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In the immediate future, multimedia product distribution through the Internet will 

become main stream. However, it can also have the side effect of unauthorized 

duplication and distribution of multimedia products. That effect could be a critical 

challenge to the legal ownership of copyright and intellectual property. Many schemes 

have been proposed to address these issues; one is digital watermarking which is 

appropriate for image and video copyright protection.  

Videos distributed via the Internet must be processed by compression for low bit 

rate, due to bandwidth limitations. The most widely adapted video compression 

standard is MPEG-4. Discrete cosine transform (DCT) domain watermarking is a secure 

algorithm which could survive video compression procedures and, most importantly, 

attacks attempting to remove the watermark, with a visibly degraded video quality result 

after the watermark attacks. For a commercial broadcasting video system, real-time 

response is always required. For this reason, an FPGA hardware implementation is 

studied in this work. 

This thesis deals with video compression, watermarking algorithms and their 

hardware implementation with FPGAs. A prototyping VLSI architecture will implement 

video compression and watermarking algorithms with the FPGA. The prototype is 

evaluated with video and watermarking quality metrics. Finally, it is seen that the video 

qualities of the watermarking at the uncompressed vs. the compressed domain are only 

1dB of PSNR lower. However, the cost of compressed domain watermarking is the 

complexity of drift compensation for canceling the drifting effect. 



 ii

Copyright 2007 
 

by 
 

Wei Cai 



 iii

ACKNOWLEDGEMENTS 

 I would like to take this opportunity to express my profound gratitude to my thesis 

advisors:  Dr. Elias Kougianos (Major Professor), and Dr. Saraju P. Mohanty (Co-Major 

Professor) for sharing with me their wealth of knowledge, vision and insights in the 

areas of video compression, watermarking and VLSI architectures and for their support 

with all necessary resources to accomplish my research work. Without their kindly help, 

encouragement and guidance, it would have been impossible for me to complete this 

thesis. 

 I would also like to thank my committee member Dr. Shuping Wang from the 

Engineering Technology department for her assistance during my early academic 

studies and my colleagues at the VLSI Design and CAD Laboratory at the department 

of Computer Science and Engineering for their advice during this work. I also thank Dr. 

Nourredine Boubekri, Dr. Albert B. Grubbs, Dr. Robert G. Hayes, Dr. Michael R. Kozak, 

Dr. Vijay Vaidyanathan, Mrs. Sandy Warren, Mr. Bobby Grimes, Mr. Mark Zimmerer and 

the staff of the Department of Engineering Technology for their friendly help and 

support.  

Special thanks to Cheryl, Ben and my parents. 

 

 

 

 

 

 



 iv

TABLE OF CONTENTS 

 Page 

ACKNOWLEDGEMENTS ...............................................................................................iii 

LIST OF TABLES..........................................................................................................viii 

LIST OF FIGURES .........................................................................................................ix 

 

Chapters 

1. INTRODUCTION......................................................................................................... 1 

   1.1 Motivation............................................................................................................... 1 

1.1.1 MPEG-4 Video Compression Standards........................................................... 1 

1.1.1.1 MPEG’s History .......................................................................................... 2 

1.1.1.2 MPEG-4 Visual Overview........................................................................... 3 

1.1.1.3 MPEG-4 Video Objects .............................................................................. 3 

1.1.1.4 Intra, Predicted and Bidirectional Predicted VOPs ..................................... 4 

1.1.2 Watermarking.................................................................................................... 7 

1.1.3 FPGA (Field Programmable Gate Array) Implementation................................. 8 

1.2 Problem Statements ................................................................................................ 9 

