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A “complex” system typically has a relatively large number of dynamically 

interacting components and tends to exhibit emergent behavior that cannot be explained 

by analyzing each component separately.  A biological neural network is one example of 

such a system.  A multi-agent model of such a network is developed to study the 
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I. INTRODUCTION 
 

“Complexity” is a concept which arises often in system analysis.  However, the term 

is ill-defined and often used subjectively.  The general consensus is that a complex 

system has a relatively large number of dynamically interacting components and tends to 

exhibit emergent behavior that cannot be explained by analyzing each component 

separately.  Burggren and Monticino (2005) stated that any definition of physiological 

complexity must take three things into account: 

• A lack of high predictability of output 

• Sensitivity to initial conditions 

• Nonlinear interactions between components 

A biological neural network is certainly one example of such a system.   

This paper has two main objectives: 

• Analyze the time series output of a simulated neural network and make inferences 

about the underlying synaptic structure that produced it. 

• Show a correspondence between a complexity measure on the time series output 

and a complexity measure on the network’s structure. 

If a time series of neural outputs is given, one natural question to ask is what is 

known about the structure of the network that produced it.  It is also natural to think the 

number of neurons and the nature of the connections between them relate to the 

network’s structural complexity, and to think that the more structurally complex a 

network is, the more complex its output should be.  A second question, then, is whether 

 1



 

one can establish such a link.  The goal of this paper is to present answers to both of these 

questions.  

This paper begins with a review of biological neurons.  Then the algorithm used to 

simulate a biological neural network is described.  After this, a method of profiling neural 

networks by analyzing their spike trains is given, followed by a method of determining 

properties of a network’s structure based on this profile.  Next, measures of structural and 

time series complexity are presented.  Finally, a correspondence between the time series 

and structural complexities is given. 
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II. THE PHYSIOLOGY OF A BIOLOGICAL NEURON 
 

This section reviews how an individual neuron and a neural network function.  In 

general, the term neuron refers to an element which receives information and 

subsequently emits information.  This paper considers simulations of biological neurons.   

 

1. Structure of a Typical Neuron 
 

A neuron has a cell body surrounded by a semi-permeable membrane.  This 

membrane contains structures called ion pumps that regulate the electric potential in the 

cell body relative to the space around the cell, providing it with an equilibrium potential.  

In addition to the cell body, the typical neuron has a structure on one end with branchlike 

protrusions called dendrites (from the Greek dendros).  The dendrites conduct electric 

impulses from other neurons into the neuron the dendrites belong to.  On the other end of 

the neuron, there is a relatively thicker single protrusion called an axon.  The axon is a 

long, tentacle-like filament that extends from the cell body and is typically shielded by a 

myelin sheath, which facilitates conduction of electricity down the length of the axon.  

The myelin sheath often partitions the axon into distinct nodes, lined up one after another.  

At the end of the axon opposite the cell body, the axon branches out like a fraying rope or 

tree.  This region is called the terminal arborization.  It is here that the neuron is 

connected to other neurons.  The gap between the terminal arborization of one neuron 

and the dendrites of another is called the synapse.  Also contained within the terminal 

arborization are chemicals which provide communication across the synapse when 
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released.  These chemicals are collectively referred to as neurotransmitters. There are 

many types of neurotransmitters, some which excite other neurons and others which 

inhibit.  Information cannot cross the synapse without neurotransmitters (Anderson, 

1995). 

 

2. Process 
 

A neuron transmits information by way of electric and chemical impulses to other 

neurons connected to it.  A typical neuron will receive information through its dendrites 

from other neurons in the form of chemical neurotransmitters.  These chemicals will have 

an effect on the cell body’s electric potential, either raising it or reducing it, depending on 

the type of neurotransmitter.  Although the ion pumps in the cell body continuously work 

to keep the cell in equilibrium, enough input can raise the potential inside the neuron.  If 

this potential is raised high enough across the threshold, the neuron’s potential undergoes 

a dramatic increase for a very brief period of time.  This surge has a high enough 

potential for an electric impulse, called a spike or the action potential, to travel down the 

axon.  The typical cell body can produce spikes at a frequency of 1000 Hz (Anderson, 

1995). After producing a series of spikes, a neuron’s cell body cannot maintain the 

potential difference and fatigues, collapsing back to equilibrium potential as it discharges 

through the cell membrane instead of down the axon (Anderson, 1995).  The spikes 

moving down the axon eventually reach the terminal arborization. Their arrival triggers 

the release of neurotransmitters across the synaptic gaps into the dendrites of other 

neurons.  The neuron replenishes its stock of neurotransmitters but can be depleted by an 
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overflow of spikes in a short time.  In this case, no information can travel across the 

synapse until the neurotransmitter stock has been replenished.   

 

3. Network Properties 
 

Whenever one neuron fires, the spike it produces will affect all the neurons 

connected to it.  These neurons in turn may fire spikes of their own.  The synaptic 

structure of a network is a map of how the neurons connect to one another.  The synapses 

connect unidirectionally, from the terminal arborization of one neuron into the dendrites 

of another.   

Neural activity can be monitored by putting electrodes into the network or 

growing a neural culture on an existing electrode matrix, as shown in Figure 1.   The 

electrodes detect and record spikes.  In practice, there are many neurons to each 

electrode.  For the simulation in this paper, each neuron is assumed to have its own 

electrode which “listens” to it. 

