NBS BUILDING SCIENCE SERIES 162

Ring-on-Ring Tests and Load Capacity of Cladding Glass

U.S. DEPARTMENT OF COMMERCE • NATIONAL BUREAU OF STANDARDS
The National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau’s overall goal is to strengthen and advance the nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation’s physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau’s technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation’s scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

- Basic Standards
- Radiation Research
- Chemical Physics
- Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics
- Electronics and Electrical Engineering
- Manufacturing Engineering
- Building Technology
- Fire Research
- Chemical Engineering

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

- Programming Science and Technology
- Computer Systems Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-country scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Center consists of the following Divisions:

- Inorganic Materials
- Fracture and Deformation
- Polymers
- Metallurgy
- Reactor Radiation

1Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899.

2Some divisions within the center are located at Boulder, CO 80303.

3Located at Boulder, CO, with some elements at Gaithersburg, MD.
Ring-on-Ring Tests and Load Capacity of Cladding Glass

Emil Simiu
Dorothy A. Reed
Charles W. C. Yancey
Jonathan W. Martin
Erik M. Hendrickson
Armando C. Gonzalez
Masayoshi Koike
James A. Lechner
Martin E. Batts

Prepared for:
National Science Foundation
Washington, DC 20550

1 Center for Building Technology, National Engineering Laboratory, National Bureau of Standards, Gaithersburg, MD 20899
2 Present address: Department of Civil Engineering, University of Washington, Seattle, WA 98195
3 Center for Materials Science, National Bureau of Standards, Gaithersburg, MD 20899
4 Center for Applied Mathematics, National Engineering Laboratory, National Bureau of Standards, Gaithersburg, MD 20899
5 Paratech Corporation, Chevy Chase, MD 20815

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Issued August 1984
ABSTRACT

Although ring-on-ring test results have been used in the past to obtain information on the strength of glass, no methodology has so far been developed in the literature explicitly relating such results to the load capacity of cladding glass. The main purpose of this report is to propose such a methodology. The proposed methodology makes use of recent advances in the modeling of the fracture mechanics behavior of glass and the calculation of stresses in plates exhibiting geometric nonlinearity. Evidence is presented which strongly suggests that the probability distribution of the load capacity of cladding glass panels whose failure is due to surface flaws can be estimated reliably on the basis of results of ring-on-ring tests used in conjunction with (a) numerical methods for the analysis of stresses in plates, and (b) information on the elastic and fracture mechanics behavior of glass currently available or that can be obtained routinely. Two interesting findings are noted. First, owing to the way in which results of ring-on-ring tests are utilized, the relatively large variabilities typical of fracture mechanics parameters, as well as the uncertainties with respect to the shapes of surface flaws, have a minor effect on the estimation of load capacities. Second, two-parameter Weibull distributions, previously used in the literature to model the strength of glass and the load capacity of cladding panels, are not consistent with experimental results. On the other hand, three-parameter Weibull distributions model the observed glass behavior credibly.

Keywords: buildings; engineering mechanics; failure; fracture mechanics; glass; loads (forces); probability theory; ring-on-ring tests; strength.
ACKNOWLEDGMENTS

The writers would like to express their appreciation to S. M. Wiederhorn, S. W. Freiman, E. R. Fuller, K. Jakus, and B. R. Lawn, of the Inorganic Materials Division, NBS, for useful discussions concerning the research presented in this report. Ring-on-ring tests and tests on indented specimens reported on herein were carried out with the assistance of C. Mastal and B. Hu.

The valuable assistance of S. T. Wu, of the Structures Division, NBS, J. J. Filliben and S. D. Leigh, of the Statistical Engineering Division, NBS, and D. P. Bentz, of the Materials Division, NBS, is also gratefully acknowledged.

The cover photo is by NBS photographer, Mark Helfer.

This work was supported in part by the National Science Foundation under agreement CEE 8308329, Division of Civil and Environmental Engineering. Dr. M. P. Gaus of the National Science Foundation served as Program Director. Any opinion, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. ESTIMATION OF LOAD CAPACITY OF CLADDING PANELS 2
 2.1 Fracture Mechanics of Glass ... 2
 2.2 Relation Between Initial Strength and the Final Strength
 Corresponding to a 60-sec Load 4
 2.3 Estimation of 60-sec Load Causing Failure of a Panel 5
 2.4 Specification of Initial Strengths, $S_i(A_k, A_{ag})$ 6

3. RING-ON-RING TESTS .. 8
 3.1 Principle and Description of Ring-on-Ring Testing 8
 3.2 Estimation of Initial Strengths from Ring-on-Ring Test
 Results, and Influence of Uncertainties With Respect to
 Parameters B and n Upon the Estimation of Design Loads 9
 3.3 Results of Ring-on-Ring Tests 10

4. ESTIMATES OF THE LOAD CAPACITY OF GLASS PANELS 15

5. SUMMARY AND CONCLUSIONS .. 19

REFERENCES .. 20

APPENDIX I - MAXIMUM LIKELIHOOD ESTIMATION FOR THE THREE-PARAMETER
WEIBULL DISTRIBUTION BASED ON A SAMPLE WITH CENSORING
DUE TO COMPETING RISKS

APPENDIX II - DEPENDENCE OF ESTIMATED 60-SEC LOAD CAPACITY, P_{60} (0.008),
UPON NUMBER OF RING-ON-RING SPECIMENS BEING TESTED

APPENDIX III - COMPUTER PROGRAM FOR ESTIMATING PROBABILITY DISTRIBUTION
OF LOAD CAPACITY P_{60}

APPENDIX IV - COMPUTER PROGRAM FOR ESTIMATING PARAMETERS OF GLASS
STRENGTH DISTRIBUTION
1. INTRODUCTION

For most common construction materials (e.g., steel or concrete), the load capacity of structural members is determined on the basis of strength data obtained from tests conducted on small size standard specimens, rather than from the destructive testing of full-size members. The economy inherent in the use of small-size standard specimens is due not only to their lower cost as compared to the cost of full-size members, but also to the fact that strength data obtained by testing a sufficiently large number of such specimens can be used for designing a wide variety of structural members with different configurations, types of loading, and sizes.

Procedures for determining the load capacity of glass panels on the basis of strength data obtained by testing small standard specimens do not currently exist. For this reason design charts issued by glass manufacturers have traditionally been based on destructive tests performed on full-size glass panels (see, e.g., reference 1). It has been pointed out in the literature (see, e.g., reference 2), that such charts exhibit significant inconsistencies. Such inconsistencies are due at least in part to the relatively small numbers of panels (between 2 and 30—see references 4, 5, and 6) used in most of the tests on which the charts were based. Since the charts cover a wide range of panel sizes, the number of panels that would have to be subjected to destructive tests in order to develop dependable data for design could in practice be prohibitive.

It therefore is desirable to develop a methodology for estimating cladding panel design loads from strength data obtained by testing small standard specimens. The purpose of this report is to propose such a methodology. The methodology utilizes recent advances [3, 14], which enable the probability distribution of the load capacity of glass panels to be estimated by numerical methods on the basis of information on the strength, stiffness, and fracture mechanics properties of glass.

Information characterizing the elastic behavior of glass is available or can be obtained by well established test methods. The elastic parameters exhibit relatively small variability, so that uncertainties pertaining to their actual values do not significantly affect the estimation of design loads. In recent years test methods have been developed to obtain fracture mechanics parameters governing subcritical crack growth and strength degradation under load. Associated with the fracture mechanics parameters are large uncertainties, which include uncertainties with respect to the shape of surface flaws. However, it is shown in this work that the consequences of these uncertainties are minor from an engineering point of view.

The critical question, then, is whether it is possible to obtain from tests of small standard specimens the information on the strength of glass needed to estimate reliably the load capacity of cladding panels whose failure is due to surface flaws. Evidence presented in this work strongly suggests that, if the ring-on-ring testing method is employed, the answer to this question is affirmative.
2. ESTIMATION OF LOAD CAPACITY OF CLADDING PANELS

The purpose of this section is to review pertinent developments that make it possible to estimate numerically the probability distribution of the load capacity of cladding panels if the fundamental parameters characterizing the behavior of glass are known.

2.1 FRACTURE MECHANICS OF GLASS

The basic criterion for fracture is derived from the Griffith equilibrium expression, and may be written as

\[K_I = K_{IC} \]

(1)

where \(K_I \) = stress intensity factor, and \(K_{IC} \) = critical value of \(K_I \). If equation 1 holds, the system reaches the state of instability wherein the rate of crack growth becomes for practical purposes infinite and failure occurs [8, 9]. \(K_{IC} \) is a property of the material and is determined experimentally. The stress intensity factor, \(K_I \), is proportional to the actual stresses in the material in the presence of cracks causing stress concentrations. \(K_I \) can be expressed as follows [8, 9]:

\[K_I(t) = Y \sigma(t) \sqrt{c(t)} \]

(2)

where

\(Y \) = geometric shape factor,
\(\sigma \) = nominal stress (i.e., stress calculated by assuming the absence of cracks),
\(c \) = length of crack normal to the stress
\(t \) = time.

The geometric shape factor, \(Y \), in equation 2 is a function of crack geometry and plate dimensions [10]. For semi-elliptical surface flaws (figure 1) for which \(c/h = 0 \) and \(a/b = 0 \), values of \(Y \) calculated in reference 10 for various ratios \(c/a \) are shown in table 2.1.

According to experiments reported in references 11, 12, and 13, the following relationship holds for the rate of subcritical crack growth in the region \(K_I < K_{IC} \):

\[\frac{dc}{dt} = \kappa K_I^n(t) \]

(3)

The parameters \(\kappa \) and \(n \) depend upon ambient humidity and temperature and are obtained experimentally. Equation 3 expresses quantitatively the fact that the cracks in an element of glass subjected to stress for some length of time will grow - albeit not catastrophically - provided that the stress is contained
Table 2.1 Dependence of Factor Y Upon Ratio c/a for c/h = 0 and a/b = 0

<table>
<thead>
<tr>
<th>c/a</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.985</td>
</tr>
<tr>
<td>0.25</td>
<td>1.827</td>
</tr>
<tr>
<td>0.50</td>
<td>1.581</td>
</tr>
<tr>
<td>0.75</td>
<td>1.353</td>
</tr>
<tr>
<td>1.00</td>
<td>1.163</td>
</tr>
<tr>
<td>1.10</td>
<td>1.157</td>
</tr>
<tr>
<td>1.20</td>
<td>1.149</td>
</tr>
<tr>
<td>1.30</td>
<td>1.139</td>
</tr>
<tr>
<td>1.40</td>
<td>1.127</td>
</tr>
<tr>
<td>1.50</td>
<td>1.116</td>
</tr>
<tr>
<td>1.60</td>
<td>1.103</td>
</tr>
<tr>
<td>1.70</td>
<td>1.090</td>
</tr>
<tr>
<td>1.80</td>
<td>1.077</td>
</tr>
<tr>
<td>1.90</td>
<td>1.064</td>
</tr>
<tr>
<td>2.00</td>
<td>1.050</td>
</tr>
</tbody>
</table>

within a certain range. This phenomenon is referred to as static or dynamic fatigue according to whether the stress is constant or time-dependent.

It follows from equations 1 and 2 that the strength of glass, S, i.e., the value of the nominal stress at which failure occurs, is

\[S(t) = \frac{K_{IC}}{Y \sqrt{c(t)}} \] \hspace{1cm} (4)

If \(K_I \) and \(c \) are eliminated from equations 2, 3, and 4 and the notation \(S(0) = S_i \) is used (\(S_i \) = initial strength), the following relationship is obtained:

\[S(t) = \left[S_i - \frac{1}{B} \int_0^t \sigma^n (\tau) \, d\tau \right]^{\frac{1}{n-2}} \] \hspace{1cm} (5)

where

\[\frac{1}{B} = \frac{n-2}{2} \cdot \gamma \cdot \frac{k_i}{K_{IC}} \] \hspace{1cm} (5a)

[11]. If we consider an area, \(A_k \), over which the tension stress, \(\sigma(t) \), is uniform and independent of direction, failure occurs within that area if

\[\sigma(t) > S(A_k, t) \] \hspace{1cm} (6)
where \(S(A_k, t) = \) strength calculated by equation 5 in which \(S_i \) corresponds to the largest initial flaw within the area \(A_k \), regardless of the direction of that flaw, that is

\[
S_i = \frac{K_{IC}}{Yc_{max}(A_k, 0)}
\]

(7)

and \(c_{max}(A_k, 0) = \) length of largest flaw within \(A_k \) at time \(t = 0 \).

We now consider the case in which the state of stress is uniform over the area \(A_k \), but the principal stresses within the area are unequal. The effect of normal stress is by far the strongest as far as crack propagation is concerned [9, p. 54], and that the effect of shear stresses may therefore be neglected (see, e.g., reference 14). The center of \(A_k \) is denoted by \(M_k \), and the normal tension stresses at time \(t \) parallel to direction \(a_\xi \) are denoted by \(\sigma(M_k, a_\xi, t) \).

We define the sector \(\Delta a_\xi \), centered on the direction \(a_\xi \), and such that normal stresses at time \(t \) parallel to any radial direction contained within that sector may be assumed to differ negligibly from \(\sigma(M_k, a_\xi, t) \) [figure 2].

Failure within the area \(A_k \) will not necessarily be initiated by a flaw normal, or almost normal, to the largest principal stress, since the largest of these flaws may well be relatively small. Neither will failure be necessarily initiated by the largest flaw within the area \(A_k \), since that flaw may well be perpendicular to a relatively low normal stress. Rather, failure will be initiated by the largest of the flaws normal to any radius within the sector \(\Delta a_\xi \) [whose length is denoted by \(c_{max}(A_k, \Delta a_\xi, t) \)] to which there corresponds a strength, \(S(A_k, \Delta a_\xi, t) \), such that:

\[
\sigma(M_k, a_\xi, t) > S(A_k, \Delta a_\xi, t)
\]

(8)

For any sector, \(\Delta a_\xi \), the strength at time \(t \), \(S(A_k, \Delta a_\xi, t) \), is calculated by equation 5 in which \(\sigma(M_k, a_\xi, t) \) is substituted for \(\sigma(t) \) and the initial strength \(S_i(A_k, \Delta a_\xi) \) is substituted for \(S_i \). The following relation holds:

\[
S_i(A_k, \Delta a_\xi) = \frac{K_{IC}}{Yc_{max}(A_k, \Delta a_\xi, 0)}
\]

(9)

where \(c_{max}(A_k, \Delta a_\xi, 0) = \) length of largest initial crack normal to any radius within the sector \(\Delta a_\xi \).