2. RELATED WORKS AND LITERATURE ................................................................... 10 

  2.1 Video Compression Algorithms ............................................................................. 10 

2.1.1 Color Spaces Conversion and Sampling Rate................................................ 10 

2.1.1.1 RGB Color Space..................................................................................... 10 

2.1.1.2 YCbCr Color Space.................................................................................. 11 

2.1.1.3 Sampling Rate.......................................................................................... 12 



  v

2.1.1.4 Macroblock ............................................................................................... 13 

2.1.2 Motion Estimation and Motion Compensation................................................. 13 

2.1.2.1 Motion Estimation..................................................................................... 14 

2.1.2.1.1 Four Motion Vectors per Marcoblock ................................................. 18 

2.1.2.1.2 Sub-pixel Motion Estimate ................................................................. 18 

2.1.2.2 Block Based Motion Compensation.......................................................... 20 

2.1.3 Discrete Cosine Transform (DCT)................................................................... 21 

2.1.3.1 Fourier Transform..................................................................................... 21 

2.1.3.2 Discrete Cosine Transform (DCT) ............................................................ 22 

2.1.4 Quantization of DCT Coefficients.................................................................... 29 

2.1.4.1 Scalar Quantization .................................................................................. 29 

2.1.5 Zigzag Scanning of DCT Coefficients ............................................................. 31 

2.1.5.1 Discrete Cosine Transform Coefficients Matrix ........................................ 32 

2.1.5.2 Compression at DCT/Frequency Domain................................................. 33 

2.1.6 Entropy Coding ............................................................................................... 35 

2.1.6.1 Variable Length Coding (VLC).................................................................. 35 

2.1.6.2 Huffman Coding ....................................................................................... 35 

 2.2 Video Watermarking............................................................................................... 38 

2.2.1 Watermarking at Spatial Domain ...................................................................... 38 

2.2.2 Watermarking at DCT Domain ...................................................................... 39 

2.2.3 Visible and Invisible Watermarking ............................................................... 41 

2.2.4 Drift Compensation of Visible Watermarking in Compressed Domain .......... 43 

 2.3 FPGA (Field Programmable Gate Array) Implementation ...................................... 43 



 vi

3. VIDEO COMPRESSION AND WATERMARKING ALGORITHMS............................ 45 

   3.1 Video Compression Algorithms ............................................................................ 45 

3.1.1 Color Space Conversion and Sample Rate Algorithm .................................... 45 

3.1.2 Motion Estimation Algorithm ........................................................................... 45 

3.1.3 Fast Discrete Cosine Transform (FDCT) Algorithm ........................................ 47 

3.1.4 Quantization Algorithm.................................................................................... 48 

3.1.5 Zigzag Scanning Algorithm ............................................................................. 50 

3.1.6 Entropy Coding Algorithm ............................................................................... 51 

3.1.7 MPEG Video Compression Algorithm ............................................................. 53 

  3.2 Watermark Embedding Algorithms........................................................................ 53 

3.2.1 Watermarking Algorithm in Uncompressed Domain ....................................... 54 

3.2.2 Watermarking with Drift Compensation Algorithm in Compressed Domain .... 55 

4. SYSTEM ARCHITECTURE ...................................................................................... 58 

   4.1 Architecture of MPEG Watermarking in Uncompressed Domain .......................... 58 

   4.2 Architecture of MPEG Watermarking in Compressed Domain.............................. 62 

5. PROTOTYPE DEVELOPMENT AND EXPERIMENTS............................................. 67 

   5.1 System Level Modeling with MATLAB/Simulink™................................................ 67 

5.1.1 System Level Modeling Methodology ............................................................. 67 

5.1.2 Modeling Watermarking in Uncompressed Domain ........................................ 68 

5.1.3 Modeling Watermarking in Compressed Domain............................................ 70 

5.2 System Level Modeling with VHDL and FPGA Performances............................... 74 

5.2.1 Controller Performance................................................................................... 75 

5.2.2 2-D DCT Performance .................................................................................... 76 



 vii

5.2.3 Motion Estimation ........................................................................................... 77 

5.2.4 Quantization Performance .............................................................................. 78 

5.2.5 Zigzag Scanning Performance........................................................................ 78 

  5.3 Discussions ........................................................................................................... 79 

5.3.1 The Video Quality of Video Compression and Watermarking ......................... 79 

5.3.2 Physical and Timing Analyzing. ...................................................................... 81 

6. CONCLUSIONS AND FUTURE WORK.................................................................... 83 

   6.1 Conclusions.......................................................................................................... 83 

   6.2 Future Work.......................................................................................................... 83 