A spike train is a time series 

graph of the output of a neuron or a set 

of neurons.  One objective of this paper 

is to analyze the spike train of a 

simulated neural network and make 

inferences about the underlying 

synaptic structure that produced it.  The 

other objective is to show a 

correspondence between an entropy 

Figure 1. Culture of spinal tissue growing on 64-
electrode recording matrix.  Center for Network 
Neuroscience, UNT. 
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measure on the spike train and a complexity measure on the structure. 

This paper only considers networks with a small number of neurons.  While 

clearly not representing the number of neurons in a highly evolved animal, there do exist 

creatures whose nervous systems consist of as few as 10 neurons. 
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Figure 2. Spike train of simulated 4-neuron network. 
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III. SIMULATED NEURAL NETWORK MODEL 
 

To simulate a neural network, a multi-agent algorithm processes inputs and 

outputs of N individual neurons over T discrete time steps and records the spike train 

output.  This algorithm is encoded in Matlab and included in the Appendix of the paper.  

Note that the network requires an external stimulus to drive it.  This is because the 

neurons only fire upon receiving sufficient stimulus.   The algorithm is deterministic, 

operating on fixed parameters input by the user.  Parameters are given in Table 1. 

 
         
Table 1. Neural network simulation parameters, input by user.  
Parameter Description 

V External stimulus applied each time step to 
one neuron, required to drive the network. 

θ Threshold potential in the cell body.  If cell 
body potential is higher than threshold, a 
spike is sent down the axon. 

λ Amount of potential removed by ion 
pumps over each time step. 

L Length of the axon, in nodes.  It takes one 
time step to traverse one node. 

C Maximum capacity for neurotransmitters in 
the neuron. 

k Cost in neurotransmitter units for sending a 
spike from the terminal arborization. 

R Rate of neurotransmitter replenishment at 
each time step. 

N Number of neurons in the network. 
D = (dij) N x N matrix representing connections 

between neurons.  dij = 1 if neuron i 
connects into neuron j, dij = 0 otherwise. 
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The algorithm also records the time-dependent states of several components of the 

individual neurons within the network.  These values will change as the simulation runs, 

and can be viewed as functions of time.  Examples of these states include cell body 

potential in each neuron at time t and the level of neurotransmitters in each neuron at time 

t.  A full list of these quantities is given in Table 2. 

 
Table 2. Time-dependent quantities for the neural network. 
Quantity Description 
vj(t) Potential in the cell body of jth neuron at 

time t before adding inputs from other 
neurons. 

wj(t) Potential in the cell body of jth neuron at 
time t after adding inputs from connected 
neurons. 

Aj(t) = {a1,j(t), a2,j(t), … aL,j(t)} Firing state of the axon of jth neuron at time 
t, represented as an array.  The ith element 
represents the state of the ith node, with 
a1,j(t) being the node closest to the cell 
body.  If the node contains a spike, then 
a1,j(t) = 1.  Otherwise, a1,j(t) = 0. 

cj(t) Quantity of neurotransmitters present in jth 
neuron at time t. 

Arbj(t) Spike output of jth neuron at time t.  Takes 
value 1 if a spike is sent, 0 otherwise. 

S(t) = {Arb1(t), Arb2(t), … ArbN(t)} Spike output of the entire network at time t.  
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The initial values for the time-dependent parameters for all neurons are listed in 

Table 3.   

 
Table 3. Initial values for time-dependent quantities. 
Quantity Initial Value 
vj(t) vj(1) = 0 
wj(t) wj(1) = 0 
Aj(t) Aj(1) = {0, 0, …, 0} 
cj(t) cj(1) = C 
Arbj(t) Arbj(1) = 0 

 
 

1. Single Neuron 
 

Each neuron simulated in the network is assumed to have the same parameters.  

The simulation model for a single neuron proceeds as follows.   

 

Cell Body Potential Algorithm 
The cell body potential in the jth neuron at time t is given by vj(t).  At each time 

step, the algorithm sums up inputs from other neurons connected to the jth neuron.  The 

input from a neuron is 0 if the neuron did not send a spike the previous step and is 1 if it 

did.  Once summed, the inputs are added to vj(t) to obtain wj(t), the potential in the cell 

body at time t after inputs from the other neurons have been added in.  If wj(t) > θ, then 

the neuron fires a spike and resets the cell body potential to equilibrium.  That is, vj(t+1) 

is reset to 0.  Otherwise, the ion pumps in the cell body reduce the cell potential by a 

small amount λ, in which case vj(t+1) = wj(t) - λ. 
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Axon Algorithm 
If wj(t) > θ, then the cell body sends a spike into the axon, so a1,j(t) = 1.  

Otherwise, no spike is sent, so a1,j (t) = 0.  A spike propagates down the length of the 

axon one node at a time.  It takes one time step for a spike to traverse a node.  Thus, for  

l = 2, 3, …, L; set al,j(t) = 1 iff ai-1,j(t-1) = 1.   

 

Synapse Algorithm 
Recall that the neuron has a given neurotransmitter capacity C and a level of 

neurotransmitters at time t, cj(t).  It also has a cost, k, for sending the spike out.  Recall 

that if there is a spike at the end of the axon, then aL,j(t) = 1.  If this is the case, the 

algorithm checks if there are enough neurotransmitters available for transmission of the 

spike.  If cj(t)-k ≥ 0, then the spike moves out across the synapse.  The algorithm 

accordingly sets Arbj(t) = 1.  Otherwise, there are not enough neurotransmitters available, 

so Arbj(t) = 0.  If the spike moves out, then the algorithm deducts the cost from cj(t) and 

replenishes the level according to the set parameters.  That is, cj(t+1) = cj(t)–k+R.  If 

Arbj(t) = 0, then there is no cost to deduct, so cj(t+1) = cj(t)+R. 