2.2 Relation Between Initial Strength and the Final Strength Corresponding to a 60-sec Load

A particular case of practical interest is that in which the load acting on the panel has constant value over a 60-sec time interval and is zero outside that
interval\(^a\). The 60-sec load induces at point \(M_k\) a normal stress parallel to the direction \(\alpha_L\), denoted by \(\sigma_{60}(M_k, \alpha_L)\), which is constant throughout the duration of the load and equal to zero at all other times. Failure initiated by a flaw normal or almost normal to a radius within the sector \(\Delta\alpha_L\) occurs at time \(t = 60\) sec if the stress \(\sigma_{60}(M_k, \alpha_L)\) is equal to the strength \(S(A_k, \Delta\alpha_L, t = 60)\). Substituting \(\sigma_{60}(M_k, \alpha_L)\) for \(\sigma(t)\) and \(S_i(A_k, \Delta\alpha_L)\) for \(S_i\) in equation 5, it follows that the failure stress is given by the relation

\[
\sigma_{60}^{n-2}(M_k, \alpha_L) \left[\sigma_{60}^2(M_k, \alpha_L) + \frac{B}{60} \right] + \frac{B}{60} \frac{S_i}{n} = (A_k, \Delta\alpha_L)
\] (10)

For soda-lime glass \(\sigma_{60}^2(M_k, \alpha_L)\) is of the order of \(10^3\) (MPa)\(^2\) or more, and \(B/60\) is of the order of 1 (MPa)\(^2\) or less, so that the failure stress may be written as

\[
\sigma_{60}(M_k, \alpha_L) = \frac{S_i^{n-2}}{n} (A_k, \Delta\alpha_L)
\]

\[
(60 \frac{1}{B})^{1/n}
\] (11)

2.3 ESTIMATION OF 60-SEC LOAD CAUSING FAILURE OF A PANEL

The relationship between the load acting on a cladding panel and the stresses in the panel is generally nonlinear. This relationship can be obtained by using, for example, a finite-difference program such as that developed by Texas Tech University \([15]\), and is commonly expressed in terms of the nondimensional quantities

\[
LF = \frac{pb^4}{Dh}
\] (12)

\[
SF = \frac{sb^2h}{D}
\] (13)

where \(LF\) and \(SF\) = loading and stress factors, respectively, \(p\) = uniform load per unit area, \(\sigma\) = stress, \(b\) = smaller side of rectangular plate, \(D\) = flexural rigidity, defined by:

\[
D = \frac{Eh^3}{12(1-\nu^2)}
\] (14)

where \(E\) = modulus of elasticity, \(\nu\) = Poisson's ratio, and \(h\) = thickness of the plate.

\(^a\) The 60-sec load is the standard reference load used in glass cladding design charts in the United States.
Once the relationship between loads and stresses is known, it is possible to obtain the 60-sec loads, \(p_{60} \), corresponding to the failure stresses \(\sigma_{60}(M_k, \alpha_k) \) calculated by equation 11 for each point \(M_k \) of a sufficiently dense grid and for each of a sufficient number of directions \(\alpha_k \). The smallest of these loads, denoted by \(p_{60} \), is the load causing failure (i.e., the load capacity) of the panel characterized by the set of initial strengths \(S_i(A_k, \Delta\alpha_k) \). Calculations of the load capacity, \(p_{60} \), can be carried out for a large number, \(M \), of panels. The probability distribution of 60-sec load capacity can be estimated from the \(M \) values \(S_o \) obtained. A computer program for estimating this distribution if the initial strengths \(S_i(A_k, \Delta\alpha_k) \) are specified is described in Appendix III. In the case of heat-strengthened or tempered glass, the procedure for estimating the probability distribution of the 60-second load capacity \(p_{60} \) is the same, except that stresses \(\sigma_{60}(M_k, \alpha_k) - \sigma_R \) should be used in equation 11 in lieu of the stress, \(\sigma_{60}(M_k, \alpha_k) \), where \(\sigma_R \) denotes the residual thermal stress, which can be determined by routine experimental procedures.

2.4 **SPECIFICATION OF INITIAL STRENGTHS** \(S_i(A_k, \Delta\alpha_k) \)

The initial strength \(S_i(A_k) \) corresponding to the largest flaw within \(A_k \), regardless of its direction, is commonly described by a Weibull distribution:

\[
P[S_i(A_k)] = 1 - \exp \left\{ -\left(\frac{S_i(A_k) - \mu_S}{S_o(A_k)} \right)^m \right\}
\]

(15)

From the assumption that the number of flaws of an given size is on the average proportional to the area \(A \) being considered, it follows that

\[
P[S_i(A)] = 1 - \exp \left\{ -\left(\frac{S_i(A) - \mu_S}{S_o(A)} \right)^m \right\}
\]

(16)

where

\[
S_o(A) = \left(\frac{A_k}{A} \right)^m S_o(A_k)
\]

(16a)

[25, pp. 5 and 10]. We will refer to equation 16 as the fundamental Weibull distribution of the strength of glass.
Similarly, from the assumption that the flaw orientations are uniformly distributed [i.e., that the number of flaws normal to the stress $\sigma_60(M_k, a_L)^a$ is on the average equal to $\Delta a_L/(\pi/2)$ times the number of flaws parallel to any direction], it follows that the probability distribution of the initial strength $S_i(A_k, \Delta a_L)$ is

$$P[S_i(A_k, \Delta a_L)] = 1 - \exp \left\{ -\frac{S_i(A_k, \Delta a_L) - \mu_s}{S_o(A_k, \Delta a_L)} \right\}^m$$

(17)

where

$$S_o(A_k, \Delta a_L) = \left(\frac{\pi}{2\Delta a_L}\right)^{1/m} S_o(A_k)$$

(18)

Assuming that equations 15 through 18 are valid, it follows that the initial strength $S_i(A_k, \Delta a_L)$ can be specified by the probability distribution given by equation 17, provided that the parameters $S_o(A), \mu_s, \text{ and } m$ are known. These parameters can be obtained from ring-on-ring tests, which are described in the following section.

a Or to the stress $\sigma_60(M_k, -a_L) = \sigma_60(M_k, a_L)^a$.
3. RING-ON-RING TESTS

3.1 PRINCIPLE AND DESCRIPTION OF RING-ON-RING TESTING

Ring-on-ring testing devices involve the creation of a state of uniform axisymmetric tension stress in the central portion of one of the faces of a circular plate. This can be accomplished by placing the plate on a segmented circular ring and by applying on its upper surface a load transmitted through a circular ring concentric with and having a smaller diameter than the segmented support.

As noted in reference 17, because of the high elastic modulus and hardness of glass, any nonperfect contact between rigid loading rings and the test sample can lead to deviations from axisymmetry in the stress field. Reference 17 describes a ring-on-ring device designed to eliminate such nonuniformities. Each ring consists of a closely wound coil. The load that each coil transmits to the plate is applied by a rubber diaphragm which covers a circular groove filled with fluid. The function of the fluid is to equalize the loading along the coils. Strain gage measurements, and measurements of strength of indented specimens, are reported in reference 17 for ringon-ring devices both of the rigid type and of the type just described. According to the results of reference 17, errors in the measurement of strengths due to the use of rigid ring-on-ring devices are less than 5 percent for annealed soda-lime float glass. The errors are considerably larger (about 20 percent) for thermally tempered crown glass.

The uniform stress in the central portion of the tension face of a circular plate subjected to a ring-on-ring loading test is

\[\sigma = \frac{3p}{4\pi h^2} \left[2(1 + \nu) \ln \frac{a}{b} + \frac{(1-\nu)(a^2-b^2)}{a^2} \frac{a^2}{R^2} \right] \quad (19) \]

where \(p \) = load, \(h \) = plate thickness, \(a \) = radius of the support ring, \(b \) = radius of the loading ring, \(R \) = radius of the disc, and \(\nu \) = Poisson's ratio [18].

For the case \(b/a = 1/2 \), the distribution of the stress, \(\sigma \), along a radius, \(r \), is represented in figure 3 [19]. Note that, owing to local effects, the central portion of the plate within which the stress \(\sigma \) is given by Eq. 19 is defined by the relation \(r < 0.705b \).

It follows from appendix I that the precision of strength estimates based on the testing of any given sample of ring-on-ring specimens increases with the number of specimens within that sample that have failure origins in the central, uniform stress area of the specimen. It would therefore be desirable to attempt the development of test devices aimed at inhibiting stress corrosion on the tension side of the nonuniform stress area of the specimen. This could be accomplished by immersing that side in, or covering it with, an inert agent such as water-free oil.
3.2 ESTIMATION OF INITIAL STRENGTHS FROM RING-ON-RING TEST RESULTS, AND INFLUENCE OF UNCERTAINTIES WITH RESPECT TO PARAMETERS B AND n UPON THE ESTIMATION OF DESIGN LOADS

Ring-on-ring tests yield the stress at the time of failure, $\sigma(t_f)$, which is equal to the strength at the time of failure, $S(t_f)$. To estimate the initial strength corresponding to $S(t_f)$, equation 5 is used. In the case of a ramp loading on a specimen that exhibits a linear load-stress relationship up to failure [21, 22], steps similar to those that led to equation 11 yield the relation

$$
\sigma(t_f) = \left[\frac{1}{n} \right]^{1/n} \frac{n+1}{t_f} \frac{S_1}{B} \quad (20)
$$

Equation 20 allows the estimation of S_1 from measurements of $\sigma(t_f)$ and t_f. The estimates of S_1 depend upon the values assumed for n and B.

We now consider a specimen subjected to a ramp-like load, for which the time to failure and the stress at the time of failure were found to be t_f and $\sigma(t_f)$, respectively. We seek the stress, σ_{60}, induced by a constant load with a 60-sec duration that would have caused failure of that same specimen. It follows from equation 11 (with $\Delta a_L = \pi/2$) and equation 20 that

$$
\sigma_{60} \approx \frac{1}{[(n+1) \frac{60}{t_f}]^{1/n}} \sigma(t_f) \quad (21)
$$

Equation 21 shows that the ratio $\sigma_{60}/\sigma(t_f)$ is independent of B. Thus, even though the variability of B is fairly large, reflecting as it does uncertainties with respect to K_{IC}, n, A, and Y (see equation 5a and table 2.1), the effect of this variability upon the ratio $\sigma_{60}/\sigma(t_f)$ can be ignored.

Table 3.2 lists results of calculations which show that for ratios $t_f/60$ of the order of 0.5 to 2 the effect of the parameter n upon the ratio $\sigma_{60}/\sigma(t_f)$ is small\(^a\). The calculations were based on two values: $n=16$ and $n=19.7$ [23]. These values are consistent with results of tests conducted within the framework of this project on indented soda-lime specimens, in accordance with the method described in reference 24. The tests yielded the value $n=15.95$ when measurement results were not corrected for residual stress effects at the indented crack tips, and the value $n=20.6$ when the residual stress effects were accounted for. The magnitude of the residual stresses at the crack tips of a glass panel, and therefore the effective value of n that should be used in determining fatigue effects for the panel, is unknown. However, it is reasonable to assume that the latter will lie between the values $n=15.95$ or so

\(^a\) The choice of a proper loading rate can in practice ensure that the ratios $t_f/60$ are indeed of that order - see tables 3.3 and 3.4.
and n=20.6 or so. Hence the choice of the values n=16 and n=19.7 for the sensitivity calculations of table 3.2.

Table 3.2 Ratios \(\sigma_{60}/\sigma(t_f) \) for \(t_f = 30 \text{ sec} \) and \(t_f = 120 \text{ sec} \), Assuming n = 19.7 and n = 16.00

<table>
<thead>
<tr>
<th></th>
<th>n = 19.7</th>
<th>n = 16</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_f = 120 \text{ sec})</td>
<td>0.888</td>
<td>0.875</td>
<td>1.5%</td>
</tr>
<tr>
<td>(t_f = 30 \text{ sec})</td>
<td>0.828</td>
<td>0.802</td>
<td>3%</td>
</tr>
</tbody>
</table>

Equation 21 and table 3.2 (which show, respectively, that the ratio \(\sigma_{60}/\sigma(t_f) \) is independent of B, and that for any given stress, \(\sigma(t_f) \), obtained by testing a ring-on-ring specimen, the corresponding 60-sec strength, \(\sigma_{60} \), depends weakly upon n) suggest that estimates of the probability distribution \(P(p_{60}) \), of the 60-sec load capacity of a panel, \(p_{60} \), inferred on the basis of results of ring-on-ring tests are also independent of B and weakly dependent upon n. This was confirmed by estimates of \(P(p_{60}) \) carried out for a 4 ft x 4 ft x 1/8 in. annealed glass panel in which several assumed sets of values of n and 1/B were used to convert strengths at time of failure, \(\sigma(t_f) \), into initial strengths, \(S_i \).

3.3 RESULTS OF RING-ON-RING TESTS

This section presents results of ring-on-ring tests conducted within the framework of this project. The ring-on-ring testing device (figure 4) consisted of rigid rings with radii \(a = 0.0603 \text{ m} \) (support ring) and \(b = 0.0254 \text{ m} \) (loading ring). The device was employed in combination with a 10K lbf Universal Testing Machine. All the specimens were subjected to ramp loads (i.e., loads increasing for practical purposes linearly with time). The glass used in the tests was new and was obtained from the same manufacturer and batch.

Tests were conducted in air on a set of 56 annealed float glass square specimens with side \(D = 7 \text{ in.} \) \((0.1792 \text{ m}) \) and on a set of 29 annealed float glass circular specimens with radius \(R = 3.5 \text{ in.} \) \((0.889 \text{ m}) \). The nominal thickness was \(h = 1/4 \text{ in.} \) \((6 \text{ mm}) \) for all specimens. The stresses at the center of the plates were calculated by equation 19, in which \(h \) was the measured (rather than the nominal) thickness for each specimen. Following reference 19, in the case of the square plates the parameter \(R \) in equation 19 was assumed to be equal to one-half the average of the edge and diagonal lengths. This was confirmed experimentally to within a few percentage points by strain-gage measurements of stresses on circular and square ring-on-ring specimens. The test results and the calculated values of the stresses at the center of the plates at the time of failure, \(\sigma(t_f) \), are listed in tables 3.3 and 3.4. It is noted that the influence of humidity upon the results of tables 3.3 and 3.4 is negligible (see reference 14, p. 35).
If it is assumed that \(n = 19.7 \) and \(1/B = 0.0738569 \text{(MPa)}^{-2} \text{s}^{-1} \) (corresponding to \(\dot{\epsilon} = 1.08 \text{(MPa)}^{-n} \text{m}^{1-\frac{n}{2}} \text{s}^{-1} \) [23], \(K_{IC} = 0.75 \text{ MPa} \) [23], and \(Y = 1.12 \) — see equation 5a), it follows from equation 20 that the initial strengths are

\[
S_i = 0.7272 \ t_f^{1/17.7} [\sigma(t_f)]^{19.7/17.7} \tag{22}
\]

Statistical analyses of the initial strengths calculated by equation 22 from the stresses \(\sigma(t_f) \) were carried out as indicated in appendix I. It was assumed that the area \(A \) referred to in appendix I is a circle with radius \(r = 0.705b = 0.705 \text{ in.} \) (0.0179 m), i.e., \(A = \pi r^2 = 1.56 \text{ in.}^2 \) (0.001 m²) (see figure 3).