6.2.1 MPEG-4 Video Compression .......................................................................... 84 

6.2.2 Watermarking.................................................................................................. 84 

6.2.3 Hardware Implementation............................................................................... 85 

REFERENCES.............................................................................................................. 86 

 

 

 

 

 

 

 

 

 

 



 viii

LIST OF TABLES 

Page 
 

1.1   Prediction equations for I, B and P frames . .......................................................... 6 

2.1   Sub-pixel motion estimate in MPEGs. ................................................................. 20 

2.2   DC and AC coefficients . ..................................................................................... 27 

2.3     Huffman code example . ..................................................................................... 36 

3.1     Loeffler’s fast  8 element 1-D Inverse DCT algorithm.......................................... 47 

3 2   DCT adders and multipliers in total . ................................................................... 47 

3.3     MPEG video compression algorithm flow............................................................ 53 

3.4     MPEG watermarking algorithm flow in uncompressed domain . ......................... 55 

3.5     MPEG watermarking algorithm flow in compressed domain. .............................. 56 

3.6     Comparison of first 20 coefficients of simulation and MATLAB™ dct2................ 77 

3.7     Compilation and Time report of 128X128 Y frame processing in 100Mhz clock.. 78 

3.8     Video quality metrics of video compression and watermarking.. ......................... 80 

3.9     Physical and Timing results for 128X128 YCbCr frames at 400Mhz.. ................. 81 

 

 

 

 

 

 

 

 



    ix

LIST OF FIGURES 

Page 
 

1.1 Video object and video object planes. ..................................................................... 4 

1.2 Synthesize VOs into a scene.. ................................................................................ 4 

1.3 I, B and P frames, forward, backward and interpolated predictions.. ...................... 6 

2.1 4:2:0 macroblock.. ................................................................................................. 13 

2.2 The redundancy among movie frames.. ................................................................ 14 

2.3 Searching  regions overlap.................................................................................... 16 

2.4 Three searching regions for motion estimate.. ...................................................... 17 

2.5 Even and odd signals.. .......................................................................................... 23 

2.6 Constructing signals with cosine and sine transforms.. ......................................... 23 

2.7 Calculating an 8x8 2-D DCT with 1x8 1-D DCT.. .................................................. 26 

2.8 DCT and DST frequency domain coefficients.. ..................................................... 27 

2.9 Comparing the matrixes before and after DCT...................................................... 28 

2.10 Zigzag scanning of DCT coefficient matrix.. .......................................................... 32 

2.11 Compress image at DCT domain.. ........................................................................ 33 

2.12 Huffman tree for Huffman coding. ......................................................................... 37 

2.13 Embedding a watermark at mid frequency. ........................................................... 39 

2.14 Watermark embedding at 16X16 DCT coefficients matrix..................................... 41 

2.15 Watermarking at uncompressed and compressed domain. .................................. 42 

3.1 Motion estimate data path block diagram.............................................................. 46 

3.2 Motion estimate flow chart..................................................................................... 46 

3.3 2-D DCT component data path block structure.. ................................................... 47 



  x

3.4 2-D DCT algorithm flow chart.. .............................................................................. 48 

3.5 Quantization component data path block diagram.. .............................................. 49 

3.6 Quantization algorithm flow chart. ......................................................................... 49 

3.7 Zigzag scanning component data path  block diagram.. ....................................... 50 

3.8 Zigzag scanning algorithm flow chart. ................................................................... 51 

3.9 Entropy coding (Huffman) component data path block diagram............................ 52 

3.10 Entropy coding (Huffman) algorithm flow chart.. ................................................... 52 

3.11 Watermark embedding algorithm flow chart. ......................................................... 54 

3.12 Watermarking in uncompressed domain data path and flow chart........................ 54 

3.13 Watermarking in compressed domain and drift compensation.............................. 56 

4.1   Block level view of MPEG video compression and visible watermark embedding 

module. ................................................................................................................. 58 

4.2 System architecture of MPEG video compression and watermarking in 

compressed domain. ............................................................................................. 59 

4.3 System data path of watermarking in uncompressed domain (data bus width is 12-

bits). ...................................................................................................................... 61 

4.4 System address and signals of watermarking in uncompressed domain.. ............ 61 

4.5   Block level view of MPEG video compression and visible watermark embedding 

module on compressed domain.. .......................................................................... 62 

