,000 1/481,000 1/643,000 1/810,000				
	Stoichion	31 composi etric perc	entage:	17.4		·			for figure	T			
0.87	 	0.77	diam.	0.67	diam. 2 cm.	0.	be diam. 600 cm.	0.	be diam. 485 cm.	0.	ibe diam. 315 cm.	0.	be diam. 230 cm.
0.506 .526	203 373	0.514 .534 .548 .556 .587	244 399 722 1,170 2,520	0.561 .588	1,030 1,755	0.555 .562 .566 .596 .625	470 854 1,455 2,240 3,830	0.613 .648 .668	2,970 4,960 7,500	0.705 .738 .777 .821 .934 1.03 1.12	7,360 12,000 18,000 27,400 1/79,800 1/141,200 1/212,000	0.827 .910 1.08 1.18 1.36 1.48 1.72	22,100 44,400 1/154,800 1/263,000 1/484,000 1/650,000 1/957,000

^{1/} Turbulent flow.

TABLE 2b. - Critical boundary velocity gradients for blowoff of two-component fuels (Con.);
ethylene-hydrogen mixtures

P _B	8 _B	FB	g _B	F _B	g _B	FB	g _B	F _B	g _B	P _B	g _B	F _B	8 _B	F _B	€ _B
			position, percentage		78.4 C ₂ 7.83	Н ₄ , 21.6 Н	2		(Data	for figure	37)				
	diam.		e diam. 74 cm.		diam.		e diam. 24 cm.		ube diam. .495 cm.		oe diam. 313 cm.	Tube 0.267			diam.
0.540 .576 .607	215 290 492	0.622 .650 .676	910 1,256 1,636	0.590 .625 .668 .687	381 670 1,276 1.972	0.594 .625 .652 .686 .695 .742	566 782 1,077 1,482 1,785 2,950	0.646 .680 .748 .793 .852	1,200 1,550 2,550 3,970 6,140	0.807 .925 1.05 1.18	4,960 8,000 12,130 18,620	1.07 1.28 1.47	14,820 24,500 33,600	1.42 1.57 1.94 2.22 2.61	29,600 43,000 64,200 82,000 103,800
	Fuel No Stoichic	. 33 componetric	position, percentage	percent:	55.3 C ₂ i 9.98	i ₄ , 44.6 H	2, 0.1 C3H6	•	(Data i	for figure	37)				
	diam.		e diam. 21 cm.		diam.		e diam. 95 cm.		ube diam. .267 cm.		e diam.				
0.506 .541 .545 .577 .602	242 392 815 1,100 1,500	0.498 .558 .594 .615	295 602 1,206 1,775	0.515 .553 .576 .600 .626 .652 .681 .734	498 713 998 1,280 1,652 2,545 3,700 5,360	0.705 .790 .885 1.11	4,390 7,300 11,060 1/32,000	0.803 .916 1.00 1.12 1.25 1.79 2.12 2.52 3.06	7,880 14,200 21,700 30,000 39,400 1/145,200 1/239,000 1/333,300 1/473,000	1.22 1.37 1.53 1.75 1.91	34,300 50,800 67,600 99,000 125,000				
	Fuel No.	34 componetric p	position, percentage	percent:	66.8 H ₂	33.1 С ₂ н	, 0.1 Сзне		(Data f	or figure	37)				
	diam.		diam.		diam.		diam.		be diam. 249 cm.		e diam. 55 cm.				
0.481 .528 .592	244 780 1,720	0.504 .588 .645	441 1,266 2,810	0.575 .612 .632 .672 .720	1,000 1,462 2,290 4,000 6,070	0.620 .700 .760 .840	1,880 4,850 8,060 15,320	0.764 .844 .928 1.02 1.51 1.71 1.89 2.15 2.40	6,880 11,070 22,500 35,100 1/204,000 1/319,000 1/426,000 1/574,500 1/731,000	1.05 1.12 1.10 1.25 1.37	29,400 43,000 46,400 73,400 105,700				
	Fuel No Stoichic	. 35 components	position, percentage	percent:	80.0 H ₂	, 20.0 C ₂ H	4	(Data	for figure 37	7)	·		1		
	diam.		diam.		diam.		diam.		ibe diam. .220 cm.						
0.470 .511 .559	288 784 2,070	0.516 .548 .588	544 1,144 3,400	0.539 .557 .563 .625	845 1,487 2,580 6,500	0.637 .700 .732 .774 .802	4,760 9,160 15,950 23,470 28,300	0.757 .806 .894 1.09 1.27 1.59 1.83	23,800 39,300 69,600 1/ 184,000 1/ 356,500 1/ 802,000 1/1,029,000 1/1,583,000						
	Fuel No.	36 comp	osition, percentage	percent:	91.4 H ₂ , 22.6	8.5 C2H4	, 0.1 C ₂ H ₆	(Data i	for figure 37)					
Tube 0.535	diam. 5 cm.		diam.		diam. 5 cm.		diam.		ibe diam. 299 cm.		ube diam. .249 cm.		be diam. 220 cm.		
0.450	412	0.472 .494 .500 .505 .536	570 1,075 2,060 3,340 6,370	0.485 .512 .495 .514	702 1,370 2,530 4,950	0.536 .546 .556 .583	2,450 4,200 7,080 14,850	0.587 .636 .665 .760 .792 .831	10,000 20,300 29,400 1/95,000 1/131,500 1/173,000 1/295,000	0.674 .791 .900 .992 1.11 1.24	36,500 1/ 133,700 1/ 292,000 1/ 451,000 1/ 678,000 1/1,007,000	0.638 .674			

^{1/} Turbulent flow.

r _B	g _n	Fn	g.,	Fn	g.			en mixture	_ T	Fn	g	Fo	
- 13		F _B				F _B	2, 0.1 A	(Pate	g _B	F _B	gB	F _B	g _B
Tube	Stoichic diam.	·	diam.	 	51.0	1	ıbe diam.		for figur		ube diam.	- 	
	6 cm.		4 cm.		506 cm.		.495 cm.		315 cm.		.220 cm.		,
0 .624 .650 .626 .628	334 500 830 1,453	0.578 .678 .712 .644	254 572 612 1,045	.674 .681 .704	3,000 4,970	0.62 .65/ .65/ .64/	1,177	.752 .781	6,100 11,680 20,000 28,450 1/91,700	.828 .870 1.06	25,500 46,000 71,300 <u>1</u> /274,000		
		38 comp metric p			t: 50.1 1 45.8	12, 49.6 N	2, 0.3 02	(Data	for figur	e 39)			
	diam.		diam.		be diam. 624 cm.		ube diam.		ibe diam. 381 cm.		ube diam.		ube diam.
0.463 .524 .522	178 359 698	0.514 .546 .534 .528	299 437 770 1,390 2,300	0.554 .542 .540	507 852 1,695	0 .55/ .54/ .55/ .56(5 1,100 5 1,694 6 3,110	0.582	3,810 7,000 12,100 19,000	0.630 .650 .680	12,370 22,500 37,650 <u>1</u> /125,700	0.680	29,400 52,600 81,200 1/204,500 1/313,500
	Fuel No.				t: 62.4 39.9	12, 37.3 N	2, 0.1 CH _L	, 0.1 CO, (Data	0.1 CO ₂	re 39)			
	diam.		diam.		be diam. 624 cm.		abe diam.		ibe diam. 381 cm.		ube diam.		wbe diam. .220 cm.
0.453 .524 .522 .496 .491	.524 451 .5 .522 460 .5		310 595 975 1,964 2,510	0.506 .517		0.544 •530 •510 •54	2,390	.562	6,500 9,900 18,030	.653	16,70 35,30 1/189,60 1/334,00	.678	26,900 60,800 1/244,000 1/519,000
other mixtures											•		
FB	g _B	F		g _B	F _B	g _B	F _B	€ _B	F _B	gB	F _B	g _B	L
		. 40 componetric p			nt: 88.5 10.5	СН4, 0.6 С	246, 10.8	N ₂ , 0.1 C	02				
	diam.		Nube dia 1.058 cm		Tube 0.891	diam. cm.		diam. 9 cm.		diam. 8 cm.	Tube 0.38	diam.	
0.692 .724 .762 .784 .762	133 178 255 382 420	.740 220 .763 278		0.662 .696 .708 .750 .831 .846 .888 .985 1.14	128 158 199 314 462 598 727 980 1,554 2,035 2,835 2,860	0.942 1.10 1.15	1,300 2,545 3,010	1.06 1.15 1.32 1.45	2,450 3,180 4,530 5,500	1.19 1.26 1.46 1.56 1.64 1.77 2.02 2.12 2.22 2.52 2.56 2.72	3,310 4,150 5,130 5,850 6,200 7,120 8,410 9,160 10,740 12,450 13,350 14,030		
		. 41 componetric p			nt: 79.4 8.66	СН4, 20.6	C2H4	(Points	for figur	e 27)			
	e diam.	1	Tube diam	n.		diam.		diam.	Tube	diam.		diam.	
0.687 .706 .706 .732 .750	204 249 300 393 514	.73	20	232 339 444 550	0.728 .768 .774 .802 .846	377 485 710 1,020 1,542	0.828 .899 .969 1.04	1,220 2,035 3,020 4,700	1.09 1.17 1.32 1.45 1.62 1.83 2.07	3,850 6,060 8,130 9,300 11,200 13,780 16,650	1.92 2.36 2.60 3.08	14,750 20,050 23,100 28,400	
		. 42 compometric ;			nt: 78.6 6.98	С ₂ Н ₄ , 21.	. СН4						
	diam.		Tube dia 0.776 cm		Tube 0.624	diam.		diam.		diam.		diam.	
0.618 .629 .658 .680	248 393 698 966	.6	30 75 94	308 500 776 996 ,483	0.641 .658 .684 .756 .805	590 848 1,010 2,000 3,020	0.810 .864 .938 1.17	2,457 3,970 5,500 11,670	0.943 1.06 1.25 1.42 1.61	6,360 8,930 14,170 19,720 24,600	1.38 1.73 1.99 2.32 2.60 2.97	20,400 30,650 39,850 49,400 58,000 69,200	

			OTTOTOM DOMING	mixtures of c	oke-oven-gas ty	be homek ol matrica	-ponent ruers	•	
PF	e _F	Fp	e _p	Fp	s _p	Fp	8 _p	Fp	Sp.
	Puel No. 43 comp Stoichiometric p	osition, percent: ercentage:	58.4 H ₂ , 26.3 19.4	CH4, 10.6 CO, 4	.6 N2, 0.1 CO2 (Points for 1	igure 41)	<u> </u>		
	diam.	Tube 0.780	diam.	Tube 0.69	diam.		dim.	1	
0.562 1.48 .586 1.46 .652 1.33 .708 1.30	260 261 296 298 578 556 848 839	0.598 1.43 .662 1.39 .684 1.34 .754 1.32 .841 1.27	384 384 588 581 895 896 1,175 1,173 1,660 1,677 2,035	0.628 1.41 .710 1.38 .772 1.33 .820 1.27 .954	500 528 758 814 1,105 1,180 1,483 1,595 1,890 1,977	0.667 1.39 .744 1.27 .816 1.24 .956 1.13	664 662 1,020 939 1,320 1,315 1,970 2,055		
		osition, percents		00, 29.4 СН ₄ , О	.1 N ₂ , 0.1 CO ₂				
Tube	Stoichiometric p	Tube	18.2 diam.		diam.	1		1	
0.620 1.41 .672 1.37 .728 1.31 .791 1.29 .874 1.25 1.02	279 286 383 382 546 576 758 772 1,130 1,096 1,583 1,610	0.695 0.632 1.40 .711 1.36 .765 1.29 .858 1.25 .940 1.19	326 324 516 517 735 741 1,034 1,044 1,396 1,420	0.61 0.676 1.36 .756 1.30 .842 1.27 .920 1.19 .994 1.15	439 465 698 667 963 967 1,304 1,380 1,500				
		osition, percents	29.6 H ₂ , 26.2 21.9	CO, 23.4 CH ₄ , 2	0.8 N ₂	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	diam.		diam.	Tube 0.62	diam.				
0.683 1.31 .746 1.27 .790 1.25 .880 1.18	310 370 480 556 607 690 842 918	0.668 1.35 .696 1.30 .775 1.24 .907	248 300 362 428 564 643 984 1,058	0.616 1.33 .721 .822 1.21 .950 1.13	208 253 407 677 777 1,060 1,116				
	 	position, percent		co, 10.3 CH4	<u> </u>	<u> </u>	l	·	
Tube	diam.		diam.		diam. 1 cm.		diam.	Tube 0.47	diam.
0.552 1.62 .588 1.62 .634 1.58 .644 1.56	273 258 369 390 584 603 773 828	0.600 1.58 .656 1.56 .711 1.53	514 528 664 658 1,075 1,083	1.53 .736 1.49 .847 1.41 .967	918 1,270 1,510 2,010 2,430 2,770 3,720	0.804 1.45 .899 1.40 1.06 1.32	1,840 1,720 2,510 2,620 3,520 3,610	0.764 1.48 .830 1.41 .976 1.35 1.09	1,500 1,460 1,954 2,000 3,000 3,160 3,780 3,765
	Fuel No. 47 comp Stoichiometric p	position, percent percentage:	53.0 H ₂ , 33.9 24.9	CO, 9.8 CH4, 3.	3 N ₂				
Tube 0.89	diam. 1 cm.	Tube 0.69	diam.		diam. 1 cm.		diam. 5 cm.		
0.534 1.64 .593 1.61 .612 1.59 .662 1.56	252 246 370 360 468 570 789 794	0.614 1.58 .646 1.56 .707 1.53 .803 1.46 .869 1.40 .988 1.32	534 542 687 688 1,105 1,695 1,723 2,200 2,250 2,985 3,100 3,290	0.696 1.54 .777 1.47 .924 1.40 1.03	897 938 1,480 1,435 2,360 2,410 3,220 3,360	0.750 1.48 .847 1.42 .968 1.37 1.06 1.29 1.11	1,300 1,390 1,990 2,030 2,830 2,770 3,310 3,520 3,600 3,750		
	Fuel No. 48 comp Stoichiometric p	position, percent percentage:	66.2 CO, 17.5 21.9	н ₂ , 16.3 Сн ₄		•			
	diam. 3 cm.	Tube 0.77	diam.		diam. 4 cm.		diam. 5 cm.		
0.649 1.59 .714 1.55 .759 1.51 .860 1.46 .918 1.39	185 189 298 299 432 424 632 584 886	0.742 1.54 .811 1.50 1.47 .867 .884 1.39 1.03 1.10	368 362 535 488 679 712 760 1,058 1,164 1,356	0.846 1.48 .928 1.43 1.10	599 608 924 870 1,402 1,377	0.964 1.36 1.15 1.24	1,030 1,158 1,438 1,474		

TABLE 3a. - Critical boundary velocity gradients for flashback of multicomponent fuels (Con.); mixtures of coke-oven-gas type (Con.)

		mixtures of cok	e-oven-gas type	(Con.)	
FF	g _F	F _F	g _F	F.	g _F
	Tuel No. 49 compostoichiometric p	osition, percent: ercentage:	52.9 CO, 14.1 26.8	H ₂ , 11.9 CH ₄ , 2	1.1 002
Tube 0.891	diam.	Tube 0.776	diam.		diam.
0.755 1.32 .867 1.31 1.27 .999 1.19	261 258 405 402 558 638 688	0.808 1.30 .890 1.27 1.03 1.18	332 312 495 485 694 718	0.878 1.27 .954 1.23 1.01	451 450 577 577 646 688
	Fuel No. 50 compositoichiometric po	osition, percent: ercentage:	43.0 co, 11.5 30.0	Н2, 10.7 СН4, 3	4.8 CO ₂
Tube 1.058	diam. 3 cm.	Tube 0.891	diam. cm.		
		0.800 1.22 .887 1.18 .970 1.09		7 CO, 24.5 H ₂ , O	al CO ₂
	Stoichiometric p		diam.		diam.
0.694 1.33 .736 1.28 .826 1.23 .938 1.13	205 228 335 366 555 594 792 816	0.706 1.31 .766 1.27 .854 1.19	238 261 390 424 638 674	0.722 1.35 .788 1.22 .880 1.16	265 294 465 500 712 745
	uel No. 52 compo toichiometric pe	sition, percent: rcentage:	47.6 CH ₄ , 22.6	со, 22.6 H ₂ , 7.	1 N ₂ , 0.1 CO ₂
Tube 1.023		Tube 0.874		Tube 0.776	
0.685 1.35 .756 1.31 .850 1.25 1.01	184 196 310 341 506 544 772 787	0.740 1.30 .791 1.27 .920 1.20	270 301 364 443 658 692	0.793 1.28 .825 1.26 .948 1.17	365 405 439 474 706 736
	uel No. 53 compo toichiometric pe	sition, percent: rcentage:	46.1 CH ₄ , 23.1 15.4	. со, 22.9 H ₂ , 7.	9 co ₂
Tube 1.023		Tube 6 0.874		Tube 0.776	
0.676 1.32 .757 1.25 .844 1.20	182 195 318 348 510	0.746 1.31 .779 1.24 .909 1.14	269 298 370 438 660 688	0.774 1.23 .810 1.21 .952 1.12	367 399 454 488 725 747
	uel No. 54 compo toichiometric pe	sition, percent: rcentage:	36.1 CH ₄ , 17.5 18.9	CO, 17.5 H ₂ , 28	.9 CO ₂
Tube (Tube 0 0.874		Tube 0.776	
0.718 1.26 .832 1.15 .898 1.10	140 146 309 295 372 390	0.748 1.20 .923 1.13	200 214 370 345	0.814 1.17 .915 1.05	270 257 382 394

Fp	8F	F _F	8p	Pp	8 _F	Pp	Бŗ
	Fuel No. 55 compo Stoichiometric pe		37.4 CH ₄ , 33.	4 С ₂ Н ₄ , 15.2 Н ₂ ,		for figure 43)	
	diam.	T	diam.	Tuba	diam.	1	
	1 cm.	0.78		0.69		1	
0.726	300	0.758	347	0.819	536		
1.45	289	1.41	348	1.35	570	1 1	
.778 1.41	410 441	.810	475 404	.870	668	1 1	
.842	630	.894 1.33	696 676	1.33 .996	704 1,002	1 1	
1.33	616	•950	884	1.22	1,027	1 1	
.876 1.29	842 822	1.25	912			1 1	
1.04	1,030	1.02	1,036 1,060			1 1	
1.17	1,045	<u></u>		<u> </u>			
	Fuel No. 56 compo Stoichiometric pe	osition, percent ercentage:	29.1 CH ₄ , 26.2	2 С ₂ Н ₄ , 22.1 С ₃ Н ₆	, 11.8 H ₂ , 0.:	2 C ₃ H ₆ , 10.6 N ₂	
	diam. 1 cm.	Tube	diam.) cm.	Tube 0.699	diam.		
0.731	104	4. 270	24.2			1	
0.731 1.43	196 208	0.778 1.36	3142 359	0.800 1.38	354 370	1 1	
.769	287	.830	436	.847	465	1 1	
1.38	301	1.32	454	1.30	482	1 !	
.810 1.35	400 417	.878 1.30	527 546	.890 1.26	572 590]	
.840	483	.912	612	•956	700		
1.30	501	1.25	629	1.20	714	1	
.942 1.25	654 672	.966 1.21	727 742	1.05 1.07	852 854	1 1	
.982	756	1.00	814		-/		
1.20	770	1.17	826				
	Fuel No. 57 compo Stoichiometric pe		32.1 CH ₄ , 28.4 11.8	4 C ₂ H ₄ , 12.5 H ₂ ,	27.0 N ₂		
Tube 0.89	diam. L cm.	Tube 0.72	diam.	Tube 0.62/	diam.		
0.680	200	0.698	254	0.716	322		
1.40	221	1.39	278	1.35	350	1 1	
.706	286	•734	363	.802	506	1 1	
1.34 .742	312 379	1.30 .770	392 451	1.26 .881	538 707	1 1	
1.29	415	1.28	484	1.20	738	1	
.835	562	.866	644	•958	880	1	
1.26 .906	596 774	1.23	677 930	1.13	900	1	
1.20	805	1.13	947			1 1	
.972 1.16	856 878					1 1	
	1	1	other mi	xtures			
rp	87	P _P	gr	Pγ	87	Fy	Бp
P\	uel No. 58 compos toichiometric per	ition, percent:	62.5 CH ₄ , 22.2 13.3	H ₂ , 15.3 N ₂	(Points for	r figure 46)	
	liam,	Tube	iam.		(102,00	1	
						- 	
0.891		0.699					
0.891	201	0.754	228				
0.891 0.721 1.25	201 218	0.754 1.26	228 245				
0.891 0.721 1.25 .766 1.21	201 218 285 307	0.754 1.26 .793 1.23	228 245 331 354				
0.891 0.721 1.25 .766 1.21	201 218 285 307 389	0.754 1.26 .793 1.23 .857	228 245 331 354 431				
0.891 0.721 1.25 .766 1.21	201 218 285 307	0.754 1.26 .793 1.23	228 245 331 354				
0.891 0.721 1.25 .766 1.21 .818 1.15	201 218 285 307 389 408	0.754 1.26 .793 1.23 .857 1.14 .933 1.07	228 245 331 354 431 451 550 562				
0.891 0.721 1.25 .766 1.21 .818 1.15	201 218 285 307 389 408	0.754 1.26 .793 1.23 .857 1.14	228 245 331 354 431 451 550				
0.891 0.721 1.25 .766 1.21 .818 1.15 .870	201 218 285 307 389 408	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04	228 245 331 354 431 451 550 562 582 589	1 ₂ , 26.5 N ₂ , 0.2	co ₂		
0.891 0.721 1.25 .766 1.21 .818 1.15 .870	201 218 285 307 389 408 485 sel No. 59 compos oichiometric per	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3	12, 26.5 N2, 0.2 Tube d 0.495	iam.	Tube 0,381	diam.
0.891 0.721 1.25766 1.21 .818 1.15 .870 Pressore Tube co721	201 218 285 307 389 408 485 sel No. 59 composedichiometric per	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04 ition, percent: centage: Tube c 0.624	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3	Tube d 0.495	iam. cm.	0.381	CM.
0.891 0.721 1.25 -766 1.21 -818 1.15 -870 Tube c 0.721 0.610 1.81	201 218 285 307 389 408 485 sel No. 59 composicichiometric per liam. cm. 204 197	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04 ition, percent: centage: Tube colored 0.749 1.79	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3 11am. 558 558	Tube d 0.495 1.77 1.75	iam. cm. 572 754	0.381 1.61 1.05	1,590 1,840
0.891 0.721 1.25 .766 1.21 .818 1.15 .870 Tube c 0.721 0.610 1.81	201 218 285 307 389 408 485 sel No. 59 compos coichiometric per liam. cm. 204 197 280	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04 ition, percent: centage: Tube c 0.624 0.749 1.79 .790	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3 11am. cm.	Tube d 0.495 1.77 1.75 .932	iam. cm. 572 754 1,342	1.61 1.05 1.51	1,590 1,840 1,981
0.891 0.721 1.25 .766 1.21 .818 1.15 .870 Position of the control	201 218 285 307 389 408 485 sel No. 59 composicichiometric per liam. cm. 204 197	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04 ition, percent: centage: Tube colored 0.749 1.79	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3 11am. 558 558	Tube d 0.495 1.77 1.75	iam. cm. 572 754	0.381 1.61 1.05	1,590 1,840 1,981 2,235 2,327
0.891 0.721 1.25 .766 1.21 .818 1.15 .870 F. St Tubec 0.721 0.610 1.81 .681	201 218 285 307 389 408 485 eel No. 59 compos oichiometric per liam. cm. 204 197 280 367	0.754 1.26 .793 1.23 .857 1.14 .933 1.07 .954 1.04 ition, percent: centage: Tube 6 0.624 0.749 1.79 .790 .832	228 245 331 354 431 451 550 562 582 589 47.4 CO, 25.9 F 36.3 i.am. cm.	Tube d 0.495 1.77 1.75 .932 1.63	iam. cm. 572 754 1,342 1,357	0.381 1.61 1.05 1.51 1.15	1,590 1,840

			<u>ot</u>	her mixtures (Co	n.)		
FF	8 _F	F _F	g _F	F _F	g _F	F _F	8 _F
	uel No. 60 compo toichiometric pe	osition, percent:	40.8 CO, 22.1 II 39.9	2, 36.9 N ₂ , 0.2 0	:0 ₂		
Tube 0 0.874		Tube d 0.721		Tube di 0.624 d			
0.652 1.75 1.67 .754 1.59 .893 1.08 1.44	248 243 429 505 864 992 1,563 1,616	0.700 1.71 .822 1.62 1.54 .945 1.08	351 360 752 702 1,063 1,197 1,597 1,890	1.11	300 312 848 848 1,288 1,426 1,700 1,730		
	uel No. 61 compe toichiometric p	osition, percent: ercentage:	49.4 СН ₄ , 22.2 15.0	H ₂ , 16.1 CO, 11.5	CO ₂ , 0.8 N ₂		
Tube (Tube of 0.874		Tube di 0.776 d			
0.707 1.29 .751 .782 1.22 .942 1.15	199 194 249 351 344 604 597	1.27 .789 .841 1.18 .978 1.08	235 310 435 461 633 644	1.25 .798 .851 1.15 1.02 1.08	295 372 480 506 644 650		
S Tube	toichiometric p	ercentage:	8.1 diam.	1	diam.	Tube	diam.
1.023	Cm.	0.87	4 cm.	0.72	l cm.	0.49	5 cm.
1.51 .678 .755 1.34	202 438 743 782	0.597 1.58 .674 1.48 .746 1.39 .876	199 198 298 319 596 604 1,020 1,056	0.679 1.45 .854 1.30 .946 1.15	376 403 905 941 1,316 1,340	0.834 1.29 .982 1.19	826 860 1,212 1,234
	uel No. 63 comp	osition, percent:	56.5 C ₂ H ₄ , 15.8	3 н ₂ , 13.8 сн ₄ , о	.1 C ₃ H ₆ , 13.8 N ₂ (Points for i	igure 45)	
	diam.	Tube	diam. 6 cm.		diam.		
0.640 1.53 .711 1.46 .773 1.40 .876 1.32 1.02 1.20	257 260 405 406 612 612 899 918 1,220 1,215	0.704 1.44 .738 1.42 .780 1.37 .878 1.29 1.00	353 348 500 495 695 700 994 1,000 1,266 1,290	0.754 1.39 .858 1.33 .927 1.25 1.01 1.23	540 552 798 816 1,105 1,125 1,240 1,270		
	Tuel No. 64 comp Stoichiometric p	osition, percent:	55.1 C ₂ H ₄ , 18.8 8.81	3 СН ₄ , 15.8 Н ₂ , 1	0.2 со, 0.1 сзн6	•	
Tube 1.023	diam.		diam. 4 cm.		diam.		diam. 5 cm.
1.63 .715 1.50 .735 1.48 .788 1.39	160 425 458 538 579 726 770	0.636 1.61 .724 1.48 .800 1.37 .950 1.25	196 216 394 398 788 833 1,240 1,280	0.689 1.60 .795 1.46 .887 1.30 1.02	275 301 592 632 1,040 1,080 1,345 1,367	0.833 1.32 .962 1.27	840 888 1,170 1,200
	Fuel No. 65 comp Stoichiometric p	position, percent:	36.4 H ₂ , 22.6 (со, 13.3 СН ₄ , 7.2	C ₂ H ₆ , 5.8 C ₂ H ₄ , (Points for i		H ₆ , 9.8 N ₂ , 2.9 CO ₂
Tube 1.02	diam. 3 cm.		diam. 4 cm.		diam. 6 cm.		
0.633 1.41 .728 1.36 .887 1.25	199 205 380 377 812 806	0.681 1.42 .796 1.32 .988 1.15	266 249 620 600 1,033 1,067	0.756 1.31 .824 1.28 .909 1.23	447 498 706 714 920 898		

TABLE 3a. - Critical boundary velocity gradients for flashback of multicomponent fuels (Con.); other mixtures (Con.)