 

2. Network Algorithm 
 

Now consider a network of N neurons.  Recall that the N x N matrix D = (dij) 

represents the connective structure of the network.  If neuron i connects into neuron j, 

then dij = 1, otherwise dij = 0.  For example, in a four-neuron network, d14 = 1 implies that 

neuron #1 connects into #4.  Neurons are assumed not to connect into themselves, so  

djj = 0 for all j. 
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A designated neuron receives an artificial external stimulus every time step to 

drive the system.  This neuron is called the “leader”.  Without loss of generality the 

leader is always neuron #1. 

Recall that the spike output of the network at time t is given by S(t) = {Arb1(t), 

Arb2(t), … ArbN(t)}.  Also recall that V represents the amount of external stimulus the 

leader receives. For the leader, the sum of the inputs at time t is given by the dot product 

of the first column of D with S(t-1), plus the external stimulus V.  For j > 1, the sum of 

the inputs for the jth neuron at time t is given by the dot product of the jth column of D 

with S(t-1).   

Plotting S(t) over 1 ≤ t ≤ T yields the spike train.  Both objectives of this paper 

involve analyzing this spike train. 

 

Example 
Consider a three neuron network with the following parameters: 

 
Table 4. Parameters for example network. 
Parameter Value 
V 1 
θ 2 
λ 0 
L 2 
C 2 
K 1 

#1 

#2 #3 

Figure 3. Graph representation of 
example network. 
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convenient to view a neural network of N neurons as a directed graph with N vertices, as 

shown in Figure 3.  In this context, the arcs represent the unidirectional connections 

between neurons. 

Tracking the output vector, S(t), for the first 10 time steps yields the following 

results.  The spike trains for each neuron are given in Figure 4. 

 
Step 1: The artificial input has not stimulated the leader above the threshold.   

S(1) = {0, 0, 0}. 

Step 2: The leader fires a spike, but the spike has not reached the terminal 

arborization yet.  S(2) = {0, 0, 0}. 

Step 3: The spike is carried across the synapse into neurons #2 and #3.   

S(3) = {1, 0, 0}. 

Step 4: The leader has fired another spike down its axon; #2 and #3 have received 

input.  S(4) = {0, 0, 0}.   

Step 5: Another spike is carried into #2 and #3.  S(5) = {1, 0, 0}.   

Step 6: All three neurons are sending spikes now.  S(6) = {0, 0, 0}.   

Step 7: All three spikes reach the synapses and are carried across.   

S(7) = {1, 1, 1}.   

Step 8: The leader has received an input from #3 and from the artificial stimulus, 

so it fires again.  #2 also receives enough inputs to fire again, but #3 does not.   

S(8) = {0, 0, 0}.   

Step 9: #1 and #2 fire across the synapse.  S(9) = {1, 1, 0}.   

Step 10: On the next step, #1 will fire again.  #3 has one input already, and will 

fire before #2 fires again.  S(10) = {0, 0, 0}.   
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Figure 4. Spike train for example 3-neuron network. 
 

For the remainder of this paper, the parameters used for the neural network 

simulation are listed in Table 5.  These values are chosen because they reflect realistic 

values in a biological network (Anderson, 1995). 

    
Table 5. Network parameters used in this paper. 
Parameter Value 
V 25 (mV) 
θ 75 (mV) 
λ 3 (mV) 
L 2 (nodes) 
C 8 (units) 
K 4 (units) 
R 1 (unit) 

 
 

Note that the spike train output of a network depends on the values of these 

parameters.  Thus, while the methods in this paper are independent of the choice of these 

parameters, the specific values in the models are not. 
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IV. PROFILING STRUCTURE BY SPIKE TRAIN ANALYSIS 
 

The objective of this section is to profile a neural network’s structure through 

simple analysis of its spike train.  This allows inferences to be made about structure when 

given only the spike train.  Such profiling is accomplished by calculating a point of 

moving averages in [0,1]N for each network and then classifying the networks by 

grouping these points. 

 

1. Moving Average Process 
 

A simple method of analyzing a spike train is to calculate a “moving average” for 

the series.  This average represents the typical frequency at which each neuron fires.  By 

treating each neuron’s moving average as the coordinate of a point in [0,1]N, one can use 

these points as representations of the networks they are derived from. 

 

Calculating the Moving Average 
Given a spike train output, specify a time interval of length m.  Let Arbj(t) be the 

output of the jth neuron at time t.  For t = 1, 2, .., T-m; let
∑
+

=

=
mt

tk
jj kArb

m
t )(1)(μ

 be the 

average value in this m-window.  Then average all of these averages across the run time.  

Call this value 
∑
−

=−
=

mT

tk
jj k

mT
M )(1 μ

.  Then (M1, M2, …, MN) is the point in [0,1]N 

representing the moving average value for the spike train of the network. 
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2. Linking Moving Averages with Network Structure 
 

Given a spike train and its moving average point, M = (M1, M2, …, MN), the goal 

is to determine the structure of the network which produced it.  By performing a cluster 

analysis, one can group together those networks with similarly positioned moving 

average points.  Comparing the networks within each cluster, it turns out that networks 

within any given cluster have a common subgraph.   