Estimated parameters of the Weibull distributions of the initial strengths, \(S_i \), from results of tests used in conjunction with equation 22 are listed in table 3.5, where the sample means, \(\overline{S}_i \), standard deviations, \(s(S_i) \), coefficients of variation, \(s(S_i)/\overline{S}_i \), sample maximum, \(S_{i\text{max}} \), and sample minimum, \(S_{i\text{min}} \), of the data are also shown.

The initial strengths \(S_i \) calculated by equation 22 are nominal, rather than actual, since the values of \(B \) and \(n \) used therein are uncertain. However, it follows from the form of equations 11 and 20 and from the results of table 3.2 that, if the values of \(B \) and \(n \) used in these equations are the same, the effect of uncertainties with respect to the actual values of \(B \) and \(n \) largely cancels out when estimating the load capacity of glass panels.
Table 3.3 Test Data for Circular Plates

1	0.5334	45	2358.5	0.76	67	47.32
2	0.5639	54	3453.2	0.76	67	61.99
3	0.5690	59	3419.9	1.27	71	62.06
4	0.5613	48	2839.1	1.78	71	51.44
5	0.5537	73	4534.6	1.27	71	84.44
6	0.5613	43.5	2109.3	2.03	66	38.22
7	0.5080	36	1637.6	1.27	66	36.23
8	0.5080	41.5	2073.7	2.29	66	45.87
9	0.5334	31	1713.3	2.03	60	34.38
10	0.5486	82	4694.8	2.29	60	89.05
11	0.5436	57	2536.5	0.00	67	49.00
12	0.5512	59	3924.9	1.27	67	73.75
13	0.5334	47	3021.6	1.02	67	60.63
14	0.5359	70	3742.5	1.52	67	74.39
15	0.5537	45	2460.9	1.27	72	45.82
16	0.5588	52	2963.7	1.27	72	54.18
17	0.5563	45	2336.3	2.29	72	43.10
18	0.5563	73	3898.2	2.03	70	71.91
19	0.5537	51	2269.5	1.52	70	42.26
20	0.5537	50	2216.1	2.29	70	41.26
21	0.5461	73	3804.8	1.52	70	72.83
22	0.5486	54	2594.4	2.03	70	49.21
23	0.5359	71	3675.7	0.51	70	73.07
24	0.5385	76	5255.5	2.54	60	103.46
25	0.5410	76	3960.5	2.54	72	77.25
26	0.5537	62	3956.1	2.79	71	73.66
27	0.5461	74	4000.6	2.79	67	76.58
28	0.5639	49	2523.2	3.30	66	45.30
29	0.5334	37	2055.9	3.30	67	41.25

where
- h = thickness in cm
- t_f = load time in seconds
- p = failure load in Newtons
- r = distance from origin of fracture to center in cm
- RH = relative humidity
- $\sigma(t_f)$ = final strength in MPa
Table 3.4 Test Data for Square Plates

<table>
<thead>
<tr>
<th>h</th>
<th>p</th>
<th>(t_f)</th>
<th>(r)</th>
<th>RH%</th>
<th>(\sigma(t_f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5383</td>
<td>2647.8</td>
<td>57</td>
<td>2.29</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>0.5359</td>
<td>2287.3</td>
<td>54</td>
<td>0.76</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>0.5563</td>
<td>2429.7</td>
<td>48</td>
<td>0.76</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>0.5537</td>
<td>2621.1</td>
<td>61</td>
<td>2.03</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>0.5461</td>
<td>2242.8</td>
<td>49</td>
<td>1.79</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>0.5461</td>
<td>3911.6</td>
<td>73</td>
<td>2.29</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>0.5461</td>
<td>3773.6</td>
<td>81</td>
<td>1.52</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>0.5436</td>
<td>2883.6</td>
<td>74</td>
<td>1.27</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>0.5461</td>
<td>4427.8</td>
<td>95</td>
<td>0.76</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>0.5461</td>
<td>3017.1</td>
<td>73</td>
<td>0.51</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>0.5410</td>
<td>2451.9</td>
<td>67</td>
<td>1.79</td>
<td>62</td>
</tr>
<tr>
<td>12</td>
<td>0.5334</td>
<td>4561.3</td>
<td>100</td>
<td>1.52</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>0.5334</td>
<td>4525.7</td>
<td>100</td>
<td>1.79</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>0.5334</td>
<td>3163.9</td>
<td>80</td>
<td>1.27</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>0.5461</td>
<td>2309.6</td>
<td>63</td>
<td>1.02</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>0.5359</td>
<td>2919.2</td>
<td>75</td>
<td>2.29</td>
<td>62</td>
</tr>
<tr>
<td>17</td>
<td>0.5537</td>
<td>2558.8</td>
<td>67</td>
<td>1.27</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>0.5461</td>
<td>5157.6</td>
<td>97</td>
<td>1.27</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>0.5486</td>
<td>3736.1</td>
<td>106</td>
<td>1.52</td>
<td>66</td>
</tr>
<tr>
<td>20</td>
<td>0.5436</td>
<td>5006.3</td>
<td>101</td>
<td>2.29</td>
<td>62</td>
</tr>
<tr>
<td>21</td>
<td>0.5410</td>
<td>3840.4</td>
<td>73</td>
<td>1.52</td>
<td>62</td>
</tr>
<tr>
<td>22</td>
<td>0.5410</td>
<td>4583.5</td>
<td>93</td>
<td>2.29</td>
<td>62</td>
</tr>
<tr>
<td>23</td>
<td>0.5349</td>
<td>3119.5</td>
<td>73</td>
<td>1.52</td>
<td>62</td>
</tr>
<tr>
<td>24</td>
<td>0.5334</td>
<td>4401.1</td>
<td>93</td>
<td>2.03</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>0.5512</td>
<td>3408.7</td>
<td>84</td>
<td>2.03</td>
<td>68</td>
</tr>
<tr>
<td>26</td>
<td>0.5410</td>
<td>5402.3</td>
<td>104</td>
<td>2.29</td>
<td>62</td>
</tr>
<tr>
<td>27</td>
<td>0.5512</td>
<td>4458.9</td>
<td>93</td>
<td>0.76</td>
<td>62</td>
</tr>
<tr>
<td>28</td>
<td>0.5359</td>
<td>4579.1</td>
<td>103</td>
<td>1.27</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>0.5588</td>
<td>4570.2</td>
<td>92</td>
<td>1.02</td>
<td>62</td>
</tr>
<tr>
<td>30</td>
<td>0.5512</td>
<td>1984.7</td>
<td>51</td>
<td>1.79</td>
<td>66</td>
</tr>
<tr>
<td>31</td>
<td>0.5461</td>
<td>4423.3</td>
<td>98</td>
<td>2.03</td>
<td>66</td>
</tr>
<tr>
<td>32</td>
<td>0.5436</td>
<td>5816.2</td>
<td>117</td>
<td>2.54</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>0.5385</td>
<td>2558.8</td>
<td>56</td>
<td>2.54</td>
<td>62</td>
</tr>
<tr>
<td>34</td>
<td>0.5512</td>
<td>3399.8</td>
<td>82</td>
<td>2.54</td>
<td>70</td>
</tr>
<tr>
<td>35</td>
<td>0.5410</td>
<td>4783.8</td>
<td>103</td>
<td>2.54</td>
<td>62</td>
</tr>
<tr>
<td>36</td>
<td>0.5512</td>
<td>2656.7</td>
<td>73</td>
<td>2.54</td>
<td>68</td>
</tr>
<tr>
<td>37</td>
<td>0.5461</td>
<td>5388.9</td>
<td>102</td>
<td>2.54</td>
<td>68</td>
</tr>
<tr>
<td>38</td>
<td>0.5537</td>
<td>5647.1</td>
<td>107</td>
<td>2.54</td>
<td>68</td>
</tr>
<tr>
<td>39</td>
<td>0.5461</td>
<td>5660.4</td>
<td>111</td>
<td>2.54</td>
<td>68</td>
</tr>
<tr>
<td>40</td>
<td>0.5436</td>
<td>4147.4</td>
<td>89</td>
<td>2.54</td>
<td>66</td>
</tr>
<tr>
<td>41</td>
<td>0.5563</td>
<td>5024.1</td>
<td>101</td>
<td>2.54</td>
<td>62</td>
</tr>
<tr>
<td>42</td>
<td>0.5385</td>
<td>4104.2</td>
<td>101</td>
<td>2.54</td>
<td>62</td>
</tr>
<tr>
<td>43</td>
<td>0.5334</td>
<td>2233.9</td>
<td>65</td>
<td>2.54</td>
<td>62</td>
</tr>
<tr>
<td>44</td>
<td>0.5385</td>
<td>5526.9</td>
<td>110</td>
<td>2.54</td>
<td>68</td>
</tr>
<tr>
<td>45</td>
<td>0.5410</td>
<td>2710.1</td>
<td>55</td>
<td>2.79</td>
<td>66</td>
</tr>
<tr>
<td>46</td>
<td>0.5410</td>
<td>3088.3</td>
<td>63</td>
<td>2.79</td>
<td>66</td>
</tr>
<tr>
<td>47</td>
<td>0.5359</td>
<td>3964.9</td>
<td>94</td>
<td>2.79</td>
<td>62</td>
</tr>
<tr>
<td>48</td>
<td>0.5385</td>
<td>3333.1</td>
<td>84</td>
<td>2.79</td>
<td>70</td>
</tr>
<tr>
<td>49</td>
<td>0.5461</td>
<td>5611.5</td>
<td>114</td>
<td>2.79</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>0.5563</td>
<td>5117.5</td>
<td>100</td>
<td>2.79</td>
<td>62</td>
</tr>
<tr>
<td>51</td>
<td>0.5359</td>
<td>4699.2</td>
<td>87</td>
<td>3.05</td>
<td>66</td>
</tr>
<tr>
<td>52</td>
<td>0.5358</td>
<td>4294.3</td>
<td>97</td>
<td>3.05</td>
<td>62</td>
</tr>
<tr>
<td>53</td>
<td>0.5486</td>
<td>3288.6</td>
<td>80</td>
<td>3.05</td>
<td>62</td>
</tr>
<tr>
<td>54</td>
<td>0.5334</td>
<td>2621.1</td>
<td>74</td>
<td>3.30</td>
<td>68</td>
</tr>
<tr>
<td>55</td>
<td>0.5486</td>
<td>2843.6</td>
<td>74</td>
<td>3.56</td>
<td>68</td>
</tr>
<tr>
<td>56</td>
<td>0.5334</td>
<td>4325.4</td>
<td>97</td>
<td>3.56</td>
<td>62</td>
</tr>
</tbody>
</table>

where
- \(h \) = thickness in cm
- \(t_f \) = load time in seconds
- \(p \) = failure load in Newtons
- \(r \) = distance from origin of fracture to center in cm
- RH = relative humidity
- \(\sigma(t_f) \) = final strength in MPa
Table 3.5 Sample Statistics of Initial Strengths and Estimated Initial Strength Distribution Parameters Corresponding to Area $A = 1.56$ in2 for Tests in Air

<table>
<thead>
<tr>
<th>Case</th>
<th>Specimens</th>
<th>Sample Size</th>
<th>S_i (MPa)</th>
<th>$s(S_i)$ (MPa)</th>
<th>$s(S_i)/S_i$</th>
<th>S_{max} (MPa)</th>
<th>S_{min} (MPa)</th>
<th>S_0 (MPa)</th>
<th>m</th>
<th>S_0 (MPa)</th>
<th>m</th>
<th>μ_s (MPa)</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Circular</td>
<td>29</td>
<td>87.63</td>
<td>31.0</td>
<td>0.354</td>
<td>141.6</td>
<td>46.2</td>
<td>121.5</td>
<td>3.10</td>
<td>72.8</td>
<td>1.34</td>
<td>46.9</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>Square</td>
<td>56</td>
<td>110.83</td>
<td>36.8</td>
<td>0.332</td>
<td>174.4</td>
<td>48.8</td>
<td>173.2</td>
<td>2.91</td>
<td>156.8</td>
<td>0.97</td>
<td>56.3</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>Circular and Square</td>
<td>85</td>
<td>102.9</td>
<td>36.5</td>
<td>0.355</td>
<td>174.4</td>
<td>46.2</td>
<td>156.4</td>
<td>2.79</td>
<td>118.1</td>
<td>1.29</td>
<td>47.7</td>
<td>1.29</td>
</tr>
</tbody>
</table>

* For 2-parameter Weibull distributions $\mu_s = 0.$
4. ESTIMATES OF THE LOAD CAPACITY OF GLASS PANELS

The methodology for estimating the 60-sec load capacity of glass panels proposed in this work consists of using the procedure described in section 2.3 in conjunction with equations 17 and 18. The parameters S_0, A_N, m, and μ_N in these equations are obtained by fitting a Weibull distribution to the nominal initial strengths S_i calculated from the breaking strengths $\sigma(t_f)$ by using equation 20 (or a similar relation if the dependence of load on time is not linear). The values of the parameters B and n used in equation 20 must be the same as those of equation 11. Values of n used in the calculations should be based on experimental results obtained, e.g., by techniques described in reference 24.

This methodology was applied to a 4 ft x 4 ft x 1/8 in (1.22 m x 1.22 m x 3 mm) annealed glass panel simply supported on four sides, using the values $E = 68.9$ GPa, $\nu = 0.22$, the fracture mechanics parameters listed in section 3.3, and the parameters of the Weibull distribution of the initial glass strength listed in table 3.5. The grid size and the angle Δa_G used in the numerical calculations were 7.62 mm x 7.62 mm and 18°, respectively. For each of the sets of two and three parameters listed in table 3.5 the load capacities, p_{60}, of 1000 of panels were estimated, and the values so obtained were fitted by two- and three-parameter Weibull distributions, respectively. The parameters of the best fitting distributions are listed in table 4.1, which also lists mean values, \overline{p}_{60}, standard deviations, $s(p_{60})$, coefficients of variation, $s(p_{60})/\overline{p}_{60}$, loads corresponding to a probability of failure of 8 in 1000, $p_{60}(0.008)$, and loads corresponding to a probability of failure of 0.5.