FF	g _F	F _F	g _F	$F_{\mathbf{F}}$	g _F	
		omposition, percent c percentage:	42.6 CH ₄ , 18.	1 С2Н4, 17.0 Н2,	9.1 00, 2.2	$c_{2}H_{6}$, 1.9 $c_{3}H_{8}$, 0.2 $c_{3}H_{6}$, 0.2 $c_{4}H_{10}$, 0.1 $c_{4}H_{8}$, 5.2 co_{2} , 3.4 N_{2}
	diam. 3 cm.		diam. 3 cm.	Tube 0.77	diam. 6 cm.	
		0.790 1.34 .850 1.28 .958 1.23 omposition, percent:	348 345 490 519 670 692 37.5 CH ₄ , 20.	1.32 .87 .898 1.23 .960 1.20		3 N ₂ , 7.4 CO ₂ for figure (44)
	diam. 8 cm.		diam.	Tube 0.67	diam.	
1.36 .690 .724 1.29 .776 1.22 .904 1.13	170 203 318 351 504 538 787 812	0.690 1.34 .782 1.26 .804 1.22 .912 1.12	248 268 415 412 540 574 797 822	0.729 1.29 1.24 .864 1.19 .906 1.12	329 357 449 643 608 765 790	

TABLE 3b. - Critical boundary velocity gradients for blowoff of multicomponent fuels;
mixtures of coke-oven-gas type

FB	g _B	FB	g _B	F _B	g _B	F _B	g _B	F _B	€ B	FB	g _B
			sition, p		58.4 II ₂ , 19.4	26.3 CH	4, 10.6 C), 4.6 N ₂ ,	0.1 CO ₂ (Po	ints for	figure 41)
	diam. l cm.		diam. O cm.		diam. 9 cm.		diam. 8 cm.		be diam. 294 cm.		ube diam. .155 cm.
.541 .556 .565 .598	259 295 568 863	0.564 .602 .610	381 578 880	0.568 .612 .620 .638 .652	494 742 1,070 1,533 2,170	∩.632 .700 .708 .740	1,685 3,030 4,440 7,010	0.753 .819 .853 .914 1.16 1.30 1.41	6,030 9,920 15,900 26,000 1/98,200 1/174,000 1/261,000	1.01 1.14 1.20 1.27 1.63 1.65 1.70 1.86 2.05 2.42	35,900 60,400 92,000 122,500 1/ 433,000 1/ 554,000 1/ 936,000 1/1,018,000 1/1,564,000
			sition, p		38.7 H ₂ , 18.2	31.7 CO	, 29.4 СН	, 0.1 N ₂ ,	0.1 CO ₂		
	diam. O cm.				diam. 1 cm.	Tube diam. 0.468 cm.			be diam. 294 cm.		ibe diam. .155 cm.
.568 .610 .642 .666 .704	276 378 536 782 1,090 1,575	0.688 .700 .721	1,037 1,404 2,080	0.598 .654 .680 .704	451 683 968 1,384	0.710 .781 .802 .856	1,784 2,930 4,380 6,900	0.846 .950 .989 1.05 1.11	5,940 10,000 13,700 20,200 27,800	1.17 1.28 1.35 1.50 1.65 1.76 2.30 2.40 2.72	24,250 39,500 54,300 75,000 110,500 140,400 1/411,000 1/483,000 1/642,000
			sition, p rcentage:		29.6 Н ₂ , 21.9	26.2 CO	, 23.4 CH _L	, 20.8 N ₂		· · · · · · · · · · · · · · · · · · ·	·····
	diam.		diam. 1 cm.		diam.	Tube 0.38	diam. Lom.		oe diam. 267 cm.		be diam. 155 cm.
.661 .677 .694 .707	305 470 590 802 1,068	0.61,2 .629 .666 .703 .756	246 356 548 932 1,682	0.578 .650 .682 .713 .738 .776	206 400 672 995 1,456 2,150 3,420	n.812 .860 .906 .957	2,610 4,160 6,120 9,150	0.972 1.08 1.17 1.25 1.69 1.90	7,500 14,050 22,100 30,360 1/119,300 1/190,000	1.37 1.44 1.49 1.62 1.79	36,730 45,500 52,000 71,400 109,200

^{1/} Turbulent flow.

TABLE 3b. - Critical boundary velocity gradients for blowoff of multicomponent fuels (Con.); mixtures of coke-oven-gas type (Con.)

FB	g _B	F _B	g _B	F _B	g _B	F _B	g _B	F _B	g _B	F _B	8 _B	F _B	€ _B	F _B	€ _B
	Fuel No.	46 compos	ition, per			.0 CO, 10.		 		·	-	· · · · · · · · · · · · · · · · · · ·			
Tube 0.891	diam.	Tube	diam.	Tube	diam. l cm.	Tube	diam. 5 cm.		diam.		ibe diam. .354 cm.		ibe diam. 249 cm.		oe diam.
0.529 .539 .554 .561	271 381 598 806	0.542 .564 .573	505 682 1,124	0.576 .606 .630 .640	859 1,980 2,880 3,800	0.613 .620 .636	1,800 2,570 3,640	0.638 .661 .691	3,080 4,760 6,620	0.710 .729 .775	6,100 10,080 16,630	0.791 .843 .866 .930 1.05 1.20	13,550 21,600 27,500 46,300 1/118,000 1/211,000	0.958 1.03 1.10 1.15 1.44 1.52 1.70 2.06	40,9, 59,9 88,5 126,0 1/ 413,0 1/ 568,0 1/ 768,0 1/1,383,0
	Fuel No. Stoichiom		ition, per centage:	rcent: 53	.0 H ₂ , 33	.9 CO, 9.8	СН4, 3.3	N ₂					·		
	diam.		diam. 9 cm.		diam.		diam. 5 cm.		diam. 2 cm.		ibe diam. .249 cm.		abe diam. 155 cm.		
0.510 .554 .551 .566	251 366 491 806	0.548 .572 .594 .604	564 694 1,126 1,730	0.584 .616 .626 .650	868 1,445 2,410 3,335	0.606 .634 .644 .656	1,306 2,065 2,860 4,440	0.672 .710 .719 .763	3,640 6,200 9,080 14,150	0.783 .851 .902 .940 1.10 1.16 1.23	12,500 19,900 32,300 45,500 1/136,000 1/183,500 1/244,000	0.980 1.08 1.15 1.35 1.49 1.60 1.66 1.76 1.87 2.14	40,400 69,200 103,000 1/ 322,000 1/ 441,000 1/ 561,000 1/ 687,000 1/ 838,000 1/1,046,000 1/1,360,000		
	Fuel No. Stoichiom			rcent: 66	.2 CO, 17	.5 H ₂ , 16.	3 СН4								
Tube diam. 1.023 cm.			diam.		diam.		diam. 5 cm.		diam. 3 cm.		ube diam. .267 cm.		ibe diam. 155 cm.		
0.605 .632 .653 .680	183 292 420 603	0.655 .674 .694 .698 .742 .757	360 516 689 722 1,192 1,520	0.686 .722 .770 .812 .848	574 874 1,385 2,200 3,355	0.786 .840 .896 .946	1,525 2,550 3,930 5,970	0.920 .958 1.06 1.10 1.24	3,800 5,180 8,150 12,450 18,320	1.10 1.18 1.36 1.56 1.60 2.06 2.27	10,030 15,000 27,120 41,200 42,500 1/125,600 1/157,200	1.53 1.70 1.87 1.98 2.16 2.19 2.24 2.30 3.15 3.49 3.81	37,500 52,600 72,800 96,000 118,000 114,300 123,600 1/422,500 1/422,500		
	Fuel No. Stoichiom	49 compos etric per	ition, per centage:	rcent: 52 26	.9 CO, 14 .8	.1 H ₂ , 11.	9 CH _{4;} 21.	1 002							
	diam. 1 cm.		diam. 6 cm.		diam. 9 cm.		diam.	Tube 0.35	diam.		be diam. 249 cm.		ne diam. 155 cm.		
0.680 .726 .752 .766	254 411 624 730	0.685 .743 .752	319 514 688	0.743 .822 .860 .905	574 1,002 1,705 2,400	0.888 .975 1.04	2,100 3,200 5,000	1.01 1.19 1.27	3,890 7,120 11,120	1.26 1.34 1.53 1.68 1.80	9,260 12,700 20,700 31,900 40,900	1.85 2.02 2.27 2.55	38,300 51,600 78,800 110,500		
	Fuel No. Stoichiom	50 compos etric per	ition, per centage:	cent: 43	.0 co, 11 .0	.5 H ₂ , 10.	7 CH ₄ , 34.	8 CO2							
	diam. 8 cm.		diam. 1 cm.		diam. l cm.		diam. 5 cm.	Tube 0.29/	diam.		be diam. 249 cm.		oe diam. L55 cm.		
0.670 .710 .746 .788 .826	107 146 216 295 419	0.716 .774 .798 .854 .874	173 261 333 512 687	0.864 .900 1.00	612 892 1,410	0.970 1.04 1.13 1.19 1.26 1.35	1,250 2,010 2,730 3,980 6,000 8,770	1.42 1.51 1.61 1.79	7,250 9,740 13,550 23,900	1.77 2.03 2.26	19,350 30,300 41,500	2.26 2.44 2.60	37,400 49,800 63,400		
		51 compos etric per	ition, per centage:		.7 CH ₄ , 2	4.7 GO, 24	.5 H ₂ , 0.1	. co ₂							
	diam. 3 cm.		diam.		diam. 6 cm.		diam. 5 cm.	Tube 0.31	diam.		be diam. 249 cm.		e diam. 220 cm.		
0.650 .666 .694 .717	202 331 544 764	0.665 .666 .702	236 384 622	0.666 .684 .720 .780	263 458 694 1,478	0.775 .847 .882 .939 .972	1,080 2,200 3,290 4,960 6,230	0.971 1.10 1.20 1.49	4,680 8,500 12,870 25,800	1.37 1.65 2.47 2.81	19,250 39,100 1/133,400 1/179,300	1.20 1.44 1.63 1.80 2.84	15,500 30,370 47,600 67,800 1/200,800		

^{1/} Turbulent flow.

TABLE 3b. - Critical boundary velocity gradients for blowoff of multicomponent fuels (Con.);

				m				n-gas ty			ar or compo							
F B	g _B	F _B	gB	FB	g _B		FB	ε_{B}	F _B	1	g _B	1	F _В	g _B			F _B	вB
		52 composit etric perce		nt: 47 15	.6 СН ₄ ,	-22.6 C	0, 22	.6 H ₂ , 7	.1 N ₂ , 0	.1	co ₂							
	be diam. 023 cm.	Tube d 0.874			diam. 6 cm.			diam.			diam.			oe diam. 249 cm.				diam. O cm.
0.642 .685 .724 .738	197 311 502 736	0.684 .711 .735	292 405 638	.706 .708 .740 .799	410 444 696 1,462		814 859 912 980 02	1,367 2,205 3,260 4,960 6,300	0.98 1.12 1.24 1.51		4,460 8,300 13,000 25,000	1.0 1.0 2.9 3.1	71 80 51	19,0 37,6 44,2 1/136,4 1/209,4	000 200 200	1. 1. 1.	52 73	13,300 29,700 47,400 68,400
		53 composit etric perce		nt: 46 15		23.1 C	0, 22	.9 H ₂ , 7	.9 co ₂									
	be diam. 023 cm.	Tube d 0.874			diam. 6 cm.			diam. 5 cm.			diam. 3 cm.			e diam. 249 cm.			Tube 0.22	diam. O cm.
0.641 .676 .704 .720		0.682 .698 .735	294 397 643	.687 .692 .731 .796	413 445 698 1,475		790 850 896 908 977	1,383 2,220 3,080 3,270 4,950 6,310	0.97 1.11 1.24 1.50		4,500 8,220 12,750 24,500	1.3 1.6 1.7 2.2 2.7	57 77 28	19,5 37,6 43,7 1/130,3 1/165,0	300 700 300	1. 1. 1.	48 70	13,400 30,200 48,200 70,600
		54 composit: etric perce		nt: 36 18	.1 СН ₄ ,	17.5 C	0, 17	.5 H ₂ , 2	8.9 CO ₂									
	be diam. 023 cm.	Tube d: 0.874			diam.			diam. 5 cm.			diam.			e diam. 220 cm.				
0.662 .725 .782	140 302 562	0.700 .755 .802	213 357 493	0.718 .764 .824 .902	306 403 792 1,600	0.8	982 LO	1,205 2,470 4,520 6,310	1.18 1.36 1.55 1.68		5,360 9,700 15,250 21,000	1.5 1.6 2.1 2.2 3.0	10 27	18,5 31,5 50,9 73,6 1/162,5	000			
1/ Tu	rbulent flow	•	<u> </u>				dxtur	es of oi	1-gas ty	pe		1						
_	FB	gB	FB	g _E		FB		g _B	FB		gB	FB		gB		F _B		g _B
_		Fuel No. 55 Stoichiomet				37.4 CH, LO.3	4, 33	.4 C ₂ H ₄ ,	15.2 H ₂	, 1	L4.0 N ₂	(Points	s fo	or figure	43)			
_		diam. 1 cm.		diam.			diam 9 cm.		Tube 0.46			Tube 0.29					diam. 5 cm.	·
	0.656 .678 .700 .726 .754	298 405 620 828 1,450	0.636 .716 .746	342 682 1,070	j	.678 .750 .814		28 74 50	0.774 .866 .898 .948 1.06	3 5 6	2,640 3,628 3,628 3,000 3,760 3,140	0.982 1.08 1.31 1.47 1.70	14 22	6,980 8,000 4,850 2,000 9,300	1 2 2 2	.59 .77 .97 .27 .60 .84	25,0 33,0 42,0 54,0 69,0 80,0	650 600 800 800 400
_		Fuel No. 56 Stoichiomet				29.1 CH 7.6	4, 26	.2 C ₂ H ₄ ,	22.1 C ₃	Hg,	11.8 н ₂ ,	о.2 с ₃ н	g , 1	0.6 N ₂				
		diam. l cm.		diam. O cm.			diam 8 cm.	•	Tube 0.29			Tube 0.15						
_	0.650 .666 .690 .716 .718 .735	195 283 395 478 642 741	0.657 .693 .722 .727 .742 .754 .807	339 431 520 602 714 798 1,398]	.764 .830 .907 .990 L.09	1,3 2,0 2,9 4,4 6,0 8,4	00 10 60 80	1.08 1.14 1.26 1.43 1.62 1.86 2.27	7 10 12 16 21	,000 ,460 ,000 ,550 ,240 ,650	1.54 1.76 1.93 1.96 2.21 2.42 2.63 2.91 3.04	20 24 24 30 34 40 46	,100 ,150 ,100 ,200 ,000 ,800 ,000 ,200 ,800				
		Fuel No. 57 Stoichiomet				32.1 CH/ L1.8	. 28	.4 C ₂ H ₄ ,	12.5 H ₂	, 2	27.0 N ₂							
-	Tube diam. Tube diam. 0.891 cm. 0.721 cm.						diam	•	Tube 0.38			Tube 0.26					diam.	•
_	0.618 .636 .656 .683 .706 .720	199 283 375 552 754 828 1,050	0.631 .641 .665 .705 .719	251 359 445 630 932		.650 .669 .693 .706 .757 .822	6	40	0.877 .938 1.07 1.22 1.38 1.45	12 17	,150 ,970 ,930 ,620 ,830 ,200	1.28 1.64 1.82 1.98 2.14	31 36	,,600 ,,100 ,,100 ,,400 ,,200	2 2 2 3	.94 .27 .37 .63 .03	33,4 43,4 48,1 59,6 75,1 87,4	100 100 100

TABLE 3b. - Critical boundary valogity gradients for blowoff of multicomponent fuels (Con.); other mixtures

						21	MIXCH 65						
FB	8 _B	FB	€ _B	FB	g _B	FB	e _B	FB	g _B	F _B	€ _B	FB	g _B
		58 component per		ercent:	62.5 СН ₄ , 13.3	22.2 H ₂ ,	15.3 N ₂	(Point	s for figure	46)			
	diam.		diam. 9 cm.		diam.		diam.		e diam. 55 cm.				
°.650 .700 .724 .739	199 282 382 475	0.706 .730 .746 .796 .842 .873 .932	327 423 535 802 1,300 1,965 2,960	0.882 .962 1.02 1.08 1.16 1.22	2,340 3,470 4,515 6,090 8,760 9,800	1.15 1.33 1.50 1.50 1.76 1.79	7,900 12,500 17,900 18,300 31,100 32,000	1.80 1.83 1.86 2.00 2.10 2.17 2.47 2.64 2.74	27,800 28,000 28,450 37,100 42,900 49,600 74,400 88,200 98,800				
		59 compo metric pe			47.4 co, 36.3	25.9 H ₂ , 2	26.5 N ₂ , 0.2	2 CO2					
	diam. 1 cm.		diam. 4 cm.		diam. 5 cm.		diam.		e diam. 267 cm.		e diam. 55 cm.	ļ	
0.572 .619 .656	200 355 618	0.648 .662 .669 .702	532 666 813 1,583	0.695 .740 .754 .765 .793	1,186 2,102 2,460 3,253 4,870	0.735 .764 .768 .813 .872	1,895 2,300 2,800 4,330 7,970 13,580	0.932 1.02 1.12	10,940 20,900 35,250	1.10 1.17 1.31 1.47 1.93	19,430 30,700 59,800 104,000 1/414,000		
		60 compos metric pe			40.8 CO, 39.9	22.1 H ₂ , 3	6.9 N ₂ , 0.	2 002					
	diam.	Tube	diam.	Tube	diam.		diam.		e diam. 81 cm.		e diam.		e diam.
0.614 .656 .682 .704	243 478 974 1,476	0.639 .680 .709 .741	339 706 1,209 1,970	0.621 .683 .717 .732 .746 .811	292 776 1,414 1,780 2,170 4,590	0.767 .810 .859 .914	2,810 3,763 5,980 9,140	0.896 .957 1.02	7,100 11,940 16,930	1.03 1.11 1.15 1.21 1.47	15,080 21,880 29,870 40,250 1/136,300 1/140,000	1.29 1.37 1.41 1.46 1.48 1.53 1.54 1.62 2.07	40,900 56,400 57,400 76,000 76,800 96,400 98,200 122,000 125,800 1/428,300
		61 compo metric pe			49.4 CH ₄ , 15.0	22.2 Н ₂ ,	16.1 00, 1	L.5 CO ₂ ,	0.8 N ₂				
	diam. 3 cm.		diam. 4 cm.		diam.		diam. 5 cm.		e diam. 294 cm.		pe diam. 220 cm.		
0.654 .674 .693 .740	197 246 346 584	0.678 •728 •759	307 426 760	0.708 .714 .775 .838	420 419 906 1,620	0.826 .890 .968 1.08	1,380 2,290 3,780 7,100	1.05 1.21 1.35 1.53 2.24 2.49 2.76	5,110 8,950 14,030 22,400 1/89,400 1/117,700 1/151,000	1.33 1.58 1.75 1.98 2.97	17,940 32,600 47,500 69,700 <u>1</u> /203,000		

TABLE 3b Critical boundary velocity a	gradients for blowoff	of multicomponent fuels (Con.);
9	other mixtures (Con.)	

				_								
gB	FB	gB	F _B	g _B	FB	gB	FB	g _B	FB	g _B	FB	g _B
			nt: 65.2 8.1	С ₂ Н ₄ , 18.7	Н ₂ , 16.1	СН4						
												oe diam. 155 cm.
492 734	0.560 .604 .638 .646	198 296 591 1,003	0.594 .680 .674 .714	373 892 1,286 2,032	0.726 .764 .793 .887	1,617 2,520 3,835 6,400	0.874 .968 1.09	5,040 8,760 14,020	1.06 1.31 1.47 1.74	10,850 20,000 29,900 40,700	1.55 1.69 1.83 2.22 2.45 2.78 2.89	29,480 37,000 47,700 61,650 76,550 92,900 103,200
	-			C ₂ H ₄ , 15.8	H ₂ , 13.8							
diam.	Tube	diam.	Tube			diam.	Tu	be diam.				oe diam. 155 om.
255 402 606 909 1,240	0.614 .631 .643 .676 .704	350 495 700 1,005 1,310	0.686 .732 .770	1,080 1,610 2,340	0.759 .815 .857 .926	2,030 3,270 4,580 7,180	0.911 1.08 1.22 1.46 1.79	5,540 10,120 15,800 25,000 33,100	1.58 1.90	30,300 40,700	2.19 2.26 2.75	51,400 59,600 73,800
				C2H4, 18.8	CH4, 15.8	H ₂ , 10.2	co, 0.1 c	3 ^H 6				
diam.	Tube	diam.	Tube									oe diam. 155 cm.
422 534 716	0.581 .628 .645 .677	195 391 780 1,210	0.632 .668 .688 .691 .728	273 585 970 1,360 2,000	0.732 .777 .828 .923	1,730 2,970 3,880 6,800	0.887 .994 1.09 1.17 1.32	4,960 8,030 11,100 15,170 19,890	1.22 1.41 1.58 1.78	16,200 24,700 32,000 40,500	1.64 1.94 2.05 2.26 2.53 2.85	35,200 46,330 53,850 64,800 78,800 94,800
			nt: 36.4 16.1	H ₂ , 22.6 C	D, 13.3 CH				, 0.1 Сзн	6, 9.8 N ₂ , 2	.9 co ₂	
198 374 786	0.622 .674 .719	292 606 1,182	0.646 .672 .698 .756	438 686 884 1,815	0.744 •797 •845 •936	1,495 2,600 3,970 7,220	0.919 1.05 1.17 1.30 1.72 1.79	5,640 10,200 17,100 27,400 1/91,000 1/103,000 1/129,500	1.02 1.19 1.35 1.51 2.22 2.75	14,000 23,800 44,700 70,500 1/215,000 1/326,700		
	Puel No. 6 Stoichiome diam. 492 734 Puel No. 6 Stoichiome diam. 255 402 606 909 1,240 Puel No. 6 Stoichiome diam. 422 534 716 Puel No. 6 Stoichiome diam. 198 374	Puel No. 62 composition Puel No. 62 composition Puel No. 62 composition Puel No. 63 composition Puel No. 63 composition Puel No. 63 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 64 composition Puel No. 65 comp	Duel No. 62 composition, perces Stoichiometric percentages	Dec No. 62 composition, percent; 65.2	Puel No. 62 composition, percent: 65.2 C2Hk, 18.7	Puel No. 62 composition, percent: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1	Puel No. 62 composition, percent: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k	Nuel No. 62 composition, percent: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k Stoichiometric percentage: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k Stoichiometric percentage: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k Stoichiometric percentage: 7.72 cm. 0.495 cm. 0.	Nucl No. 62 composition, percent: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k	Table No. 62 composition, percent: 65.2 C ₂ H _k , 18.7 H ₂ , 16.1 CH _k 8.1	Nuel No. 62 composition, percent 65.2 C2H _k , 18.7 H ₂ , 16.1 CH _k	No. 62 composition, percents 65.2 C2H _k , 18.7 H ₂ , 16.1 CH _k 8.1

F _B	€ _B	F _B	₽ _B	F _B	€ _B	P _B	g _B	F _B	g _B	.F _B	g _B	FB	e _B	FB	g _B
		66 compos metric per			.6 CH ₄ , 1	8.1 C ₂ H ₄ ,	17.0 H ₂ , 9	.1 CO, 2.	2 C ₂ H ₆ , 1.	9 с ₃ н ₈ ,	0.2 C3H6, 0.2	C4H10, 0	.1 C4Hg, 5	.2 CO ₂ , 3	.4 N ₂
Tube 1.02	diam.		diam. 6 cm.		diam. 6 cm.	Tube 0.60	diam. O cm.		diam. 5 cm.		be diam. 315 cm.		diam.		diam. 9 cm.
0.690 .701 .744	289 438 760	0.706 .718 .756	390 482 654	0.736 .764 .814	624 996 1,610	0.812 .881 .950	1,200 2,410 3,810	0.912 1.03 1.12	3,010 5,500 8,020	1.09 1.24 1.37 1.53 1.71 2.02 2.95 3.29	6,270 10,120 13,970 17,800 22,830 28,400 1/85,700	1.15 1.34 1.57 1.66 1.80 1.93 2.19	7,280 12,200 19,570 21,160 26,200 28,750 33,850	1.77 2.02 2.25	25,250 34,800 42,300

	diam.		diam.		diam. 5 cm.		diam. 3 cm.		diam. O cm.		be diam. 230 cm.
0.633	201	0.612	245	0.642	325	0.828	1,460	1.05	7,460	1.67	26,000
.655	352	.674	397	.705	595	.851	2,945	1.33	14,950	2.01	37,100
.667	497	.670	564	.705	788	.960	5,400	1.54	22,200	2.24	46,300
.697	764	.730	1,107	.796	2,030	1.14	10,270	1.75	28,100	2.45	53,200

1/ Turbulent flow.

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule:
two-component mixture

Fuel No. $40^{1/2}$ composition, percent: 88.5 CH₄, 0.6 C₂H₆, $2^{1/2}$ 10.8 N₂, 0.1 CO₂ Stoichiometric percentage: 10.5

Complex for flashback: $(100\% \text{ CH}_L)(N_2 \text{ and } CO_2)$.

Calc. of complex:

Use 100% CH4 flame-stability diagram.

Total percentage of $CH_{L} = 89.1$.

	A (figure 20)	B 800
${ t F}_{f F}$	$g_{\mathbf{F}}$ for 100% CH $_4$	A × 0.891 g _F for total fuel
0.75	135	120
•8	190	169
•9	330	294
1.0	390	348
1.1	340	303
1.2	180	160
1.25	120	107

Complex for blowoff: $(100\% \text{ CH}_L)(N_2 \text{ and } CO_2)$.

Calc. of complex:

Use 100% CH4 flame-stability diagram.

Total percentage of $CH_L = 89.1$.

	A (figure 20)	B A × 0.891		
FB	g_B for 100% CH $_\mathrm{4}$	g _B for total fuel		
0.7	170	152		
.8	530	472		
•9	1,100	981		
1.0	1,950	1,737		
1.2	3,750	3,340		
1.4	5,380	4,790		
1.8	8,300	7,400		
2.2	11,000	9,810		
2.6	14,300	12,750		
3.0	18,000	16,050		

 $[\]underline{1}/$ Compare with experimental points (A-T/2a,2b-No./40). Z/ Tally with CH4.

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); two-component mixture (Con.)

Fuel No. 41 composition. percent: 79.4 CH₄, 20.6 C₂H₄
Stoichiometric percentage: 8.66 (Curves for figure 27)

Complexes for flashback: $(100\% \text{ CH}_4)(100\% \text{ C}_2\text{H}_4)$

Calc. of complexes:

Use 100% CH4 flame-stability diagram; use 100% C2H4 flame-stability diagram.

Total percentage of $CH_L = 79.4$; total percentage of $C_2H_L = 20.6$.