 

Example 
Consider the family of 3-neuron networks.  For each network, let the network’s 

connectivity matrix be given by D = (dij) and let k be the base 10 value of  

9
8
7
6
5
4
3
2
1

Network Type

d12 d13 d21 d23 d31 d32.  Let Mk denote the moving average point of the network indexed by 

k. Figure 5 plots all 64 moving average points in [0,1]3.  Cluster analysis was performed 

on the points with nine target clusters.  That is, the points were grouped together 

according to their relative 

proximity.  The clusters are 

indexed by color in Figure 5.   

Neuron 3

0.14
0.12

0.10
0.08

0.06
0.04

0.02

N
eu

ro
n 

1

0.21

0.20

0.19

0.18

0.17

Neuron 2 0.14
0.12

0.10
0.08

0.06
0.04

0.02

0.00

0.16

0.00

 Grouping the networks 

according to their clusters and 

taking the average value for each 

connection within a cluster yields a 

relative frequency of connections 

within each cluster, shown in Table Figure 5. Moving average points for 3-neuron networks, 

grouped by cluster. 
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6.  Each percentage value in the table represents the proportion of networks in the given 

cluster and connection.  In the context of this example, 100% of the networks in cluster 

#1 have the leader connected directly to neuron #3. 

 
Table 6. Relative frequency of specific connections by cluster in 3-neuron case. 

Cluster d12 d13 d21 d23 d31 d32 
1 0% 100% 50% 50% 100% 50% 
2 0% 100% 50% 50% 0% 50% 
3 0% 0% 50% 50% 50% 50% 
4 100% 0% 0% 50% 50% 50% 
5 100% 0% 100% 50% 50% 50% 
6 100% 100% 67% 33% 67% 33% 
7 100% 100% 0% 33% 0% 33% 
8 100% 100% 0% 100% 0% 100% 
9 100% 100% 67% 100% 67% 100% 

 
 

Based on the connection frequencies in Table 6, it is easy to see that the networks 

within each of the nine clusters have traits in common.  This is equivalent to saying that 

the graphs of each network within a cluster have a common subgraph.  For example, the 

networks in cluster #8 all contain the graph depicted in Figure 6 as a part of their 

structure. 

#1 The fact that network structure can be 

profiled by analyzing the spike trains also 

supports the idea that a relationship exists 

between the complexity of the network’s structure 

and the complexity of its spike train. 

#2 #3 

Figure 6. Subgraph of members of Cluster 

#4. 
 

Example 
In the 4-neuron case, define k and Mk as in the previous example, with k 

representing the 12-bit number d12 d13 d14 d21 d23 d24 d31 d32 d34 d41 d42 d43.  This time, it is 
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not easy to graphically represent the plot of all 4,096 networks in [0,1]4.  However, it is 

still possible to perform a cluster analysis on the points.  This process compares the 

distances between points and groups points together into a preset number of clusters.  In 

this example, that preset number of clusters is 15. 

As in the previous example, grouping the networks according to their clusters and 

taking the average value for each connection within a cluster yields a relative frequency 

of connections within each cluster.  This is shown for four neurons in Table 7.  Again, 

each percentage value in the table represents the proportion of networks in the given 

cluster and connection.   

The bold values in the chart indicate a connection type common to almost all the 

networks in that particular cluster.  In particular, note that most of the bold values are in 

the first three columns, implying that the first neural connections to be profiled are the 

connections from the leader.  This implies that the first distinguishing feature of a 

network’s structure is the way in which the leader directly connects to the other neurons.  

By using more clusters, one can profile the networks in greater detail.  However, the 

picture in Table 7 is enough by itself to motivate a method for completing the first 

objective of the paper.  This method is outlined in the next section. 
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Table 7. Relative frequency of specific connections by cluster in 4-neuron case. 
Cluster d12 d13 d14 d21 d23 d24 d31 d32 d34 d41 d42 d43 

1 27% 0% 0% 45% 41% 41% 50% 48% 50% 50% 48% 50%
2 100% 100% 26% 50% 100% 25% 50% 99% 25% 50% 50% 50%
3 87% 87% 88% 44% 80% 77% 47% 78% 81% 46% 75% 81%
4 100% 26% 100% 50% 25% 100% 50% 50% 50% 50% 99% 25%
5 77% 67% 68% 51% 61% 61% 57% 69% 69% 54% 70% 67%
6 73% 79% 77% 58% 69% 77% 52% 77% 67% 54% 77% 72%
7 30% 99% 100% 52% 53% 53% 53% 25% 95% 47% 26% 99%
8 0% 100% 0% 50% 48% 47% 49% 46% 46% 50% 48% 47%
9 100% 9% 43% 60% 35% 57% 48% 56% 50% 49% 77% 37%
10 68% 74% 99% 47% 42% 66% 51% 39% 71% 47% 38% 30%
11 100% 56% 0% 50% 52% 32% 49% 47% 32% 50% 46% 48%
12 84% 94% 47% 51% 58% 34% 53% 31% 37% 50% 50% 59%
13 0% 0% 100% 50% 49% 48% 50% 46% 48% 49% 45% 45%
14 91% 0% 100% 49% 32% 50% 50% 52% 52% 53% 9% 38%
15 0% 99% 96% 50% 50% 51% 48% 36% 34% 52% 28% 39%

 