Estimates of the load capacity corresponding to a probability of failure of 8 in 1000, $p_{60}(0.008)$, based on full-scale measurements are provided for design purposes in references 1 and 3. According to reference 1, $p_{60}(0.008) = 26$ psf (1 psf = 47.9 Pa). According to reference 3, $p_{60}(0.008) = 23$ psf. It is noted that to account for strength degradation in service, the value of reference 3 corresponds to strengths reduced by a factor of 2/3 with respect to those obtained in new glass [26]. Had this reduction not been effected, i.e., had the strength of new glass been used, to the value $p_{60}(0.008) = 23$ psf there would have corresponded roughly the value $p_{60}(0.008) = (3/2) \times 23 = 34.5$ psf.

The values $p_{60}(0.008)$ estimated in this report on the basis of three-parameter Weibull distributions (col. 9 of table 4.1, Case 1) are somewhat higher than the corresponding value based on references 1 and 3 (35.5 psf to 42.1 psf versus 26 psf to 34.5 psf.) These differences could be explained by two factors. First, the estimates obtained in this report do not take into account edge failures, which can reduce the load capacity of panels considerably. (For example, according to reference 7, 38 percent of the total number of panel failures reported therein originated at the edges.) Second, sampling errors in the estimation of the Weibull parameters of the strength may be present, since the estimated values of $p_{60}(0.008)$ are based on the testing of a limited number of ring-on-ring test specimens (from 29 for case 1 to 85 for case 3). Therefore, as shown in appendix II, the true values of $p_{60}(0.008)$ could well be as low as about 20 psf and as high as about 50 psf. Note also that the
estimated coefficients of variation of the load capacity p_{60} obtained by using three-parameter Weibull distributions (0.09 to 0.105) are lower than the value indicated in reference 3 ($= 0.22$). On the other hand, as can be seen from table 4.2 which summarizes test results reported in reference 7, coefficients of variation of the load capacity of new glass panels obtained from any one manufacturer are close in at least four out of eight cases to those estimated herein.

It is concluded that the procedure proposed in this report provides credible estimates of the load capacity of panels experiencing surface failures provided that three-parameter Weibull distributional models are used. The precision of these estimates depends upon number of ring-on-ring test results on which they are based, as suggested by numerical experiments presented in appendix II.

A second conclusion of interest is that modeling the strength of glass and the load capacity of cladding panels by two-parameter Weibull distributions leads to a clear incompatibility between results obtained by testing ring-on-ring specimens on the one hand, and the documented behavior of cladding panels on the other. Indeed, the use of two-parameter distributions yields estimates of $p_{60} (0.008)$ of the order of 1 psf (see table 4.1). These are grossly incompatible with the values quoted previously from references 1 and 3. A similar conclusion was reached independently by Walker [27].
Table 4.1 Estimated Statistics and Weibull Distribution Parameters of the 1-min Load Capacity, \(p_{60} \), for a 4 ft x 4 ft x 1/8 in Annealed Glass Panel Supported on Four Sides (Based on Tests in Air)

<table>
<thead>
<tr>
<th>Case</th>
<th>(\bar{p}_{60}) (psf)</th>
<th>(s(p_{60})) (psf)</th>
<th>(s(p_{60})/\bar{p}_{60})</th>
<th>((p_{60})_0) (psf)</th>
<th>(\mu_{60}) (psf)</th>
<th>m_60</th>
<th>(p_{60}(0.008)) (psf)</th>
<th>(p_{60}(0.5)) (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>42.8</td>
<td>3.86</td>
<td>0.090</td>
<td>9.80</td>
<td>34.14</td>
<td>2.41</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>50.9</td>
<td>5.00</td>
<td>0.098</td>
<td>11.04</td>
<td>41.08</td>
<td>2.05</td>
<td>42.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>45.4</td>
<td>4.78</td>
<td>0.105</td>
<td>12.20</td>
<td>34.57</td>
<td>2.42</td>
<td>36.2</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>7.3</td>
<td>3.43</td>
<td>0.471</td>
<td>8.23</td>
<td>2.26</td>
<td>0.98</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.5</td>
<td>4.87</td>
<td>0.515</td>
<td>10.71</td>
<td>2.06</td>
<td>1.03</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.9</td>
<td>3.58</td>
<td>0.516</td>
<td>7.86</td>
<td>2.06</td>
<td>0.75</td>
<td>6.6</td>
</tr>
</tbody>
</table>

a Based on three-parameter Weibull distributions of load capacity \(p_{60} \) and three-parameter Weibull distributions of the strength of glass.

b Based on two-parameter Weibull distributions of load capacity \(p_{60} \) and two-parameter Weibull distributions of the strength of glass.

\(\bar{p}_{60} \) = sample mean
\(s(p_{60}) \) = sample standard deviation
\((p_{60})_0 \) = scale parameter
\(\mu_{60} \) = location parameter
m_60 = shape parameter
\(p_{60}(0.008) \) = 1-min load capacity corresponding to probability of failure of panel of 8 in 1,000
\(p_{60}(0.5) \) = 1-min load capacity corresponding to probability of failure of 0.5.
Table 4.2 Summary of Tests Reported in Reference 7

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate of Loading</td>
<td>n</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>0.022 psi/sec</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.22 psi/sec</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.2 psi/sec</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

n = total number of panels tested
E = number of edge failures
S = number of surface failures

c.o.v.(p) = coefficient of variation of recorded failure loads (based on sample size S)

c.o.v.(p60) = coefficient of variation of nominal 60-sec loads obtained from recorded failure loads by using equation 21 (based on sample size S)

N.C. = not calculated owing to small size of sample S.
5. SUMMARY AND CONCLUSIONS

A methodology was proposed for estimating the probability distribution of the load capacity of annealed glass panels whose failure is due to surface flaws. The methodology requires the calculation of stresses induced on the panel surface by the external loads and employs information on the modulus of elasticity, Poisson's ratio, the fracture mechanics parameters, and the probabilistic description of the glass strength. This description is obtained by using the ring-on-ring testing method. It is shown that owing to the way in which this method is used, errors in the estimation of the load capacity due to uncertainties with respect to the fracture mechanics parameters of glass and to the shape of surface flaws are largely cancelled. Results of ring-on-ring tests and of calculations based on those tests show that credible predictions of panel load capacities are obtained that are consistent with data available in the literature, provided that the probability distribution of the glass strength and the probability distribution of the panel load capacity are modeled by the three-parameter Weibull distribution. The two-parameter Weibull distribution appears to provide an incorrect model of the strength of glass and of the load capacity of glass panels.

The results obtained in this work strongly suggest that the proposed methodology can provide reliable estimates of the load capacity of glass panels whose failure is due to surface flaws. However, a definitive statement to this effect would require validation based on (1) larger ring-on-ring test samples than those used in this work, and (2) reliable statistics of the load capacity of panels manufactured from the same batch of glass as the ring-on-ring test specimens.

The topic of glass panel failures due to edge imperfections was not addressed in this report. As shown by the statistics in table 4.2, the ratio of such failures to the total number of failures is highly variable. It is suggested that the probability distribution of the load capacity of glass panels, regardless of type of failure, can be modeled from information on statistics of edge failures on the one hand and of surface failures on the other.

In view of their relatively low cost, ring-on-ring tests could be more economical than full-size panel tests, in spite of the relatively large number of specimens that would have to be tested in order to attain acceptable precisions of the estimates. The extent to which this is the case would have to be determined by studies based on more extensive test data than have been obtained within the framework of this project.

Ring-on-ring testing may be a desirable alternative to full-size panel tests not only for economical reasons, but also in situations where the amount of material available for testing is limited. This might be the case in studies of in-service strength degradation in which the material being tested consists of weathered window glass recovered from existing buildings.
REFERENCES

3. PPG Glass Thickness Recommendations to Meet Architects Specified 1-Minute Wind Load, Technical Services/Flat Glass Division, PPG Industries, April 23, 1979.

27. Walker, G., (James Cook University of North Queensland, Australia), Personal Communication, Nov. 1983
Figure 1. Notations
Figure 2. Notations
Figure 3. Tangential and Radial Stress Distribution (a = radius of support ring; b/a = 1/2; b = radius of loading ring)
Figure 4. Ring-on-Ring Testing Device
APPENDIX I. MAXIMUM LIKELIHOOD ESTIMATION FOR THE THREE PARAMETER WEIBULL DISTRIBUTION BASED ON A SAMPLE WITH CENSORING DUE TO COMPETING RISKS

Let \(X \) be a random variable representing the tensile strength of glass cladding specimens within an area subjected to uniform axial bending. It is assumed that the distribution of \(X \) is Weibull that is,

\[
F(x) = 1 - \exp\left[-\left(\frac{x-\lambda}{\beta}\right)^{\alpha}\right]
\]

where \(\alpha, \beta > 0, \; \lambda > 0, \; x \geq \lambda \), and \(\alpha, \beta, \) and \(\lambda \) are the three parameters of the distribution.

We assume that a number of specimens, say \(n \), are tested and each of the specimens has the same Weibull distribution of tensile strengths \(X \). However, what we observe at each trial is either the tensile strength at which the specimen fails or the tensile strength outside the area \(A \). For a given specimen, let \(Q \) denote the strength at which failure occurs outside the area \(A \). Then what we observe is one of the two events \([A1-1, A1-2]\)

\[
[X=x] \cap [X<Q] \text{ or } [Q=q] \cap [X>Q].
\]

Then the likelihood, \(L \), of the event

\[
\bigcap_{i=1}^{k} [X_i < Q_i] \cap [X_i = x_i] \bigcap_{j=k+1}^{n} [X_j > Q_j] \cap [Q_j=q_j] \quad (A1.1)
\]

where \(k < n \) is the random number of failures observed, has the form

\[
L = \prod_{i=1}^{k} f(x_i) \prod_{j=k+1}^{n} (1-F(q_j)) \quad (A1.2)
\]

where \(f \) is the density function, \(F \) is the distribution function, and

\[
C = \binom{n}{k} = \frac{n!}{(n-k)!k!}
\]

The logarithm of the likelihood function for equation \(A1.2 \) is

\[
\ln L = \ln \left[\prod_{i=1}^{k} f(x_i) \prod_{j=k+1}^{n} (1-F(q_j)) \right]
\]
and can be rewritten as

$$\ln L = \ln C + k \ln \alpha - k \alpha \ln \beta + (\alpha - 1) \sum_{i=1}^{k} \ln(x_i - \lambda)$$

$$- \sum_{i=1}^{k} \frac{x_i - \lambda}{\beta} - \sum_{j=k+1}^{n} \frac{q_j - \lambda}{\beta}$$

On differentiating equation Al.3 with respect to α, β, and λ in turn and equating the resulting expressions to zero, one obtains the maximum likelihood estimation equations for the three Weibull parameters [Al-3]. These three equations are nonlinear in the three parameters and can be solved iteratively by a Newton-Raphson method as discussed in [Al-1] and [Al-3].

References

APPENDIX II. DEPENDENCE OF ESTIMATED 60-SEC LOAD CAPACITY, $p_{60}(0.008)$, UPON NUMBER OF RING-ON-RING SPECIMENS BEING TESTED

Estimates of the order of magnitude of the error in the estimation of the load capacity $p_{60}(0.008)$ were carried out as follows. It was assumed that the probability distribution of the strength can be modeled by a three-parameter Weibull distribution with scale, location, and shape parameters (corresponding to an area $A = 1.56$ in2) $S_o = 118.1$ MPa, $\mu_g = 47.7$ MPa, and $m = 1.27$ (see table 3.5, case 3). It is further assumed that the probability distribution of the load capacity p_{60} is also Weibull with parameters to be determined.

The first step in obtaining the desired estimates consists of generating from this distribution by Monte Carlo simulation a sample of N values of the glass strength S. These N values can be viewed as strengths that would be measured if N ring-on-ring specimens were tested.

The second step is to fit a three-parameter Weibull distribution to these N values.

The third step is to estimate from this distribution the corresponding 60-sec load capacity $p_{60}(0.008)$ as shown in section 2.3.

These three steps were carried out 20 times for each of the sample sizes $N = 15, 100, 250, 500,$ and $1,000$. The results of the calculations are summarized in table A2.1, which shows for each value N the means of 20 estimates $p_{60}(0.008)$, their standard deviation $s[p_{60}(0.008)]$, and their minimum and maximum values, $\text{min} [p_{60}(0.008)]$ and $\text{max} [p_{60}(0.008)]$. Table A2.1 suggests the order of magnitude of the sample size needed to obtains estimates of $p_{60}(0.008)$ with various precisions. Note that these estimates are tentative, since (1) they do not account for the effect of censoring discussed in appendix A1, and (2) they assume that the Weibull distribution parameters of the glass strength obtained from the testing of only 89 specimens are the "true" parameters.
Table A2.1 Estimated Means, Standard Deviations, Minimum Values, and Maximum Values Obtained from Sets of Estimated Values \(p_{60}(0.008)\), Corresponding to Various Ring-on-Ring Test Sample Sizes \(n\).

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>100</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{60}(0.008))</td>
<td>33.10</td>
<td>34.36</td>
<td>35.50</td>
<td>34.98</td>
<td>34.69</td>
</tr>
<tr>
<td>(s[p_{60}(0.008)])</td>
<td>14.10</td>
<td>8.20</td>
<td>5.16</td>
<td>4.23</td>
<td>2.01</td>
</tr>
<tr>
<td>(\text{min} \ p_{60}(0.008))</td>
<td>2.53</td>
<td>17.54</td>
<td>26.35</td>
<td>27.84</td>
<td>29.53</td>
</tr>
<tr>
<td>(\text{max} \ p_{60}(0.008))</td>
<td>58.24</td>
<td>48.26</td>
<td>47.75</td>
<td>43.45</td>
<td>37.54</td>
</tr>
</tbody>
</table>
APPENDIX III. COMPUTER PROGRAM FOR ESTIMATING PROBABILITY DISTRIBUTION OF LOAD CAPACITY \(P_{60} \)
Computer program PSIXTY is a modified and corrected version of the program listed in "Wind Loading and Strength of Cladding Glass" by D.A. Reed and E. Simiu (NBS BSS 154). It calculates the probability of failure of square glass panes subjected to a constant sixty second pressure. The initial strength values for each element on each pane are simulated from Weibull distribution input parameters. The stress at the center of each element is obtained as a non-linear function of pressure by using the Texas Tech University program referred to in Section 2.3 of this report. The stress-pressure relationship is summarized in subroutine LF of this program.