	A (figure 20)	В	C (figure 22)	D	B + D
F _F	$g_{\mathbf{F}}$ for 100% CH_{4}	A × 0.794	g _F for 100% C ₂ H ₄	c × 0.206	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	135 190 330 390 340 180 120	107 151 262 310 270 143 95	105 390 570 760 1,050 1,280 1,380 1,300 1,200 1,070 730 390	22 80 118 157 216 264 284 268 247 220 150 80	22 80 225 308 478 574 554 411 342 220 150 80

Complexes for blowoff: (100% CH_L)(100% C₂H_L).

Calc. of complexes:

Use 100% $\mathrm{CH_4}$ flame-stability diagram; use 100% $\mathrm{C_2H_4}$ flame-stability diagram.

Total percentage of $CH_L = 79.4$; total percentage of $C_2H_L = 20.6$.

			7		
	A (figure 20)	В	C (figure 22)	D	B + D
F _B	g _B for 100% CH ₄	A × 0.794	g _B for 100% C ₂ H ₄	C × 0.206	gB for total fuel
0.6			370	76	76
•7	170	135	1,600	330	465
.8	530	421	3,850	794	1,215
•9	1,100	873	6,700	1,380	2,253
1.0	1,950	1,550	10,000	2,060	3,610
1.2	3,750	2,980	17,000	3,500	6,480
1.4	5,380	4,270	26,000	5,360	9,630
1.8	8,300	6,590	44,000	9,060	15,650
2.2	11,000	8,730	61,500	12,660	21,390
2.6	14,300	11,350	76,000	15,650	27,000
3.0	18,000	14,300	92,000	18,950	33,250

^{1/} Compare with experimental points (A-T/2a,2b-No./41).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); two-component mixture (Con.)

Fuel No. $42^{1/2}$ composition, percent: 78.6 C₂H₄, 21.4 CH₄

Stoichiometric percentage:

6.98

Complexes for flashback: $(100\% C_2H_L)(100\% CH_L)$.

Calc. of complexes:

Use 100% C2H4 flame-stability diagram; use 100% CH4 flame-stability diagram.

Total percentage of $C_2H_L = 78.6$; total percentage of $CH_L = 21.4$.

	A (figure 22)	В	C (figure 20)	D	B + D
$\mathtt{F}_{\mathbf{F}}$	g _F for 100% C ₂ H ₄	A × 0.786	g _F for 100% CH ₄	C × 0.214	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	105 390 570 760 1,050 1,280 1,380 1,300 1,200 1,070 730 390 190	83 307 448 597 826 1,006 1,085 1,022 943 841 574 307	135 190 330 390 340 180 120	29 41 71 83 73 39 26	83 307 477 638 897 1,089 1,158 1,061 969 841 574 307 149

Complexes for blowoff: $(100\% C_2H_L)(100\% CH_L)$.

Calc. of complexes:

Use 100% C_2H_4 flame-stability diagram; use 100% CH_4 flame-stability diagram.

Total percentage of CoH, = 78.6; total percentage of CH, = 21.4.

	Tota	il percentage of	$C_2H_4 = 78.6$; total pe	rcentage of CH4	= 41.4.
	A (figure 22)	В	C (figure 20)	ם	B + D
FB	g _B for 100% C ₂ H ₄	A × 0.786	g _B for 100% CH ₄	C × 0.214	g _B for total fuel
0.6	370	291			291
•7	1,600	1,258	170	36	1,294
•8	3,850	3,030	530	114	3,144
•9	6,700	5,270	1,100	235	5,505
1.0	10,000	7,860	1,950	417	8,277
1.2	17,000	13,360	3,750	802	14,160
1.4	26,000	20,450	5,380	1,150	21,600
1.8	44,000	34,600	8,300	1,775	36,380
2.2	61,500	48,300	11,000	2,350	50,650
2.6	76,000	59,800	14,300	3,060	62,860
3.0	92,000	72,400	18,000	3,850	76,250

^{1/} Compare with experimental points (A-T/2a,2b-No./42).

Fuel No. 43 composition, percent: 58.4 H₂, 26.3 CH₄, 10.6 CO, 4.6 N₂, 0.1 CO₂ Stoichiometric percentage: 19.4 (Curves for figure 41)

Complexes for flashback: $(CH_4 + CO)(CH_4 + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes: $(10.6/10.6 + 58.4) \times 26.3 = 4.04$ (CH_L going with CO); CH_L/CO = 4.04/10.6 = 0.381;

 $(58.4/10.6 + 58.4) \times 26.3 = 22.26$ (CH₄ going with H₂); CH₄/H₂ = 22.26/58.4 = 0.381.

Total percentage of $CH_{L}/CO = 4.04 + 10.6 = 14.64$; total percentage of $CH_{L}/H_{2} = 22.26 + 58.4 = 80.66$.

F _F	A (figure 32) g _F for CH _{L/} /CO = 0.381	B A × 0.1464	C (figure 28) g _F for CH _L /H ₂ = 0.381	D C × 0.8066	$B+D$ $g_{f F}$ for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	170 285 390 605 795 950 910 845 735 440 190	25 42 57 89 116 139 133 124 108 64	117 520 1,070 1,370 1,700 2,160 2,400 2,150 1,530 1,140 765 250	94 420 864 1,105 1,370 1,743 1,935 1,735 1,235 920 617 202 81	94 420 889 1,147 1,427 1,832 2,051 1,874 1,368 1,044 725 266 109

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(N_2 \text{ and } CO_2)$.

Calc. of complexes: $H_2/CO = 0.20$, $0.20 \times 10.6 = 2.12$ (H_2 going with CO); $H_2/CO = 2.12/10.6 = 0.20$;

58.4 - 2.12 = 56.28 (H₂ going with CH₄); CH₄/H₂ = 26.3/56.28 = 0.467.

Total percentage of $H_2/CO = 2.12 + 10.6 = 12.72$; total percentage of $CH_2/H_2 = 26.3 + 56.28 = 82.58$.

F _B	A (figure 31)	В	C (figure 29)	D	B + D
	g _B for H ₂ /CO = 0.20	A × 0.1272	$g_B \text{ for } CH_L/H_2 = 0.467$	C × 0.8258	gB for total fuel
0.5			185	153	153
•6	250	32	1,050	866	898
•7	1,000	127	5,000	4,130	4,257
.8	2,700	343	12,500	10,320	10,660
•9	5,300	343 674	25,000	20,630	21,300
1.0	9,500	1,208	41,500	34,250	35,460
1.2	22,000	2,800	125,000	103,200	106,000
1.4	41,000	5,220	325,000	268,000	273,200
1.8	111,000	14,120	1,100,000	908,000	922,100
2.2	225,000	28,600	2,150,000	1,775,000	1,804,000
2.6	380,000	48,300	3,260,000	2,690,000	2,738,000
3.0	560,000	71,200	7,150,000	5,900,000	5,971,000

^{1/} Compare with experimental points (A-T/3a,3b-No./43).

Fuel No. $44^{\frac{1}{2}}$ composition, percent: 38.7 H₂, 31.7 CO, 29.4 CH₄, 0.1 N₂, 0.1 CO₂

Stoichiometric percentage:

18.2

Complexes for flashback: $(CH_{L} + CO)(CH_{L} + H_{2})(N_{2} \text{ and } CO_{2})$.

Calc. of complexes:

 $(31.7/31.7 + 38.7) \times 29.4 = 13.24$ (CH_L going with CO); CH_L/CO = 13.24/31.7 = 0.418;

 $(38.7/31.7 + 38.7) \times 29.4 = 16.16$ (CH_L going with H₂); CH_L/H₂ = 16.16/38.7 = 0.417.

Total percentage of $CH_L/CO = 13.24 + 31.7 = 44.94$; total percentage of $CH_L/H_2 = 16.16 + 38.7 = 54.86$.

	A (figure 32)	В	C (figure 28)	D	B + D
FF	g _F for CH ₄ /CO = 0.418	A × 0.4494	g _F for CH ₄ /H ₂ = 0.417	C × 0.5486	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	166 280 385 590 780 915 870 800 675 395 168	75 126 173 265 350 411 391 360 303 178	100 480 995 1,270 1,590 2,000 2,100 1,970 1,310 980 660 200	55 263 546 698 874 1,096 1,152 1,080 720 538 362 110	55 263 621 824 1,047 1,361 1,502 1,491 1,111 898 665 288 75

Complexes for blowoff:

 $(CH_L + H_2)(H_2/CO = 0.20)(N_2 \text{ and } CO_2).$

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 31.7 = 6.34$ (H_2 going with CO); $H_2/CO = 6.34/31.7 = 0.20$;

38.7 - 6.34 = 32.36 (H₂ going with CH_L); CH_L/H₂ = 29.4/32.36 = 0.909.

Total percentage of $H_2/CO = 6.34 + 31.7 = 38.04$; total percentage of $CH_L/H_2 = 29.4 + 32.36 = 61.76$.

	A (figure 31)	В	C (figure 29)	D	B + D
${\tt F}_{\tt B}$	g _B for H ₂ /CO = 0.20	A × 0.3804	g _B for CH ₄ /H ₂ = 0.909	c × 0.6176	g _B for total fuel
0.6	250	95	320	198	293
•7	1,000	95 380	1,510	932	1,312
.8	2,700	1,026	4,650	2,870	3,896
•9	5,300	2,020	9,300	5,740	7,760
1.0	9,500	3,610	15,000	9,260	12,870
1.2	22,000	8,370	35,500	21,900	30,270
1.4	41,000	15,600	72,000	44,500	60,100
1.8	111,000	42,200	220,000	136,000	178,200
2.2	225,000	81,800	495,000	306,000	387,800
2.6	380,000	144,500	900,000	556,000	700,500
3.0	560,000	213,000	1,700,000	1,050,000	1,263,000

^{1/} Compare with experimental points (A-T/3a,3b-No./44).

Fuel No. $45^{1/2}$ composition, percent: 29.6 H₂, 26.2 CO, 23,4 CH₄, 20.8 N₂

Stoichiometric percentage:

21.9

Complexes for flashback: $(CH_L + CO)(CH_L + H_2)(N_2)$.

Calc. of complexes:

 $(26.2/26.2 + 29.6) \times 23.4 = 11.0$ (CH_L going with CO); CH_L/CO = 11.0/26.2 = 0.42;

 $(29.6/26.2 + 29.6) \times 23.4 = 12.4$ (CH_L going with H₂); CH_L/H₂ = 12.4/29.6 = 0.419.

Total percentage of $CH_L/CO = 11.0 + 26.2 = 37.2$; total percentage of $CH_L/H_2 = 12.4 + 29.6 = 42.0$.

	figure 32)		C (figure 28)	D	B + D
F _F g _F for	$CH_{L}/CO = 0.42$	× 0.372	$g_{\rm F}$ for $CH_{\rm L}/H_{\rm 2} = 0.419$	C × 0.42	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	166 280 385 590 780 915 870 800 675 395	62 104 143 219 290 340 324 298 251 147	100 480 995 1,270 1,590 2,000 2,100 1,970 1,310 980 660 200	42 202 418 534 668 840 882 827 550 412 277 84	42 202 480 638 811 1,059 1,172 1,167 874 710 528 231 63

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(N_2)$.

Calc. of complexes:

 $H_2/C0 = 0.20$, $0.20 \times 26.2 = 5.24$ (H_2 going with C0); $H_2/C0 = 5.24/26.2 = 0.20$;

29.6 - 5.24 = 24.36 (H₂ going with CH_L); CH_L/H₂ = 23.4/24.36 = 0.961.

Total percentage of $H_2/CO = 5.24 + 26.2 = 31.44$; total percentage of $CH_L/H_2 = 23.4 + 24.36 = 47.76$.

	A (figure 31)	В	C (figure 29)	D	B + D
${\tt F_B}$	$g_B \text{ for } H_2/CO = 0.20$	A × 0.3144	g _B for CH ₄ /H ₂ = 0.961	C × 0.4776	g _B for total fuel
0.6	250	79	288	138	217
.7	1,000	314	1,340	640	954
.8	2,700	849	4,250	2,030	2,879
.9	5,300	1,665	8,500	4,060	5,725
1.0	9,500	2,990	13,500	6,450	9,440
1.2	22,000	6,920	31,800	15,200	22,120
1.4	41,000	12,900	63,500	30,300	43,200
1.8	111,000	34,900	193,000	92,200	127,100
2.2	225,000	70,800	430,000	205,000	275,800
2.6	380,000	119,500	800,000	382,000	501,500
3.0	560,000	176,000	1,470,000	702,000	878,000

^{1/} Compare with experimental points (A-T/3a,3b-No./45).

Fuel No. $46^{1/2}$ composition, percent: 55.7 H₂, 34.0 CO, 10.3 CH_L

Stoichiometric percentage:

24.2

Complexes for flashback: $(CH_4 + CO)(CH_4 + H_2)$.

Calc. of complexes:

 $(34.0/34.0 + 55.7) \times 10.3 = 3.9$ (CH_L going with CO); CH_L/CO = 3.9/34.0 = 0.115;

 $(55.7/34.0+55.7) \times 10.3 = 6.4$ (CH_L going with H₂); CH_L/H₂ = 6.4/55.7 = 0.115.

Total percentage of $CH_{L}/CO = 3.9 + 34.0 = 37.9$; total percentage of $CH_{L}/H_{2} = 6.4 + 55.7 = 62.1$.

	A (figure 32)	В	C (figure 28)	ם	B + D
$\mathbf{F}_{\mathbf{F}}$	g _F for CH ₄ /CO = 0.115	A × 0.379	g _F for CH ₄ /H ₂ = 0.115	C × 0.621	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	187 284 365 565 820 1,040 1,220 1,300 1,340 1,360 1,050 253	71 108 138 214 311 394 462 493 508 516 398 96	515 1,260 2,380 2,950 3,650 4,650 5,450 5,450 5,450 4,900 4,150 2,600 520	320 782 1,480 1,830 2,270 2,890 3,385 3,480 3,385 3,040 2,580 1,615 323	320 782 1,551 1,938 2,408 3,104 3,696 3,874 3,833 3,088 2,131 721 96

Complexes for blowoff:

 $(CH_{L} + H_{2})(H_{2}/CO = 0.20).$

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 34.0 = 6.8$ (H_2 going with CO); $H_2/CO = 6.8/34.0 = 0.20$;

55.7 - 6.8 = 48.9 (H_2 going with CH_4); $CH_4/H_2 = 10.3/48.9 = 0.211.$

Total percentage of $H_2/CO = 6.8 + 34.0 = 40.8$; total percentage of $CH_2/H_2 = 10.3 + 48.9 = 59.2$.

	A (figure 31)	A (figure 31) B		D	B + D	
$^{\mathtt{F}}\mathtt{B}$	g _B for H ₂ /C0 = 0.20 A × 0.408		g _B for CH _L /H ₂ = 0.211	C × 0.592	gB for total fuel	
0.5			690	408	408	
•6	250	102	4,550	2,690	2,792	
•7	1,000	408	19,700	11,650	12,060	
.8	2,700	1,100	45,000	26,600	27,700	
•9	5,300	2,160 3,880	107,000	63,400	65,560	
1.0	9,500	3,880	245,000	145,000	148,900	
1.2	22,000	8,980	525,000	311,000	320,000	
1.4	41,000	16,730	1,180,000	699,000	715,700	
1.8	111,000	45,300	3,950,000	2,340,000	2,385,000	
2.2	225,000	91,800	7,650,000	4,530,000	4,622,000	

^{1/} Compare with experimental points (A-T/3a,3b-No./46).

Fuel No. $47^{1/2}$ composition, percent: 53.0 H₂, 33.9 CO, 9.8 CH₄, 3.3 N₂

Stoichiometric percentage:

24.9

Complexes for flashback: $(CH_L + CO)(CH_L + H_2)(N_2)$.

Calc. of complexes:

 $(33.9/33.9 + 53.0) \times 9.8 = 3.82$ (CH_L going with CO); CH_L/CO = 3.82/33.9 = 0.113;

 $(53.0/33.9 + 53.0) \times 9.8 = 5.98$ (CH₄ going with H₂); CH₄/H₂ = 5.98/53.0 = 0.113.

Total percentage of $CH_{1/}/CO = 3.82 + 33.9 = 37.72$; total percentage of $CH_{1/}/H_2 = 5.98 + 53.0 = 58.98$.

	A (figure 32)	В	C (figure 28)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	g _F for CH ₄ /CO = 0.113	A × 0.3772	g _F for CH ₄ /H ₂ = 0.113	C × 0.5898	g _F for total fuel
0.5			515 1,260 2,380 2,950 3,650 4,650	304 743 1,404 1,740 2,150 2,740 3,210	304
•6 •7	187	77	2 390	1 101	743 1,475 1,847 2,288
• (75	284	71 107	2,500	1 740	1 9.7
•1) •8	365	138	3,650	2 150	2 288
.75 .8 .9 1.0 1.1 1.2 1.25 1.3	565	213	4.650	2.760	2,953
1.0	820	309	5,450	3,210	2,953 3,519 3,692
1.1	1,040	392	5,600	3,300	3,692
1.2	1,220	392 460	5,450	3,210	3,670
1.25	1,300	490	4,900	2,890	3,380
1.3	1,340	506	4,150	2,450	2,956
1.4	1,360	513	2,600	1,532 306	2,045
1.4 1.6	1,050	396	520	306	702
1.8	253	513 396 95			95

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(N_2)$.

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 33.9 = 6.78$ (H_2 going with CO); $H_2/CO = 6.78/33.9 = 0.20$;

53.0 - 6.78 = 46.22 (H₂ going with CH_L); CH_L/H₂ = 9.8/46.22 = 0.212.

Total percentage of $H_2/CO = 6.78 + 33.9 = 40.68$; total percentage of $CH_L/H_2 = 9.8 + 46.22 = 56.02$.

	A (figure 31)	В	C (figure 29)	D	B + D
FB	$g_B \text{ for } H_2/CO = 0.20$	A × 0.4068	g _B for CH ₄ /H ₂ = 0.212	c × 0.5602	g _B for total fuel
0.5			690	386	386
•6	250	102	4,550	2,550	2,652
•7	1,000	407	19,700	11,040	11.450
.8	2,700	1,100	45,000	25,200	26,300
•9	5,300	2,160	107,000	60,000	62,160
1.0	9,500	3,870	245,000	137,300	141,200
1.2	22,000	8,940	525,000	294,000	302,900
1.4	41,000	16,700	1,180,000	661,000	677,700
1.8	111,000	45,100	3,950,000	2,210,000	2,255,000
2.2	225,000	91,500	7,650,000	4,285,000	4,377,000

^{1/} Compare with experimental points (A-T/3a.3b-No./47).

Fuel No. 48 composition, percent: 66.2 CO, 17.5 H₂, 16.3 CH_L

Stoichiometric percentage:

21.9

Complexes for flashback: $(CH_{4} + CO)(CH_{4} + H_{2})$.

Calc. of complexes:

 $(66.2/66.2 + 17.5) \times 16.3 = 12.9$ (CH_L going with CO); CH_L/CO = 12.9/66.2 = 0.195;

 $(17.5/66.2 + 17.5) \times 16.3 = 3.4$ (CH_L going with H₂); CH_L/H₂ = 3.4/17.5 = 0.194.

Total percentage of $CH_L/CO = 12.9 + 66.2 = 79.1$; total percentage of $CH_L/H_2 = 3.4 + 17.5 = 20.9$.

	A (figure 32)	В	C (figure 28)	Д	B + D
FF	g _F for CH _L /CO = 0.195	A × 0.791	g _F for CH ₄ /H ₂ = 0.194	C × 0.209	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	194 305 410 650 870 1,100 1,140 1,200 1,210 965 525 133	154 241 324 514 688 870 902 950 958 764 415	310 885 1,710 2,180 2,750 3,500 4,050 3,800 3,480 2,950 2,200 1,100 147	65 185 357 456 574 732 846 794 728 616 460 230 31	65 185 511 697 898 1,246 1,534 1,664 1,630 1,566 1,418 994 446

Complexes for blowoff:

 $(CH_L + H_2)(H_2/CO = 0.20)$.

Calc. of complexes:

 $H_2/C0 = 0.20$, $0.20 \times 66.2 = 13.24$ (H_2 going with CO); $H_2/C0 = 13.24/66.2 = 0.20$;

17.5 - 13.24 = 4.26 (H₂ going with CH_L); H₂/CH_L = 4.26/16.3 = 0.261.

Total percentage of $H_2/C0 = 13.24 + 66.2 = 79.44$; total percentage of $H_2/CH_L = 4.26 + 16.3 = 20.56$.

	A (figure 31)	A (figure 31) B	C (figure 29)	מ	B + D
FB	g_B for $H_2/CO = 0.20$	A × 0.7944	g _B for H ₂ /CH ₄ = 0.261	C × 0.2056	gB for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	199 794 2,145 4,210 7,540 17,500 32,600 88,200 179,000 302,000 445,000	102 295 1,020 2,050 3,580 7,280 11,300 23,000 37,500 55,500 83,000	21 61 210 421 736 1,495 2,320 4,730 7,710 11,400 17,050	220 855 2,355 4,631 8,276 19,000 34,920 92,930 186,700 313,400 462,100

^{1/} Compare with experimental points (A-T/3a,3b-No./48).

Fuel No. $49^{1/2}$ composition, percent: 52.9 CO, 14.1 H₂, 11.9 CH₄, 21.1 CO₂

Stoichiometric percentage:

26.8

Complexes for flashback: $(CH_4 + CO)(CH_4 + H_2)(CO_2)$.

Calc. of complexes:

 $(52.9/52.9 + 14.1) \times 11.9 = 9.4$ (CH_L going with CO); CH_L/CO = 9.4/52.9 = 0.178;

 $(14.1/52.9 + 14.1) \times 11.9 = 2.5$ (CH₄ going with H₂); CH₄/H₂ = 2.5/14.1 = 0.177.

Total percentage of $CH_{L}/CO = 9.4 + 52.9 = 62.3$; total percentage of $CH_{L}/H_{2} = 2.5 + 14.1 = 16.6$.

	A (figure 32)	В	C (figure 28)	D	B + D
F _F	g _F for CH _L /CO = 0.178	A × 0.623	g _F for CH _L /H ₂ = 0.177	c × 0.166	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.6 1.8	195 303 405 645 875 1,120 1,160 1,250 1,270 1,070 610	122 189 252 402 546 698 722 779 791 666 380 93	340 950 1,850 2,320 2,920 3,750 4,350 4,200 3,850 3,350 2,550 1,330 520 172	56 158 307 385 485 622 722 697 639 556 423 221 86 29	56 158 429 574 737 1,024 1,268 1,395 1,361 1,335 1,214 887 466 122

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(CO_2)$.

Calc. of complexes:

 $H_2/C0 = 0.20$, $0.20 \times 52.9 = 10.58$ (H_2 going with CO); $H_2/C0 = 10.58/52.9 = 0.20$;

14.1 - 10.58 = 3.52 (H_2 going with CH_L); H_2/CH_L = 3.52/11.9 = 0.296.

Total percentage of $H_2/CO = 10.58 + 52.9 = 63.48$; total percentage of $H_2/CH_1 = 3.52 + 11.9 = 15.42$.

	A (figure 31)	В	C (figure 29)	D	B + D
FB	$g_B \text{ for } H_2/CO = 0.20$	A × 0.6348	g _B for H ₂ /CH ₄ = 0.296	C × 0.1542	gB for total fuel
0.6	250	159	106	16	175
•7	1,000	635	300	46	681
.8	2,700	1,714	1,100	170	1.884
•9	5,300	3,360	2,200		3,699 6,619
1.0	9,500	6,030	3,820	339 5 8 9	6,619
1.2	22,000	13,960	7,900	1,220	15,180
1.4	41,000	26,000	12,500	1,930	27,930
1.8	111,000	70,400	26,000	4,010	74,410
2.2	225,000	142,800	43,500	6,710	149,500
2.6	380,000	241,000	65,000	10,000	251,000
3.0	560,000	355,000	96,500	14,880	369,900

^{1/} Compare with experimental points (A-T/3a,3b-No./49).

Fuel No. 50 composition, percent: 43.0 CO, 11.5 H₂, 10.7 CH₄, 34.8 CO₂

Stoichiometric percentage:

Complexes for flashback: $(CH_L + CO)(CH_L + H_2)(CO_2)$.

Calc. of complexes:

 $(43.0/43.0 + 11.5) \times 10.7 = 8.44$ (CH_L going with CO); CH_L/CO = 8.44/43.0 = 0.196;

 $(11.5/43.0 + 11.5) \times 10.7 = 2.26$ (CH_L going with H₂); CH_L/H₂ = 2.26/11.5 = 0.197.

Total percentage of $CH_L/CO = 8.44 + 43.0 = 51.44$; total percentage of $CH_L/H_2 = 2.26 + 11.5 = 13.76$.

	A (figure 32)	В	C (figure 28)	D	B + D
$F_{\overline{F}}$	g _F for CH ₄ /CO = 0.196	A × 0.5144	g _F for CH ₄ /H ₂ = 0.197	c × 0.1376	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.6 1.8	194 305 410 650 870 1,100 1,140 1,200 1,210 965 525 133	100 157 211 335 448 566 587 618 623 497 270 68	310 885 1,710 2,180 2,750 3,500 4,050 3,800 3,480 2,950 2,200 1,100 147	43 122 235 300 379 482 558 523 479 406 303 152 20	43 122 335 457 590 817 1,006 1,089 1,066 1,024 926 649 290 68

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(CO_2)$.

Calc. of complexes:

 $H_2/C0 = 0.20$, $0.20 \times 43.0 = 8.6$ (H_2 going with CO); $H_2/C0 = 8.6/43.0 = 0.20$;

11.5 - 8.6 = 2.9 (H₂ going with CH_L); H₂/CH_L = 2.9/10.7 = 0.271.

Total percentage of $H_2/C0 = 8.6 + 43.0 = 51.6$; total percentage of $H_2/CH_L = 2.9 + 10.7 = 13.6$.

	A (figure 31)	A (figure 31) B C (figure 29		C (figure 29)	ם	B + D
F _B	g _B for H ₂ /CO = 0.20	A × 0.516	g _B for H ₂ /CH ₄ = 0.271	C × 0.136	g _B for total fuel	
0.6 .7 .8 .9 1.0 1.2 1.4 1.8	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000	129 516 1,394 2,735 4,900 11,350 21,150 57,200 116,000	103 295 1,040 2,120 3,650 7,500 11,600 23,800 39,500	14 40 142 288 496 1,020 1,578 3,240 5,370	143 556 1,536 3,023 5,396 12,370 22,730 60,440 121,400	
2.6 3.0	380,000 560,000	196,000 289,000	57,000 85,000	7,750 11,550	203,800 300,600	

^{1/} Compare with experimental points (A-T/3a,3b-No./50).

Fuel No. $51^{1/2}$ composition, percent: 50.7 CH_4 , 24.7 CO, 24.5 H_2 , 0.1 CO_2

Stoichiometric percentage:

14.2

Complexes for flashback: $(CH_{\downarrow} + CO)(CH_{\downarrow} + H_{2})(CO_{2})$.

Calc. of complexes: $(24.7/2!...7 + 24.5) \times 50.7 = 25.45$ (CH_L going with CO); CO/CH_L = 24.7/25.45 = 0.971;

 $(24.5/24.7 + 24.5) \times 50.7 = 25.25$ (CH_L going with H₂); H₂/CH_L = 24.5/25.25 = 0.971.

Total percentage of $CO/CH_{4} = 24.7 + 25.45 = 50.15$; total percentage of $H_{2}/CH_{4} = 24.5 + 25.25 = 49.75$.