3. Using a Profile Map to Infer Properties of Network Structure 
 

By taking a sample of N-neuron networks, one can perform a cluster analysis to 

group the networks together according to their moving average points.  In essence, 

clustering a sample of networks produces a rough “map” of the full family of N-neuron 

networks.  In other words, the clusters generated by the process divide [0,1]N into 

sections.  As shown before, networks in these sections have common structural 

properties.  The higher the number of clusters one chooses, the greater the specificity one 

gains in the profiling.  Thus, the number of clusters acts as a “resolution” parameter for 

the mapping process.  Given a spike train from an N-neuron network, one can determine 

which cluster the network’s moving average point is closest to.  One can then use this 

map to predict structural properties of the network in question.  
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Example 
Consider a random sample of 400 4-neuron networks, about 10% of the full 

family.  By calculating the moving average points for the networks in the sample, one can 

perform a cluster analysis as shown before.    In this example, 15 clusters were chosen to 

provide a rough map.  Associating each network with its cluster number gives a map over 

the 4-neuron networks.  Note that some “landmark” networks, such as the blank network 

or the completely connected network, have extreme-valued moving average points.  For 

example, the moving average point for the blank network will have 0 for every 

coordinate except the first.  Including these networks in sample will improve the map’s 

accuracy by forcing the cluster analysis to accommodate these extreme cases. 

Recall that each 4-neuron network has a 12-bit binary expansion given by the number   

d12 d13 d14 d21 d23 d24 d31 d32 d34 d41 d42 d43.  By averaging each bit in the network’s binary 

expansion within a cluster, one gains a matrix similar to the one in Table 7.  The elements 

in the matrix can be viewed as probabilities.  For example, if a network from a given 

cluster were chosen at random, the element corresponding to that cluster and the element 

d12 represents the probability that the chosen network includes a connection from neuron 

#1 to neuron #2. 

Given a spike train output from a network known to include four neurons, one can 

calculate its moving average point, call it M.  By calculating the Euclidean distance 

between M and every point in the sample, one can determine which of the sample points 

is the closest neighbor of M.  Then one can predict that M belongs to the same cluster as 

that nearest point, say cluster j.  Then the jth row of the probability matrix predicts the 

target network’s connection matrix, with 1’s being a certain connection, 0’s being a 

 19



 

certain disconnection, and numbers in between representing the likelihood of a 

connection. 

One can describe the accuracy of this map by comparing the predicted certain 

connections and disconnections to the actual connectivity matrix for the target network.  

If every certain prediction matches the corresponding value in the target network, the 

prediction is considered accurate.  To test this mapping process, a 400 network sample 

was used to draw the map and predict the connection matrices of 200 randomly selected 

networks.  The predictions were accurate in 199 of 200 cases. 

By inferring structural properties of a neural network based on a given spike train, 

this mapping method completes the first objective of the paper. 
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V. CORRESPONDENCE BETWEEN MEASURES OF STRUCTURAL 
COMPLEXITY AND SPIKE TRAIN COMPLEXITY 

 
The previous section proposed a method for inferring the synaptic structure of a 

network by analyzing a spike train.  The second objective of this paper is to show a 

relationship between the structural complexity and the spike train complexity.  To do this, 

a measure of complexity for each concept is needed.  It is natural to think that the more 

structurally complex a network is, the more complex its spike train should be.  This 

section presents a complexity measure for the spike train output of the neural network.  It 

then describes common network features that correspond to specific values of the spike 

train complexity measure.  Based on these features, a proposed complexity measure for 

the network structure in the 3-neuron case is presented.  This measure corresponds in a 

one-to-one fashion with the time series complexity measure. 

1. Complexity Measure for the Spike Train 
 

As a multivariable time series, the spike train can be analyzed using the Sample 

Entropy statistic.  This statistic measures the level of aperiodicity in the spike train. 

 

Definition of Sample Entropy 
Given a time series S(t) for 1 ≤ t ≤ T, call {S(k), S(k+1), …, S(k+m)} is called a 

sequence of length m, for 1 ≤ k ≤ T-(m+1).  For two sequences of length m, {S(k), S(k+1), 
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…, S(k+m)} and {S(n), S(n+1), …, S(n+m)}, say they match within a given error 

tolerance  ε>0 if 
ε≤+−+∑

=

m

j
jnSjkS

0
)()(

.   

For a specified sequence length m and error tolerance ε, the sample entropy of a 

time series, or SampEn score, is the negative logarithm of the conditional probability that 

two matching sequences of length m will continue to match if they are extended to 

sequences of length m+1.   

 

Properties of Sample Entropy 
Empirically, since the time series is known, the conditional probability that two 

matching sequences of length m will continue to match if they are extended to sequences 

of length m+1can be calculated easily.  Let A be the number of matching sequences of 

length m, and let B be the number of matching sequences of length m+1.  Note that B is 

necessarily no larger than A.  Then SampEn(m, ε) = 
)ln(

A
B

−
.  Define SampEn(m, ε) = 0 

if B = 0 to ensure that SampEn is well-defined.  Note that if the time series is periodic, 

then A = B, so SampEn(m, ε) = 0.  Also note that if A = 0, then SampEn(m, ε) = 0 since 

the conditional probability is trivially 1.  Thus time series that are aperiodic to the point 

of being random also have low SampEn scores, since A is small.   

Higher SampEn scores occur when the time series has a structured aperiodicity.  

This lack of predictability conforms to one of the generally agreed-upon qualities of 

physiological complexity outlined by Burggren and Monticino (2005).  SampEn scores 

are also known to be relatively robust with respect to the choice of m and with respect to 

the length of the time series (Richman and Moorman, 2000).  This means that one has 
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some freedom in choosing m.  It also means that SampEn scores for a 300-step time 

series are just as valid as SampEn scores for a 1,000-step time series. 