To obtain failure statistics, numerical experiments are conducted. A user-defined number of panes (N in main program) are loaded, and a distribution of the breaking pressure is determined. The breaking pressure is different for each pane, since each pane has a random Weibull strength distribution. The pane is divided into square elemental areas, wherein each element has a random Weibull distribution strength assigned for each of the 20 directions. Symmetry is taken advantage of in this program.

This program was developed for panes with size 48"x48"x1/8". However, with small modifications, it can be used for panes of any specified size.

The basic procedure is:

FOR EACH OF N PANES...

GENERATE THE RANDOM STRENGTHS FOR EACH DIRECTION IN EACH OF THE DISCRETE ELEMENTS OF THE Pane.

FOR EACH LOCATION, FIND THE 60-SECOND PRESSURE THAT WILL CAUSE THE STRESS=STRENGTH.

FIND THE MINIMUM 60-SECOND PRESSURE FOR THE PAANE.

FIT THE N MINIMUM 60-SECOND PRESSURES TO A WEIBULL DISTRIBUTION.

INPUT: N=Number of panes to use.
 SSHEAPE,SSCALE,SLOC= Input Weibull strength distribution parameters.
 SEED=Random seed for random # generator.

OUTPUT: 60-second breaking pressure (psf) parameters of the fitted Weibull distribution.
 60-second breaking pressure statistics (mean,S.D.,C.O.V.)

Subroutines called:

Internal: F
 WEIB
 PSIXTY
 FDMIN
 DIR
External: GGUBS - an IMSL routine to generate uniform random #'s
SRTAD - an IMSL routine to sort in-place the elements
of a vector.

REAL MEAN

DOUBLE PRECISION SEED,SEEDS

COMMON /PS6OPAR/ PSHAPE,PScale,PLOC

READ (5,100) N
READ (5,110) SSHAPE,SSCALE,SLOC,AREA
READ (5,120) SEED

100 FORMAT (I10)
110 FORMAT (45F10.0)
120 FORMAT (D20.0)

SEEDS = SEED

WRITE (6,130) SSHAPE,SSCALE,SLOC,AREA,N,SEEDS
130 FORMAT (//
1 46H COMPUTER PROGRAM PSI SIXTY,//,
2 37H GLASS STRENGTH WEIBULL DISTRIBUTION:,//,
3 21H SHAPE PARAMETER =, F8.3,/,
3 21H SCALE PARAMETER =, F7.2,/,
4 21H LOCATION PARAMETER =, F7.2,/,
5 21H TEST SPECIMEN AREA =, F8.3,/,
6 21H NUMBER OF PANELS =, I5,/,
7 21H RANDOM NUMBER SEED =, D20.10)

CALL PSI6ITY
+ (N,AREA,SSHAPE,SSCALE,SLOC,PSHAPE,PScale,PLOC,MEAN,STDEV,COV,
+ SEED)

F8 = F(0.008)
FM = F(0.5)

WRITE (6,140) PSHAPE,PScale,PLOC,MEAN,STDEV,COV,F8,FM
140 FORMAT (//,
1 19H PSI6ITY PARAMETERS:,//,
2 21H SHAPE PARAMETER =, F10.3,/,
3 21H SCALE PARAMETER =, F9.2,/,
4 21H LOCATION PARAMETER =, F9.2,/,
5 21H MEAN =, F9.2,/,
6 21H STANDARD DEVIATION =, F10.3,/,
7 21H COV =, F10.3,/,
8 21H F(0.008) =, F9.2,/,
9 21H F(0.5) (MEDIAN) =, F9.2)

END
FUNCTION F(Z)

COMMON /PS6OPAR/ PSHAPE,PScale,PLOC
\[F = PLOC + \text{PScale} \times (-\text{Alog}(1.0 - Z)) \times (1.0/\text{PShape}) \]

RETURN
END

SUBROUTINE WEIB \(N, M, MR, \text{SSHP, SSCL, SLOC, E1, E2, E3, T, S1, S2, S3} \)

PROGRAM WEIBULL -- COMPUTES THREE PARAMETER WEIBULL
C MAXIMUM LIKELIHOOD ESTIMATES FOR BOTH LEFT AND
C RIGHT SINGLE CENSORING
C
DATE: JUNE 31, 1981
DATE PROGRAM CHECKED OUT: JULY 9, 1981
PROGRAMMER: JONATHAN W. MARTIN
C
REFERENCE: HARTER, H. L.; MOORE, A. H. MAXIMUM LIKELIHOOD
ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL
POPULATIONS FROM COMPLETE AND CENSORED SAMPLES.
C
NOTATION FOR INPUT DATA:
N = SAMPLE SIZE (BEFORE CENSORING), N=1000 OR LESS
AS DIMENSIONED
SSCL = 0 IF THE SCALE PARAMETER THETA IS KNOWN
SSCL = 1 IF THE SCALE PARAMETER THETA IS UNKNOWN
SSHP = 0 IF THE SHAPE PARAMETER K IS KNOWN
SSHP = 1 IF THE SHAPE PARAMETER K IS UNKNOWN
SLOC = 0 IF THE LOCATION PARAMETER C IS KNOWN
SLOC = 1 IF THE LOCATION PARAMETER C IS UNKNOWN
T(I) = I-TH ORDER STATISTIC OF SAMPLE (I=1,N)
(SUBSTITUTE BLANK CARDS FOR UNKNOWN CENSORED
OBSERVATIONS)
M = NUMBER OF OBSERVATIONS REMAINING AFTER
CENSORING N-M FROM ABOVE
C(1)=INITIAL ESTIMATE (OR KNOWN VALUE) OF
THETA(1) = INITIAL ESTIMATE (OR KNOWN VALUE) OF THETA
EK(1) = INITIAL ESTIMATE (OR KNOWN VALUE) OF K
MR = NUMBER OF OBSERVATIONS CENSORED FROM BELOW,
NORMALLY ZERO INITIALLY

NOTATION FOR OUTPUT DATA:
N, SSCL, SSHP, SLOC, M, C(1), THETA(1), EK(1)--SAME AS FOR INPUT
C(J) = ESTIMATE FOR LOCATION PARAMETER AFTER J-1
ITERATIONS (OR KNOWN VALUE) OF
THETA(J) = ESTIMATE OF SCALE PARAMETER AFTER J-1
ITERATIONS (OR KNOWN VALUE) OF THETA
EK(J) = ESTIMATE OF SHAPE PARAMETER AFTER J-1
ITERATIONS (OR KNOWN VALUE) OF K
(MAXIMUM VALUE OF J AS PRESENTLY DIMENSIONED
IS 550)
EL = NATURAL LOGARITHM OF LIKELIHOOD FOR C(J), THETA(J),
EK(J)

DIMENSION THETA(5550), EK(5550)
DOUBLE PRECISION C(5550), T(1000), SLK
DIMENSION X(600), Y(600)
REAL E1, E2, E3
C INTEGER PSCL(2),PSHP(2),PLOC(2)
C DATA PSCL/' YES',' NO '/,
C 1 PSHP/' YES',' NO '/,
C 2 PLOC/' YES',' NO '/
C WRITE(6,*)N,M,MR,SSHP,SSCL,SLOC
C WRITE(6,*)E1,E2,E3
C 4 READ(5,1)N,M,MR,SSHP,SSCL,SLOC
C IF(N) 66,66,77
C 77 READ(5,5)EK(1),THETA(1),C(1)
 EK(1)=E1
 THETA(1)=E2
 C(1)=E3
C 5 FORMAT(3F5.0)
C READ(5,121)(DATAS(J),J=1,18)
 ISCL = SSCL + 1
 ISHP = SSHP + 1
 ILOC = SLOC + 1
 EN = N
C DO 2 I=1,N

 IF (M) 64,64,32
32 EM =M
31 ELNM = 0.
 JCOUNT = 0
 EMR = MR
 MRP = MR + 1
 NM = N - M + 1
 DO 34 I=NM,N
 EI = I
34 ELNM = ELNM + ALOG(EI)
 IF(MR) 66,35,74
74 DO 75 I=1,MR
 EI = I
75 ELNM = ELNM - ALOG(EI)
35 DO 30 J=1,550
 JCOUNT = JCOUNT + 1
 IF(J-1) 66,25,37
37 JJ = J-1
 SK = 0.
 SL = 0.
 DO 6 I = MRP,M
 SK = SK + (T(I)-C(JJ))**EK(JJ)
6 IF(SSCL) 7,7,8
7 THETA(J) = THETA(JJ)
 GO TO 9
8 IF(MR) 66,19,20
19 THETA(J) = (((SK + (EN-EM)*(T(M)-C(JJ))**EK(JJ))/EM)
 1***(1./EK(JJ))
 GO TO 9
20 X(1) = THETA(JJ)
 LS = 0
 DO 21 L=1,55
 LL = L - 1
 LP = L + 1
 X(LP) = X(L)
21 ZRK = ((T(MRP)-C(JJ))/X(L))**EK(JJ)
\[Y(L) = -EK(JJ) \cdot (E^{EMR}) \cdot X(L) + EK(JJ) \cdot SK \cdot X(L) \cdot (EK(JJ) + 1.)^{1+EK(JJ) \cdot (E^{EM}) \cdot (T(M) - C(JJ)) \cdot (EK(JJ)) \cdot X(L) \cdot (EK(JJ))} + 1.) \]
\[2 - EMR \cdot EK(JJ) \cdot ZRK \cdot \exp(-ZRK)/(X(L) \cdot (1. - \exp(-ZRK))) \]
\[
\begin{align*}
53 & \text{LS} = \text{LS} - 1 \quad \text{IF}(ext{LS} + \text{L}) = 58, 55, 58 \\
54 & \text{LS} = \text{LS} + 1 \quad \text{IF}(ext{LS} - \text{L}) = 58, 56, 58 \\
55 & X(LP) = 0.5 \cdot X(L) \quad \text{GO TO} 61 \\
56 & X(LP) = 1.5 \cdot X(L) \quad \text{GO TO} 61 \\
58 & \text{IF}(Y(L) \cdot Y(LL)) = 60, 73, 59 \\
59 & LL = LL - 1 \quad \text{GO TO} 58 \\
60 & X(LP) = X(L) + Y(L) \cdot (X(L) - X(LL))/(Y(LL) - Y(L)) \\
61 & \text{IF}(\text{ABS}(X(LP) - X(L)) - 1. \cdot E^{-4}) = 73, 73, 21 \\
21 & \text{CONTINUE} \\
73 & \text{THETA}(J) = X(LP) \\
9 & EK(J) = EK(JJ) \quad \text{IF}(\text{SSHP}) = 12, 12, 11 \\
11 & \text{DO} 17 \text{ I = MRP}, M \\
17 & \text{SL} = \text{SL} + \text{DLOG}(T(I) - C(JJ)) \\
 & X(1) = EK(J) \quad \text{LS} = 0 \\
 & \text{DO} 51 \text{ L} = 1, 55 \\
 & \text{SLK} = 0. \\
 & \text{DO} 18 \text{ I = MRP}, M \\
18 & \text{SLK} = \text{SLK} + (\text{DLOG}(T(I) - C(JJ)) - \text{ALOG(THETA(J)))} \cdot (T(I) - C(JJ))) \\
 & \text{LL} = L - 1 \\
 & \text{LP} = L + 1 \\
 & X(LP) = X(L) \\
 & ZRK = ((T(MP) - C(JJ))/\text{THETA(J))} \cdot X(L) \\
 & Y(L) = (E^{EMR}) \cdot (1./X(L) - \text{ALOG(THETA(J)))} + \text{SL} - \text{SLK}/\text{THETA(J))} \\
 & 1 \cdot \text{X(L)} + (E^{EM}) \cdot (\text{ALOG(THETA(J)))} - \text{DLOG}(T(M) - C(JJ))) \\
 & 2 \cdot (T(M) - C(JJ)) \cdot X(L)/\text{THETA(J))} \cdot X(L) \\
 & 3 + \text{EMR} \cdot ZRK \cdot (\text{ALOG(ZRK))/X(L}) \cdot \exp(-ZRK)/(1. - \exp(-ZRK))) \\
 & \text{IF}(Y(L)) = 43, 52, 44 \\
43 & \text{LS} = \text{LS} - 1 \quad \text{IF}(ext{LS} + \text{L}) = 47, 45, 47 \\
44 & \text{LS} = \text{LS} + 1 \quad \text{IF}(ext{LS} - \text{L}) = 47, 46, 47 \\
45 & X(LP) = 0.5 \cdot X(L) \quad \text{GO TO} 50 \\
46 & X(LP) = 1.5 \cdot X(L) \quad \text{GO TO} 50 \\
47 & \text{IF}(Y(L) \cdot Y(LL)) = 49, 52, 48 \\
48 & LL = LL - 1 \quad \text{GO TO} 47 \\
49 & X(LP) = X(L) + Y(L) \cdot (X(L) - X(LL))/(Y(LL) - Y(L)) \\
50 & \text{IF}(\text{ABS}(X(LP) - X(L)) - 1. \cdot E^{-4}) = 52, 52, 51 \\
51 & \text{CONTINUE} \\
52 & EK(J) = X(LP) \\
12 & C(J) = C(JJ) \quad \text{IF}(\text{SLOC}) = 25, 25, 14
14 IF(1.-EK(J)) 16,78,78
78 IF(SSCL+SSHP) 57,57,16
16 X(1) = C(J)
 LS = 0
 DO 23 L=1,55
 SK1 = 0.
 SR = 0.
 DO 15 I=MRP,M
 SK1 = SK1 +((T(I)-X(L))**(EK(J)-1.)
15 SR = SR+ 1./(T(I)-X(L))
 LL = L-1
 LP = L + 1
 X(LP) = X(L)
 ZRK = ((T(MRP)-X(L))/THETA(J))**E(J)
 Y(L)=(1-EK(J))*SR+EK(J)*SK1+(EN-EM)*T(M)-X(L))
 1**(EK(J)-1.))/THETA(J)**E(J)-EM*E(J)*ZRK*
 2*EXP(-ZRK)/((T(MRP)-X(L))*1.-EXP(-ZRK))
 IF(Y(L)) 39,24,40
39 LS = LS-1
 IF(LS=L) 70,41,70
40 LS = LS+1
 IF(LS=L) 70,42,70
41 X(LP) = .5*X(L)
 GO TO 22
42 X(LP) = .5*X(L)+.5*T(1)
 GO TO 22
70 IF(Y(L)*Y(LL)) 72,24,71
71 LL = LL - 1
 GO TO 70
72 X(LP) = X(L)+Y(L)*(X(L)-X(LL))/(Y(LL)-Y(L))
22 IF(ABS(X(LP)-X(L))-1.E-4) 24,24,23
23 CONTINUE
24 C(J) = X(LP)
 GO TO 25
57 C(J) = T(1)
25 IF(MR) 66,38,69
38 DO 63 I = 1,M
 IF(C(J)+1.E-4-T(I)) 68,67,67
67 MR = MR + 1
 WRITE(6,201)
201 FORMAT(’’,’LINE 200 IN PROGRAM--INITIAL LOCATION PARAMETER’,
 ’ESTIMATE GREATER/THE THAN FIRST OBSERVED FAILURE TIME’)
63 C(1) = T(1)
68 IF(MR) 66,69,31
69 SK = 0.
 SL = 0.
 DO 36 I=MRP,M
 SK = SK+(T(I)-C(J))**E(J)
36 SL = SL+DLOG(T(I)-C(J))
 ZRK=((T(MRP)-C(J))/THETA(J)**E(J)
 EL=ELN+(EM-EM)*ELOG(E(K(J))-E(J)*ELOG(THETA(J)))+
 1(EK(J)-1.))/SL-(SK+(EM-EM)*(T(M)-C(J))*E(J))/+2*(THETA(J)**E(J))+EM*ELOG(1.-EXP(-ZRK))
 IF(J-3) 30.27,27
27 IF(ABS(C(J)-C(JJ))-1.E-4) 28,28,30
28 IF(ABS(THETA(J)-THETA(JJ))-1.E-4) 29.29,30
29 IF(ABS(Ek(J)-Ek(JJ))-1.E-4) 99.99,30
30 CONTINUE