	A (figure 32)	В	C (figure 28)	D	B + D
${\mathtt F}_{\mathbf F}$	g _F for CO/CH ₄ = 0.971	A × 0.5015	g _F for H ₂ /CH ₄ = 0.971	C × 0.4975	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25	122 204 280 440 585 645 580 500 370	61 102 141 221 293 323 291 251 186	102 440 590 725 940 1,050 885 570 420 213	51 219 294 361 468 522 440 284 209	51 280 396 502 689 815 763 575 460 292

Complexes for blowoff: $(CH_{\perp} + H_2)(H_2/CO = 0.20)$.

Calc. of complexes: $H_2/CO =$

 $H_2/CO = 0.20$, $0.20 \times 24.7 = 4.94$ (H_2 going with CO); $H_2/CO = 4.94/24.7 = 0.20$;

24.5 - 4.94 = 19.56 (H₂ going with CH₄); H₂/CH₄ = 19.56/50.7 = 0.386.

Total percentage of $H_2/CO = 4.94 + 24.7 = 29.64$; total percentage of $H_2/CH_L = 19.56 + 50.7 = 70.26$.

	A (figure 31)	В	C (figure 29)	D	B + D
F _B	g_{B} for $H_{2}/CO = 0.20$	A × 0.2964	g _B for H ₂ /CH ₄ = 0.386	C × 0.7026	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	74 296 800 1,570 2,820 6,520 12,150 32,900 66,700 112,600 166,000	119 325 1,290 2,590 4,400 9,500 15,400 34,500 58,500 90,500 135,000	84 228 907 1,820 3,090 6,680 10,820 24,200 41,100 63,600 94,900	158 524 1,707 3,390 5,910 13,200 22,970 57,100 107,800 176,200 260,900

^{1/} Compare with experimental points (A-T/3a,3b-No./51).

Fuel No. $52^{1/2}$ composition, percent: 47.6 CH_L, 22.6 CO, 22.6 H₂, 7.1 N₂, 0.1 CO₂

Stoichiometric percentage:

15.1

Complexes for flashback: $(CH_{L} + CO)(CH_{L} + H_{2})(N_{2} \text{ and } CO_{2})$.

Calc. of complexes:

 $(22.6/22.6 + 22.6) \times 47.6 = 23.8$ (CH_L going with CO); CO/CH_L = 22.6/23.8 = 0.95;

 $(22.6/22.6 + 22.6) \times 47.6 = 23.8$ (CH_L going with H₂); H₂/CH_L = 22.6/23.8 = 0.95.

Total percentage of CO/CH_L = 22.6 + 23.8 = 46.4; total percentage of H_2/CH_L = 22.6 + 23.8 = 46.4.

	A (figure 32)	В	C (figure 28)	D	B + D
$^{\mathtt{F}}_{\mathtt{F}}$	g _F for CO/CH ₄ = 0.95	A × 0.464	$g_{\rm F}$ for $H_2/CH_4 = 0.95$	C × 0.464	g _F for total fuel
0.7 .75 .8 .9 1.0 1.1 1.2 1.25	120 202 277 438 580 635 568 485 363	56 94 129 203 269 295 264 225 169	428 575 705 915 1,040 870 560 415 209	199 267 327 425 483 404 260 193	255 371 456 628 752 699 524 418 266

Complexes for blowoff:

 $(CH_{L} + H_{2})(H_{2}/CO = 0.20)$.

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 22.6 = 4.52$ (H_2 going with CO); $H_2/CO = 4.52/22.6 = 0.20$;

22.6 - 4.52 = 18.08 (H₂ going with CH_h); H_2/CH_h = 18.08/47.6 = 0.38.

Total percentage of $H_2/CO = 4.52 + 22.6 = 27.12$; total percentage of $H_2/CH_L = 18.08 + 47.6 = 65.68$.

	A (figure 31)	В	C (figure 29)	D	B + D
${\tt F_B}$	$g_{\rm B}$ for $H_2/CO = 0.20$	A × 0.2712	g _B for H ₂ /CH ₄ = 0.38	C × 0.6568	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	. 250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 360,000 560,000	68 271 732 1,440 2,580 5,970 11,120 30,100 61,000 103,000 152,000	118 322 1,280 2,570 4,350 9,300 15,400 34,000 56,500 88,500 134,000	78 212 840 1,690 2,860 6,110 10,100 22,300 38,400 58,100 88,000	146 483 1,572 3,130 5,440 12,080 21,220 52,400 99,400 161,100 240,000

^{1/} Compare with experimental points (A-T/3a,3b-No./52).

Fuel No. 53 composition, percent: 46.1 CH₄, 23.1 CO, 22.9 H₂, 7.9 CO₂

15.4

Stoichiometric percentage:

Complexes for flashback: $(CH_{\perp} + CO)(CH_{\perp} + H_{2})(CO_{2})$.

Calc. of complexes: $(23.1/23.1 + 22.9) \times 46.1 = 23.15$ (CH_L going with CO); $CO/CH_L = 23.1/23.15 = 0.998$;

 $(22.9/23.1 + 22.9) \times 46.1 = 22.95$ (CH_L going with H₂); H₂/CH_L = 22.9/22.95 = 0.998.

Total percentage of $CO/CH_4 = 23.1 + 23.15 = 46.25$; total percentage of $H_2/CH_4 = 22.9 + 22.95 = 45.85$.

	A (figure 32)	В	C (figure 28)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	g _F for CO/CH ₄ = 0.998	A × 0.4625	g _F for H ₂ /CH ₄ = 0.998	C × 0.4585	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25	123 208 282 445 595 655 595 515 387 106	57 96 131 206 275 303 275 238 179	114 455 605 750 960 1,080 920 590 435 220	52 209 277 344 440 495 422 271 200 101	52 266 373 475 646 770 725 546 438 280
1.3	3 8 7 106	179 49	220	101	280 49

Complexes for blowoff:

 $(CH_L + H_2)(H_2/CO = 0.20)(CO_2).$

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 23.1 = 4.62$ (H_2 going with CO); $H_2/CO = 4.62/23.1 = 0.20$;

22.9 - 4.62 = 18.28 (H_2 going with CH_L); H_2/CH_L = 18.28/46.1 = 0.397.

Total percentage of $H_2/CO = 4.62 + 23.1 = 27.72$; total percentage of $H_2/CH_L = 18.28 + 46.1 = 64.38$.

	A (figure 31)	В	C (figure 29)	D	B + D
F_{B}	g _B for H ₂ /CO = 0.20	A × 0.2772	g _B for H ₂ /CH ₄ = 0.397	C × 0.6438	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	69 277 748 1,470 2,630 6,100 11,360 30,800 62,400 105,400 155,400	121 335 1,330 2,670 4,500 9,650 16,000 35,500 61,500 95,500 143,000	78 216 856 1,770 2,900 6,210 10,300 22,800 39,600 61,400 92,000	147 493 1,604 3,240 5,530 12,310 21,660 53,600 102,000 166,800 247,400

^{1/} Compare with experimental points (A-T/3a,3b-No./53).

Fuel No. $54^{1/2}$ composition, percent: 36.1 CH₄, 17.5 CO, 17.5 H₂, 28.9 CO₂

Stoichiometric percentage:

18.9

Complexes for flashback: $(CH_{L} + CO)(CH_{L} + H_{2})(CO_{2})$.

Calc. of complexes:

 $(17.5/17.5 + 17.5) \times 36.1 = 18.05$ (CH_L going with CO); CO/CH_L = 17.5/18.05 = 0.97;

 $(17.5/17.5 + 17.5) \times 36.1 = 18.05$ (CH_L going with H₂); H₂/CH_L = 17.5/18.05 = 0.97.

Total percentage of $CO/CH_L = 17.5 + 18.05 = 35.55$; total percentage of $H_2/CH_L = 17.5 + 18.05 = 35.55$.

	A (figure 32)	В	C (figure 28)	D	B + D
F _F	g _F for CO/CH ₄ = 0.97	A × 0.3555	g _F for H ₂ /CH ₄ = 0.97	C × 0.3555	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3	122 204 280 440 585 645 580 500 370	43 73 100 157 208 229 206 178 132	102 440 590 725 940 1,050 885 570 420 213	36 157 210 258 334 373 315 203 149 76	36 200 283 358 491 581 544 409 327 208

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(CO_2)$.

Calc. of complexes:

 $H_2/C0 = 0.20$, $0.20 \times 17.5 = 3.5$ (H_2 going with CO); $H_2/C0 = 3.5/17.5 = 0.20$;

17.5 - 3.5 = 14.0 (H₂ going with CH_L); H₂/CH_L = 14.0/36.1 = 0.388.

Total percentage of $H_2/CO = 3.5 + 17.5 = 21.0$; total percentage of $H_2/CH_4 = 14.0 + 36.1 = 50.1$.

	A (figure 31)	В	C (figure 29)	D	B + D
$F_{\mathbf{B}}$	g _B for H ₂ /CO = 0.20	A × 0.21	g _B for H ₂ /CH ₄ = 0.388	C × 0.501	gB for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	53 210 567 1,114 1,995 4,620 8,610 23,300 47,200 79,800 117,500	119 325 1,290 2,590 4,400 9,500 15,400 34,500 58,500 90,500 135,000	60 163 646 1,297 2,205 4,760 7,720 17,300 29,300 45,300 67,600	113 373 1,213 2,411 4,200 9,380 16,330 40,600 76,500 125,100 185,100

^{1/} Compare with experimental points (A-T/3a,3b-No./54).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.);
mixture of oil-gas type

Fuel No. 55 composition, percent: 37.4 CH₄, 33.4 C₂H₄, 15.2 H₂, 14.0 N₂ Stoichiometric percentage: 10.3 (Curves for figure 43)

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)(N_2)$.

Calc. of complexes: $H_2/C_2H_4 = 15.2/33.4 = 0.455$; use 100% CH_4 flame-stability diagram.

Total percentage of $H_2/C_2H_L = 15.2 + 33.4 = 48.6$; total percentage of $CH_L = 37.4$.

		<u> </u>	~ 4		
	A (figure 36)	В	C (figure 20)	D	B + D
F _F	g_F for $H_2/C_2H_4 = 0.455$	A × 0.486	g _F for 100% CH ₄	c × 0.374	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	305 615 830 1,060 1,430 1,680 1,770 1,480 1,300 1,990 715 413 220	148 299 403 515 695 816 860 719 632 530 348 201 107	135 190 330 390 340 180 120	51 71 124 146 127 67 45	148 299 454 586 819 962 987 786 677 530 348 201

Complexes for blowoff: $(CH_L + H_2)(C_2H_L)(N_2)$.

Calc. of complexes: $H_2/CH_4 = 15.2/37.4 = 0.406$; use 100 C_2H_4 flame-stability diagram.

Total percentage of $H_2/CH_4 = 15.2 + 37.4 = 52.6$; total percentage of $C_2H_4 = 33.4$.

	A (figure 29)	В	C (figure 22)	D	B + D
FB	g_B for $H_2/CH_4 = 0.406$	A × 0.526	g _B for 100% C ₂ H ₄	C × 0.334	gB for total fuel
0.6	120	63	370	124	187
•7	330	174	1,600	534	708
.8	1,330	700	3,850	1,285	1,985
•9	2,650	1,395	6,700	2,240	3,635
1.0	4,500	2,370	10,000	3,340	5,710
1.2	9,650	5,080	17,000	5,680	10,760
1.4	15,900	8,360	26,000	8,680	17,040
1.8	35,500	18,700	44,000	14,700	33,400
2.2	61,000	32,100	61,500	20,550	52,650
2.6	95,000	50,000	76,000	25,400	75,400
3.0	143,000	75,200	92,000	30,700	105,900

^{1/} Compare with experimental points (A-T/3a,3b-No./55).

Fuel No. $56^{1/2}$ composition, percent: 29.1 CH₄, 26.2 C₂H₄, 22.1 C₃H₈, 11.8 H₂, 0.2 C₃H₆, $\frac{2}{}$ 10.6 N₂

Stoichiometric percentage:

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)(C_3H_8)(N_2)$.

Calc. of complexes:

 H_2/C_2H_L = 11.8/26.2 = 0.45; use 100% CHL flame-stability diagram; use 100% C_3H_8 flame-stability diagram .

Total percentage of $H_2/C_2H_4 = 11.8 + 26.2 = 38.0$; total percentage of $CH_4 = 29.1$; total percentage of $C_3H_8 = 22.3$.

	A (figure 36)	В	C (figure 20)	D	E (figure 21)	F	B + D + F
F _F	g_F for $H_2/C_2H_4 = 0.45$	A × 0.38	g _F for 100% CH ₄	C × 0.291	g _F for 100% C ₃ H ₈	E × 0.223	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4	305 615 830 1,060 1,430 1,680 1,770 1,480 1,300 1,090 715 413 220	117 234 315 403 544 638 672 562 494 414 272 157 84	135 190 330 390 340 180 120	39 55 96 114 99 52 35	155 230 420 590 640 570 520 460 310	35 51 94 132 143 127 116 103 69 38	117 234 389 509 734 884 914 741 645 517 341 195

Complexes for blowoff: $(CH_L + H_2)(C_3H_8 + H_2)(C_2H_L)(N_2)$.

Calc. of complexes:

 $(29.1/29.1 + 22.3) \times 11.8 = 6.68$ (H₂ going with CH_L); H₂/CH_L = 6.68/29.1 = 0.23;

 $(22.3/29.1 + 22.3) \times 11.8 = 5.12$ (H₂ going with C₃H₈); H₂/C₃H₈ = 5.12/22.3 = 0.23; use 100% C₂H₄ flame-stability diagram .

Total percentage of $H_2/CH_4 = 6.68 + 29.1 = 35.78$; total percentage of $H_2/C_3H_8 = 5.12 + 22.3 = 27.42$;

total percentage of $C_2H_h = 26.2$.

	A (figure 29)	В	C (figure 35)	D	E (figure 22)	F	B + D + F
$\mathbf{F}_{\mathbf{B}}$	g _B for H ₂ /CH ₄ = 0.23	A × 0.3578	g_B for $H_2/C_3H_8 = 0.23$	C × 0.2742	g _B for 100% C ₂ H ₄	E × 0.262	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	290 950 1,930 3,380 6,800 10,500 20,800 33,500 48,000 73,000	104 340 690 1,210 2,430 3,760 7,440 12,000 17,160 26,100	300 1,000 2,007 3,300 5,850 8,050 13,200 16,800 19,700 23,200	82 274 548 905 1,605 2,210 3,620 4,610 5,400 6,360	370 1,600 3,850 6,700 10,000 17,000 26,000 44,000 61,500 76,000 92,000	97 419 1,010 1,755 2,620 4,450 6,810 11,530 16,100 19,900 24,100	97 605 1,624 2,993 4,735 8,485 12,780 22,590 32,710 42,460 56,560

^{1/} Compare with experimental points (A-T/3a,3b-No./56).
2/ Tally with propane.

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); mixture of oil-gas type (Con.)

Fuel No. $57^{1/2}$ composition, percent: 32.1 CH₄, 28.4 C₂H₄, 12.5 H₂, 27.0 N₂

Stoichiometric percentage:

11.8

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)(N_2)$

Calc. of complexes:

 $H_2/C_2H_4 = 12.5/28.4 = 0.44$; use 100% CH_4 flame-stability diagram .

Total percentage of $H_2/C_2H_4 = 12.5 + 28.4 = 40.9$; total percentage of $CH_4 = 32.1$.

	A (figure 36)	В	C (figure 20)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	$g_F \text{ for } H_2/C_2H_4 = 0.44$	A × 0.409	g _F for 100% CH ₄	C × 0.321	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	300 605 820 1,050 1,420 1,670 1,760 1,480 1,300 1,090 715 410 219	123 247 335 429 581 683 720 605 532 446 292 168 90	135 190 330 390 340 180 120	43 61 106 125 109 58 39	123 247 378 490 687 808 829 663 571 446 292 168

Complexes for blowoff:

 $(CH_4 + H_2)(C_2H_4)(N_2)$.

Calc. of complexes:

 $\rm H_2/CH_L = 12.5/32.1 = 0.39; use 100\% C_2H_L$ flame-stability diagram .

Total percentage of $H_2/CH_4 = 12.5 + 32.1 = 44.6$; total percentage of $C_2H_4 = 28.4$.

	A (figure 29)	В	C (figure 22)	D	B + D
FB	g _B for H ₂ /CH ₄ = 0.39	A × 0.446	g _B for 100% C ₂ H ₄	C × 0.284	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	120 327 1,300 2,600 4,400 9,500 15,600 35,000 60,000 92,500 139,000	54 146 580 1,160 1,963 4,240 6,960 15,600 26,800 41,200 62,000	370 1,600 3,850 6,700 10,000 17,000 26,000 44,000 61,500 76,000 92,000	105 454 1,094 1,904 2,840 4,830 7,380 12,500 17,460 21,600 26,100	159 600 1,674 3,064 4,803 9,070 14,340 28,100 44,260 62,800 88,100

¹/ Compare with experimental points (A-T/3a,3b-No./57).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture

Fuel No. 58 composition, percent: 62.5 CH₄, 22.2 H₂, 15.3 N₂

Stoichiometric percentage:

13.3

(Curves for figure 46)

Complexes for flashback: $(CH_4 + H_2)(N_2)$.

Calc. of complexes:

 $H_2/CH_L = 22.2/62.5 = 0.355.$

Total percentage of $H_2/CH_4 = 22.2 + 62.5 = 84.7$.

	A (figure 28)	В
${\mathtt F}_{\overline{{\mathbf F}}}$	g _F for H ₂ /CH ₄ = 0.355	A × 0.847 g _F for total fuel
0.7	160	136
•75 •8	230	195
.8	310	263
•9	495	419
1.0	610	419 516
1.1	490	415
1.1 1.2	325	275
1.25	240	203
1.3	130	110

Complexes for blowoff:

 $(CH_{L} + H_{2})(N_{2}).$

Calc. of complexes:

 $H_2/CH_L = 22.2/62.5 = 0.355$

Total percentage of $H_2/CH_4 = 22.2 + 62.5 = 84.7$.

	A (figure 29)	B A × 0.847
F _B	g _B for H ₂ /CH ₄ = 0.355	g _B for total fuel
0.7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	310 1,200 2,350 3,950 8,700 14,500 30,500 48,500 73,000 108,000	263 1,016 1,990 3,345 7,370 12,300 25,800 41,100 61,800 91,500

^{1/} Compare with experimental points (A-T/3a,3b-No./58).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. 59 composition, percent: 47.4 CO, 25.9 H₂, 26.5 N₂, 0.2 CO₂

Stoichiometric percentage: 36.3

Complexes for flashback: $(CO + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes: $H_2/CO = 25.9/47.4 = 0.546$.

Total percentage of $H_2/CO = 25.9 + 47.4 = 73.3$.

	A (figure 30)	В
		A × 0.733
F _F	$g_{\rm F}$ for $H_2/CO = 0.546$	g _F for total fuel
0.6	330	242
•7	690	506
•75	920	674
•8 •9	1,200	8 70
•9	1,850	1,356
1.0	2,450	1,795
1.1	3,100	2,270
1.2	3,700	2,710
1.25	3,900	2,860
1.3	4,050	2,970
1.4	4,200	2,080
1.6	4,000	2,930
1.8	2,850	3,090
2.0	1,080	792

Complexes for blowoff: $(CO + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes: $H_2/CO = 25.9/47.4 = 0.546.$

Total percentage of $H_2/C0 = 25.9 + 47.4 = 73.3$

	Total percentage of h2/00 = 25	7 + 4/•4 = /3•3•
	A (figure 31)	B A × 0.733
F _B	$g_B \text{ for } H_2/CO = 0.546$	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	850 3,050 8,500 16,500 28,500 74,000 170,000 1,070,000 1,580,000 1,800,000	623 2,235 6,230 12,100 20,900 54,200 124,500 374,000 784,000 1,160,000 1,320,000

^{1/} Compare with experimental points (A-T/3a,3b-No./59).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. $60^{1/2}$ composition, percent: 40.8 CO, 22.1 H₂, 36.9 N₂, 0.2 CO₂

Stoichiometric percentage: 39.9

Complexes for flashback: $(CO + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes:

 $H_2/CO = 22.1/40.8 = 0.542.$

Total percentage of $H_2/CO = 22.1 + 40.8 = 62.9$.

	A (figure 30)	В
P	g _F for H ₂ /CO = 0.542	A × 0.629 g _F for total fuel
F _F	8F 101 12/00 103/1	gr
0.6	330	208
•7	690	434
.75 .8 .9 1.0	920	578
.8	1,200	754
.9	1,850	1,164
1.0	2,450	1,540
1.1	3,100	1,950
1.2	3,700	2,330
1.25	3,900	2,450
1.3	4,050	2,550
1.4	4,200	2,640
1.6	4,000	2,515
1.8	2,850	1,793
2.0	1.080	680

Complexes for blowoff: $(CO + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes:

 $H_2/CO = 22.1/40.8 = 0.542.$

Total percentage of $H_2/C0 = 22.1 + 40.8 = 62.9$.

FB	A (figure 31)	B A × 0.629
	g _B for H ₂ /CO = 0.542	gg for total fuel
0.6	850	534
•7	3,050	1,920
.8	8,500	5,340
.9 1.0 1.2	16,500	10,380
1.0	28,500	17,930
1.2	74,000	46,500
1.4 1.8 2.2	170,000	107,000
1.8	510,000	321,000
2.2	1,070,000	673,000
2.6	1,580,000	994,000
3.0	1,800,000	1,133,000

^{1/} Compare with experimental points (A-T/3a,3b-No./60).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. 61 composition, percent: 49.4 CH₄, 22.2 H₂, 16.1 CO, 11.5 CO₂, 0.8 N₂

Stoichiometric percentage:

15.0

Complexes for flashback: $(CH_L + CO)(CH_L + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes: (16.1/16.1

 $(16.1/16.1 + 22.2) \times 49.4 = 20.8$ (CH_L going with CO); CO/CH_L = 16.1/20.8 = 0.774;

 $(22.2/16.1 + 22.2) \times 49.4 = 28.6$ (CH₄ going with H₂); H₂/CH₄ = 22.2/28.6 = 0.776.

Total percentage of $CO/CH_L = 16.1 + 20.8 = 36.9$; total percentage of $H_2/CH_L = 22.2 + 28.6 = 50.8$.

	A (figure 32)	В	C (figure 28)	D	B + D
$\mathtt{F}_{\mathbf{F}}$	g _F for CO/CH ₄ = 0.774	A × 0.369	g _F for H ₂ /CH ₄ = 0.776	c × 0.508	g _F for total fuel
0.7 .75 .8 .9 1.0 1.1 1.2 1.25	111 182 253 413 535 575 485 393 280	41 67 93 153 198 212 179 145 103	340 460 565 765 880 725 465 345	173 234 287 389 447 368 236 175 85	214 301 380 542 645 580 415 320 188

Complexes for blowoff:

 $(CH_L + H_2)(H_2/CO = 0.20).$

Calc. of complexes:

 $H_2/CO = 0.20$, $0.20 \times 16.1 = 3.22$ (H_2 going with CO); $H_2/CO = 3.22/16.1 = 0.20$;

22.2 - 3.22 = 18.98 (H₂ going with CH_L); H₂/CH_L = 18.98/49.4 = 0.384.

Total percentage of $H_2/CO = 3.22 + 16.1 = 19.32$; total percentage of $H_2/CH_L = 18.98 + 49.4 = 68.38$.

	A (figure 31)	В	C (figure 29)	D	B + D
${\tt F_B}$	$g_B \text{ for } H_2/CO = 0.20$	A × 0.1932	g _B for H ₂ /CH ₄ = 0.384	c × 0.6838	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	48 193 522 1,024 1,835 4,250 7,920 21,450 43,500 73,400 108,000	118 321 1,280 2,570 4,350 9,350 15,400 34,000 58,000 88,500 134,000	81 219 874 1,760 2,970 6,390 10,530 23,200 39,600 60,500 91,600	129 412 1,396 2,784 4,805 10,640 18,450 44,650 83,100 133,900 199,600

^{1/} Compare with experimental points (A-T/3a,3b-No./61).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. $62^{1/2}$ composition, percent: $65.2 \text{ C}_2\text{H}_4$, 18.7 H_2 , 16.1 CH_4

Stoichiometric percentage:

8.1

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)$.

Calc. of complexes:

 $H_2/C_2H_4 = 18.7/65.2 = 0.287$; use 100% CH_4 flame-stability diagram.

Total percentage of $H_2/C_2H_L = 18.7 + 65.2 = 83.9$; total percentage of $CH_L = 16.1$.

		2 2 4			
	A (figure 36)	В	C (figure 20)	D	B + D
FF	g _F for H ₂ /C ₂ H ₄ = 0.287	A × 0.839	g _F for 100% CH ₄	C × 0.161	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	220 515 720 945 1,280 1,550 1,700 1,450 1,300 1,100 755 445 230	185 432 604 793 1,075 1,300 1,425 1,216 1,090 924 634 373 193	135 190 330 390 340 180 120	22 31 53 63 55 29 19	185 432 626 824 1,128 1,363 1,480 1,245 1,109 924 634 373 193

Complexes for blowoff:

 $(C_2H_L + H_2)(CH_L).$

Calc. of complexes:

 $H_2/C_2H_L = 18.7/65.2 = 0.287$; use 100% CH_L flame-stability diagram.

Total percentage of $H_2/C_2H_4 = 18.7 + 65.2 = 63.9$; total percentage of $CH_4 = 16.1$.

	A (figure 37)	В	C (figure 20)	D	B + D
$F_{\mathbf{B}}$	$g_B \text{ for } H_2/C_2H_4 = 0.287$	A × 0.839	g _B for 100% CH ₄	C × 0.161	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	480 2,030 4,400 7,550 11,000 20,500 31,500 56,500 82,000 105,000 127,000	403 1,703 3,690 6,340 9,220 17,200 26,400 47,400 68,800 88,100 106,500	170 530 1,100 1,950 3,750 5,380 8,300 11,000 14,300 18,000	27 85 177 314 604 866 1,336 1,770 2,300 2,900	403 1,730 3,775 6,517 9,534 17,800 27,270 48,740 70,570 90,400 109,400

^{1/} Compare with experimental points (A-T/3a,3b-No./62).

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. 63 composition, percent: 56.5 C₂H₄, 15.8 H₂, 13.8 CH₄, 0.1 C₃H₆, 2/13.8 N₂ Stoichiometric percentage: 9.24 (Curves for figure 45)

Complexes for flashback: $(C_2H_4 + H_2)(CH_4)$.

 $H_2/C_2H_L = 15.8/56.6 = 0.279$; use 100% CH_L flame-stability diagram. Calc. of complexes:

Total percentage of $H_2/C_2H_L = 15.8 + 56.6 = 72.4$; total percentage of $CH_L = 13.8$.

	A (figure 36)	В	C (figure 20)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	g_F for $H_2/C_2H_4 = 0.279$	A × 0.724	$g_{ m F}$ for 100% ${ m CH}_{ m L}$	C × 0.138	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	215 510 715 935 1,270 1,550 1,670 1,440 1,280 1,100 755 440 228	156 369 518 677 919 1,122 1,210 1,043 926 796 546 319 165	135 190 330 390 340 180 120	19 26 46 54 47 25 17	156 369 537 703 965 1,176 1,257 1,068 943 796 546 319

Complexes for blowoff: $(C_2H_L + H_2)(CH_L)$.

 $H_2/C_2H_L = 15.8/56.6 = 0.279$; use 100% CH_L flame-stability diagram. Calc. of complexes:

Total percentage of $H_2/C_2H_L = 15.8 + 56.6 = 72.4$; total percentage of $CH_L = 13.8$.