The ability of SampEn to measure structured aperiodicity and assign appropriate 

values to both periodic and completely random time series suggests that it is a valid 

complexity measure for the time series.  The fact that it is relatively independent of the 

choice of window width and time series length makes it very appealing, computationally.  

These are the primary reasons SampEn is used to represent the spike train complexity. 

 

2. Complexity Measure for the Structure 
 

The basic assumption in this section is that a more complex structure is associated 

with a more complex spike train.  Given this assumption, the second objective of this 

paper is really to determine which structural properties in a network add to its 

“complexity.” 

When considering a network’s structure, it is convenient to view a neural network 

of N neurons as a directed graph with N vertices. In this context, the arcs represent the 

synaptic connections between neurons.   

 

Structural Properties of Networks with Extreme SampEn Scores 
To date, there have been no measures of graphical complexity established for a 

graph with a small number of vertices.  It is thus necessary to construct such a measure 

from the structural properties of the network.  Intuitively, a complexity measure for the 

structure of a neural network should include properties such as the number and type of 

feedback loops, any symmetries in the network between neurons, and a measure of 

volume in the sense of how many neurons are actively involved. 
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Empirically, one significant result is that the sample entropy for the network 

associated with the completely connected graph is 0.  This is true regardless of the 

number of neurons in the network.  This implies that a completely connected network, 

while structurally saturated, is no more “complex” than the blank or completely 

disconnected network.  Another result of note is that networks with strong “symmetry” 

have low SampEn scores.  One example of network symmetry is when one can re-label a 

pair of non-leader neurons so that the connectivity matrix remains unchanged.  The spike 

trains of symmetric networks tend to look periodic after a small number of time steps. 

The networks which yield high SampEn scores tend to be the ones where each neuron has 

a different level of input than its neighbors.  This “staggering” effect prevents the 

network from settling into periodic spike trains. 

 

Graph Isomorphisms 
When constructing a structural complexity measure, it is important to note that 

many network graphs are isomorphic.  This fact reduces the number of structures to 

consider significantly.  Recall that two graphs G and H with vertices VG = {v1,v2,…vN} = 

VH are isomorphic if there exists a permutation p: VG→VH such that (vj, vk) is an arc in G 

iff (p(vj), p(vk)) is an arc in H.  In the neural networks in this paper, the leader neuron is 

the only neuron to receive external stimuli.  Since the parameters for each neuron in the 

network are the same, it follows that two networks are isomorphic if such a permutation 

exists and it fixes the leader (compare Figure 7a and 7b).  Recall that a component of a 

graph is connected to a vertex if there exists a sequence of arcs from that vertex to the 

component.  In the context of this paper, two networks are also considered isomorphic if 

 24



 

the components of each network which are connected to the leader are isomorphic 

(compare Figure 7a and 7c, or 7b and 7c).   

#1 

#2 #3 

#4 

a) b) c) #1 

#2 #3 

#4 

#1 

#2 #3 

#4 

 
 

 
 

 
It is relatively easy to show that two networks are isomorphic if their connection 

matrices are equivalent through row operations. 

A Structural Complexity Measure for 3 Neurons 
In the 3-neuron case, there are only 19 configurations up to isomorphism.  These 

19 configurations are listed in Table 8.    

Table 8. Configurations up to isomorphism, 3-neuron case. 
d12 d13 d21 d23 d31 d32 
0 0 0 0 0 0 
1 1 0 1 0 1 
1 1 1 1 0 1 
1 1 1 1 1 1 
1 1 1 1 1 0 
1 0 0 0 0 0 
1 1 0 0 0 0 
1 0 0 1 0 0 
1 0 0 1 1 0 
1 0 0 1 0 1 
1 1 0 1 1 0 
1 1 1 0 1 0 
1 1 1 0 0 0 
1 0 1 1 1 1 
1 0 1 0 0 0 
1 0 1 1 0 0 
1 0 1 1 0 1 
1 1 0 1 0 0 
1 1 1 1 0 0 

Figure 7. Examples of isomorphic neural networks. 

 25



 

Using this as a basis for calculations, one can define several structural parameters, 

listed in Table 9.  These parameters represent the properties discussed in the beginning of 

this section, which are intuitively linked to structural complexity. 

 
Table 9. Parameters used for calculating structural complexity of 3-neuron network. 
Parameter Variable Formula 
Number of 1-step 
feedback loops into 
the leader 

Loop1 Loop1 = (d12)(d21) + (d13)(d31) 

Number of 2-step 
feedback loops into 
the leader 

Loop2 Loop2 = (d12)(d23)(d31) + (d13)(d32)(d21) 

Asymmetry between 
neurons 2 and 3 

Asym Asym = |d23-d32| 

Significance level of 
neuron 2 output 

Sig2 Sig2 = d12(1 + 0.5(d32)(d13)) 

Significance level of 
neuron 3 output 

Sig3 Sig3 = d13(1 + 0.5(d21)(d23)) 

Degree to which 
neurons 2 and 3 
influence neuron 1 
through feedback 

Phase Phase = Max{(d12)(d21), (d13)(d31)} 
+ Max{(d12)(d23)(d31)(Sig2), 
(d13)(d32)(d21)(Sig3)} 

Saturation of feedback 
to neuron 1 

Sat 

⎩
⎨
⎧

>+
=

= − 0)1(
00

1 PhasePhase
Phase

Sat
 

 
 