4.6   System architecture of MPEG video compression and watermarking in 

compressed domain.............................................................................................. 63 

4.7 System address and signals in compressed domain.. .......................................... 66 



 xi

5.1   Simulink™ system block set diagram for MPEG watermarking in uncompressed 

domain. ................................................................................................................. 68 

5.2 Watermarking in uncompressed domain results (resolution 240X320). ................ 70 

5.3 Simulink™ system block set diagram for MPEG watermarking in compressed 

domain.. ................................................................................................................ 72 

5.4 Watermarking in compressed domain results (resolution 240X320).. ................... 73 

5.5 Side effect of drift compensation of blur moving object.. ....................................... 74 

5.6 Controller’s FSM states diagram.. ......................................................................... 75 

5.7 Controller simulation. S0 and S1 for 297us in clock 50Mhz .. ............................... 76 

5.8 2D DCT simulation. Total processing time: 1281ns in clock 100Mhz.. .................. 76 

5.9 Motion estimate simulation. Total processing time: 51112.7ns in 100Mhz............ 77 

5.10 Quantization Simulation.. ...................................................................................... 78 

5.11 Zigzag scanning simulation. Total processing time: 1281ns in clock 100Mhz....... 78 

 



 1

CHAPTER 1 

INTRODUCTION 
 

1.1 Motivation 

Presently, most multimedia products like audio, video, images and text are 

transacted in physical media, at physical stores. However, as broadband Internet 

becomes available to commercial and private users, those multimedia resources can be 

openly accessed by the masses, and could be distributed much more quickly and widely. 

From this trend, one can predict that as more and more songs, movies and images will 

be exchanged in the Internet, the download multimedia sales will finally surpass the 

traditional sales channels in the near future. This trend could benefit the multimedia 

product owners, but also could challenge their ownership because most multimedia 

resources are distributed in unsecured formats. Furthermore, this situation is further 

degraded by the fact that duplicating and distributing digital multimedia products is 

almost cost-free and instantaneous. To legal authorities, arbitrating the ownership of 

multimedia products is not easy, unless a mechanism can guarantee the genuine 

integrity of copyright. Multimedia watermarking is a secure solution for copyright 

declaration and intellectual property protection. This thesis will study one type of multi-

media, namely video and its watermarking algorithm techniques. 

1.1.1 MPEG-4 Video Compression Standards 

 MPEG (moving picture experts group) is a branch of the ISO (International 

Standardization Organization) for video/audio compression and related techniques in 

commercial and industrial applications. The famous MPEG-1, MPEG-2, and MPEG-4 
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video compression standards are the results of the group’s work. New standards like 

MPEG-9 and MPEG-21 are still under development. MPEG-1 mainly is applied for video 

distribution with laser video compact disks (VCD); MPEG-2 is for high-definition 

television (HDTV) broadcasting and high quality movie/video distribution in digital video 

disks (DVD). MPEG-4 is the mainstream exchangeable video format in the Internet 

because MPEG-4 has higher and flexible compression rate, lower bit rate, and higher 

efficiency. Microsoft©, Real© and Apple© support MPEG-4 standard and already have 

embedded MPEG-4 decoders into some of their products. Other companies or 

organizations also provide MPEG-4 encoders/decoders or Codecs, and there are even 

free products such as Xvid™ [1].  The main techniques involved in MPEG standards are 

color space conversion and sampling rate, block-based motion estimation and motion 

compensation, discrete cosine transform (DCT), zigzag scanning and entropy coding 

compression. The data format of the MPEG stream is in hierarchical layers.  

1.1.1.1 MPEG’s History 

 In 1991, the first MPEG standard (MPEG-1) was finalized, which can compact 

audio and video high quality. The MPEG-1’s audio specification, MPEG-1 Audio Layer 3 

or popularly referred as MP3, is broadly accepted as a digital audio lossy compression 

format. Since it supports progressive frames only, MPEG-1 could not be utilized in 

television broadcasting. The next is MPEG-2 which was finalized in 1994. MPEG-2 

supports interlaced field coding and scalability ao that it is widely adapted in television 

video broadcasting. The movie industry accepts MPEG-2 for digital versatile disk (DVD) 

to distribute high quality movie/video products. To achieve greater compression rate 

and more flexible scalability, MPEG-4 was finalized in 1998. MPEG-4 can support very 
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low bit rates (<64kbps), and variable compression rates for different applications. It 

quickly becomes the main multimedia distribution format in the Internet [2]. 