	A (figure 37)	В	C (figure 20)	D	B + D
FB	g_B for $H_2/C_2H_4 = 0.279$	A × 0.724	g _B for 100% CH ₄	C × 0.138	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	475 2,000 4,350 7,500 11,000 20,300 31,200 56,000 81,000 105,000 125,000	344 1,450 3,150 5,430 7,960 14,700 22,600 40,600 58,600 76,000 90,400	170 530 1,100 1,950 3,750 5,380 8,300 11,000 14,300 18,000	23 73 152 269 518 742 1,145 1,520 1,975 2,480	344 1,473 3,223 5,582 8,229 15,220 23,340 41,750 60,120 77,980 92,880

Compare with experimental points (A-T/3a,3b-No./63). Tally with C_2H_4 .

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. $64^{\frac{1}{2}}$ composition, percent: 55.1 C_2H_4 , 18.8 CH_4 , 15.8 H_2 , 10.2 C_3 , 0.1 $C_3H_6^{\frac{2}{2}}$

Stoichiometric percentage:

8.81

Complexes for flashback: $(C_2H_L + H_2)(CH_L + CO)$.

Calc. of complexes:

 $H_2/C_2H_L = 15.8/55.2 = 0.286; CO/CH_L = 10.2/18.8 = 0.543.$

Total percentage of $H_2/C_2H_4 = 15.8 + 55.2 = 71.0$; total percentage of $CO/CH_4 = 10.2 + 18.8 = 29.0$.

	A (figure 36)	В	C (figure 32)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	g_F for $H_2/C_2H_4 = 0.286$	A × 0.710	g _F for CO/CH ₄ = 0.543	C × 0.290	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	220 515 720 945 1,280 1,550 1,700 1,450 1,300 1,100 755 445 230	156 366 511 671 909 1,100 1,206 1,030 923 781 536 316 164	104 163 227 394 500 503 383 290 193	30 47 66 114 145 146 111 84 56	156 396 558 737 1,023 1,245 1,352 1,141 1,007 837 536 316

Complexes for blowoff:

 $(C_2H_L + H_2)(CH_L + CO).$

Calc. of complexes:

 $H_2/C_2H_L = 15.8/55.2 = 0.286; CO/CH_L = 10.2/18.8 = 0.543.$

Total percentage of $H_2/C_2H_L = 15.8 + 55.2 = 71.0$; total percentage of $CO/CH_L = 10.2 + 18.8 = 29.0$.

		2 2 4			
	A (figure 37)	В	C (figure 33)	D	B + D
FB	g _B for H ₂ /C ₂ H ₄ = 0.286	A × 0.710	g _B for CO/CH ₄ = 0.543	C × 0.290	g _B for total fuel
0.6	480	341 1,440 3,120	201		341 1,500 3,293 5,769
•7	2,030	1,440	206	60	1,500
•8 •9	4,400 7,550	5,120	595 1,410	173 409	5 769
1.0	11,000	5,360 7,810	2,530	734	8,544
1.0 1.2	20,500	14,550	5,000	1,450	16,000
1.4	31,500	22,400	7,050	2,045	24,450
1.8	56,500	40,100	11,300	3,280	43,380
2.2	82,000	58,200	15,000	4,350	62,550
2.6	105,000	74,600	19,700	5,720	80,320
3.0	127,000	90,200	25,500	7,400	97,600

^{1/} Compare with experimental points (A-T/3a,3b-No./64).
2/ Tally with C₂H₄.

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. $65^{1/2}$ composition, percent: 36.4 H_2 , 22.6 CO, 13.3 CH₄, 7.2 C₂H₆, $\frac{2}{3}$ 5.8 C₂H₄, $\frac{2}{3}$ 1.9 C₃H₈, $\frac{2}{3}$ 0.1 C₃H₆, $\frac{2}{3}$ 9.8 N₂, 2.9 CO₂ Stoichiometric percentage: 16.1

Complexes for flashback: $(CH_L + CO)(CH_L + H_2)(N_2 \text{ and } CO_2)$.

Calc. of complexes: $(22.6/22.6 + 36.4) \times 28.3 = 10.85$ (CH_L going with CO); CH_L/CO = 10.85/22.6 = 0.48;

 $(36.4/22.6 + 36.4) \times 28.3 = 17.45$ (CH_L going with H₂); CH_L/H₂ = 17.45/36.4 = 0.48.

Total percentage of $CH_L/CO = 10.85 + 22.6 = 33.45$; total percentage of $CH_L/H_2 = 17.45 + 36.4 = 53.85$.

	A (figure 32)	В	C (figure 28)	D	B + D
$F_{\mathbf{F}}$	g _F for CH _L /CO = 0.48	A × 0.3345	g _F for CH _L /H ₂ = 0.48	C × 0.5385	g _F for total fuel
0.6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3	160 270 375 570 760 860 820 730 610 330	54 90 126 191 254 288 274 244 204	430 910 1,170 1,450 1,800 1,970 1,750 1,230 850 550	232 490 630 781 970 1,060 942 662 458 296	232 544 720 907 1,161 1,314 1,230 936 702 500 187

Complexes for blowoff: $(CH_L + H_2)(H_2/CO = 0.20)(N_2 \text{ and } CO_2).$

 $H_2/C0 = 0.20$, $0.20 \times 22.6 = 4.52$ (H_2 going with CO); $H_2/C0 = 4.52/22.6 = 0.20$; Calc. of complexes:

36.4 - 4.52 = 31.88 (H₂ going with CH_L); CH_L/H₂ = 28.3/31.88 = 0.888.

Total percentage of $H_2/C0 = 4.52 + 22.6 = 27.12$; total percentage of $CH_2/H_2 = 28.3 + 31.88 = 60.18$.

	A (figure 31)	В	C (figure 29)	D	B + D
FB	$g_B \text{ for } H_2/CO = 0.20$	A × 0.2712	g_{B} for $CH_{L}/H_{2} = 0.888$	C × 0.6018	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	250 1,000 2,700 5,300 9,500 22,000 41,000 111,000 225,000 380,000 560,000	68 271 733 1,440 2,580 5,970 11,120 30,100 61,000 103,000 152,000	330 1,570 4,800 9,650 15,500 37,000 76,000 238,000 530,000 960,000 1,800,000	199 944 2,890 5,800 9,320 22,250 45,700 143,000 319,000 578,000 1,083,000	267 1,215 3,623 7,240 11,900 28,220 56,820 173,100 380,000 681,000 1,235,000

^{1/} Compare with experimental points (A-T/3a,3b-No./65). 2/ Tally with CH_L .

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. 66 composition, percent: 42.6 CH₄, 18.1 C₂H₄, 17.0 H₂, 9.1 CO, 2.2 C₂H₆, 2/1.9 C₃H₈, 2/0.2 C₃H₆, 3/0.2 C₄H₁₀, 2/0.1 C₄H₈, 3/5.2 CO₂, 3.4 N₂

Stoichiometric percentage:

10.8

Complexes for flashback: $(C_2H_L + H_2)(CH_L + CO)(N_2 \text{ and } CO_2)$.

Calc. of complexes:

 $H_2/C_2H_L = 17.0/18.4 = 0.924; CO/CH_L = 9.1/46.9 = 0.194.$

Total percentage of $H_2/C_2H_L = 17.0 + 18.4 = 35.4$; total percentage of $CO/CH_L = 9.1 + 46.9 = 56.0$.

	A (figure 36)	В	C (figure 32)	D	B + D
$\mathbf{F}_{\mathbf{F}}$	g_F for $H_2/C_2H_4 = 0.924$	A × 0.354	g _F for CO/CH ₄ = 0.194	C × 0.560	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	124 440 940 1,130 1,380 1,760 1,980 1,880 1,530 1,320 970 595 345 180	44 156 333 400 489 623 702 666 542 467 343 211 122 64	140 197 355 428 395 250 175 103	78 111 199 240 221 140 98 58	44 156 333 478 600 822 942 887 682 565 401 211 122 64

Complexes for blowoff:

 $(CH_{L} + H_{2})(CH_{L} + CO)(C_{2}H_{L})(N_{2} \text{ and } CO_{2}).$

Calc. of complexes:

 $(17.0/17.0 + 9.1) \times 46.9 = 30.55$ (CH₄ going with H₂); H₂/CH₄ = 17.0/30.55 = 0.556;

 $(9.1/17.0 + 9.1) \times 46.9 = 16.35$ (CH₄ going with CO); CO/CH₄ = 9.1/16.35 = 0.556; use 100% C₂H₄ flame-stability diagram.

Total percentage of $H_2/CH_4 = 17.0 + 30.55 = 47.55$; total percentage of $CO/CH_4 = 9.1 + 16.35 = 25.45$; total percentage of $C_2H_4 = 18.4$.

	A (figure 29)	В	C (figure 33)	D	E (figure 22)	F	B + D + F
$F_{\mathbf{B}}$	g _B for H ₂ /CH ₄ = 0.556	A × 0.4755	g _B for CO/CH ₄ = 0.556	c × 0.2545	g _B for 100% C ₂ H ₄	E × 0.184	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	150 460 1,770 3,500 5,850 13,000 22,800 55,000 103,000 172,000 265,000	71 219 842 1,665 2,780 6,180 10,850 26,200 49,000 81,800 126,000	208 600 1,430 2,550 5,050 7,150 11,400 15,500 20,000 25,700	53 153 364 649 1,285 1,820 2,900 3,820 5,090 6,540	370 1,600 3,850 6,700 10,000 17,000 26,000 44,000 61,500 76,000 92,000	68 294 708 1,233 1,840 3,130 4,780 8,100 11,320 14,000 16,920	139 566 1,703 3,262 5,269 10,600 17,450 37,200 64,140 100,900 149,500

Compare with experimental points (A-T/3a,3b-No./66).

^{1/} Compare with exq
2/ Tally with CH_L.

^{3/} Tally with C2H4.

TABLE 4. - Calculation of flame-stability diagram by linear mixture rule (Con.); other mixture (Con.)

Fuel No. $67^{1/2}$ composition, percent: 37.5 CH₄, 20.4 C₂H₄, 17.5 H₂, 3.9 CO, 13.3 N₂, 7.4 CO₂

Stoichiometric percentage:

12.5

(Curves for figure 44)

Complexes for flashback: $(C_2H_L + H_2)(CH_L + CO)(N_2 \text{ and } CO_2)$.

Calc. of complexes:

 $H_2/C_2H_L = 17.5/20.4 = 0.858$; $CO/CH_L = 3.9/37.5 = 0.104$.

Total percentage of $H_2/C_2H_4 = 17.5 + 20.4 = 37.9$; total percentage of $CO/CH_4 = 3.9 + 37.5 = 41.4$.

	A (figure 36)	В	C (figure 32)	D	B + D
${\mathtt F}_{\mathbf F}$	g _F for H ₂ /C ₂ H ₄ = 0.858	A × 0.379	g _F for CO/CH ₄ = 0.104	C × 0.414	g _F for total fuel
0.5 .6 .7 .75 .8 .9 1.0 1.1 1.2 1.25 1.3 1.4 1.5	106 430 910 1,100 1,340 1,740 1,940 1,850 1,510 1,300 955 580 337 177	40 163 345 416 507 659 734 700 572 492 362 220 128 67	137 193 345 410 370 217 150	57 80 143 170 153 90 62	40 163 345 473 587 802 904 853 662 554 362 220 128 67

Complexes for blowoff:

 $(CH_{L} + H_{2})(CH_{L} + CO)(C_{2}H_{L})(N_{2} \text{ and } CO_{2}).$

Calc. of complexes:

 $(17.5/17.5 + 3.9) \times 37.5 = 30.67$ (CH_L going with H₂); H₂/CH_L = 17.5/30.67 = 0.571;

(3.9/17.5 + 3.9) × 37.5 = 6.83 (CH_L going with CO); CO/CH_L = 3.9/6.83 = 0.571; use 100% C₂H_L flame-stability diagram.

Total percentage of H2/CHL = 17.5 + 30.67 = 48.17; total percentage of CO/CHL = 3.9 + 6.83 = 10.73; total percentage of C2HL = 20.4.

			<u>:</u>				
	A (figure 29)	В	C (figure 33)	D	E (figure 22)	F	B + D + F
$F_{\mathbf{B}}$	g _B for H ₂ /CH ₄ = 0.571	A × 0.4817	g _B for CO/CH ₄ = 0.571	c × 0.1073	g _B for 100% C ₂ H ₄	E × 0.204	g _B for total fuel
0.6 .7 .8 .9 1.0 1.2 1.4 1.8 2.2 2.6 3.0	152 475 1,840 3,620 6,000 13,400 23,800 58,000 111,000 185,000 286,000	73 229 886 1,745 2,890 6,460 11,450 27,900 53,400 89,100 137,600	208 605 1,430 2,570 5,080 7,200 11,400 15,400 20,200 25,900	22 65 153 276 545 772 1,224 1,653 2,170 2,780	370 1,600 3,850 6,700 10,000 17,000 26,000 44,000 61,500 76,000 92,000	76 326 786 1,366 2,040 3,470 5,300 8,980 12,550 15,500 18,760	149 577 1,737 3,264 5,206 10,480 17,520 38,100 67,600 106,800 159,100

^{1/} Compare with experimental points (A-T/3a,3b-No./67).

TABLE 5. - Yellow-tip limits of fuel gases; methane - propane group - ethylene

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Fue	l No. 2 com	position	, percent:	100 C	H4								F _c =	1.80			
Sto	ichiometric	percent	age:	9.46		(Pot	nts for fi	gure 49	and data	for figu	res 52-59)		с ₃ н _е	group,	/CH ₄ = 0/10	0 = 0	
	e diam. 8 cm.		diam.		e diam. 14 cm.		e diam. 03 cm.		e diam. 76 cm.		e diam. 13 cm.		e diam. 94 cm.		oe diam. 195 cm.		
Fy	g _y	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy		
2.20 2.10 2.11 1.87 1.79	11.0 14.4 23.3 35.2 62.2	2.79 2.54 2.34	16.6 26.6 40.2 52.5 128 227	2.70 2.37	36.3 57.5 85.3 181 279 515	3.02 2.75 2.58 2.53 2.39 1.94	72.6 119 181 307 595 1,015	3.06 2.68 2.63	530 854 1,330	4.46 4.04 3.74 3.62 3.48 3.41 3.22 3.10	794 1,220 1,818 2,470 3,270 4,305 6,130 9,450	4.52 4.18 3.98 3.87 3.74 3.63 3.53	2,220 3,455 5,260 7,080 9,410 12,300 17,730	4.82 4.48 4.32 4.18 4.11 4.05	8,000 12,430 18,900 25,400 33,150 38,200		
Fue	1 No. 68 co	mpositio	n, percent	: (Nat	ural gas) 8	9.5 CH ₄ ,	6.7 C ₂ H ₆ ,	2.7 C ₃	Hg, 0.4 C3	H6, 0.4	с ₄ н ₁₀ , о.3	co ₂	F _c =	1.78			
Sto	ichiometric	percent	age:	8.66		(Poi	nts for fi	gure 50	and data	for figu	res 52-56)		СЭНа	group	CH4 = 10.2	/89.5 = 0	.114
	e diam. 8 cm.		diam.		e diam. 5 cm.		diam.		e diam. 6 cm.		e diam. 14 cm.		e diam. 03 cm.		e diam. 3 cm.		diam. 3 cm.
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
1.80 1.74 1.79 1.74 1.76 1.82 1.82	2/ 287 2/ 710 2/ 986 2/1,325 2/1,715 2/2,450 2/3,220	2.27 2.15 1.85 1.79 1.76 1.76	10.5 14.1 29.1 41.9 53.2 60.2	1.75 1.76	131 266 2/ 787 2/1,210 2/1,700	2.83 2.60 2.37 2.24 2.05 1.85 1.84 1.80	25.1 37.8 50.6	1.78 1.85 1.76 1.81 1.75 1.79	610 2/1,800 2/2,880 2/4,270 2/5,790 2/7,500	2.83 2.49 2.17 2.00 2.00 1.87 1.91 1.88	33.1 53.2 80.2 108 174 226 299 393	2.77 2.56 2.40 2.23 2.05 2.00 2.03	69.1 112 167 226 363 467 630	1.97 1.88 1.86 1.83	1,320 2/3,590 2/6,070 2/8,930	3.06 2.72 2.36 2.29 2.23 2.36 2.29 2.23	221 356 538 721 932 1,193 1,523 2,015
	e diam. 76 cm.		diam.		e diam. 13 cm.		diam.		e diam. 94 cm.		e diam. 49 cm.		e diam. 95 cm.		oe diam. 155 cm.		
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy		
3.09 2.72 2.53 2.42 2.47 2.45 2.37	509 818 1,245 1,675 2,190 2,778 3,620	4.27 3.89 3.60 3.35 3.20 3.06 2.88 2.83 2.83 2.83	333 517 767 1,038 1,348 1,550 2,580 3,965 5,350 7,060	4.39 3.94 3.69 3.48 3.32 3.21 3.11 2.99 2.91 2.90	719 1,132 1,697 2,315 3,013 3,770 6,000 8,630 12,060 15,400	4.39 4.00 3.71 3.58 3.40 3.26 3.19 3.15	1,150 1,813 2,708 3,648 4,820 6,085 9,220 14,250	4.43 4.09 3.84 3.60 3.55 3.48 3.38 3.35	2,018 3,193 4,770 6,420 8,550 9,960 10,830 16,320 19,890	4.43 4.14 3.97 3.83 3.71 3.68 3.66 3.66	3,372 5,450 7,980 10,920 14,280 16,480 18,100 23,000	4.74 4.46 4.19 3.98 3.85 3.84	7,230 11,210 16,620 23,830 30,800 35,900	4.71 4.48 4.37 4.34	14,580 22,600 28,000 33,150		

^{1/} Propane group is average of (A-T/5-No./73, 3, 5, 74, 75).
Turbulent flow.

TABLE 5. - Yellow-tip limits of fuel gases; methane-propane group - ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi \text{ D}^3)$

Fue	L No. 69	compos	ition,	percen	t: 75.2	CH ₄ , 2	2.2 C3H8,	2.6 C	2 <u>#</u> 6							_	1.76						
Sto	lchiomet	ric per	centage	1	7.17			-		(Dat	a for fi	gures 52	-56)			С3Н8	group/(CH ₄ = 2	4.8/75.2	= 0.33	1		
Tube (Tube 1.503	diam.		e diam. 47 cm.		e diam. 23 cm.		e diam. Ol cm.		e diam. 76 cm.		diam. l cm.		e diam. 35 cm.		diam.		e diam. 54 cm.		diam.		e diam 195 cm.
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fу	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
2.08 1.83 1.79 1.79 1.75	38.4 112 169 239 317	2.30 2.16 1.86 1.77 1.77	44.1 71.6 234 346 485	3.24 2.50 2.31 1.88 1.80 1.79 1.75	24.5 60.7 112 402 603 862 1,095	3.11 2.37 2.26 1.86 1.91 1.89 1.84	46.7 141 201 740 1,108 1,537 2,073	3.11 2.40 2.26 1.92 1.99 1.91	70.7 213 305 1,126 1,690 2,313 3,163	3.11 2.40 2.26 1.96 2.02 1.96	107 323 462 1,714 2,560 3,585	3.15 2.42 2.31 2.02 2.01 1.98	220 663 946 3,531 5,240 6,800	3.13 2.32 2.11 2.09 2.02	334 1,453 2,898 5,990 7,790	3.17 2.41 2.21 2.20	728 3,180 6,345 10,120	3.22 2.43 2.32	1,163 5,065 10,150	3.24 2.82 2.67	3,340 8,080 13,360	3.37 3.01	7,040 17,100
Fue	l No. 70	сотро	ition,	percen	t: 74.2	CH4, 1	3.4 Сзна,	9.6 C	3Н8, 2.5	C ₂ H ₆ ,	0.3 CO ₂					F _c =	1,66						
Sto	ichiomet	ric per	centage	:	7.30					(Dat	a for fi	gures 5	2-56)	.		Сзне	group/0	CH ₄ = 2	5.5/74.2	• 0.34	4		
Tube (Tube 1.503	diam.		e diam. 47 cm.		e diam. 23 cm.		e diam. 91 cm.		e diam. 76 cm.		diam. 1 cm.		e diam. 35 cm.		e diam. L3 cm.		e diam. 54 cm.		e diam. 49 cm.		e diam. 195 cm.
F _y	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	g _y	Fy	gy	Fy	٤y	Fy	gy	Fy	gy	Fy	gy
2.39 2.21 2.00 1.89 1.78 1.72 1.66 1.66	11.7 19.6 32.3 60.6 119 168 219 353	2.74 2.28 2.08 1.91 1.80 1.73 1.67 1.66 1.66	18.5 38.4 67 125 245 350 452 733 873	2.03 1.91 1.80 1.74 1.70	30.6 69.3 118 219 430 617 796 1,267	1.74	45.0 129 212 382 775 1,118 1,448 2,305	2.93 2.30 2.10 1.93 1.83 1.81	68.0 194 323 602 1,178 1,670 2,195	3.02 2.32 2.11 1.91 1.83 1.86 1.79	99.9 295 488 908 1,788 2,580 3,328	3.18 2.48 2.27 2.13 1.96 1.84	179 470 754 1,005 1,860 3,670	3.18 2.48 2.28 2.19 1.99 1.93	266 700 1,125 1,505 2,800 5,505	3.18 2.55 2.34 2.21 2.04 2.00	579 1,532 2,458 3,280 6,115 8,745	3.18 2.59 2.40 2.25 2.12	920 2,440 3,925 5,225 9,780	3.18 2.79 2.69 2.61 2.53	2,640 4,980 7,780 9,940 11,940	3.21 2.94 2.84	5,515 10,500 14,950
Fue	l No. 71	. сотро	sition,	percen	t: 62.1	СН4, 3	5.5 C ₃ Hg,	2.4 C	2 ^H 6							F _c =	1.71						
Sto	ichiomet	ric per	rcentage	:	6.31			(Po	ints for	figure	61 and	data for	figure	52-56)	Сзне	group/0	CH ₄ = 3	7.9/62.1	= 0.61			
Tube 1.914			diam.		e diam. 47 cm.		e diam. 23 cm.		e diam. 91 cm.		e diam. 76 cm.		diam.		e diam. 35 cm.		diam. 3 cm.		e diam. 54 cm.		diam.		e diam. 95 cm.
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	g _y	Fy	gy
2.23 2.03 1.77 1.71 1.71 1.70	18.0 31.5 81.8 164 234 324	3.04 2.27 2.03 1.78 1.70 1.71	14.3 36.3 65.2 169 337 480	1.78 1.72 1.71	25.4 65.2 114 296 595 842 1,157	2.05 1.77 1.74 1.76	45.9 118 206 534 1,070 1,508 2,093	2.93 2.32 2.07 1.84 1.78 1.73	69.6 179 313 811 1,625 2,280 3,140	1.80	105 271 474 1,226 2,453 3,515	3.20 2.45 2.12 1.88 1.82 1.80 1.78	193 504 981 2,328 3,860 5,120 6,340	3.17 2.46 2.12 1.86 1.82 1.81	286 752 1,460 3,810 5,725 7,550	3.17 2.50 2.17 2.04	623 1,637 3,185 7,760	3.17 2.52 2.23 2.07	989 2,598 5,085 9,560	3.17 2.63 2.51	2,838 7,520 11,100	3.23 2.75	5,940 15,840

Propane group is average of (A-T/5-No./73, 3, 5, 74, 75).

TABLE 5. - Yellow-tip limits of fuel gases; methane - propane group - ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Fue	1 No. 2	9 сотр	osition	, perc	ent: 5	5.4 C	3Hg, 44	.6 Н ₂							F	c = 1.76					
Sto	ichione	tric p	ercenta	ge:	6	.52			(Data	for fig	ures 5	2-56)			С	H4/C3H8	group	= 0/55	.4 = 0		
Tube 1.023			diam. l cm.	Pc 0.	rt diam 796 cm.	<u>2</u> /	Tube 0.776	diam. 6 cm.		diam. 4 cm.		diam. 4 cm.		diam. 9 cm.		ort diam .239 cm.			diam. 5 cm.		diam. 5 cm.
Fy	£y	Fy	g _y	Fy	gy	2	Fy	ε _y	Fy	Бy	Fy	gy	Fy	gy	Fy	gy	1	Fy	$\varepsilon_{ m y}$	Fy	٤٠٠
2.04 1.90 1.£1 1.76 1.74	550	2.06 1.92 1.82 1.77 1.75	303 456 759 1,170 1,515	1.78	461 715 1,265 2,365 2,995	0.380 .273 .173 .103 .084	1.97	408 618 1,020 1,850 2,300	2.20 2.06	907 2,095 4,480 8,500 16,250 20,750	2.87 2.35 2.25 2.19 2.19 2.19	1,575 5,260 8,800 15,150 23,650 25,500	2.96 2.60 2.45 2.38 2.30 2.30	2,610 5,800 9,300 13,250 24,900 29,350	2.99 2.65 2.47 2.38 2.37 2.37	3,375 7,820 13,100 18,330 22,750 29,200	0.520 .273 .178 .136 .116 .093	3.05 2.80 2.68 2.62 2.59	18,200 25,450	3.18 2.97 2.90 2.88	10,870 24,950 38,400 46,700
	l No. 2					:1.6 C	3Н8, 17	.4 H ₂ ,	•	H ₆	ures 5	2- 56)				c = 1.61 H _L /C ₃ H ₈		= 0/81	.6 = 0		
Tube 1.023	diam.		diam. l cm.		be diam 776 cm.			diam. 9 cm.		diam. 5 cm.		diam.		diam. 9 cm.							
Fy	gy	Fy	gy	Fy	gy		Fy	٤y	Fy	£y	Fy	ε _y	Fy	٤y							
2.03 1.72 1.65 1.60 1.61	127 358 518 750 833	2.05 1.72 1.64 1.61 1.61	193 543 785 1,131 1,260	2.04 1.72 1.65 1.63 1.62	1,527		1.64	399 1,094 1,675 2,348	1.65	898 2,060 3,630 5,240	1.86	3,110 6,750 10,550	2.27 2.20	9,000 12,650							
Fue	1 No. 7	2 comp	osition	, perc	ent: 7	0.1 C	3H8, 15	.7 H ₂ ,	13.7 C	0, 0.5 0	3H ₀	L			F	c = 1.60)				
Sto	oichiome	tric p	ercenta	ge:	5	.38			(Data	for figu	res 52	- 56)			C	н4/сзня	group	= 0/70	.6 = 0		
Tube 1.023	diam.		diam.		be diam 776 cm.			diam. 9 cm.		diam. 4 cm.		diam. 9 cm.									
F _y	$\varepsilon_{ m y}$	Fy	٤y	Fy	gy		Fy	gy	Fy	gy	Fy	£y									
2.00 1.72 1.62 1.60	159 433 776 983		240 658 1,175 1,490	1.91 1.70 1.65 1.61			1.93 1.71 1.65 1.62	503 1,376 2,440 3,095	2.14 1.97 1.89	2,430 5,120 10,650	2.26	6,000 7,940 13,150									

^{1/} Propane group is average of (A-T/5-No./73, 3, 5, 74, 75)
2/ 0.635 cm., port depth.
1 = Coefficients of friction (line 13c, figure 75).