C OUTPUT

99 CONTINUE
S1=THETA(JCOUNT)
S2=Ek(JCOUNT)
S3=C(JCOUNT)
GO TO 66
64 CONTINUE
66 RETURN
END

SUBROUTINE PSIXTY(NPANEL,AREA,CO,SO,SU,MP,PEST,SV
1.XMEAN,ZSAM,COV,DSEED)

C
C (SEE DATA STATEMENT)
C SIDEA = LENGTH OF THE SQUARE
C THE LENGTH OF THE SIDE OF THE SQUARE IS INPUT IN INCHES
C TH = THICKNESS OF THE PLATE
C THICKNESS INPUT IN INCHES
C MODULUS OF ELASTICITY (E) INPUT IN PSI
C
C INPUT:
C NPANELS = # PANELS TO 'BREAK' TO FIT WEIBULL DISTR. TO
C SO,CO,SU = WEIBULL STRENGTH PARAMETERS FOR AN ELEMENTAL AREA =
C
C OUTPUT:
C XMEAN = mean P60
C ZSAM = S.D. OF P60
C COV = C.O.V. OF P60
C PEST = SCALE PARAMETER OF WEIBULL MLE FIT OF P60 FOR NPANELS
C MP = GAMMA " " "
C SV = LOCATION PARAMETER " "
C
C PROCEDURE:
C FOR EACH OF NPANEL PANCES...
C
C GENERATE 216 R.V. STRENGTHS (FROM UNDERLYING WEIBULL
C DISTR.) 36 LOCATIONS W/ EACH 6 DIRECTIONS=216
C
C FOR EACH LOCATION, IF SIGMA=STRENGTH, FIND CORRESPONDING
C LOAD(P 60) WHICH GIVES THAT STRESS(STRENGTH), I.E. THAT
C LOAD WHICH WILL BREAK IT FOR THAT LOCATIONS STRENGTH.
C
C FIND THE MINIMUM LOAD (P60) FOR THIS PANEL.
C
C FIT THE MINIMUM LOADS (P 60) FOR THE NPANEL PANCES TO A WEIBULL
C DISTRIBUTION.
C
C NOTE THAT SYMMETRY IS USED IN THIS PROCEDURE, I.E. THE PANE IS
C DIVIDED INTO FORU QUADRANTS (BY SYMMETRY) AND THIS QUADRANT IS
C DIVIDED BY ITS AXIS OF SYMMETRY (THE DIAGONAL) IN TWO.
C
C THE NUMBERING IN SUBROUTINE DIR AND LF USES THE UPPER HALF OF
C LOWER LEFT QUADRANT. THE CENTROID OF THE PANE IS NUMBERED
C Node #1. The 24" square quadrant of the 48" square pane is
c divided into 8x8 3 inch squares. Node #1 is the centroid of
c the entire pane and is the centroid of element #1. Node #2 is
c 3 inches left of node #1 and is the centroid of element #2.
c etc. till node #8 is 21 inches left of node #1 and is the
c centroid of element #8. Again, using symmetry, node #9 is
c directly under node #2 and is the centroid of element #9.
c node #10 is 3 inches left of node #9 etc until node #15
c which is 18 inches left of node #9. Then node #16 is directly
c under node #10. etc. Then node #22 is directly under node #17.
c etc. until the lowest row which has only node #36.
C note that each element is a three inch square (this is
C necessary since the R.V. strength assumes an equal elemental
C area. Thus, element #1 has no counterpart in the other three
C quadrants. Likewise element's #2-8 each represent four other
C elements in the pane (also with the elements on the diagonal)
c the remaining elements are replicates of 8 other elements in
c the pane.
C
DOUBLE PRECISION SIG(36,6),SI(36,6),PEQ(36,6),A1(216),
*RSG(36,6),S2,BP,M,RN,RY,RNM,KIC,ROOT,COEFS,COEFF,
*SCALE,SMIN,SMAX,RF,DSEED,E.MIN(1000)
REAL F(216),ZSAM,COV,XMEAN,MP
INTEGER IPOINT,NUMPER
DIMENSION ICHEK(216,2)
EQUIVALENCE (SI(36,6),PEQ(36,6))
COMMON //PLACE(216,2),ICOUNT
C
DATA KIC,A,RN,RY/0.75D0,1.08,19.69D0,1.25D0/
DATA TH,SIDEA,PR/0.125,48.0,0.21/
DATA E/1D07/
DATA RF,IPOINT/1.0D0,1/
C C CALCULATIONS
C
M=1/C0
RNM=RN-2.
ROOT=1./RN
C
C 1/B IS A PARAMETER USED IN EQN. 19 OF THE BSS REPORT
C RY=1.25; A=1.08; N=19.69 FROM [5] OF BSS 154
C SEE ABOVE DATA STATEMENT
C
BP=(RNM*A*RY*RY*(KIC**RNM))/2.

C FLEX=FLEXURAL RIGIDITY
C
FLEX=(E*TH*TH*TH)/(12.*(1.-PR*PR))
C
S2=SIDEA*SIDEA
C
C CF. EQN (9) OF BSS 154
C THE AREA FOR WHICH WE ARE SIMULATING A STRENGTH IS THE
C ELEMENT SIZE, WHICH AS EXPLAINED ABOVE IS 1/16 OF SIDEA
C THIS, AREA= (SIDEA/16)**2
C HOWEVER, TAKING DIRECTION INTO ACCOUNT AS EXPLAINED BELOW.
C THIS AREA IS DIVIDED BY 10.0
C
SELEM=(SIDEA/16.)**2
SNEW=SQRT(AREA/(SELEM/10.))**M
COEFS=(S2**TH)/FLEX
COEFP=(S2**S2)/(FLEX**TH)
C
C THESE COEFFICIENTS ARE USED FOR NONDIMENSIONALIZING
C PRESSURES AND STRESSES.
C
SCALE=(1./(60.*BP))**ROOT
ROOT=RNM**ROOT
C
C OBTAIN THE DIRECTIONAL MULTIPLIERS FROM [9] OF BSS 154
C
CALL DIR(RSIG)
C
C THEN CALCULATE THE STRESSES IN TERMS OF THE STRENGTHS...
C
C IF THE STRESSES ARE LESS THAN OR EQUAL TO
C ZERO, THEN OMIT THESE FROM CONSIDERATION...
C
C LOGICAL UNIT 9 CONTAINS A FILE WITH PSEUDO-RANDOM
C NUMBERS WHICH FOLLOW A UNIFORM DISTRIBUTION ON
C (0,1). AN ALTERNATIVE METHOD WOULD BE TO GENERATE THE NUMBERS
C DIRECTLY FROM A SUBROUTINE.
C
C THEN GENERATE INITIAL STRENGTH VALUES
C
DO 926KK=1,NPANEL
 I=0
 DO 12J=1,36
 IF(J.EQ.1) THEN
 N=1
 + J.EQ.31 .OR. J.EQ.34 .OR. J.EQ.36 .OR. (J.GE.2.AND.J.LE.8))THEN
 N=4
 ELSE
 N=8
 ENDIF