1.1.1.2 MPEG-4 Visual Overview 

 The goal of this thesis is to implement video watermarking insertion, so only the 

video part or MPEG-4 Visual is researched. The MPEG-4 Visual consists of tools, visual 

objects, profiles and levels. The tools are coding functions to support specified video 

features. Objects, which are coded by the tools, are a video’s elements, like rectangular 

frames, arbitrary shapes, still texture, animation models, etc. The profiles are a set of 

objects a MPEG-4 Codec will process. A brief description of MPEG-4 visual profiles is 

given as in [2]. Furthermore, a profile contains the levels which define the constraints of 

a bit stream’s parameters. For example, profile advanced simple level 5 has typical 

resolution 720X576, maximum bit rate 8 Mbps, maximum objects 4 AS or simple [2] 

pp103.  Generally, MPEG-4 refers to MPEG-4 visual profile advanced simple when 

discussing video exchanging format for Internet multimedia.  

1.1.1.3 MPEG-4 Video Objects 

 The hierarchical structures and terms in MPEG-4 are different from those in 

MPEG-1 and MPEG-2. However, the MPEG-4 Visual part is extended from MPEG-2, so 

the different terms in some profiles could be the same as in the early MPEG standards. 

MPEG-4 manipulates a movie as a collection of video objects, not only the rectangle 

frames as previous standards. Each video object can be accessed individually, such as 

searching, browsing, cutting and pasting. For the video objects which exist within a 

certain span of time and at a particular point of time, an instance of a video object is 

defined as video object plane (VOP), which is shown in figures (1.1) and (1.2). The 
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older term “frame” is equivalent to VOP if the objects are rectangular frames. But 

“frame” could not properly describe the arbitrary-shape video objects in MPEG-4. 

However, for MPEG-4 visual advanced simple profile, the rectangle video object planes 

(VOPs) could be treated as frames, and in this thesis, the term “frame” and “rectangular 

video object planes (VOPs)” are interchangeable.  

 
Figure (1.1) Video object and video object planes.  

 

  
(a) Video object 1 (b) Video object 2 (texture) (c) Synthesized scene 

Figure (1.2) Synthesis of video objects into a scene. 

1.1.1.4 Intra, Predicted and Bidirectional Predicted VOPs 

 In early MPEG standards, these VOPs also are called intra frames, predicted and 

bidirectional predicted frames. In motion estimation and motion compensation, the ever 
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first base frame to predicate other frames is defined as Intra frame since there will be no 

temporal compression occurring, but only the compression within the frame itself. The 

intra frames are referred to as I frames in short. If one frame is reconstructed by 

predicting from other frames with motion estimation and motion compensation, it is 

called Intermedial frame or Inter frame in short. Furthermore, Inter frames can have two 

categories: Predicted or P frame and Bidirectional or B frame. P frames can be 

predicted from an I frame or another P frame while B frames need two frames, I and P 

or two P frames, to rebuild the frame. A group of VOPs (video object planes of MPEG-4) 

or GOPs (group of pictures in MPEG-1/2) will contain one I frame as base, some P 

frames and B frames interpolated between I frame and P frame or two P frames. For 

example, a GOP has one I frame, 7 P frames and 7 B frames interlaced between I and 

P frame or two P frames, for a total of 15 frames. Two such kinds of GOPs will be 30 

frames for one second frame sequence of a standard NTSC video. A natural reduction 

of prediction is a previous frame as the base frame to predict other following. Actually, a 

later frame can also become a base frame to predicate previous frames. From this, 

three prediction directions are defined: forward prediction, backward prediction and 

interpolated prediction. Figure (1.3) demonstrates an example of I, B and P frames, 

forward, backward and interpolated prediction.  
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Figure (1.3) I, B and P frames, forward, backward and interpolated predictions. 