TABLE 5. - Yellow-tip limits of fuel gases; methane-propane group- ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Noncircular and sharp-edged short ports; $g = (\lambda \nabla Re)/(2\pi D^3)$

Fue	1 No. 7	3 compo	osition,	perce	nt: 97.	.9 c ₂ н ₆	, 2.1 c ₃	^H 6				$F_c = 1.87$
Sto	ichiome	tric pe	ercentag	e:	5.6	60		(Dat	a for fi	gures.	52-56)	$CH_{4}/C_{3}H_{8}$ group = 0/100 = 0
Tube 0.891		Tube 0.776	diam.		diam. 9 cm.		diam.		diam. 4 cm.		ube diam.	
Fy	g _y	Fy	gy	Fy	gy	Fу	вy	Fy	gy	${ t F_y}$	Ey	
2.11 1.97 1.92 1.89 1.84		1.87	405 683 1,185 1,805 2,290	1.94	564 1,005 1,703 2,650 3,150	1.99 1.92	797 1,380 2,390 3,840 4,720	2.38 2.25 2.21 2.20	2,940 5,990 8,020 10,010	2.60 2.56 2.54	7,320 9,560 12,100	

Fuel No. 3 composition, percent: 98.6 C₃H₈, 1.4 C₃H₆

 $F_c = 1.61$

Stoichiometric percentage:

4.02

(Points for figure 51 and data for figures 52-56)

 CH_L/C_3Hg group = 0/100 = 0

	Hancol	TC pc	1 caroas		4.0	_		(101	1100 101	-1541	,) <u>+ u.i.</u>		101 116	u. 00 /2-	707	01.470	3.48 5.0	up = 0/2		
Tube dia		Tube 0.891	diam. cm.		diam.	cm. 0.699 cm.			diam.		ort dia		•	diam. 3 cm.		diam. 4 cm.	1	diam. 9 cm.		diam.
Fy	gy	Fy	gy	Fy	gy	Fy	$g_{\mathtt{y}}$	Fy	gy	Fy	gy	2	Fy	$\varepsilon_{ m y}$	$^{ ext{F}}_{ extbf{y}}$	gy	Fy	gy	Fy	gy
1.72 1.67 1.61	271 1 363 1 522 745 959	L.62 L.62	1,240 1,455	2.08 1.97 1.82 1.73 1.66 1.62	271 353 612 1,015 1,703 2,205	2.22 1.93 1.74 1.64 1.63	330 602 1,209 2,321 3,020	2.07 1.85 1.67 1.60 1.61	507 1,007 2,216 3,445 4,520	2.10 2.03 1.86 1.75 1.66	2,340	.283 .220 .123	1.98 1.92 1.91	2,519 3,080 4,088 4,602 6,147	2.22 2.08 2.00 1.97	3,030 4,462 6,140 7,857	2.87 2.87 2.44	1,843 2,440 2,113 4,575 8,210	5.46 5.46 5.07 5.07 4.14 4.14 3.53 3.33 3.20 3.20 3.20 2.82 2.62 2.47 2.40	1,168 894 1,265 949 1,595 1,210 2,543 2,186 2,625 2,254 3,628 2,970 4,302 3,863 5,620 5,361 6,763 9,870

^{1/} Propane group is average of (A-T/5-No./73, 3, 5, 74, 75). $\frac{2}{0.635}$ cm., port depth. λ = Coefficients of friction (line 13d, figure 75).

TABLE 5. - Yellow-tip limits of fuel gases; methane - propane group - ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Fu	el No.	5 comp	ositio	n, perc	ent:	99•2 Cg	₃ н ₆ , о	•4 Сзна	, 0.4 C	2 ^H 6					Fc	= 1.44	,				<u> </u>
St	oichiom	etric	percen	tage:		4.45				(Dat	a for f	igur	es 52- 56	5)	СН	4/c3H8	group	= 0/10	00 = 0		
Po 1.	rt diam	1 <u>2</u> /		diam. 3 cm.	Po 0.	rt diam 952 cm.	1 <u>.</u> 2/		diam. 8 cm.		diam.			diam. 24 cm.	Po O.	rt diam 595 cm.	<u>2</u> /		diam.		diam. 9 cm.
Fy	gy	λ ³ /	Fy	gy	Fy	gy	13/	Fy	gy	Fy	gy		Fy	gy	Fy	εy	23/	Fy	gy	Fy	gy
1.72 1.62 1.45 1.43	208 442 854 1,014	0.410 .223 .135 .116	1.59	183 351 596 835 959	1.56	363 637 1,050 1,385	.216	1.71	169 305 500 795 1,300 1,520	1.44	301 420 497 602 801 1,405 1,935 2,195		1.81 1.71 1.58 1.50 1.43 1.42	2,495	1.64 1.54 1.46	730 957 1,665 3,415 5,800 7,070	0.410 .323 .213 .122 .077 .067	1.79 1.61	2,601 4,959	1.77	7,036 9,108 10,640
	Fuel No. 74 composition, percent: 100 C4HlO Stoichiometric percentage: 3.12 (Data for figures 52-56)											5)	·	= 1.57 4/ ^C 3 ^H 8		= 0/10	0 = 0				
Po 0.	rt diam 796 cm.	<u>1</u> <u>2</u> /		diam. 6 cm.		diam. 9 cm.			diam. 1 cm.	Pc 0.	rt diam 595 cm.	<u>.</u> 2/		e diam. 54 cm.							
Fy	gy	λ 4/	Fy	gy	Fy	gy		Fy	$g_{\mathbf{y}}$	Fy	gy	24	F _y	gy							
	464 1,038 1,686 2,390	.103	1.72 1.62 1.57 1.55	524 1,020 1,525 2,050	1.64 1.60 1.59	1,833		1.63 1.63 1.60	1,480 2,020 4,220	1.63 1.62 1.56	1,720 2,520 5,000	0.14 •11 •07	6 1.76								
Fu	el No.	75 com	positi	on, per	cent:	94.1	4 ^H 8•	2.8 C ₂ H	4, 2.1	С3Н6,	1.0 C4H	10			Fc	= 1.40					
St	oichiom	etric	percen	tage:		3.43				(Dat	a for f	igur	es 52-56	5)	СН	4∕ ^C 3 ^H 8	group	= 0/10	0 = 0		
	diam. 3 cm.			diam. 1 cm.		diam.			diam. l cm.		diam. 2 cm.			diam.					_		
Fy	gy		Fy	gy	Fy	gy		Fy	gy	Fy	gy		Fy	gy							
1.55 1.49 1.47 1.43 1.42	237 323 504 716 938		1.53 1.47 1.46 1.43 1.40	451 600 808 1,114 1,425	1.53 1.47 1.46 1.42 1.41	600 854 1,330 1,725 2,150		1.54 1.50 1.46 1.43 1.41	1,188 1,587 2,420 3,450 4,410	1.55 1.54 1.51	3,920 4,940 5,610		1.56	5,660							

^{1/} Propane group is average of (A-T/5-No./73, 3, 5, 74, 75).
2/ 0.635 cm., port depth.
3/ Coefficients of friction (line 13c, figure 75).
4/ Coefficients of friction (line 13d, figure 75).

TABLE 5. - Yellow-tip limits of fuel gases; methane-propane group- ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

P		T.		F	-	F		F		F		F	,	F		F		F	
Fy	Ey No	Fy 74 com	g _y	Fy	g _y	Fy 53 7 C	g _y 2H ₄ , 46.	F _y	gy	Fy	gy	Fy	g _y	F _y	^g y	Fy	gy	Fy	gy
	oichion					5.04	2114, 40.	2 03u8	(Data f	or fig	ıres 52-	56)		•	group/C2	H, = 40	5.9/53.1	= 0.8	84
	diam.	·	diam.	, 	diam.		diam.	Tube	diam.		diam.	· · · · · ·	diam.		diam.	4	.,,		
	3 cm.		l cm.		6 cm.		cm.		4 cm.		9 cm.		5 cm.	0.15					<u> </u>
1.97 1.78 1.73 1.71 1.71	187 436 635 869 1,040	1.98 1.78 1.73 1.71 1.71	283 661 962 1,317 1,575	1.73	429 1,001 1,455 1,996 2,390	2.78 2.38 2.24 2.11 2.03 1.99 1.95	908 1,828 2,820 4,770 8,690 12,930 17,350	2.80 2.39 2.28 2.19 2.13	1,600 3,485 5,120 8,380 19,700	2.81 2.47 2.36 2.33 2.31 2.29	2,575 5,430 8,240 11,170 13,900 19,400	2.80 2.63 2.55 2.50 2.48	7,330 12,080 16,670 22,480 29,200	3.01 2.82 2.81	10,170 21,700 31,500				
Fu	el No.	77 com	positio	n, per	cent:	74.4 C	2H ₄ , 25.	6 Сзна						F _c =					
St	oichion	metric ;	percent	age:		5.62			(Data f	or fig	ures 52-	.56)		СЗНВ	group/C2	H ₄ = 2	5.6/74.4	= 0.3	44
	diam. 3 cm.		diam.		diam.		diam. 9 cm.		diam. l cm.		diam. 5 cm.		diam. 3 cm.		diam.		diam. 9 cm.		diam. 5 cm.
2.02 1.78 1.72 1.70 1.69 1.69 1.68	126 317 495 642 768 836 990		198 480 751 966 1,160 1,270 1,503	2.05 1.78 1.72 1.71 1.69 1.69 1.68	305 726 1,135 1,463 1,760 1,920 2,265	2.05 1.80 1.75 1.72 1.68 1.69 1.68	418 996 1,555 2,005 2,400 2,635 3,110	2.01 1.80 1.77 1.71 1.69 1.69	639 1,490 2,330 3,000 3,600 4,660	1.72	920 2,220 3,460 4,470 5,360 6,940	2.03 1.84 1.77 1.72 1.71 1.72	2,040 4,870 7,560 9,720 11,660 15,150	2.15 1.87 1.81 1.81	3,265 7,700 12,050 18,700	2.52 2.26 2.21 2.15 2.12	2,340 5,960 8,930 11,800 14,300	2.31	4,980 11,900 19,600 24,550 33,900
Fu	el No.	78 com	positio	n, per	cent:	90.0 C	244, 10.	0 Сзна						F _c =	1.78				
St	oichic	netric	percent	age:		6.13			(Data f	or fig	ures 52-	.56)		Сзна	group/C2	$H_4 = 1$	0.0/90.0	= 0.1	17
	diam.		diam.		diam.		diam. 5 cm.		diam. 3 cm.		diam. 4 cm.								
1.89 1.82 1.81 1.78	300 507 711 1,004	1.85 1.84 1.82 1.79	454 770 1,073 1,520	1.89 1.84 1.82 1.79	690 1,165 1,625 2,305	1.92 1.87 1.85 1.83	2,110 3,565 4,970 7,060	2.00 1.95 1.93 1.87	4,610 7,800 10,870 15,370	2.11 2.11 2.04	12,950 21,900 30,500								
Fu	el No.	79 com	positio	n, per	cent:	76.0 C	2H4, 24.	О Н2		<u> </u>	<u> </u>				1.90				
	oichion					8.01		0.3			ures 52-				group/C2	$H_4 = 0$	/76.0 =	0	
	diam.		diam.		diam.		diam.		diam. 4 cm.		diam. 9 cm.		diam.		diem. 5 cm.				
2.03 1.94 1.93 1.91 1.89	188 412 620 855 1,058	1.93 1.91	285 624 940 1,298 1,605	1.91	432 942 1,423 1,960 2,430	2.75 2.41 2.27 2.22 2.21 2.19 2.12 2.10 2.07 2.04	926 1,970 3,040 4,145 4,635 5,100 10,120 15,280 20,900 26,050	2.78 2.48 2.37 2.31 2.29 2.28 2.18 2.16 2.10	1,620 3,460 5,280 7,290 8,100 8,960 17,760 26,980 37,000 40,110	2.40 2.39	2,680 5,680 8,780 12,130 13,540 14,900 29,850 44,950 50,800	2.98 2.67 2.60 2.54 2.54 2.52 2.46 2.45 2.42	5,580 12,090 16,360 25,600 28,600 31,450 46,400 63,500 82,000	3.08 2.91 2.82 2.77 2.72 2.71 2.68	11,430 24,400 37,900 51,400 64,000 83,800 108,700				

TABLE 5. - Yellow-tip limits of fuel gases; methane-propane group - ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi \text{ D}^3)$

Noncircular and sharp-edged short ports; $g = (\lambda V Re)/(2\pi D^3)$

Fuel No. 4 composition, percent: 100 C2H4

 $F_c = 1.88$

Stoichiometric percentage:

6.52

(Data for figures 52-56) C_2H_0 group/ $C_2H_1 = 0/100 = 0$

St	oichiome	tric p	ercenta	ge:	6.	52	(Da	ata for	iigure	S 22-2	0) 03	Hg grou	¹ P/ ^C 2 ^H 4	= 0/10	J = U	
	diam.		rt diam 952 cm.		Po 0.	rt diam 796 cm.	<u>.</u> 2/		diam. 6 cm.		diam. 9 cm.	Tube 0.611	diam. cm.		rt diam 595 cm.	
Fy	g _y	Fy	gy	23/	Fy	gy	₂ 3/	Fy	gy	Fy	gy	Fy	gy	Fy	gy	23/
1.89 1.87 1.87	88.5 133 154	1.89 1.92 1.86 1.85	189 409 825 1,537	0.595 .323 .183 .112	1.98 1.93 1.90 1.88 1.86	313 796 1,291	0.745 .530 .246 .170 .098	1.99 1.91 1.93 1.90	299 691 994 1,510	2.03 2.00 1.99 1.95 1.91 1.91	299 396 594 798 1,300 1,805 3,130	1.93	299 498 723 900 1,490 2,010 4,700	2.10 1.99 1.95 1.94 1.92 1.85	349 614 936 1,206 2,120 7,440	0.770 .490 .345 .283 .183 .067
	diam.		rt diam 239 cm.		0.654	t dimen .x3.18	cm.	0.318	t dimen ×2.5 c	m ,	0.35	ort dime 4×1.28	cm.,	0.196	t dimen ×1.29	cm.,
Fy	gy	Fy	gy	/23	Fy	gy	14/	Fy	gy	24/	$\mathtt{F}_{\mathtt{y}}$	gy	24/	Fy	gy	3 4/
2.26 2.23 2.17	6,540 16,840 39,600	2.27 2.20 2.21	7,390 27,000 46,600		2.03 1.96 1.91 1.88 1.87	93•1 166 225 306 345	0.278 .113 .066 .040 .033	2.07 1.85 1.84 1.83	1,095 1,530	0.125 .042 .024 .015	2.00 1.90 1.86 1.84 1.83	1,056 1,436 1,964	.029	1.99 1.91 1.88	2,290 4,095 5,740	
2/ 0 3/ C 4/ C	.635 cm. oefficie	group is average of (A-T/5-No./73, 3, 5, 74, 75). ents of friction (line 13c, figure 75). ents of friction (line 13g, figure 75). equivalent hydraulic diameter.													179	

TABLE 6. - Yellow-tip limits of fuel gases; methane-ethylene

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Fuel	l No. 2	compos	ition, pe	rcent:	100 CH4													F _c =	1.80				
Sto	ichiomet	ric per	rcentage		9.46													С ₂ Н ₄	/CH ₄ = 0	/100 =	0		
(A-T/5-	-No./2)																						
Fuel	l No. 80	compos	sition, p	ercent	: 72.5 C	H ₄ , 15	.9 С ₂ н ₄ ,	7.7 H	2, 2.6 C ₂	н ₆ , о.,	4 с ₃ н _в ,	о.2 с ₃ н	6, 0.2 C	μ ₁₀ , ο	.5 CO ₂			F _c =	1.76				
Sto	ichiomet	ric per	rcentage:		9.07			(Da	ta for fi	gures :	57-59)							C2H4	/CH4 = 1	9.3/72.	5 = 0.26	6	
Tube 6 2.47		Tube 1.91	diam.	Tube 1.50	diam. 3 cm.	Tube 1.23	diam.		e diam. 23 cm.		e diam. 76 cm.		e diam. ll cm.		e diam. 13 cm.		e diam. 94 cm.		e diam. 95 cm.				
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	٤y	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy				
2.43 2.20 2.06 1.88 1.76 1.74	10.3 19.4 30.6 79.0 154 207	2.60 2.27 2.07 1.85 1.79 1.76	19.6 44.8 79.5 170 331 457	2.55 2.34 2.14 1.92 1.83 1.87	49.2 98.5 205 352 670 943	2.57 2.30 2.07 1.93	294	2.68 2.47 2.17 2.11 2.15 2.10	129 198 398 648 1,144 2,120	2.80 2.34 2.27 2.22	252 779 1,485 2,640	2.92 2.53 2.37 2.28	470 1,275 3,140 5,460	3.00 2.63 2.55	1,495 4,610 7,730	3.10	5,100 9,400 14,850 27,450	3.15	20,850 35,100 51,800				
Fue	l No. 81	compo	sition, p	ercent	: 67.6 C	H ₄ , 26	.8 C ₂ H ₄ ,	2.3 C	2H6, 2.2	H ₂ , 0.	4 C3H8,	0.2 C3H	6, 0.1 C	H ₁₀ , 0	.4 CO2			F _c =	1.79				
Sto	ichiomet	ric pe	rcentage		8.37			(Da	ta for fi	gures	57-59)							с ₂ н ₄	/CH ₄ = 2	9.8/67.	6 = 0.44	1	
Tube (Tube 1.50	diam. 3 cm.		diam. 7 cm.	Tube 1.02	diam. 3 cm.		e diam. 91 cm.		e diam. 76 cm.		e diam. ll cm.		e diam. 35 cm.		e diam. 13 cm.		e diam. 54 cm.		e diam. 49 cm.		e diam. 195 cm.
Fy	gy	Fy	٤y	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
2.70 2.32 2.09 1.96 1.87 1.79	10.5 17.2 33.8 80.3 175 242 358	2.79 2.40 2.15 2.01 1.82 1.80 1.79	18.6 35.7 69.9 168 376 496 734	2.17 2.02 1.92 1.85	29.9 62.6 123 294 638 874 1,305	2.93 2.49 2.19 2.02 2.00 1.96	114	2.92 2.49 2.22 2.04 2.02 1.95	82.0 173 337 805 1,765 2,418	2.97 2.51 2.24 2.07 2.02 1.99	123 263 511 1,224 2,670 3,670	3.17 2.58 2.28 2.14 2.03	201 518 1,054 2,540 5,465	3.21 2.60 2.30 2.15 2.05	296 774 1,572 3,790 8,230	3.21 2.67 2.40 2.19 2.06	643 1,695 3,455 8,270 15,000	3.23 2.73 2.44 2.25 2.21	1,023 2,710 5,510 13,180 17,540	3.26 2.87 2.74 2.68		3.40 3.02 2.98	6,240 16,780 32,250
Fue	l No. 57	compo	sition,	ercent	: 32.1 C	H ₄ , 28	.4 C ₂ H ₄ ,	12.5	H ₂ , 27.0	N ₂						*******		F _c =	1.90				
Sto	ichiomet	ric pe	rcentage		11.84			(Po	ints for	figure	62 and	data fo	r figure	57-59)			C ₂ H ₄	/CH ₄ = 28	8.4/32.	1 = 0.88	5	
Tube 1.247			diam. 3 cm.		diam. 1 cm.		diam. 6 cm.		e diam. 54 cm.		e diam. 94 cm.		e diam. 49 cm.		e diam. 95 cm.		e diam. 55 cm.						
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy						
2.12 1.97 1.91 1.89 1.89	128 284 421 566 667	2.23 1.96 1.94 1.92 1.91	213 528 768 1,025 1,215	1.93	326 804 1,165 1,564 1,852	1.98	489 1,230 1,780 2,387 2,810	2.32	1,114 2,238 3,605 5,950 11,900 18,150 24,650	2.44	1,983 4,175 6,340 10,650 23,500 33,850	3.13 2.78 2.70 2.65 2.56	3,290 7,120 10,600 18,030 43,400	2.90 2.86	7,030 14,150 22,850 30,850 39,100 61,200	3.24 3.20	14,300 27,100 40,350 53,200 63,700						

TABLE 6. - Yellow-tip limits of fuel gases; methane-ethylene (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

rue	l No. 5	5 composi	ition, p	ercent:	37.4 CH	4, 33.4	C ₂ H ₄ , 15.	.2 H ₂ , 1	4.0 N ₂				F	c = 1.9	90
Sto	oichiome	tric per	entage:		10.27		_	(Dat	a for fig	gures 57	7-59)		C	2 ^н 4/сн4	= 33.4/37.4 = 0.893
Tube 1.023	diam.	Tube 0.891	diam.		diam.		diam. 9 cm.		diam.		diam.		diam. 5 cm.		
Fy	g _y	Fy	gy	Fy	gy	Fy	gy	Fy	٤y	Fy	g _y	Fy	8 _y		
2.06 1.97 1.92 1.89 1.90	300 512 708 942 1,110	2.11 1.98 1.96 1.93 1.90	407 716 1,015 1,330 1,685	2.15 2.06 1.98 1.94 1.93	510 805 1,315 2,050 2,550	2.19 2.04 2.00 1.95	798 1,500 2,450 3,520	2.21 2.05 2.04 2.02	1,230 3,050 4,150 5.310	2.65 2.57 2.47 2.43	9,560 17,200 29,240 44,900	3.27 3.17 3.03 2.99	15,500 22,800 32,000 39,200		
Fue	1 No. 8	2 composi	ition, p	ercent:	33.5 СН	4, 30.1	С ₂ Н ₄ , 13	.4 H ₂ , 1	2.8 N ₂ ,	10.2 CO ₂	2		1	c = 1.8	38
Sto	oichiome	tric per	entage:		11.30			(Dat	a for fig	gures 57	7-59)		(2H4/CH	= 30.1/33.5 = 0.898
Tube 1.023	diam.	Tube 0.891	diam.		diam.		diam.		diam.		e diam. 55 cm.				
Fy	gy	Fy	Вy	Fy	gy	Fy	gy	Fy	gy	Fy	gy				
2.08 1.95 1.89 1.86 1.87	297 508 717 960 1,140	2.05 1.95 1.92 1.91 1.89	446 770 1,090 1,465 1,695	2.08 1.98 1.96 1.94 1.92	681 1,170 1,660 2,230 2,540	2.14 2.05 2.04 2.00 1.98	1,410 2,425 3,440 4,610 5,060	2.63 2.56 2.49 2.43	9,390 17,550 29,300 45,600	3.31 3.16 3.03 3.00	15,100 22,700 32,230 40,000				
Fue	1 No. 8	3 composi	ition, p	ercent:	72.5 C ₂	H ₄ , 27.5	CH ₄]	F _c = 1.8	35
Stc	oichiome	tric per	centage:		7.12			(Dat	a for fig	gures 57	7-59)		(CH ⁷ /C ⁵ H ⁷	= 27.5/72.5 = 0.38
Tube 1.023	diam.	Tube 0.89	diam. L cm.	-	diam. 6 cm.		diam.		diam.		e diam. 13 cm.		e diam.		e diam. 49 cm.
Fy	٤y	Fy	gy	Fy	Вy	Fy	gy	Fy	gy	Fy	gy	$\mathbf{F}_{\mathbf{y}}$	gy	Fy	gy
Fy 2.12 1.94 1.87 1.85 1.82 1.83	134 293 477 638 790 1,023	Fy 2.20 1.98 1.90 1.87 1.85 1.86	205 478 721 973 1,200 1,554	Fy 2.19 1.99 1.91 1.88 1.87	310 679 1,095 1,470 1,816	Fy 2.14 1.99 1.94 1.92 1.89 1.87	422 930 1,494 2,010 2,490 3,220	Fy 2.20 2.03 1.96 1.94 1.92 1.90	636 1,398 2,250 3,015 3,740 4,840	F _y 2.24 2.07 2.03 1.98	2,065 4,170 7,190 12,180	2.33 2.14 2.08 2.04	3,305 6,660 11,480 19,480	Fy 2.46 2.29 2.22 2.22	gy 9,740 20,130 33,500 36,250
2.12 1.94 1.87 1.85 1.82 1.83	134 293 477 638 790 1,023	2.20 1.98 1.90 1.87 1.85 1.86	205 478 721 973 1,200 1,554	2.19 1.99 1.91 1.88 1.87	310 679 1,095 1,470	2.14 1.99 1.94 1.92 1.89 1.87	422 930 1,494 2,010 2,490 3,220	2.20 2.03 1.96 1.94 1.92	636 1,398 2,250 3,015 3,740	2.24 2.07 2.03	2,065 4,170 7,190	2.33 2.14 2.08	3,305 6,660 11,480 19,480	2.46 2.29 2.22	9,740 20,130 33,500 36,250
2.12 1.94 1.87 1.85 1.82 1.83	134 293 477 638 790 1,023	2.20 1.98 1.90 1.87 1.85 1.86	205 478 721 973 1,200 1,554	2.19 1.99 1.91 1.88 1.87	310 679 1,095 1,470 1,816	2.14 1.99 1.94 1.92 1.89 1.87	422 930 1,494 2,010 2,490 3,220	2.20 2.03 1.96 1.94 1.92	636 1,398 2,250 3,015 3,740	2.24 2.07 2.03	2,065 4,170 7,190	2.33 2.14 2.08	3,305 6,660 11,480 19,480	2.46 2.29 2.22 2.22 F _c = 1.9	9,740 20,130 33,500 36,250
2.12 1.94 1.87 1.85 1.82 1.83	134 293 477 638 790 1,023	2.20 1.98 1.90 1.87 1.85 1.86	205 478 721 973 1,200 1,554	2.19 1.99 1.91 1.88 1.87	310 679 1,095 1,470 1,816	2.14 1.99 1.94 1.92 1.89 1.87	422 930 1,494 2,010 2,490 3,220	2.20 2.03 1.96 1.94 1.92	636 1,398 2,250 3,015 3,740	2.24 2.07 2.03	2,065 4,170 7,190	2.33 2.14 2.08	3,305 6,660 11,480 19,480	2.46 2.29 2.22 2.22 F _c = 1.9	9,740 20,130 33,500 36,250
2.12 1.94 1.87 1.85 1.82 1.83 Fue Sto	134 293 477 638 790 1,023 1 No. 76	2.20 1.98 1.90 1.87 1.85 1.86 9 composi	205 478 721 973 1,200 1,554	2.19 1.99 1.91 1.88 1.87	310 679 1,095 1,470 1,816	2.14 1.99 1.94 1.92 1.89 1.87	422 930 1,494 2,010 2,490 3,220	2.20 2.03 1.96 1.94 1.92	636 1,398 2,250 3,015 3,740	2.24 2.07 2.03	2,065 4,170 7,190	2.33 2.14 2.08	3,305 6,660 11,480 19,480	2.46 2.29 2.22 2.22 F _c = 1.9	9,740 20,130 33,500 36,250 90 4 = 0/76.0 = 0