Then define the structural complexity, K, of the network as follows: 
 
K = [d12 + (d13)(Asym) + Sat – (Loop1)(Loop2)(Asym)][sgn(2.25 - (Sig2)(Sig3))] 
 

The first term in the first factor makes intuitive sense for a structural complexity 

measure, as a network in which the leader connects to one neuron has the potential to be 

more complex than a blank network.  The second term adds to the measure, provided that 

there is some asymmetry in the way that the follower neurons are connected to each 

other.  The third term adds more to the measure, depending on how strong the volume of 

feedback to the leader is.  Note that as this volume increases, the amount added to the 

complexity measure decreases.  The last term reflects the overall degree of “asymmetric 
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connectedness” in the network.  From this term, an asymmetric network has potential for 

a high complexity measure, but only if the degree of feedback to the leader (in the form 

of Loop1 and Loop2) is limited. 

Note that the last factor describes the “saturation” of the network.  The maximum 

possible value for Sig2 and Sig3 is 1.5, so this last factor is zero precisely when the 

follower neurons are “loud” enough to flood the network.  When this happens, the spike 

train becomes periodic after a few time steps, and the sample entropy drops to zero. 

Using this measure, a one-to-one correspondence is achieved between structural 

complexity and SampEn scores for 3-neuron networks, as seen in Figure 8.  Note that the 

point at K ≈ .26 has a SampEn score of 0.083, while the point at K = 1 has a SampEn 

score of 0.084. 
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Figure 8. Comparison of structural complexity and sample sntropy for 3-neuron 
networks. 
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Given a SampEn score along with the number of neurons and the parameters for 

each neuron, one can infer information about the network’s structure.  In the context of 

this example, a SampEn score of 0 indicates that the network is isomorphic to a blank 

network or a completely saturated network.  A SampEn score of 2 indicates that both 

neurons two and three are fed directly from the leader and are not symmetric with respect 

to each other, with no feedback loops to the leader. 

 

Four Neuron Case 
A natural question to ask at this point is whether this structure measure can be 

easily extended to a four-neuron network.  Unfortunately, a natural extension preserving 

the one-to-one correspondence seen in the 3-neuron case does not appear to exist.  When 

going from three neurons to four, it becomes unclear how to describe the network’s 

“symmetry”, which was easily described in the 3-neuron case by the variable Asym in 

Table 9.  It also becomes unclear how to describe the saturation denoted in the second 

factor of the 3-neuron structure measure. 
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VI. CONCLUSION 
 

Recall that this paper has two major objectives: 

• Analyze the time series output of a simulated neural network and make inferences 

about the underlying synaptic structure that produced it. 

• Show a correspondence between a complexity measure on the time series output 

and a complexity measure on the network’s structure. 

In pursuit of these objectives, the following results were obtained. 

• One can profile the neural networks according to a moving average analysis of 

their spike trains and thus determine the structure of the network which produced 

it.   

• Certain structural properties of the network yield specific sample entropy scores 

for the spike train.   

• Using these properties, one can derive a structure measure to form a one-to-one 

correspondence with the sample entropy scores.  From this correspondence, one 

can also infer which type of network produced a given spike train. 

 

1. Determining Structure of Neural Networks by Cluster Analysis Map 
 

In Section IV.2, it was shown that by calculating a moving average point for a 

spike train, one can classify the network that produced it by the point’s location in [0,1]N.  

Recall that if enough clusters are allowed, each network in a cluster will have a common 
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subgraph.  It was shown in Section IV.3 that by taking a large enough sample of networks 

of a given size, one can perform a cluster analysis to produce a rough “map” of the 

networks in general.  In this fashion, finding a spike train’s moving average point allows 

one to predict which network produced it.  The more clusters are defined in the map and 

the larger the sample, the better the map will be at predicting the network associated with 

a given spike train.  This achieves the first objective of this paper. 

 

2. Network Properties Associated with SampEn Scores of Zero 
 

It was noted in Section V.3 that regardless of the number of neurons in the 

network, the sample entropy for the network associated with the completely connected 

graph is always 0.  In the context of this paper, the “complexity” of a completely 

connected network is no more than that of a completely disconnected network, implying 

that measures of structural complexity must include more than simply summing up the 

number of inputs or components in the system.   

Also in Section V.3, networks with strong “symmetry” exhibit very low SampEn 

scores.  Examples of these symmetric networks include the completely connected 

network described in the preceding paragraph, as well as networks where one could re-

label a pair of neurons so that the connectivity matrix remains unchanged.  Networks of 

this type tend to produce spike trains which move into “lockstep” within a few time steps. 

The networks which yield high SampEn scores tend to be the ones where each neuron has 

a different level of input than its neighbors.  This “staggering” effect prevents the 

network from settling into the lockstep described before. 
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3. Development of a Structural Complexity Measure in the 3-Neuron Case 
 

The insights from the second conclusion allow for the development of a structural 

measure for the family of 3-neuron networks which corresponds in a one-to-one fashion 

with the SampEn scores.  The measure, shown in Section V.3, takes the number of 

connections, the symmetry of the network, and the level of feedback saturation into the 

leader into account.  By doing so, it achieves a one-to-one correspondence with the 

SampEn scores from the 3-neuron family.  Aside from justifying the intuitions behind its 

construction, the measure also offers another way of inferring structural properties when 

given a spike train output. 