From Figure (1.3), one can estimate that the coding sequence of a GOP is I-P-B-P-B-P-

B…, which is not the video play back sequence I-B-P-B-P-B-P… because the P frame 

will always be coded before the B frame. Certainly, the B and P order in the decoding 

end must be re-sorted back: B followed by P. The B frame in Figure (1.3) will be 

predicted by interpolating a frame from two frames with a bilinear equation as [3]: 

Table (1.1) Prediction equations for I, B and P frames.  
Frame type Prediction equation Prediction error 

Intra (I) frame )(0 xF  
Forward prediction )()( 0101 mvxFxF +=  
Backward prediction )()( 2121 mvxFxF +=  
Interpolated prediction  

2
)()(

)( 212010
1

mvxFmvxF
xF

+++
=

)()( 11 xFxF −  

In the above table, 0F  is Intra I frame; 1F  is predicated frame; 2F  is P frame; 01mv  is 

motion vector related with forward prediction from 0F  to 1F ;  21mv  is motion vector 
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related with backward prediction from 2F  to 1F ; 1F  is original frame, and Prediction Error 

is for motion compensation. B frames will greatly reduce temporal redundancy among 

frames and will not propagate errors like a P frame. The quantity of B frames 

interpolated between two frames could be adaptable according to compression ratio, 

and picture quality. But if there are too many interpolated B frames, much more time 

delay could occur [3]. 

1.1.2 Watermarking 

Watermarking is embedding extra data, called a watermark, into a message 

while, at the receiving end, the embedded data can be detected or extracted by proper 

methods. Watermarking originally can be traced back to steganography, a technique to 

hide data into the host message without the knowledge of end users. The name of the 

watermark is taken from the special processing in paper, money bills and security bonds 

for security. 

The categories of watermarking can be seen from different aspects: according to 

human perception, it can be visible or invisible; according to its strength, it can be robust 

or fragile; according to applications, it can be source based or destination based; 

according to document types, it can be text, image, audio or video; according to the 

working domain, it can be spatial or in the frequency domain [4].  Visible and invisible 

watermarking can both be used for copyright protection; additionally, invisible 

watermarking also is utilized in security applications such as covert communications. 

Robust watermarking can withstand attacks of the attempt to remove the watermark, 

unless the attacker is willing to accept downgraded image or video. On the contrary, 

fragile watermarking will be prone to corruption if any unauthorized attempts to modify 
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the original document occur. The strength of robust and fragile watermarking comes 

from digital cryptographic algorithms. A watermark can be embedded into text, images, 

audio or video as redundant data.  The procedure of inserting a watermark into a host is 

called embedding, and the inverse procedure is called extraction or detection. 

Depending on embedding algorithms, some watermarks could not be extracted exactly 

as the embedded one; however, with proper detection algorithms, the existence of a 

certain watermark can be confirmed. This feature can also be desirable for copyright 

protection.  

There are some schemes to attack video watermarking, described in [5], [6], [7], 

[8], and [9]. Due to the robust nature of DCT (discrete cosine transform) watermarking, 

visible watermarking in the DCT domain was chosen in this thesis to accomplish MPEG 

video copyright protection.  

1.1.3 FPGA (Field Programmable Gate Array) Implementation 

The implementation of watermarking could be in many platforms such as 

software, hardware, embedded controller, DSP, etc. For commercial applications like 

movie production, video recording, on-spot video surveillance, real-time response will 

be always required, so a software solution is not recommended due to its long time 

delay. Since the goal of this research is a high performance encoding & watermarking 

unit in an integrated circuit (IC) for commercial applications, and since FPGAs (field 

programmable gate arrays) have advantages in both fast processing speed and field 

programmability, it was determined that an FPGA is the best approach to build a fast 

prototyping module for verifying design concepts and performance. Two companies 
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Altera© [10] and Xilinx© [11] are chosen as the suppliers of prototype platforms to 

implement MPEG and watermark embedding algorithms.  

1.2 Problem Statements 

 The MPEG-4 standard is not freely available so that the full text of the standard 

could not be obtained from the Internet. Library and published papers can be resources; 

and open source projects like Xvid™ become another source. Xvid™ only fulfils MPEG-

4 visual profile advanced simple so that the module described in this work will not 

support more advanced algorithms.  