TABLE 7. - Yellow-tip limits of fuel gases; other fuels

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

					d sharp-ed				↓V Re)/(2				
Fue	el No. 6 d	compositi	ion, perc	ent: 10	0 С6Н6							F _c =	1.18
Sto	oichiometr	ric perce	entage:	2.	71			(Poi	ints for f	igure 64	,)		
	e diam. 23 cm.		e diam. Ol cm.		e diam. 76 cm.		e diam. l cm.		diam.		diam.		e diam.
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
1.28 1.23 1.19 1.19 1.18	607 917 1,267 1,570 1,898	1.33 1.24 1.21 1.19 1.18	732 1,247 1,755 2,280 2,875	1.34 1.24 1.22 1.20 1.18	665 1,428 2,145 2,925 3,565	1.37 1.29 1.22 1.20	758 1,551 2,970 4,590	1.36 1.26 1.23 1.20 1.21	1,544 2,475 3,390 4,440 5,310	1.35 1.30 1.26	2,460 3,865 5,235	1.34	5,080
Fue	el No. 84	composit	ion, per	cent: 1	∞ c ₇ H ₈				<u> </u>	***************************************		F _c =	1.34
Sto	oichiomet	ric perce	entage:	2	•27			(Poi	nts for f	igure 65	5)	·	
	e diam. 23 cm.		e diam. Ol cm.		e diam. 76 cm.		diam.		diam. 3 cm.	I .	diam.	,	
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy		
1.55 1.44 1.40 1.36 1.36	471 740 970 1,200 1,343 1,934	1.69 1.53 1.39 1.34 1.33	473 818 1,330 2,010 2,468	1.62 1.45 1.38 1.35	774 1,353 2,003 2,750	1.69 1.47 1.44	912 2,090 2,775	1.61 1.58 1.55	2,530 2,920 3,190	1.80	3,760		
Fue	el No. 85	composit	ion, per	cent: 9	7.3 C ₂ H ₂ ,	2.7 CH3C	осн ₃	····	·	t	<u> </u>	F _c =	2.10
Sto	oichiomet	ric perce	entage:	7	.60	_	-	(Poi	nts for f	igure 66	5)		
	e diam. 76 cm.		e diam. 35 cm.		e diam. 54 cm.		diam.		e diam. 95 cm.				
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy		***		
2.12 2.12 2.09	1,408 1,825 2,480	2.14 2.12 2.11 2.11 2.08	1,277 2,240 3,490 5,570 7,580	2.17 2.17 2.17 2.13 2.13	2,110 4,420 7,560 12,160 19,270	2.31 2.25 2.24 2.19 2.21	2,995 6,100 12,780 21,500 35,300	2.33 2.25 2.18 2.20	5,950 12,710 29,300 49,900				

TABLE 7. - Yellow-tip limits of fuel gases; other fuels (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Noncircular and sharp-edged short ports; $g = (\lambda \, V \, Re)/(2\pi D^3)$

Fuel No. 86 composition, percent: 84.2 CH₄, 7.6 C₂H₂, 5.3 C₂H₆, 1.6 C₃H₆, 0.6 C₄H₁₀, 0.3 C₃H₆, 0.4 CO₂

Stoichiometric percentage:

8.70

(Points for figure 67)

 $F_c = 1.77$

500	TOTT OHEO.	TC berce	mage.		10			(1.02		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	diam.		diam. 4 cm.		e diam. 3 cm.		diam.		e diam. 49 cm.	
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	g _y	
1.85 1.76 1.74	78.4 133 217	1.88 1.86 1.84 1.73 1.78	123 148 174 281 465	1.93 1.77 1.76	353 571 961	2.85 2.58 2.49	5,130 12,920 17,950	3.56 3.15 2.97	3,003 8,700 22,050	

Fuel No. 87 composition, percent: 91.6 CH4, 4.0 C7H8, 3.2 C2H6, 0.7 C3H8, 0.2 C3H6, 0.3 CO2

Stoichiometric percentage:

8.17

(Points for figure 68)

 $F_c = 1.74$

		p			·			· · · · ·						
	diam.		diam.		e diam. 23 cm.		e diam.		diam. 3 cm.		diam. 4 cm.		e diam. 49 cm.	
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	$\mathtt{F}_{\mathtt{y}}$	gy	Fy	gy	
2.27 2.03 1.93 1.83 1.81 1.77	41.8 62.9 107 176 243 316 412	2.64 2.05 1.98 1.85 1.78 1.74	31.3 105 172 290 498 661	2.36 2.07 2.02 1.92 1.79 1.78	111 334 534 887 1,575 2,025	2.36 2.02 1.95 1.89 1.88	254 782 1,450 2,555 3,470	2.68 2.53 2.38 2.27 2.14 2.08 2.05	1,036 1,230 2,405 3,815 5,940 7,860 8,850	2.77 2.47 2.36 2.32 2.23	1,903 4,180 6,690 7,320 9,070	2.65 2.45 2.37	5,360 8,850 11,750	

Fuel No. 66 composition, percent: 42.6 CH4, 18.1 C2H4, 17.0 H2, 9.1 CO, 2.2 C2H6, 1.9 C3H8, 0.2 C3H6, 0.2 C4H10, 0.1 C4H8, 5.2 CO2, 3.4 N2

Stoichiometric percentage:

10.8

 $F_c = 1.80$

	diam.	Tube	diam.		e diam. 03 cm.		diam.		diam.		diam.		e diam. 13 cm.		e diam. 94 cm.		diam.
Fy	gy	Fy	gy	Fy	g _y	Fу	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
2.05 2.00 1.91 1.84 1.79	14.3 28.2 60.2 127 175	2.36 2.22 2.09 2.00 1.86 1.82	18.8 28.8 57.6 107 208 380	2.42 2.30 2.16 1.94 1.84	38.9 65.6 106 285 782	2.56 2.38 2.23 2.00 2.00	119 210 340 876 1,913	2.56 2.38 2.26 2.07	167 319 516 1,290	2.58 2.38 2.24 2.13	253 489 780 1,885	2.84 2.65 2.52 2.41 2.30	1,260 2,020 3,590 6,260 11,650	2.85 2.69 2.57 2.50	3,990 6,440 14,860 29,700	3.07 2.94 2.86	15,880 31,500 61,000

TABLE 7. - Yellow-tip limits of fuel gases; other fuels (Con.)

Long cylindrical tubes; $g = (32 \text{ V})/(\pi D^3)$

Noncircular and sharp-edged short ports; $g = (\lambda V Re)/(2\pi D^3)$

Fuel No. 56 composition, percent: 29.1 CH_4 , 26.2 C_2H_4 , 22.1 C_3H_8 , Ll.8 H_2 , 0.2 C_3H_6 , 10.6 N_2

Stoichiometric percentage:

7.60

 $F_c = 1.76$

	diam. 3 cm.		diam. l cm.	Tube 0.776	diam.		e diam. 4 cm.		e diam. 94 cm.		e diam. 49 cm.		e diam. 95 cm.		diam.
Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy	Fy	gy
2.14 1.87 1.79 1.76 1.75	134 332 550 801 1,034	2.14 1.87 1.79 1.76 1.76	203 504 835 1,213 1,560	2.14 1.87 1.79 1.76 1.76	307 762 1,265 1,830 2,365	2.88 2.46 2.35 2.07 1.99 1.97	898 2,133 3,300 8,150 13,650 19,400	2.93 2.49 2.35 2.27 2.20 2.19	1,570 3,745 6,420 9,220 20,600 23,600	2.96 2.58 2.44 2.36 2.34	2,593 6,220 10,520 15,300 24,700	3.01 2.72 2.61 2.52	5,430 13,110 22,100 32,400	3.16 3.00 2.90	10,450 21,960 36,550
			Port dimen. 1.2 × 2.9 cm. E.H.D. = 1.698cm. 1/												
1.25x1.2	dimen. 25×1.25 cm. 0.722 cm.1		1 2 2 2 2	0		1.068×	dimen. 1.075 cm. 1.072 cm. 1/		Port d: 0.354×1 E.H.D.=0.5	.284 cm.		0.196×1	dimen29 cm. 0.34 cm.1/		
1.25x1.2	5×1.25 cm.	λ ² /	1 2 2 2 2	0	λ ³ /	1.068×	1.075 cm.,	2 <i>±</i> ∕	0.354×1	.284 cm.	13/	0.196×1	29 cm.	2 <u>3</u> /	

^{1/} E.H.D., equivalent hydraulic diameter.
2/ Coefficients of friction (line 13h, figure 75).
3/ Coefficients of friction (line 13g, figure 75).
4/ Coefficients of friction (line 13f, figure 75).

TABLE 8a. - Calculation of coefficients of friction, 1, for sharp-edged short ports

$$\lambda = \frac{2\pi g D^3}{V Re}$$

Fuel No. 17 composition, percent: 79.7 CO. 20.1 Ha. 0.2 CO.

 $\lambda = 41.4/\text{Re}^{0.89}$

Fu∈	el No. 17	compo:	sition,	perce	nt: 79	7 co, 20	1.1 H2,	0.2 00	2						Λ = 4J	L-4/Re	·		
Sto	oichiomet	ric pe	rcentag	e:	29.	.5			_	(Point	s for fi	gure 70)						
		diamete					diamete				0.5	diamete 95 cm.l	_/				diamet		·
F _F	g _F 3/	₹ <u>4</u>	Re	λ	FF	g _F 3/	v _F 4/	Re	λ	F _F	g _F 3/	v _F 4/	Re	λ	F _F	g _F 3/	V _F 4√	Re	٦
0.675 2.25 .783 2.20 .950 2.14	370 580 680 850 1,300 1,200	22.6 21.0 35.8 33.1 60.5 62.2	180 162 285 255 480 480	0.493 •926 •362 •546 •242 •219	0.739 2.22 .909 2.10 1.10 1.99 1.32 1.79	540 750 1,130 1,400 1,950 2,100 2,700 3,000	15.1 15.6 22.5 23.1 35.9 38.7 46.7 50.9	177 177 261 262 415 439 540 580	0.351 .470 .332 .398 .225 .213 .185 .175	0.786 2.21 .952 2.13 1.32 1.93	680 800 1,300 1,220 2,750 2,400	12.1 12.5 20.2 19.8 35.3 32.6	154 154 257 244 443 405	0.482 .548 .330 .334 .232 .241	1.10 2.10 1.33 1.86	1,950 1,420 2,750 2,750	15.0 12.7 20.5 20.1	236 197 323 310	0.374 .384 .281 .298
FB	g _B 5/	v _B 6/	Re	λ	FB	g _B 5/	v _B 6/	Re	2	FB	g _B 5/	v _B 6/	Re	λ	F _B	g _B 5/	v _B 6∕	Re	2
0.582 .614 .639	240 400 580	21.9 34.6 60.1	174 277 482	0.343 .228 .109	0.634 .698 .718 .787 .881	520 1,300 1,500 3,000 5,800	16.1 23.7 38.1 61.9 85.7	188 277 443 724 998	0.297 .342 .153 .116 .117	0.640 .641 .719 .758 .804	590 590 1,550 2,350 3,400		159 230 404 579 810	0.397 .189 .159 .119 .088	0.692 .728 .796	1,700	13.9 20.8 30.4	222 330 485	0.265 .167 .147
		diamet					diamete					diamete					diamet		
$\overline{\mathbf{F}_{\mathbf{F}}}$	g _F 3/	V _F 4/	Re	λ	F _F	g _F 3/	٧ <u>۴</u> /	Re	λ	F _F	g _F 3/	₹ <u>4</u> /	Re	2					
0.898 2.11 1.10 1.87 1.42 1.73	1,100 1,350 1,950 2,700 3,050 3,200	11.9 12.6 17.3 22.0 24.2 25.0	189 193 273 340 381 388	0.331 .376 .279 .243 .223	1.25 1.97 1.33 1.79	2,520 2,200 2,800 3,000	12.6 11.9 13.8 14.8	231 216 254 269	0.368 .365 .340 .320	1.09 1.89 1.33 1.86	1,900 2,600 2,770 2,750	11.0 12.4 15.5 15.3	203 224 284 277	0.360 •397 •265 •274					
FB	g _B 5∕	v _B 6∕	Re	λ	F _B	g _B 5/	ν _B 6/	Re	λ	FB	g _B 5/	v _B 6∕	Re	2	F _B	g _B 5/	∇ _B 6/	Re	λ
0.688 .726 .846 .905 .980		12.4 19.9 31.6 49.0 66.1	198 316 501 780 1,045	0.306 .183 .206 .118 .100	0.726 .776 .858 .896 .963	2,800 5,200	11.4 17.2 27.5 35.4 55.1 76.2	212 320 510 655 1,016 1,405	0.299 .215 .157 .119 .071		2,800	11.0 16.9 26.9 45.7 60.9	205 311 498 843 1,130	0.340 .225 .203 .112 .086	0.935 1.06 1.18 1.33		20.5 29.6	379 630 907 1,300	0.160 .107 .088 .070

^{1/ 0.635} cm., port depth.
2/ 0.318 cm., port depth.
3/ gg, flashback with tubes, figure 69.

 $[\]frac{4}{5}$ / V_F, flows at flashback with sharp-edged short ports. $\frac{5}{5}$ / g_B, blowoff with tubes, figure 69. $\frac{5}{5}$ / V_B, flows at blowoff with sharp-edged short ports.

TABLE 8a. - Calculation of coefficients of friction, 2, for sharp-edged short ports (Con.)

						$a = \frac{2\pi}{V}$	g D ³							
Fue	1 No. 2	compo	sition	, percent:		<u>'</u> -	-110			Re = 20	0.4/Re ^C	.80		
Sto	ichiome	etric p	ercent	age:	9.46					(Data			figur	e 75)
		diame					diamet					diamet		
FF	105 19.0 131 .368 4 125 25.6 177 .244 100 25.6 176 .192 4 280 38.4 266 .233 190 38.0 261 .164 4 390 50.3 347 .194 365 50.8 349 .173 348° K.		1	$\mathtt{F}_{\mathbf{F}}$	g _F 2/	v _F 3/	Re	1	F _F	g _F 2/	v _F 3/	Re	2	
T = 30	300° K. 8 110 18.9 131 0.38 105 19.0 131 .36 125 25.6 177 .24 100 25.6 176 .19 100 28.0 38.4 266 .23 190 38.0 261 .16 190 38.0 261 .16				T = 30	∞ к.				T = 300	∞ к.			
0.728 1.26 .744 1.27 .864 1.19 .984 1.08	105 125 100 280 190 390	19.0 25.6 25.6 38.4 38.0 50.3	131 177 176 266 261 347	0.387 .368 .240 .193 .237 .166 .194 .179	0.782 1.26 .854 1.19 .996 1.11	165 105 260 200 390 335	17.2 17.3 25.9 25.3 32.8 31.6	139 139 209 204 265 256	0.374 .236 .250 .210 .244 .224	0.946 1.17	370 240	18.3 17.9	177 173	0.361 .247
T = 34	8° K.				T = 344	8° K.				T = 344	3• к.			
1.30 .743 1.28 .817 1.22 .924 1.16	160 210 200 325 280 500 380	18.5 28.7 28.2 40.2 40.3 54.8 53.9	128 199 194 279 278 377 371	0.586 .318 .315 .255 .216 .209 .164	1.28 .791 1.27 .857 1.23 .938 1.16	195 290 200 410 260 506 390	14.9 21.5 21.3 29.8 28.8 37.8 39.1	120 174 171 241 232 304 314	0.588 .420 .298 .309 .211 .238 .172	0.803 1.24 .911 1.18 .944 1.15 1.02	300 260 470 360 510 410 520 470	15.8 15.4 22.2 21.6 22.8 23.3 24.9 25.1	153 148 214 208 220 225 241 243	0.392 .361 .312 .254 .320 .246 .273 .242
T = 42	3° K.				T = 42	3° K.				T = 42)	3° K.			
1.42 .632 1.38 .716 1.33 .775 1.28 .886 1.18 .997 1.09	110 150 150 300 230 440 310 690 540 800 770	15.1 26.0 25.3 35.5 35.8 53.9 53.1 76.0 74.4 85.5 86.3	104 179 175 245 246 373 367 524 514 591 598	0.602 .278 .294 .297 .225 .189 .137 .149 .122 .130	1.34 .692 1.33 .858 1.24 .999 1.14	220 260 240 640 400 810 650	17.4 25.2 25.6 42.0 42.5 59.6 58.7	140 204 206 339 343 482 472	0.491 .274 .247 .243 .149 .153 .127	0.792 1.30 .882 1.23 .970 1.13	470 290 680 440 800 680	22.6 21.5 29.4 29.3 34.5 35.1	219 208 283 283 332 338	0.300 .204 .258 .166 .220

^{1/} 0.635 cm., port depth. 2/ g_F, flashback with tubes, figure 20 for 300° K., figure 72 for 348° and 423° K. 3/ V_F, flows at flashback with sharp-edged short ports for 300°, 348° and 423° K.

TABLE 8a. - Calculation of coefficients of friction, 1, for sharp-edged short ports (Con.)

 $\lambda = \frac{2 \pi g \ D^3}{V \ Re}$

Fue	l No.	2 com	posit	ion, p	ercent	: 10	о сн 4								Re =	20.4/Re	0.80												
Sto		metric		entage	:		.46								(Date	for li			ure 75)									
		diame					952 cr					diame 796 cm					diamet 95 cm.					diame					diamet		
\mathbf{r}_{B}	882/	v _B 2/	Re	a	F _B	€B ² /	v _B 3/	Re	2	P _B	g _B 2∕	v _B 2∕	Re	2	F _B	8B2/	v _B 2/	Re	2	F _B	e _B 2∕	v _B 2/	Re	ı	P _B	g _B 2∕	v _B 2/	Re	2
T • 3	00° K	۲.			T = 3	00° E	ζ.	•		T = :	300° K.			*	T = 30	0° K.		•	-	T = 3	00° K.				T = 3	00° K.			
.708 .741	170 260	18.8 25.5 38.0 50.1	177 263	.328	0.702 •755 •775	165 300 400	17.0 25.6 32.1	138 207 260	0,381 .316 .261	0.747 .777 .836 .890 .972	290 400 730 1,050 1,700	18.0 25.0 35.0 49.8 75.3	174 242 338 482 726	0.295 .209 .196 .139 .098	0.911 1.02 1.16 1.36	1,200 2,050 3,400 5,100	41.7 59.8	540 769	.120	1.23 1.46 1.69 1.90 2.35 2.80	4,000 5,900 7,400 8,900 12,000 16,200	34.8 43.9 55.7 68.4	455 658 832 1,060 1,285 1,350	0.155 .109 .086 .064 .058 .070	2.45	10,500 13,000 15,500	18.6 22.1 26.1	580 692 815	.078
T = 3	48° K	ι.			T - 3	48° E	ζ.			T * 3.	48° K.				T = 34	8° K.													
0,689 .715 .740	220 310 450	28.6 39.8 53.8	198 275 371	0.336 .244 .195	0.704 .733 .763	270 390 600	21.3 29.4 40.2	172 238 324	0.399 .303 .249	.776 .803 .853	880	37.2 51.0	360 495	.262 .207 .162	0.877 .965 1.08 1.21	1,600 2,700 4,000 5,900	37.3 53.7	481 692	0,258 .200 .143 .103										
T = 4	T = 423° K. T = 423° K.							T = 4	23° K.																				
0.616 160 25.9 179 0.298 0.664 320 25.1 203 0.341 0.722 590 28.9 279 0.651 280 35.3 243 .282 .711 540 41.4 334 .211 .760 960 44.7 432 .682 420 53.3 369 .184 .749 760 59.3 478 .145							0.232 .156																						

TABLE 8b. - Critical boundary velocity gradients using 1 for sharp-edged short ports

Fuel No. 17 composition, percent: 79.7 CO, 20.1 H2, 0.2 CO2

Sto	oichic	metric	percent	age:		29.5						(Poin	ts for	figure	71)								
	diame 952 cm	'a /		diamete			diamet	,	1	t diame	- /		diamet	- /		diamet	- /		t diamet			diamete	
F	g _F	2	F _F	e _F	λ	FF	8 _F	2	F	8p	2	F	g _F	1	Pp	g ŗ	2	F _F	$\mathbf{g}_{\mathbf{F}}$	1			
0.675 2.25 .783 2.20 .950 2.14	315 288 522 474 938 958	0.418 .460 .278 .305 .174 .174	0.739 2.22 .909 2.10 1.10 1.99 1.32 1.79	655 678 1,020 1,055 1,710 1,870 2,310 2,530	0.425 .425 .300 .300 .198 .190 .158 .148	0.786 2.21 .952 2.13 1.32 1.93	677 702 1,204 1,170 2,220 2,020		1.10 2.10 1.33 1.86	1,425	.385	0.898 2.11 1.10 1.87 1.42 1.73	1,320 1,400 2,010 2,640 2,940 3,040	0.400 .390 .288 .238 .215 .212	1.25 1.33 1.79 1.97	2,300 2,540 2,760 2,160	0.335 .308 .293 .358	1.09 1.89 1.33 1.86	1,964 2,230 2,910 2,850				
P _B	g _B	ג	F _B	€ _B	2	P _B	e _B	2	P _B	€ _B	2	F _B	€ _B	2	P _B	g _B	2	F _B	€ _B	2	FB	€ _B	2
0.582 .614 .639	499	0.430 .283 .173	0.634 .698 .718 .787 .881	701 1,077 1,840 3,110 4,520	0.400 .283 .188 .120 .091	0.640 .641 .719 .758 .804	1,048 1,980 2,935	0.465 .335 .203 .148 .109	0.692 .728 .796			0.688 .726 .846 .905 .980	2,380 3,925 6,360	0.385 .255 .168 .113 .087		3,260 5,460	.250 .165 .133	0.732 .776 .898 .980 1.04	3,200 5,380	.257 .170 .105	0.935 1.06 1.18 1.33	10,850 19,250 28,700 42,400	

^{1/ 0.635} cm., port depth.
2/ gg, blowoff with tubes, figure 20 for 300° K., figure 72 for 348° and 423° K.
2/ VB, flows at blowoff with sharp-edged short ports for 300°, 348°, and 423° K.

^{1/ 0.635} cm., port depth. 2/ 0.318 cm., port depth. 2 = Coefficients of friction (figure 70).

TABLE 9. - Critical boundary velocity gradients for long cylindrical tubes at 348° and 423° K.

Stoic	chiometric percer	ntage: 9.46	5	(Points	for figure 72)		
Tube di 1.257		Tube dia 1.058		Tube di 0.944			iameter l cm.
$F_{\mathbf{F}}$	g _F	F _F	g _F	$\mathbf{f_F}$	g _F		
r = 348°	К.						•
0.731 1.29 1.25 .836 1.18 .906 1.10	168 167 227 366 372 502 512	0.745 1.28 .791 1.22 .869 1.16 .916	203 180 280 275 403 399 495 506	0.794 1.23 .868 1.15 .963 1.06	266 267 403 398 512 517		
T = 423°	К.						•
		0.664 1.33 .781 1.23 .646 1.16 .939 1.08	249 254 405 401 602 602 782 794				
		F _B	g _B	$^{\mathtt{F}}_{\mathtt{B}}$	$\mathtt{g}_{\mathtt{B}}$	F _B	g _B
T = 348°	К.						•
		0 •690 •712 •736 •769	202 278 398 604	0.686	263	0.857 .898 .969 1.06 1.14	1,090 1,685 2,480 3,760 5,100
T = 423°	К.						
		0.641 .691 .732 .754	248 401 594 804				

TABLE 10a. - Calculation of coefficients of friction, 1, for long square channels

$$\lambda = \frac{2 \, \pi \, \text{g D}^3}{\text{V Re}}$$

Stoich	ni o met	ric pe	ercent	n, perc age: gure 7	9	LOO CH4 9.46			λ = 6	1.4/Re	1.09				Fuel No. 17 compostoichiometric po (Data for line 1	ercentag	e:	nt: 79 29	. 5	20.1 H_2 , 0.2 CO_2 $\lambda = 156.4/Re^{1.22}$
]	annel .068,	1.075	cm.		1	hannel 0.740 × E.H.D.	0.744	Cm.			0.596	× 0.6	nsions 00 cm. 598 cm.	•		0.596	1 dimen × 0.600	ocm.		
F _F	g _F 1/	v _F 2/	Re	λ	$\mathbf{F}_{\mathbf{F}}$	g _F 1/	v _F 2/	Re	2						$F_{\mathbf{F}}$	g _F 3/	v _F 2/	Re	1	
0.728 1.24 .766 1.21 .794 1.18 .879 1.11	115 128 150 160 180 205 295 330	26.5 26.3 38.9 39.6 51.9 52.3 77.4 78.4	191 189 279 284 372 375 557 562	0.175 .198 .106 .109 .072 .080 .053 .058	0.879 1.09 .944 1.04	295 345 375 390	19.9 20.3 25.3 25.5	206 21C 261 264	0.185 .208 .146 .149						0.674 2.23 .698 2.17 .806 2.07 .859 .938 2.03 1.03 1.94 1.14 1.82 1.23 1.30 1.32 1.61 1.64	370 720 440 1,000 760 1,600 940 1,280 1,900 1,650 2,350 2,100 2,900 2,450 2,750 2,750 3,300 3,300	11.7 12.5 16.6 17.7 28.1 31.7 38.8 49.7 47.1 69.4 72.2 88.7 95.1 103.1 113.5 117.8 128.5 121.8	148 154 210 217 355 389 491 626 578 874 892 1,110 1,290 1,425 1,475 1,600 1,510	.503 .170 .349 .100 .175 .066 .055 .094 .037 .049 .029 .035 .022	
FB	g 4	v_5/	Re	λ	F _B	g _B 4/	v _E 5/	Re	λ	F _B	g_4/	v _B 5/	Re	λ	F _B	g _B 6/	ν _E 5/	Re	2	
0.661 .696 .715 .738 .776	98 160 190 25 0 400	17.5 26.4 38.7 51.6 78.4	126 189 278 370 562	0.341 .246 .136 .101 .070	0.766 .775 .784 .817 .863 .889	360 400 420 600 900 1,050 1,120	21.5 24.9 29.8 44.1 61.2 77.1 92.3	222 258 309 458 634 798 951	0.194 .160 .117 .076 .060 .044	1.01	680 960 1,400 2,000 2,500	19.1 26.9 44.6 68.1 91.2	246 347 575 869 1,170	0.194 .138 .073 .045 .031	0.618 .617 .670 .686 .716 .741	460 460 880 1,100 1,400 1,900 2,500	12.4 17.6 30.8 44.3 62.0 88.6 118.3	158 223 390 561 785 1,124 1,500	.099 .059 .039 .026	

E.H.D. = Equivalent hydraulic diameter.

l/ gF, flashback with tubes, figure 20.

2/ VF, flows at flashback with long square channels.

3/ gF, flashback with tubes, figure 69.

4/ gB, blowoff with tubes, figure 20.

5/ VB, flows at blowoff with long square channels.

6/ gB, blowoff with tubes, figure 69.

TABLE 10b. - Critical boundary velocity gradients using λ for long square channels

$$g = \frac{\lambda \ V \ Re}{2\pi D^3}$$

Fuel No	. 2 cor	mposition,	percent:	100 СН4					Fuel No. 17 composition,	percent:	79.7 CO, 20.1 H ₂ , 0.2 CO ₂
Stoichi	ometric	percenta	ge:	9.46					Stoichiometric percentage	:	29.5
1.068	el dimer 3×1.075	cm.	0.74	el dimens 0 × 0.744 0. = 0.74	cm.	0.59	el dimens 6 × 0.600 D. = 0.59	cm.	0.59	el dimens 6 × 0.600 D. = 0.5	cm.
F _F	g _F	λ ^{<u>1</u>/}	F _F	g _F	λ <u>1</u> /				F _F	g _F	λ ² /
0.728 1.24 .766 1.21 .794 1.18 .879 1.11	135 134 192 198 249 250 359 362	0.205 .208 .136 .135 .099 .098 .064 .063	0.879 1.09 .944 1.04	300 307 381 378	0.188 .185 .148 .144				0.674 2.23 .698 2.17 .806 2.07 .859 .938 2.03 1.03 1.94 1.14 1.82 1.23 1.30 1.32 1.61 1.64	453 486 596 636 905 991 1,164 1,411 1,376 1,826 1,894 2,235 2,340 2,520 2,710 2,820 3,000 2,860	0.352 .340 .230 .222 .108 .082 .061 .068 .041 .040 .031 .028 .025 .023 .022 .020 .021
FB	g _B	<u>λ</u> 1/	F _B	gB	/لاړ	F _B	g _B	λ ¹ /	F _B	g _B	λ ^{2/}
0.661 .696 .715 .738 .776	92 135 193 246 361	0.320 .208 .138 .099 .063	0.766 .775 .784 .817 .863 .889	323 371 439 629 844 1,030 1,215	0.174 .148 .122 .080 .056 .043 .036	0.833 .877 .927 1.01 1.07	550 745 1,185 1,730 2,260	0.157 .107 .062 .039 .029	0 .618 .617 .670 .686 .716 .741	472 628 965 1,295 1,665 2,220 2,775	0.325 .215 .108 .070 .046 .030

E.H.D. = Equivalent hydraulic diameter.