 

4. Possible Extensions 
 

A few natural questions arise at the end of these conclusions.  The first is what 

modifications need to be made to the 3-neuron structural measure from Section V.3 in 

order to extend it faithfully to the 4-neuron family.  Another question is how sensitive is 

the network simulation to variations between the neurons’ parameters.  In this paper, each 

neuron had the same threshold, axon length, and neurotransmitter depletion rate.  What 

would happen if these values were different for each neuron?  Would a map like the one 

described in Section IV.3 still be valid?  Questions like these are still open, and 

answering them may provide more understanding of just what makes a system 

“complex.” 
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APPENDIX 

MATLAB CODE 



 

 

Neural Network Simulator 
%This program takes inputs for artificial stimulus, number of neurons, and 
%the number of time steps.  It outputs a matrix containing the spike train for the network. 
function neuralnetwork(charge,N,T,numb) 
X=zeros(N,T); 
 
%Input a connectino matrix here, or load from another program. 
D=[0 40 0 0; 0 0 0 40; 40 0 0 0; 40 0 0 0]; 
 
%Neruon Parameters/Initial Values.  Note how the program keeps track of the 
%entire network at once. 
Charge=zeros(N); 
Charge(1)=charge; 
P=75; %<--Threshold potential 
v=zeros(N,T); 
d=2; 
L=4; 
Axon=zeros(N,L); 
c=4; 
tran=zeros(N,T); 
for i=1:1:N 
    tran(i,1)=8; 
end 
C=8; 
R=1; 
V=zeros(N,T);  
arb=zeros(N,T); 
Arb=zeros(N,T); 
%Time counter 
Tau=zeros; 
Tau(1)=1; 
%Here are the interactions between the neurons. 
for t=2:1:T 
    Tau(t)=t; 
    for n=1:1:N 
 
        %Inputs into the neuron 
        Total=0; 
        for i=1:1:N 
            Total=Total+Arb(i,t-1)*D(i,n); 
        end 
        v(n,t)=v(n,t-1)+Charge(n)+Total; 
        V(n,t)=v(n,t); 
         

 33



 

        %determining whether to fire spike 
        if v(n,t)>=P 
            Axon(n,1)=1; 
            v(n,t)=0; 
        else v(n,t)=v(n,t)-d; 
            if v(n,t)<0 
                v(n,t)=0; 
            end         
        end 
         
        %spike traveling down the axon length 
        for i=1:1:L-1 
            if Axon(n,L-i)==1 
                Axon(n,L-i+1)=1; 
                Axon(n,L-i)=0; 
            end 
        end 
         
        %spike jumping across synapse if enough neurotransmitter 
        if Axon(n,L)==0 
            Arb(n,t)=0; 
        else 
            if tran(n,t-1)-c<0 
                Arb(n,t)=0; 
            else Arb(n,t)=1; 
                tran(n,t)=tran(n,t-1)-c;     
            end 
            Axon(n,L)=0; 
        end 
         
        %recharging transmitter     
        if tran(n,t-1)<C 
            tran(n,t)=tran(n,t-1)+1; 
        end 
    end 
end 
 
save 
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Moving Average Calculator 
%This program runs the network simulator and computes the moving average 
%point.  It is designed to handle many networks together, to provide data 
%for the cluster analysis. 
 
function averager(charge, N, T, d, tot) 
 
 
H=zeros(N,tot); 
F=zeros(N,tot); 
 
for take=1:1:tot 
    take 
    save 
    neuralnetwork(charge,N,T,1,take) 
    load 
    D =D/40 ;  
    A=zeros(N,1); 
    for i=0:1:T-d 
        temp=zeros(N,1); 
        for j=1:1:d 
            for k=1:1:N 
                temp(k,1)=X(k,i+j)+temp(k,1); 
            end 
        end 
        for k=1:1:N 
            F(k,i+1)=temp(k,1)/d; 
        end 
    end 
    A=mean(F,2); 
     
    A(1); 
    take; 
    H(1,1); 
    for k=1:1:N 
        H(k,take)=A(k); 
    end 
    H'; 
    H(1,1); 
end 
 
H' 
 
save 
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Sample Entropy Calculator 
%This is the Sample Entropy algorithm.  It inputs a window width num, error 
%tolerances, and a starting point.  The time series is loaded from another 
%program. 
 
function sampen(num,ep,r,start) 
load 
 
%adjust to size 
[N2,N1]=size(X); 
A=0; 
B=0; 
 
for k=start:1:N1-num-1 
    for j=k+1:1:N1-num-1 
        tempA=0; 
        tempB=0; 
        for i=1:1:num 
            temp1A=0; 
            temp1B=0; 
            for phi=1:1:N2 
                if X(phi, k+i-1)-X(phi, j+i-1)~=0 
                    temp1A=temp1A+1; 
                    temp1B=temp1B+1; 
                end 
            end 
            if temp1A>r 
                tempA=tempA+1; 
            end 
            if temp1B>r 
                tempB=tempB+1; 
            end 
        end 
        temp1B=0; 
        for phi=1:1:N2 
            if X(phi, k+num)-X(phi, j+num)~=0 
                temp1B=temp1B+1; 
            end 
        end 
        if temp1B>r 
            tempB=tempB+1; 
        end 
        if tempA<=ep 
            A=A+1; 
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        end 
        if tempB<=ep 
            B=B+1; 
        end 
    end 
end 
 
if A==0 
    sentropy=0; 
elseif B==0 
    sentropy=0; 
else 
    sentropy=-log(B/A); 
end 
sentropy; 
 
save 
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