C SINCE THE STRENGTH IS RANDOMLY SIMULATED W/IN EACH ELEMENT
C WE CAN ARBITRARILY ORIENT THE COORD SYSTEM, S.T. THE MAXIMUM
C PRINCIPAL STRESS OCCURS @ ALPHA=0
C DIVIDING THE CIRCLE INTO 20 = 18 DEGREE ARCS, THE FIRST ARC
C IS REPEATED TWICE, @ ARC#1 AND 180 DEGREES AROUND THE CIRCLE.
C SIMILARLY, ARC#6, CORRESPONDING TO THE MINOR PRINCIPAL STRESS
C ALSO OCCURS TWICE. THE STRESSES IN THE ARCS BETWEEN ARC # 1 AND
C ARC # 6 OCCUR FOUR TIMES (BY SYMMETRY). THUS STRESS @ ARC#1
C OCCURS 1/10; STRESS @ ARC#6 OVVYRS 1/10; REMAINING ARCS
C STRESS OCCURS 1/5 EACH; 1/10+1/10+4(1/5)=1.0
C USING THE ANALOGY OF EQN (11) IN BSS 154
C THE AREA CORRESPONDING TO SQ IS 3 SQUARE INCHES DIVIDED
C BY 10. ALSO, THE STRESSES CORRESPONDING TO ARC#2-5,
C ARE SIMULATED TWICE, BECAUSE THEY OCCUR TWICE AS OFTEN AS
C THOSE CORRESPONDING TO THE MAJOR AND MINOR PRINCIPAL STRESSES
C THUS....
C
DO 12 K=1,6
 IF (K.NE.1 .AND. K.NE.6) N=N*2
C
C GGUBS is an IMSL routine to generate N random uniform #'s
C
 CALL GGUBS(DSEED,N,F)
 CALL FMIN(F,N,FMIN)
 IF (FMIN .EQ. 0) THEN
 FMIN=FMIN+0.00001
 ENDIF
C SI= STRENGTH (UNITS OF MPA)
C SIG=STRESS FACTOR (SF) (UNITS OF PSI) = F(SIGMA 60)
C SIG FROM EQN. (13) & (19) 0.00689 PSI PER MPA
C
C FOLLOWING LINE CHANGED FROM FMIN TO (1.-FMIN)
C ORIG. WAS OK SINCE ONLY ONE RANDOM # 0-1 & A RANDOM UNIFORM #
C BETWEEN 0-1 IS EQUIVALENT TO RANDOM 1- RANDOM #
C
 SI(J,K)=SNEW*((1.-FMIN))**M) +SU
 SIG(J,K)=SCALE*(SI(J,K)**ROOT)
 SIG(J,K)= COEFS*(SIG(J,K)/(.00689*RSIG(J,K)))
 IF(SIG(J,K) .GT. 0) THEN
 I=I+1
 ENDIF
C J==> POSITION
C K==> DIRECTION
 ICHEK(I,1)=J
 ICHEK(I,2)=K
C
12 CONTINUE
C ICOUNT=I
C
C SORT THE REMAINING STRESSES....
C
DO 160 I=1,ICOUNT
 J=ICHEK(I,1)
 K=ICHEK(I,2)
 A1(I)=SIG(J,K)
160 CONTINUE
C
IC=ICOUNT
C
C SRTAD is an IMSL routine to sort inplace the IC elements of vector
C A1 min to max.
C
 CALL SRTAD(A1,1,IC)
 SMIN=A1(1)
 SMAX=A1(ICOUNT)
 SMAX=RF*SMAX
C
C OMIT FROM CONSIDERATION THE FOLLOWING STRESS VALUES...
C
 GO TO (10,10,30)IPOINT
C
C FOLLOWING LOOP IS UNNECESSARY IF RF=0.0!
I2=0
DO 16 I=1,ICOUNT
 J=ICHKEK(I,1)
 K=ICHKEK(I,2)
 IF(SIG(J,K) .LE. SMAX) THEN
 I2=I2+1
 IPLACE(I2,1)=J
 IPLACE(I2,2)=K
 ENDIF
16 CONTINUE
C
ICOUNT=I2
C
GO TO 15
C
30 CONTINUE
DO 162 I=1,ICOUNT
 J=ICHKEK(I,1)
 K=ICHKEK(I,2)
 IF(SIG(J,K) .EQ. SMIN) THEN
 IPLACE(I,1)=J
 IPLACE(I,2)=K
 ENDIF
162 CONTINUE
C
C CALCULATE LOAD FACTOR, LF ... PEQ=LF=F(SF).
C
15 CALL LF(SIG,IPOINT,PEQ)
C
GO TO (11,11,31)IPOINT
C
JK=0
DO 17 IV=1,ICOUNT
 J=IPLACE(IV,1)
 K=IPLACE(IV,2)
 JK=JK+1
 IF(PEQ(J,K) .LE. 0) THEN
 PEQ(J,K)=1.0D20
 ENDIF
C A1=LF/COEFP = PRESSURE (UNITS OF ?)
A1(JK)=PEQ(J,K)/COEFP
17 CONTINUE
C
C SORT VALUES
C
CALL SRTAD(A1,1,ICOUNT)
 MIN(KK)=144.*A1(1)
GO TO 926
C
C IF ONLY THE MINIMUM STRESS IS CHECKED,
C CALCULATE ONLY ONE VALUE OF PEQ.......
C
31 J=IPLACE(1,1)
 K=IPLACE(1,2)
 MIN(KK)=144.*PEQ(J,K)/COEFP
C
CONTINUE
C
C UNITS CHANGED TO PSF FOR CALCULATIONS
C MIN=P60(PSP)MIN OF PANEL'S P60
C
CALL SRTAD(MIN,1,NPANEL)
C
SUM1=0.0
SUM2=0.0
DO 3003I=1,NPANEL
3003 SUM1=SUM1+MIN(I)
 XMEAN=SUM1/NPANEL
 DO 3004I=1,NPANEL
3004 SUM2=SUM2+((MIN(I)-XMEAN)**2
 ZSAM=SQRT(SUM2/(NPANEL-1))
 COV=ZSAM/XMEAN
C
N=NPANEL
C SSHP,SSCL,SLOC=1 ==>SHAPE,SCALE,LOCATION PARAMETER UNKNOWN
C E1=INITIAL ESTIMATE OF SHAPE PARAMETER
C E2= " " SCALE
C E3= " " LOCATION
C
SSHP=1.
SSCL=1.
SLOC=1.
E1=2.3
E2=10.
E3=MIN(1)-2.0
IF(E3.LE.0.0) E3=0.001
IF(SU.LE.0.1) THEN
 E3=0.001 @ SLOC=0.0
ENDIF
311 MR=0
C WRITE(6,305)
305 FORMAT(1X,3H305)
C
CALL WEIB(N,N,MR,SSHP,SSCL,SLOC,E1,E2,E3,MIN,PEST,MP,SV)
C
RETURN
END
SUBROUTINE FDMIN(F,N,FMIN)
DIMENSION F(N)
C
FMIN=1.E+10
DO 10 I=1,N
 FMIN=AMIN1(FMIN,F(I))
10 CONTINUE
RETURN
END
C
SUBROUTINE DIR(RSIG)
DOUBLE PRECISION PH,RSIG(36,6),C(6),SII(6),S2S1(36)
DATA S2S1/1.0D0,.98D0,.94D0,.89D0,.79D0,.68D0,.52D0,.12D0,.97D0,
 * .93D0,.86D0,.77D0,.65D0,.47D0,.05D0,.89D0,.82D0,.71D0,.57D0,.36D0,


```
* - .09D0, .73D0, .61D0, .45D0,
* .21D0, -.24D0, .47D0, .28D0, .02D0, -.38D0, .83D0, -.17D0, -.52D0,
* .039D0, -.066D0, -.81D0/
DO 5K=1, 6
PH=(K-1)*3.14159/10.
C(K)=DCOS(PH)*DCOS(PH)
5 SII(K)=DSIN(PH)*DCOS(PH)
DO 10J=1, 36
DO 10K=1, 6
RSIG(J, K)=C(K) + S2S1(J)*SII(K)
10 CONTINUE
RETURN
END

C

SUBROUTINE LF(SIG, IPOINTER, PEQ)
DOUBLE PRECISION PEQ(36, 6), SIG(36, 6), LIF(25), L(36, 25)
COMMON // IPLACE(216, 2), ICOUNT

C DATA ((L(J, I), I=1, 24), J=1, 6)/0.6, 8, 13.7, 20.6, 27.5, 34.0, 40.5,
* .46.6, 53.0, 58.3, 63.0, 104.0, 129.0, 149.0, 167.0, 182.0, 195.0, 207.0, 218.0,
* .228.5, 310.0, 359.4, 407.0, 481.0, 6.7, 13.5, 20.4, 27.0, 33.7, 40.4, 46.1, 1,
* .52.7, 63.0, 103.0, 130.0, 151.0, 170.0, 186.0, 199.0, 211.0, 222.0, 233.0, 319.0, 364.0, 410.0,
* .484.0, 6.5, 13.9, 19.7, 26.3, 32.8, 39.4, 45.51, 56.7, 62.104.0, 134.0, 157.0,
* .177.194.209, 223.235, 246.333, 384.430.497.607.6, 12.13.8, 18.5, 24.9,
* .30.9, 37.2, 43.49, 54.2, 59.1, 103.136, 163.186, 206, 224, 240, 255,
* .268, 370, 432, 484, 550, 5.5, 11.2, 16.8, 22.6, 28.3, 33.8, 39, 45, 50,
* .55, 90, 135, 165, 192, 215, 237, 257, 275, 290, 420, 509, 581, 661, 0.1,
* .4, 7, 9, 5, 14.3, 19, 2, 24, 1, 28.9, 34, 39, 43, 48, 90, 125, 157, 186,
* .212, 234, 257, 278, 296, 457, 580, 687, 792/

C DATA ((L(J, I), I=1, 24), J=7, 11)/0.1, 3.6, 7.2, 10, 8, 14.5, 18.2, 21.7,
* .25.5, 29.3, 33.7, 71, 102, 130, 156, 180, 203, 224, 244, 263, 426,
* .563, 689, 811, 0.2.0, 4.6, 1.8.3, 10, 12, 14, 17, 19, 21, 40, 59, 78,
* .94, 109, 125, 139, 153, 166, 279, 377, 471, 563, 0.6, 7.13.6, 20, 4,
* .27.1, 33.7, 40.4, 45, 9, 52.2, 57.5, 62, 102, 6, 129, 2, 149.7, 167.7,
* .183, 196, 4, 209, 2.220, 6.5, 224, 32.4, 4398, 375.9, 428, 504, 2, 0, .6, 6.
* .13.3, 20, 26.6, 33, 39, 2, 45, 1.5, 2.56, 6.61, 13, 102, 8, 131.9, 154.8,
* .174, 9, 192, 3, 207.5, 221, 3, 233, 7, 345.7, 337.3, 197, 8, 454, 0, 530.8,
* .0, 6, 3, 12, 7, 19, 25, 4, 31.3, 37, 4, 42, 9, 49, 54, 5.2, 59, 1, 102, 6, 134.7,
* .161.5, 184.7, 205, 1, 223, 3, 239.8, 254.6, 268, 3, 373.5, 441.5,
* .500.1, 574.2/

C DATA ((L(J, I), I=1, 24), J=12, 15)/0.5, 8, 11, 6, 17, 3, 23.2, 28.6,
* .34, 4, 39, 6, 44, 9, 50, 4, 54, 9, 98.9, 134.2, 164.5, 191.5, 215.4,
* .237.3, 257.3, 275.8, 291.8, 424.9, 516.9, 593, 1, 1672.8, 0.5,
* .10, 15, 20, 24, 7, 29, 6, 34, 4, 39, 43, 6, 47, 9, 89, 4, 125, 1.156.9,
* .186, 212.5, 236.9, 259.8, 281.1, 300.3, 463.1, 1587.7, 697, 800.7,
* .0, 3, 9, 7, 9, 10, 15.5, 19.2, 23.26.6, 30.1, 13.8, 37.4, 71.2, 101.9,
* .130.5, 157.1, 182.205, 1, 227.2, 247.9, 267, 3, 434.8, 573.2, 699.7,
* .820.9, 0.2.5, 4.9, 7, 3.9, 4, 11.8, 13.9, 16.18, 20.2, 22.2, 41.9,
* .60, 8, 78.6, 95.7, 111.8, 126.9, 141.6, 155.6, 169.1, 285.7, 385.8,
* .479.8, 571.5/

C DATA ((L(J, I), I=1, 24), J=16, 20)/0.6, 6, 13.3, 19.9, 26.4, 32.7, 38.9,
* .44, 50, 4, 55.7, 60.3, 100.7, 128.7, 151.0, 170.4, 187, 201.9,
* .216.1230.2, 242.8, 349.3, 423.7, 490.2, 572.4, 0.6, 5, 12.8, 19.3,
```
C APPROXIMATIONS FOR THE LARGEST VALUES OF SIGMA
C ARE TAKEN FROM THE FOLLOWING REPORT :
C "PROPOSED METHOD FOR DETERMINING THE THICKNESS
C OF GLASS IN SOLAR COLLECTOR PANELS," BY
C DONALD MOORE, JET PROPULSION LABORATORY,
C CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA,
C CALIFORNIA, MARCH, 1980.
C
DO 6000 J=1,29
6000 L(J,25)=1500
 DO 7000 J=30,36
7000 L(J,25)=5000
C
C CALCULATE THE LOAD FACTOR FOR EACH STRESS
C
DO 1000 II=1,ICOUNT
 IF(IPOINT .EQ. 3) GO TO 300
 J=IPLACE(II,1)
 K=IPLACE(II,2)
 SS=SIG(J,K)
 GO TO 500
300 J=IPLACE(1,1)
 K=IPLACE(1,2)
 SS=SIG(J,K)
500 IF(SS.GT. L(J,25)) THEN
 PEQ(J,K)=LIF(25)
 GO TO 1000
ENDIF
 IF(SS.EQ.0) THEN
 PEQ(J,K)=0
 GO TO 1000
ENDIF
 IF(SS.LT. L(J,2)) THEN
 PEQ(J,K)=SS*(LIF(2)-LIF(1))/L(J,2)
 GO TO 1000
ENDIF
 DO 200 I=2,25
 IF(SS.GT. L(J,I-1) .AND. SS.LT. L(J,I)) THEN
 R=(SS-L(J,I-1))*(LIF(I)-LIF(I-1))/(L(J,I)-L(J,I-1))
 1+LIF(I-1)
 PEQ(J,K)=R
 GO TO 1000
ENDIF
 IF(SS.EQ. L(J,I)) THEN
 PEQ(J,K)=LIF(I)
 GO TO 1000
ENDIF
200 CONTINUE
1000 CONTINUE
C
400 RETURN
END
APPENDIX IV. COMPUTER PROGRAM FOR ESTIMATING PARAMETERS OF GLASS STRENGTH DISTRIBUTION
C***
C
C PROGRAM COMPUTES THE MAXIMUM LIKELIHOOD ESTIMATES
C FOR THE TWO OR THREE PARAMETER WEIBULL AND
C FOR THE TWO PARAMETER LOGNORMAL FOR PROGRESSIVE CENSORED
C SAMPLES
C
C OUTPUT INCLUDES PARAMETRIC ESTIMATES, NUMBER OF SAMPLES
C AND NUMBER OF FAILED SAMPLES. FOR THE PURPOSES OF THIS
C PROJECT, ONLY THE ESTIMATES OF THE WEIBULL DISTRIBUTION
C ARE USED.
C
C SUBROUTINE HAMLET IS USED TO OBTAIN TWO PARAMETERS
C WHILE THIRD PARAMETER IS OPTIMIZED WITHIN THE MAIN
C PROGRAM USING AN INCREMENTAL OPTIMIZING SEARCH (i.e.
C FIRST SEARCH IN TEN PERCENT INTERVALS AND THEN TAKE
C MOST PROMISING TWENTY PERCENT REGION AND SEARCH IN
C TWO PERCENT INTERVALS, ETC.)
C OPTIMUM OCCURS WHEN LOGARITHM OF LIKELIHOOD FUNCTION
C IS A MAXIMUM
C
C INPUT DATA:
C
N- NUMBER OF SAMPLES
NF- NUMBER OF FAILURES
IFROG- FLAG WHICH INDICATES IF PROGRESSIVE
 CENSORING IS IN EFFECT (1-YES; OTHER-NO)
ICR- NUMBER OF PARAMETERS USED IN FIT
 (0-TWO; 3-THREE)
T(I)-FAILURE STRENGTHS OF SAMPLES AS CALCULATED FOR THE
 CENTRAL PORTION OF THE RING
G(I)-CENSORED VALUES OF STRENGTH (READ IN FROM SUBROUTINE)
IDC-FLAG USED TO DETERMINE STARTING POINT FOR
 OPTIMIZING THIRD PARAMETER (AS % OF 1ST
 STRENGTH VALUE)
 [3-95%; 4-85%; OTHER-99%]

C LOGICAL UNIT ASSIGNMENTS:
C
5-DATAFILE (INPUT)
9-CONSOLE
6-DATAFILE (OUTPUT)
7-CONSOLE (USED BY SUBROUTINE)

C***

COMMON /PARAM/ ALPHA,BETA,XBAR1,S,NG,XNF
DIMENSION T(500),TLOG(500)
REAL G(150), T(150), B1(150), LSTAR(10), G2(150), JR
DATA T/500*0.0/,TLOG/500*0.0/
GFLAG=0
READ(5,5) N,NF
S FORMAT(213)
READ(5,5) IFROG,ICR
AN = N
DO 500 I = 1,NF
READ (5,1) T(I)
1 FORMAT(F15.0)
500 CONTINUE
CALL HAMLET(N,NF,T,IFROG,G,GFLAG)
IF(ICR.EQ.0.0) GOTO 223

C BEGIN OPTIMIZING SEARCH FOR THIRD PARAMETER

J7
WRITE(9,15)
15 FORMAT('INPUT IDC (3-85%, 4-95%)?')
READ(9,*)IDC
GF=FLAG=2
DO 64 IV=1,NF
64 T1(IV)=T(IV)
NPB=N-NF
DO 69 JV=1,NPG
69 G1(JV)=G(JV)
XLH1=99.0
IF (IDC.EQ.3) XLH1=95.
IF (IDC.EQ.4) XLH1=85.
XLL0=0.0
XLSTEP=-10.
84 DO 93 JL=1,10
93 LSTAR(JL)=0.0
IS=0
C
HERE IS THE OPTIMIZATION LOOP
C
DO 97 IR=11,1,-1
JR=XLH1+IS*XLSTEP
IS=IS+1
C=(T1(I)*JR/100.)
IF(C.LT.0.0) C=0.0
C
REEVALUATE FAILURE TIMES AND CENSORED TIMES
C
DO 87 JQ=1,NF
87 T(JQ)=T1(JQ)-C
DO 77 JP1=1,NPG
77 G2(JP1)=G1(JP1)-C
C
CALL HAMLET AGAIN TO COMPUTE NEW 1ST AND 2ND
PARAMETERS
C
CALL HAMLET(N,NF,T,IPROG,G2,GFLAG)
A=ALPHA
B=BETA
XNF=NF
SUM1=0.0
SUM2=0.0
DO 74 JZ=1,XNF
SUM1=SUM1+LOG(T(JZ))
74 SUM2=SUM2+(T(JZ)/BETA)**ALPHA
DO 76 J4=1,NPG
76 SUM2=SUM2+(G2(J4)/BETA)**ALPHA
C
COMPUTE LOGARITHM OF LIKELIHOOD FUNCTION
C
154 LSTAR(IS)=XNF*LOG(A)-XNF*A*LOG(B)+(A-1.0)*SUM1-SUM2
WRITE(6,*)LSTAR(IS),A,B,C,SUM1,SUM2,NPG
IF (IS.LE.1) GOTO 97
IF (IDC.EQ.1) GOTO 97
IF (LSTAR(IS).GT.LSTAR(IS-1)) GOTO 97
C
OPTIMUM HAS BEEN LOCATED; REDEFINE SEARCH INTERVAL
C
XNLO=JR
XNH1=XNLO+2.*ABS(XLSTEP)
IF (XNH1.GT.XLHI) XNH1=XLHI
IF (XNLO.EQ.XNH1) XNLO=XNH1+XLSTEP
XLL0=XNLO
XLHI=XNH1
XLSTEP=(XLO-XLHI)/10.
CHECK FOR PRECISION OF .0001 PERCENT