1/ Coefficients of friction (line 13f, figure 75).

2/ Coefficients of friction (line 13e, figure 75).

TABLE lla.- Calculation of coefficients of friction, λ , for long rectangular channels

TABLE 11b. - Critical boundary velocity gradients using 1 for long rectangular channels

$$\lambda = \frac{2 \pi g D^3}{V Re}$$

 $g = \frac{\lambda \ V \ Re}{2\pi D^3}$

Stoichi	iometri		entage		100 CH ₄ 9.46	λ=	125.8/R	1.24 e		I I		omposition ic percent		nt: 100 9.4	CH ₄
	0.634	dimen x0.968	cm.			0.354	l dimen: .×1.284	cm.		Channel 0.634 E.H.D.	× 0.90		0.35	el dimen 4×1.284 D. = 0.5	cm.
F _F	g _F 1/	_₹ 2/	Re	λ						FF	g _F	2			
0.838 1.14 .885 1.11 .961 1.06	235 270 310 330 380 370	18.8 18.7 24.1 23.9 31.0 30.8	189 187 242 239 310 309	0.187 .218 .150 .163 .111						0.838 1.14 .885 1.11 .961 1.06	242 242 296 294 358 354	0.193 .195 .143 .145 .105			
F _B	g _B ^{3/}	∀ <u>4</u> /	Re	λ	F _B	g _B 3/	V _B 4∕	Re	1	F _B	g _B	λ	F _B	g _B	2
0.716 .758 .781	190 310 400	18.6 23.8 30.5	187 238 305	0.115 .154 .111	0.892 .941 1.01 1.05	1,050 1,450 1,950 2,350	44.9 65.0 88.3 107.2	624 900 1,228 1,490	0.040 .027 .019 .016	0.716 .758 .781	240 298 356	0.195 .148 .108	0.892 .941 1.01 1.05	1,150 1,525 1,950 2,230	0.044 .028 .019 .015

E.H.D. = Equivalent hydraulic diameter

E.H.D. = Equivalent hydraulic diameter.

 $[\]frac{1}{2}$ / g_F , flashback with tubes, figure 20. $\frac{2}{2}$ / V_F , flows at flashback with long rectangular channels. $\frac{3}{2}$ / g_B , blowoff with tubes, figure 20. $\frac{4}{2}$ / V_B , flows at blowoff with long rectangular channels.

 $[\]lambda$ = Coefficients of friction (line 13g, figure 75).

TABLE 12a. - Calculation of coefficients of friction, 2, for long triangular channels

TABLE 12b. - Critical boundary velocity gradients using 1 for long triangular channels

$$\lambda = \frac{2 \pi g D^3}{V Re}$$

$$g = \frac{\lambda \text{ V Re}}{2\pi D^3}$$

Fuel No Stoich	iometri	c perc	entage		100 CH ₄ 9.46	ス =	= 90.6/	Re ^{1.25}		Fuel No Stoichi	. 2 co ometri	mposition c percent	n, percen	t: 10 9•	о сн ₄ 46
	.25×1.	dimen 25×1.	25 cm.			.75×1.	dimen 25×1.	25 cm.	•	Channe 1.25×1 E.H.D	.25×1		Channe 1.75×1 E.H.D	.25×1	
F _F	g _F 1/	V F2/	Re	1	F _F	g _F 1/	V _F 2∕	Re	2	F _F	g_{F}	2	F _F	$g_{\mathbf{F}}$	2
0.819 1.18 .845 1.15 .854 1.13 .910 1.09 .967 1.05	215 210 250 260 260 300 345 370 385 385	20.3 19.3 26.6 26.7 29.8 30.7 39.6 40.4 45.5 45.8	216 204 284 283 317 325 420 429 482 488	0.116 .126 .078 .081 .065 .071 .049 .051 .042	0.807 1.22 .828 1.18 .862 1.14 .899 1.10 .931 1.02	200 150 230 220 270 270 330 350 365 390	19.6 19.6 29.7 30.0 39.7 40.3 53.2 54.4 61.6 62.2	206 206 311 315 417 422 558 572 644 654	0.123 .092 .062 .058 .041 .039 .028 .028	0.819 1.18 .845 1.15 .854 1.13 .910 1.09 .967 1.05	204 198 250 250 272 276 338 340 371 377	0.110 .119 .078 .078 .068 .066 .048 .047 .040	0.807 1.22 .828 1.18 .862 1.14 .899 1.10 .931 1.02	191 191 260 264 321 326 402 409 446 452	0.117 .117 .070 .069 .048 .048 .034 .033 .028
FB	g _B 3/	v ^B 4√	Re	2	FB	g _B 3/	V _B 4√	Re	1	F _B	g _B	λ	F _B	g _B	1
0.732 .751 .766 .797 .814 .835	230 290 350 480 580 720 720	20.1 29.8 37.3 49.3 63.0 76.0 90.5	214 317 397 525 670 808 962	0.126 .059 .056 .044 .033 .028	0.732 .746 .756 .774 .822	240 280 300 380 620	19.4 29.5 39.3 60.0 91.5	204 309 409 624 962	0.150 .076 .046 .025 .018	0 •732 •751 •766 •797 •814 •835 •834	206 272 319 394 473 546 619	0.113 .068 .051 .036 .027 .021 .017	0.732 .746 .756 .774 .822	191 258 322 439 598	0.119 .070 .050 .029 .017

E.H.D. = Equivalent hydraulic diameter.

 g_F , flashback with tubes, figure 20. V_F , flows at flashback with long triangular channels. g_B , blowoff with tubes, figure 20. V_B , flows at blowoff with long triangular channels.

E.H.D. = Equivalent hydraulic diameter.

 λ = Coefficients of friction (line 13h, figure 75).

TABLE 13. - Critical boundary velocity gradients for sharp-edged short ports at various initial temperatures

$$g = \frac{\lambda \ V \ Re}{2\pi D^3}$$

Fuel No. 2 composition, percent: 100 CH4

Stoichiometric percentage:

9.46

(Data for figures 78 and 79)

Initial	temperature:	300°	ĸ.
---------	--------------	------	----

	diame 14 cm.	~ /		diame 52 cm.			diamet	,		rt diamet •595 cm.l			rt diamet .407 cm.1			rt diamet		
FF	g _F	λ	F _F	g _F	λ	F _F	٤ _F	λ										
0.728 1.26 .744 1.27 .864 1.19 .984 1.08	117 118 168 168 275 271 379 385	0.412 .412 .322 .322 .233 .237 .188 .188	0.782 1.26 .854 1.19 .996 1.11	172 173 283 276 377 358	0.390 .390 .283 .289 .235 .240	0.946 1.17	330 321	0.322 •330										
FB	g _B	2	F _B	g _B	7	$\mathbf{F}_{\mathbf{B}}$	g B	2	F _B	g _B	1	F _B	ε _B	1	F _B	g _B	2	
0.685 .708 .741 .760	117 168 271 379	0.412 .322 .235 .190	0.702 .755 .775	169 277 366	0.390 .283 .238	0.747 .777 .836 .890 .972	328 478 720 1,096 1,775	0.330 .250 .193 .145 .103	0.911 1.02 1.16 1.36	1,314 2,250 3,440 5,100	0.190 .132 .099 .076	1.23 1.46 1.69 1.90 2.35 2.80	3,940 6,180 8,110 10,750 13,700 14,750	0.152 .114 .094 .077 .066	2.16 2.45 2.73	14,600 17,900 21,900	.108	

Initial temperature: 348° K.

	diame			diame			diamet			rt diamet			rt diamet			rt diamet			rt diamet	
F	g _F	7	F _F	g _F	2	F _F	g _F	2												
1.30 .743 1.28 .817 1.22 .924 1.16	115 196 191 297 296 426 415	0.420 .297 .300 .228 .228 .177 .179	1.28 .791 1.27 .857 1.23 .938 1.16	145 226 221 332 320 445 461	0.440 •328 •330 •250 •260 •210 •204	0.803 1.24 .911 1.18 .944 1.15 1.02 1.11	276 266 435 403 431 445 477 485	0.360 .370 .288 .283 .270 .267 .250												
FB	g _b	λ	F _B	g B	1	F _B	g _B	λ	FB	g _B	1	F _B	g _B	2	F _B	٤ _B	1	F _B	g _B	ı
0.689 .715 .740	194 289 413	0.297 .228 .179	0.704 •733 •763	224 330 478	0.330 .255 .199	0.740 .776 .803 .853 .920	410 588 766 1,140 1,790	0.280 .220 .180 .142 .106	0.877 .965 1.08 1.21	1,230 1,957 3,020 4,670	0.198 .145 .108 .081	1.14 1.32 1.59 1.86	3,320 5,500 8,120 10,170	0.138 .098 .077 .066	1.65 1.85 2.34	8,230 10,440 15,230		2.09 2.38 2.93	12,340 17,060 22,400	-114

 $[\]frac{1}{\lambda}$ 0.635 cm., port depth. λ = Coefficients of friction (line 13d, figure 75).

TABLE 13. - Critical boundary velocity gradients for sharp-edged short ports at various initial temperatures (Con.)

$$g = \frac{\lambda V Re}{2\pi D^3}$$

Fuel No. 2 composition, percent: 100 CHL Stoichiometric percentage: 9.46

Initia	ial temperature: 423° K. (Data for figures 78 and 79) ort diameter Port diameter Port diameter Port diameter Port diameter 0.952 cm. 2 0.795 cm. 2 0.596 cm. 2 0.477 cm. 2 0.407 cm. 2																			
									Port 0.5	diame	ter L/				Po	ort diame	eter 1		rt diam	
FF	gF	λ	F _F	gF	1	F _F	$g_{\mathbf{F}}$	1												
1.42 .632 1.38 .716 1.33 .775 1.28 .886 1.18 .997 1.09	89 172 167 252 255 415 407 622 612 720 724	0.490 .320 .325 .250 .250 .178 .180 .135 .138 .123	1.34 .692 1.33 .858 1.24 .999 1.14	174 273 278 508 511 770 752	0.388 .288 .285 .193 .190 .145 .147	0.792 1.30 .882 1.23 .97 1.13	427 401 580 579 708 726	0.272 .282 .220 .220 .195 .193												
F _B	g _B	2	FB	g _B	г	FB	g _B	2	FB	g _B	2	FB	g _B	1	FB	g _B	2	F _B	g _B	2
0.616 .651 .682 .724	172 248 410 626	.250 .250 .180 .138	0.664 .711 .749	271 497 758	0.288 .195 .145	0.722 .780 .839 .915	567 968 1,500 2,390	0.222 .158 .117 .087	0.851 1.00 1.11 1.28	1,640 2,970 4,240 5,880	-087	1.14 1.32 1.56 1.79	4,630 6,710 8,710 10,850	.087	1.66 1.95 2.14 2.71	9,100 11,700 15,200 18,900		2.03 2.33	12,450 16,250	
Initia	l tempe	rature	: 473°	К•					(Point	s for	figure (77)	•	•			·	L	L	
FF	g _F	l	F	g _F	2	FF	g _F	1												
0.590 1.42 .700 1.33 .893 1.21	180 183 426 413 830 813	0.310 .300 .178 .180 .111 .113	0.602 1.37 .768 1.29 .840 1.23 .948 1.09	268 282 549 562 849 844 1,050 1,070	.283 .180	0.679 1.30 .742 1.27 .943 1.13	497 467 660 615 929 946	0.248 .259 .204 .215 .163 .159												
F _B	g _B	λ	FB	gB	a	FB	gB	٦	FB	g _B	2	FB	g _B	7	FB	gв	z			
0•571 •647 •728 •750	180 420 816 1,110	0.310 .178 .113 .092	0.578 .681 .731	267 546 837	0.290 .182 .138	0.696 .778 .851 .942	653 1,354 2,270 3,450	0.204 .127 .090 .068	0.872 1.04 1.21 1.38	2,460 4,660 6,720 8,900	•063	1.71 2.09 2.46	10,900 15,360 17,900	.050	1.21 1.49 1.87 2.17 2.41 2.93		.067 .057 .054			

 $[\]frac{1}{\lambda}$ = Coefficients of friction (line 13d, figure 75).

TABLE 13. - Critical boundary velocity gradients for sharp-edged short ports at various initial temperatures (Con.)

$$g = \frac{\lambda V Re}{2\pi D^3}$$

Fuel No. 2 composition, percent: 100 CHL

Stoichiometric percentage: 9.46

Initia	(Data for figures 78 and 79)														
	t diame			diamet		ľ	diamet		Port diameter 0.477 cm.1			Port diameter 0.407 cm.1/			
$_{\mathtt{F}}$	g _F	λ	F _F	g _F	λ	$\mathbf{F}_{\mathbf{F}}$	g _F	λ							
0.553 1.47 .566 1.45 .621 1.37 .712 1.32 .873 1.19	219 219 345 360 538 532 800 797 1,118 1,125	.114	0.559 1.44 .606 1.37 .664 1.31 .815 1.23	385 385 611 612 888 886 1,280 1,293	.228 .170 .170 .132 .132	0.663 1.31 .792 1.26 .958 1.06	674 730 1,100 1,100 1,313 1,325	•145 •145							
F_B	g _B	λ	F _B	g _B	λ	F _B	g _B	2	$\mathtt{F}_\mathtt{B}$	g _B	2	$\mathbf{F}_{\mathbf{B}}$	g _B	λ	
0.534 .552 .614 .692	217 344 538 1,118	0.270 .200 .149 .091	0.547 .594 .658 .722	385 610 886 1,310	.170	0.624 .719 .806 .909	670 1,080 2,280 3,910			2,770 4,600 7,070 9,560 14,170 18,400	.083 .067 .051	1.26 1.56 2.12 2.53 2.80	8,820 11,950 15,100 20,200 23,100	•062 •051	

^{1/} 0.635 cm., port depth.

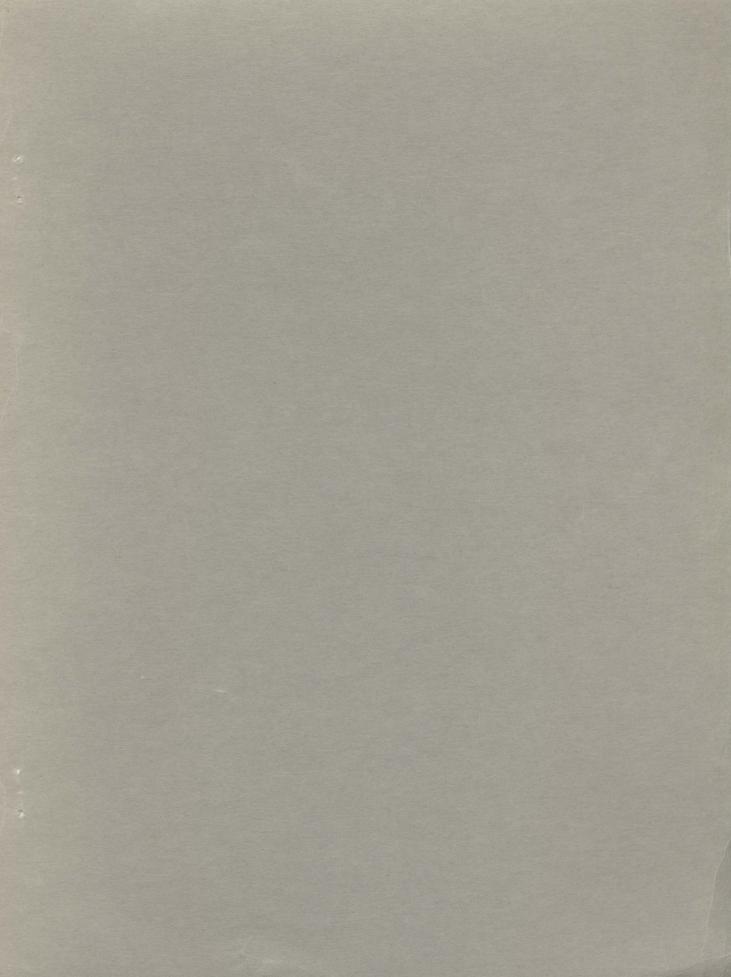
 $[\]lambda$ = Coefficients of friction (line 13d, figure 75).

TABLE 14. - Yellow-tip limits for propylene at various initial temperatures

$$g = \frac{\lambda \, V \, Re}{2\pi \, D^3}$$

Fuel No. 5 composition, percent: 99.2 C_3H_6 , 0.4 C_3H_8 , 0.4 C_2H_6

Stoichiometric percentage:				4.45 (Data for figure 87A)																			
Initi	Initial temperature: 348° K.																						
			Port diameter 0.952 cm.1		Port diameter 0.795 cm.1		Port diameter 0.595 cm.1			Port diameter 0.477 cm.1/			Port diameter 0.407 cm.1			Port diameter			Port diameter 0.245 cm.1				
F _y	gy	2	Fy	gy	ત	Fy	gy	λ	Fy	g _y	ړ	Fy	gy	2	Fy	gy	λ	Fy	g _y	2	Fy	gy	2
1.64 1.52 1.47 1.49 1.47 1.47	395 622 855 1,067 1,296 1,980 2,535	0.253 .177 .137 .114 .097 .068 .056	1.75 1.61 1.53 1.50 1.49 1.47 1.47	646	.250 .153 .123 .114 .100 .084	1.72 1.60 1.51 1.49 1.47 1.47	520 1,195 1,797 2,373 2,945 3,720 5,065	0.348 .180 .129 .102 .086 .072 .056	1.77 1.70 1.67 1.61 1.50 1.50 1.47	873 1,106 1,443 2,909 4,405 5,870 7,470 8,500	0.370 .305 .245 .140 .100 .078 .065 .058	1.83 1.74 1.72 1.68 1.60 1.57	1,526 1,983 2,482 2,885 5,760 8,780 9,380	0.330 .268 .222 .198 .114 .081 .078	1.83 1.76 1.70 1.69 1.66 1.63	2,410 3,205 4,010 4,720 6,980 9,320	0.293 .240 .198 .170 .127 .099	1.87 1.79 1.72 1.67 1.66	3,763 4,900 6,250 7,800 11,900	0.268 .218 .179 .150 .105	1.94	11,200 14,610	0.194 .157
Initi	Initial temperature: 423° K.																						
1.53 1.50 1.49 1.48 1.46 1.47 1.49	780 1,090 1,306 1,628 1,900 2,475 3,215	.110 .096 .082		375 820 1,233 1,779 2,150 2,573 2,730 3,950 5,130		1.68 1.61 1.52 1.47 1.47 1.47	844 1,504 2,215 2,983 3,675 4,960 6,450	0.235 .150 .108 .086 .073 .060 .047	1.75 1.69 1.66 1.59 1.48 1.48	1,070 1,368 1,786 3,675 7,360 9,300 10,770	0.303 .250 .205 .115 .066 .054 .048	1.81 1.75 1.72 1.68 1.60 1.53	1,868 2,470 3,095 3,555 7,060 11,830	0.275 .223 .186 .166 .096 .064	1.81 1.76 1.70 1.68 1.66 1.62	2,990 3,930 5,000 5,800 8,590 11,850	0.248 .198 .165 .146 .106 .083	1.86 1.77 1.73 1.72 1.67	4,680 6,170 7,720 9,730 13,250	0.223 .180 .150 .125 .098	1.94	13,790 16,900	0.163 .138
Initi	Initial temperature: 523° K.																						
1.53 1.49 1.48 1.48 1.47	994 1,324 1,644 2,120 3,130	.096 .078 .064 .048	1.54 1.52 1.49 1.47 1.47	1,570 2,135 2,645 3,450 4,975 4,980	0.148 .105 .083 .070 .056 .042 .042	1.73 1.62 1.53 1.50 1.48 1.48 1.46	957 1,860 2,665 3,700 4,685 5,950 7,940 7,970	0.208 .123 .082 .070 .059 .048 .039 .039	1.70 1.65 1.59 1.58 1.49 1.48 1.48	1,321 1,754 2,273 4,775 6,880 9,300 10,580 11,720	.170 .092 .069	1.74 1.70 1.67 1.63 1.63 1.61	2,385 2,993 3,840 5,350 9,070 12,600	0.233 .190 .160 .121 .077 .060	1.79 1.76 1.74 1.72 1.72	3,770 5,025 6,250 7,450 10,810 14,670	0.202 .165 .136 .120 .086 .069	1.86 1.80 1.77 1.76 1.73	5,850 7,800 9,810 12,260 16,700	0.185 .150 .123 .103 .079	1.98	17,300 20,500	


 $[\]frac{1}{\lambda}$ = 0.635 cm., port depth. λ = Coefficients of friction (figure 70).

BIBLIOGRAPHY

- 1. AMERICAN GAS ASSOCIATION TESTING LABORATORIES. Interchangeability of Other Fuel Gases with Natural Gas. Bulletin 36, February 1946.
- 3. BOLLINGER, L. M., and Williams, D. T. Experiments on Stability of Bunsen-Burner Flames for Turbulent Flow. Nat. Advisory Comm. Aeronaut. Tech. Note 1234, June 1947.
- CLARK, T. P. Influence of External Variables on Smoking of Benzene Flames. NACA Research Memorandum E52G24, 1952.
- 5. DUGGER, G. L. Effect of Initial Mixture Temperature on Flame Speeds and Blow-Off Limits of Propane-Air Flames. Nat. Advisory Comm. Aeronaut. Tech. Note 2170, 1950.
- DUGGER, G. L., WEAST, C. R., and HEIMEL, S. Flame Velocity and Preflame Reaction in Heated Propane-Air Mixtures. Ind. Eng. Chem., vol. 47, 1955, pp. 114-116.
- 7. EDSE, R. Studies on Burner Flames of Hydrogen-Oxygen Mixtures at High Pressures. Wright Air Development Center (WADC) Tech. Rept. 52-59, April 1952.
- 8. FRIEDMAN, R. Measurement of the Temperature Profile in a Laminar Flame. Fourth Symposium (International) on Combustion, Williams & Wilkins Co., Baltimore, Md., 1953, pp. 259-263.
- 9. FRISTROM, R. M., PRESCOTT, R., NEUMANN, R. K., and AVERY, W. H., Temperature Profiles in Propane-Air Flame Fronts. Fourth Symposium (International) on Combustion, Williams & Wilkins Co., Baltimore, Md., 1953, pp. 267-274.
- 10. GRUMER, J. Study of Combustion Characteristics of Fuel Gases. Am. Gas Assoc., Interim Rept. 1, Project PDC-3-GU, October 1951.
- 11. GRUMER, J., and HARRIS, M. E. Temperature Dependence of Stability Limits of Burner Flames. Ind. Eng. Chem., vol. 46, 1954, pp. 2424-2430.
- 12. GRUMER, J., HARRIS, M. E., and SCHULTZ, H. Flame Stabilization on Burners With Short Ports or Noncircular Ports. Fourth Symposium (International) on Combustion, Williams & Wilkins Co., Baltimore, Md., 1953, pp. 695-701.
- 13. GRUMER, J., SCHULTZ, H., and HARRIS, M. E. Calibration of Glass-Wool Flow-meters. Anal. Chem., vol. 25, 1953, p. 840.

- 14. GUEST, P. G., SIKORA, V. W., and LEWIS, B. Static Electricity in Hospital Operating Suites: Direct and Related Hazards and Pertinent Remedies. Bureau of Mines Bull. 520, 1953, fig. 8.
- 15. HARRIS, M. E., GRUMER, J., VON ELBE, G., and LEWIS, B. Burning Velocities, Quenching and Stability Data on Nonturbulent Flames of Methane and Propane With Oxygen and Nitrogen. Application of the Theory of Ignition, Quenching and Stabilization to Flames of Propane and Air. Third Symposium on Combustion, Flame, and Explosion Phenomena, Williams & Wilkins Co., Baltimore, Md., 1949, pp. 80-89.
- 16. IBERALL, A. S. Permeability of Glass Wool and Other Highly Porous Media. Nat. Bureau of Standards Jour. Res., vol. 45, 1950, pp. 398-406.
- 17. LEWIS, B., and VON ELBE, G. Combustion, Flames and Explosions of Gases. Academic Press, New York, N. Y., 1951, p. 280.
- 18. _____. Ignition and Flame Stabilization in Gases. Trans. Am. Soc. Mech. Eng., vol. 4, 1948, pp. 307-316.
- 19. _____. Stability and Structure of Burner Flames. Jour. Chem. Phys., vol. 11, 1943, pp. 75-97.
- 20. MANTON, J., VON ELBE, G., and LEWIS, B. Nonisotropic Propagation of Combustion Waves in Explosive Gas Mixtures and the Development of Cellular Flames. Jour. Chem. Phys., vol. 20, 1952, pp. 153-157.
- 21. NATIONAL BUREAU OF STANDARDS. Linear Pressure Drop Flowmeters for Oxygen Regulator Test Stands. Report 6.2/6211-2885, Sept. 25, 1947.
- 22. PRANDTL, L., and TIETZJENS, O. G. Applied Hydro and Aerodynamics. Vol. 2, McGraw-Hill Book Co., New York, N. Y., 1934, pp. 14-57.
- SHNIDMAN, L. Gaseous Fuels. 2nd ed., Mack Printing Co., Easton, Md., 1954,
 p. 187.
- 24. _____ . Work cited in ref. 23, p. 200.
- 25. SMITH, R. W., JR., EDWARDS, H. E., and BRINKLEY, S. R., JR. Tables of Velocity of Steady Laminar Flow in Channels of Rectangular Cross Section. Bureau of Mines Rept. of Investigations 4885, 1952, pp. 1-41.
- 26. _____. The Thermodynamics of Combustion Gases: Temperatures of Methane-Air and Propane-Air Flames at Atmospheric Pressure. Bureau of Mines Rept. of Investigations 4938, 1953, pp. 1-3.
- 27. STREET, J. C., and THOMAS, A. Carbon Formation in Pre-Mixed Flames. Fuel, vol. 34, 1955, pp. 4-36.
- 28. VON ELBE, G., and MENTSER, M. Further Studies on the Structure and Stability of Burner Flames. Jour. Chem. Phys., vol. 13, 1945, pp. 89-100.
- 29. WEBER, E. J. Study of Burner Flexibility on Base and Peak Load Gases. American Gas Association Research Rept. 1192, August 1952.

- 30. WILSON, C. W. Lifting and Blowoff of Flames from Short Cylindrical Burner Ports. Ind. Eng. Chem., vol. 44, 1952, pp. 2937-2942.
- 31. WOHL, K. Quenching, Flash-Back, Blow-Off Theory and Experiment. Fourth Symposium (International) on Combustion, Williams & Wilkins Co., Baltimore, Md., 1953, pp. 68-89.
- 32. WOHL, K., KAPP, N. M., and GAZLEY, C. The Stability of Open Flames. Third Symposium on Combustion, Flame and Explosion Phenomena, Williams & Wilkins Co., Baltimore, Md., 1949, pp. 3-21.

3