First, the MPEG video compression module should be built with a high level 

architectural design tool like MATLAB/Simulink™ [12] to verify the video compression 

algorithms and their performance. In this step, the algorithms like discrete cosine 

transform (DCT), motion estimation/motion compensation, quantization, zigzag 

scanning and entropy coding will be implemented and tested in a high level language 

environment. Then a visible watermark algorithm will be embedded into a video. The 

solution for the problem of watermark drifting can be tested at this stage. After all the 

algorithms are verified, the working module will be converted into an appropriate 

intermediate description language for simulation and then programmed into an FPGA 

device for the prototype.  
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CHAPTER 2 

RELATED WORKS AND LITERATURE 
 

2.1 Video Compression Algorithms  

 Video compression algorithms in MPEG are color space conversion and 

sampling rate, discrete cosine transform (DCT) and inverse discrete cosine transform 

(IDCT), motion estimation and motion compensation, quantization, zigzag scanning and 

entropy coding. 

2.1.1 Color Spaces Conversion and Sampling Rate 

Human visual perception or human visual system (HVS) can only perceive a 

short range of wavelengths of light in the electromagnetic spectrum: from 400nm to 

700nm, or commonly called seven-color rainbow: red, orange, yellow, green, blue, 

indigo and violet. Furthermore, the seven-color rainbow can be constructed from three-

original colors. In the video and movie industries, two three-original colors are widely 

used: RGB and YCbCr. Each three-original color is called a color space. 

2.1.1.1 RGB Color Space 

 RGB color space has three original colors: red, green, and blue. They are the 

colors human eyes can see, and their combination in different brightness will create all 

colors in the real world.  In digital image or video, each pixel has three elements to 

represent the three colors in brightness.  The three colors have the same importance in 

a final combination result; therefore, the three color’s brightness must be stored in the 

same resolution. 
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2.1.1.2 YCbCr Color Space 

 YCbCr is another color space besides RGB. Y presents the luminance or 

brightness of a pixel; Cb and Cr are chrominance or color difference. RGB and YCbCr 

are interchangeable. According to the ITU-R recommendation BT.601, the exchange 

equations between RGB and YCbCr are [3]: 

CrYR 402.1+=   
CrCbYG 714.0344.0 −−=  (2.1)  

CbYB 772.1+=  ⎪
⎭

⎪
⎬

⎫

,
 

 

 

We can estimate that the Cb and Cr in Equation (2.2) could be negative values, but to 

the actual digital image or video pixels in 8-bits, the data range is 0~255 and only 

positives are permitted.  So, the Equation (2.2) is adjusted as Equation (2.3): 

 

 The RGB color space and YCbCr color space are interchangeable; however, 

they are not the same in applications. The RGB color space presents the final image for 

visual results, YCbCr color space is the intermediate data for image and video 

processing.  

  BGRY 114.0587.0299.0 ++=   
)(564.0 YBCb −=  (2.2) 

 

)(713.0 YRCr −=  ⎪
⎭

⎪
⎬

⎫

.
 

 

  BGRY 114.0587.0299.0 ++=   
)(564.0 YBCb −= +128 (2.3) 

 

)(713.0 YRCr −= +128 ⎪
⎭

⎪
⎬

⎫

.
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2.1.1.3 Sampling Rate 

Because the human visual system is more sensitive to brightness than to 

difference in color, unlike RGB colors which are stored in the same resolution, Cb and 

Cr could be in lower resolution than Y although the alteration of the final image quality is 

still beyond human perception. That observation results in three types of image pixel 

sampling rates called 4:4:4, 4:2:2 and 4:2:0 sampling rates as shown in [2]. A 4:4:4 

sampling rate means each pixel’s Y, Cb, Cr will be sampled completely. Consider a 4 

pixels group: the samples of them will contain 4 Y samples, 4 Cb samples and 4 Cr 

samples. That is where the term 4:4:4 sampling rate comes from. The 4:4:4 sampling 

rate preservers the complete fidelity of the image’s luminance and chrominance 

components, so it is utilized in very high quality and resolution commercial, industrial, or 

military applications. 4:2:2 sampling rate will sample same the pixel group in 4 Y 

samples, but 2 Cb and 2 Cr samples. Compared with 4:4:4 sampling rate, the 4:2:2 

sampling produces less samples and less data density. Even though some 

chrominance is ignored, the 4:2:2 sampling rate is still fair enough for high resolution 

commercial image or video reproduction. The more commonly one, 4:2:0 sampling in a 