C1 = ABS(LSTAR(I5) - LSTAR(15-1))
C2 = ABS(.000001*LSTAR(I5))
IF (C1.LE.C2) GOTO 223
GOTO 84

CONTINUE

OUTPUT RESULTS

223 WRITE(6,6057)N, NF, BETA, ALPHA, C, XBAR1, S

6057 FORMAT(1E13) /' NUMBER OF SPECIMENS LOADED' , I29 //
1. NUMBER OF SPECIMENS FAILED , I29 //
2. WEIBULL SCALE PARAMETER , F30.5 //
3. WEIBULL SHAPE PARAMETER , F30.5 //
6. LOCATION PARAMETER , F30.5 //
4. LOGNORMAL SCALE PARAMETER , F27.5 //
5. LOGNORMAL SHAPE PARAMETER , F27.5 //
WRITE(6,6058)N, NF, (T(I), I=1,NF)

6058 FORMAT(2I3,1000'/F10.0')
STOP

SUBROUTINE HAMLET(N,NF,F,IPROG,G,GFLAG)
COMMON /PARAM/ ALPHA, BETA, XBAR1, S, NG, XNF
REAL F(150), G(150), X(150)
REAL MUU

VUA = 1.
X31 = 9.
ZC=0.
GIG = 1.
IF(IPROG.EQ.1) GIG=0
NFF = NF
XNF = NF
XN = N
NG = N - NF
NGG=NG
IF(NF.EQ.0) GOTO 5110
IF(GFLAG.NE.0) GOTO 5110
DO 5130 I = 1, NG
IF(IPROG.EQ.1) GOTO 5120
5110 G(I) = F(NF)
 GOTO 5130
5120 READ(5,5121) G(I)
5130 CONTINUE

ORDER FAILURE AND CENSORED TIME DATA

BAC = -10.
GNG = NG
IF (GNG-.01) 1100, 1100, 1109
1109 IF (GIG -.01) 1106, 1106, 1100
1106 NG1=NG-1
DO 1112 I=1, NG1
 I1=I+1
 X115 J=I1, NG
 IF (G(I) - G(J)) 1115, 1115, 1118
1118 GMID = G(J)
 G(J) = G(I)
 G(I) = GMID
1115 CONTINUE
1118 WRITE(7,4087) G(I)
4887 FORMAT('0', G(I)', F10.3)
1112 CONTINUE
 WRITE(7,4887) G(NG)
1100 NFM1 =NF - 1
 DO 3 I=1,NFM1
 I1=I1+1
 DO 1 J=I1,NF
 IF (F(I)-F(J)) 1,1,2
 2 FMID=F(J)
 F(J)=F(I)
 F(I)=FMID
 1 CONTINUE
 X(I)=ALOG10(F(I))
3 CONTINUE
 X(NF) = ALOG10(F(NF))
C CCC
C FIRST TWO ORDERED FAILURE TIMES C
C C
C CCC
C FN1 = F(I)
C FN2 = F(2)
C FN = F(NF)
C CCC
C XSUM=0.
C X2SUM=0.
 DO 4 I=1, NF
 XSUM=XSUM+X(I)
 X2SUM=X2SUM+X(I)*X(I)
4 CONTINUE
 XN=N
 XNF=NF
 FN = XN
 FN= N
 FNG = FN - FNF
 XBARI=XSUM/XNF
 XBARL = XBARI
 S2=-(X2SUM-XSUM*XBARI)/(XNF-1.)
 S=SQRRT(S2)
 S=S+.00001
C CCC
C SIGMA
C XBAR
C DO 4 I=1, NF
C XSUM=XSUM+X(I)
C X2SUM=X2SUM+X(I)*X(I)
C C CCC
C UNBIASED ESTIMATES OF LOG NORMAL MODEL ARE C
C GIVEN BELOW FOR CENSORED CASE C
C C
C CCC
C THIS SECTION FOR HAMLET --- CALLED INSERT C
9107 SIG = .557/ALPHA
 MUU = BETA * .56 ** (1./ALPHA)
C AAA
C BBB
 MUU = ALOG10(MUU)
C THE BELOW WORK IS COMMON TO HAMLET AND LOG7
B048 IF (SIG - 0.1) B020, B020, B024
C
C LOG NORMAL MLE -- SINGLE CENSORING C
C
B024 EPS = (ALOG10(G(I)) - MUU) / SIG
 ZE = CNOTRM (EPS, -150., 0.0, 1.0)
 FEZE = EXP(-(EPS *EPS/2.)) * 0.3989423
ZE = FEZE / (1. - ZE)
ZEE = FNG * ZE
EASY = ZEE * EPS
AI = ZEE * (ZE - EPS)
BI = ZEE + EPS * AI
CI = EPS * (ZEE + BI)
GO TO 8028

C
C LOG NORMAL MLE -- PROGRESSIVE CENSORING
C

8020 ZEE = 0.
EASY = 0.
AI = 0.
BI = 0.
CI = 0.
DO 8032 ICE = 1, NG
EPS = (ALOG10(G(ICE)) - MUU) / SIG
FEZE = EXP(-(EPS * EPS/2.)) * 0.3989423
ZE = CNORML(eps, -150., 0.0, 1.0)
ZEE = FEZE/ (1. - ZE)
ZEE = ZEE + ZE
EASY = EASY + EPS * ZE
AP = ZE * (ZE - EPS)
BP = ZE + EPS * AP
CP = EPS * (ZE + BP)
AI = AI + AP
BI = BI + BP
CI = CI + CP

8032 CONTINUE

8028 TST = (XBAR - MUU) / SIG
TST2 = TST * TST
SR2 = (S2 / (SIG * SIG)) * (1. - 1./FNF)
FL = TST + ZEE / FNF
GL = TST2 + SR2 - 1. + EASY/FNF
FL = - (1. + AI/FNF) / SIG
QL = - (2. * TST + BI/FNF) / SIG
RL = - (3. * (TST2 + SR2) - 1. + CI/FNF) / SIG
DL = PL * RL - QL * QL
EH = (GL * QL - FL * RL) / DL
EK = (FL * QL - GL * PL) / DL

4016 CONTINUE
IF (ABS(EK) - SIG/2. - .02) 4008, 4008, 4012
4012 EK = EK/2.
GO TO 4016
4008 IF (ABS(EH) - 0.5) 4020, 4020, 4024
4024 EH = EH/2.
GO TO 4008
4020 CONTINUE
BAB = -6.
TE1 = SIG + EK
TE2 = MUU + EH
ZC = ZC + 1.
IF (ZC < 53.) 4000, 4000, 4004
4004 CONTINUE
WRITE(7,4005)
4005 FORMAT('SEE LINE 329 IN HAMLET')
GO TO 308

4000 CONTINUE
IF (TE1) 8040, 8040, 8044
8040 SIG = SIG/2.
BAB = 6.
GO TO 8058
8044 SIG = TE1
8058 IF(TE2) 8050, 8050, 8054
8050 MUU=MUU/2.
BAB=6.
GO TO 8060
8054 MUU = TE2
8060 IF (BAB) 8049, 804B, 8048
8049 ERROR = ABS (EH) + ABS (EK)
AERR = 0.0004
IF (ERROR - AERR) 8064, 8064, 8048
8064 XBAR = 10. ** MUU
S = SIG
THE ABOVE WORK IS COMMON TO HAMLET AND LOG7
XBARL = MUU
BNF = XBAR
ANF = 2. * SIG
IF (BAC) 9111, 9111, 9404
C
C MLE WEIBULL PARAMETERS TOO LARGE--USE DEFAULT
C PARAMETERS
C
9404 ALPHA = 0.557 / S
BEEL = XBARL + 0.2506 / ALPHA
BET = 10. ** BEEL
GO TO 9111
C
C COMPUTE NEW FANG PARAMETERS
C
9100 AL = 0.557/S
BEEL=XBAN + 0.2506816/AL
BEE= 10. ** BEEL
XBAN= 10. ** XBARN
WUM=0.
WUMH=0.
D0 133 I=1, NF
WUM=WUM + F(I)
WUMH=WUMH + 1./F(I)
133 CONTINUE
ESS = WUM/XNF
REC = WUMH/XNF
R = 1./REC
BNF = SORT(ESS * R)
ANF = SORT (2.* (ESS/BNF - 1.))
CMLE OF WBL PARAS FOLLOW-FIRST SECTION CALCS SHAPE--- LAST SECTION FOR NEW FANG
ALO = AL * VUA
A00 = AL * VUA
GO TO 12
9103 ALO = F(1) / (F(2) - F(1) + 5)
AL = 0.557/S
BEEL = XBAN + 0.2506 / AL
BEE = 10. ** BEEL
A0 = AL
C
C UNBIASED ESTIMATES OF WEIBULL MODEL ARE C
C GIVEN BELOW FOR THE COMPLETE AND Censored
C CASE
C
C
CC
12 IF (AL0*X(NF)-150.) 207,207,208
207 SFA = 0.
SFA0 = 0.
SFA2 = 0.
DO 5 I=1, NF
P = F(I) ** ALO
SFAP = SFA + P
SFA0 = SFAX + P * X(I)**(2.302585
SFA2 = SFAX2 + P * X(I) * X(I) * 2.302585*2.302585
5 CONTINUE
SGA=0.
SGAX=0.
SGAX2=0.
IF (GNG -.01) 1130, 1130, 1133
1133 IF (GNG -.01) 1136, 1136, 1139
1139 IF (GIG -.01) 1136, 1136, 1142
P = G(I) ** ALO
GLOGG = ALOG (G(I))
SGA = GNG * P
SGAX = SGA * GLOGG
SGAX2 = SGAX * GLOGG
GO TO 1136
1136 DO 1148 I = 1, NG
P = G(I) ** ALO
GLOGG = ALOG (G(I))
SGA = SGA * P
SGAX = SGAX + GLOGG * P
SGAX2 = SGAX2 + P * GLOGG * GLOGG
1148 CONTINUE
1150 SFA = SFA + SGA
SFA2 = SFA + SGAX
SFA2X = SFA2 + SWAX2
FALO = SFA/SFA - 1./ALO - XBARL*2.302585
SFA2=2*ALOG(SFA)
DAL01=ALOG(SFA2)-ALOG(SFA)
DAL2=2*ALOG(SFA)-SFA2
DFALO=(10.**(DAL01)-(10.**(DAL02)+1.)/(ALO*ALO))
32 IF (ABS(DFALO) - .000001) 30, 30, 31
30 DFALO = 10. * DFALO
GO TO 32
31 CORR = -FALO/DFALO
IF (ABS(CORR) -.0001) B, B, 9
9 TRY = ALO + CORR
IF (TRY) 10, 10, 11
10 ALO = ALO/2.
GO TO 12
11 ALO = TRY
GO TO 12
8 ALPHA = ALO + CORR
BETA = (SFA/XNF) ** (1./ALPHA)
GO TO 223
208 CONTINUE
IF (FNG - 0.1) 209, 210, 210
210 WRITE(7,211)
211 FORMAT(‘SEE LINE 453 IN HAMLET’) GO TO 308
209 CONTINUE
ALPHA=AL
BETA=BE
BAC = 8.
223 CONTINUE
IF(FNG -.01) 9111, 9111, 9107
C
C DETERMINE IF COMPLETE SAMPLE; IF NOT FIND
C CENSORED LOG NORMAL PARAMETER 3
C
9111 CONTINUE
ALPHA = ALPHA/VUA
NL=NFF
NW=NFF
XBAR1 = ALOG(XBAR)
S = S*ALOG(10.)
308 CONTINUE
RETURN
END

FUNCTION CNORM (XH, XL, XM, XS)

C
S008B7 CNORM FS-497 CHIANG E. C. H. 661004 6600
505.
P(X) = 5*(1-1/(1+1.4112821*X+.08864027*X**2
1+.02743349**X**3-.00039446**X**4+.00328975**X**5
2)**B))
507.
C
IF N=1, X1 AND X2 SHOULD BE STANDARDIZED TO N(0,1)
510.
X1=(XH-XM)/XS
511.
X2=(XL-XM)/XS
512.
Z1=X1/1.414213567
513.
X1 = Z1
514.
Z2=X2/1.414213567
515.
IF(Z1*Z2), 1, 2, 3
516.
C
WHEN Z1 AND Z2 HAVE DIFFERENT SIGN
518.
1 Z2=ABS(Z2)
519.
CNORML=P(Z2)+P(Z1)
520.
GO TO 100
521.
C
TO FIND WHETHER Z1 OR Z2 IS 0
522.
2 CNORML=P(ABS(Z1+Z2))
523.
GO TO 100
524.
C
WHEN Z1 AND Z2 HAVE THE SAME SIGN
525.
3 Z2=ABS(Z2)
526.
Z1=ABS(Z1)
527.
CNORML=ABS(P(Z2)-P(Z1))
528.
100 RETURN
529.
END
530.
$BEND
Ring-on-Ring Tests and Load Capacity of Cladding Glass

AUTHOR(S) E. Simiu, D. A. Reed, C. W. C. Yancey, J. W. Martin, E. M. Hendrickson, A. C. Gonzalez, M. Koike, J. A. Lechner, M. E. Battis

PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)
National Bureau of Standards
Department of Commerce
Gaithersburg, MD 20899

Contract/Grant No.
CEE 8308329

Type of Report & Period Covered
Final

Partially sponsored by:
National Science Foundation
Washington, DC 20550

SUPPLEMENTARY NOTES
Library of Congress Catalog Card Number: 84-601098

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
Although ring-on-ring test results have been used in the past to obtain information on the strength of glass, no methodology has so far been developed in the literature explicitly relating such results to the load capacity of cladding glass. The main purpose of this report is to propose such a methodology. The proposed methodology makes use of recent advances in the modeling of the fracture mechanics behavior of glass and the calculation of stresses in plates exhibiting geometric nonlinearity. Evidence is presented which strongly suggests that the probability distribution of the load capacity of cladding glass panels whose failure is due to surface flaws can be estimated reliably on the basis of results of ring-on-ring tests used in conjunction with (a) numerical methods for the analysis of stresses in plates, and (b) information on the elastic and fracture mechanics behavior of glass currently available or that can be obtained routinely. Two interesting findings are noted. First, owing to the way in which results of ring-on-ring tests are utilized, the relatively large variabilities typical of fracture mechanics parameters, as well as the uncertainties with respect to the shapes of surface flaws, have a minor effect on the estimation of load capacities. Second, two-parameter Weibull distributions, previously used in the literature to model the strength of glass and the load capacity of cladding panels, are not consistent with experimental results. On the other hand, three-parameter Weibull distributions model the observed glass behavior credibly.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)
buildings; engineering mechanics; failure; fracture mechanics; glass; loads (forces); probability theory; ring-on-ring tests; strength.

AVAILABILITY

X Unlimited
X For Official Distribution, Do Not Release to NTIS

X Order From National Technical Information Service (NTIS), Springfield, VA. 22161

NO. OF PRINTED PAGES
60

Price

55
Periodicals

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

NBS Intergency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.