4 pixels group contains 4 Y samples, 1 Cb and 1 Cr sample. The 4:2:0 sampling rate is 

widely accepted in television broadcasting, video/movie industry. The MPEG standard 

adopts 4:2:0 sample rate for VCD, DVD, HDTV, etc.  

 The 4:2:0 sampling rate will reduce the sampling rate of color space into half that 

of the 4:4:4 sampling rate by neglecting 75% chrominance samples. However, because 

of the nature of human visual system, human eyes generally could not distinguish the 

difference. To different applications and algorithms, Y, Cb, and Cr could be combined 

individually to accomplish different effects. 
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2.1.1.4 Macroblock 

 In the MPEG standard, one macroblock is a 16x16, 8x8 or 4x4 sampling 

luminance or chrominance block, and it is the basic data element for processing. It is 

the object of the coding operations such as motion estimation, motion compensation, 

discrete cosine transform, quantization, and entropy coding. According to different 

MPEG algorithms, a macroblock’s constituents could be of different pixel size. The most 

commonly accepted one is 16x16 block, called a pel. Regarding 4:2:0 sampling, with 4 

Y block samples, 1 Cb and 1 Cr block sampling, if the macroblock is a 16x16 pixel 

block, it will contain four 8x8 sampling Y blocks, one 8x8 Cb and one 8x8 Cr blocks. 

One such 4:2:0 macroblock’s details are shown in Figure (2.1): 

8X8 8X8 8X8 
 

8X8 

8X8 8X8 
Y 

Cb 
 

Cr 

Figure (2.1) 4:2:0 macroblock. 

2.1.2 Motion Estimation and Motion Compensation 

 Video compression can be accomplished with color space sampling, DCT high 

frequency coefficient removing, quantization scaling, entropy lossless coding, and 

motion estimation with motion compensation in temporal domain. MPEG standard 

adopts spatial domain block based motion estimation and motion compensation. 

Actually, motion estimation and motion compensation also work in DCT domain 

because the position variables in spatial domain are exchangeable with the frequency 

variables in DCT domain. The goal of this work is an implementation of watermarking in 

MPEG video stream, so only the spatial domain motion estimation and motion 

compensation will be introduced. 
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2.1.2.1 Motion Estimation 

 A video playing is actually a serial of frames that are been playing continuously. 

However, the human eye will view those continuous images as a movie because of 

human visual perception’s persistence of vision. For example, to play a smooth and 

flicker-free movie, the television broadcasting standard NTSC requires a movie playing 

at a rate of 29.97 frames per second. If all those frames are transmitted without any 

compression, the communication bit rate will be very high and overflow most present 

communication carrier’s bandwidth. For example, an uncompressed HDTV of resolution 

1920X1080 in 30 frames per second will demand a bandwidth of 1.39 Gbps [2].  Figure 

(2.2) indicates the significant redundancy in two adjacent frames. 

  
(a) Amplitude of a frame. (b) Amplitude difference of two frames. 

  
(c) Brightness difference of two frames. (d) Brightness difference in contour. 

Figure (2.2) The redundancy among movie frames. 
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The Figures of (2.2), (b) (c) and (d) indicates that the difference of two adjacent frames 

in a movie could be trivial. To remove the redundancy among frames, a based frame 

and the difference between two frames will be transmitted rather than two whole frames. 

That is the general concept of MPEG temporal compression model; however, MPEG 

compresses the frame differences further by motion estimation. 

 Before running motion estimation, an image is required to be split into smaller 

pixel groups called macroblocks as the element of the image rather than a single pixel 

for the compromise between efficiency and performance to analyze a video’s temporal 

model. A macroblock commonly has the size of 16X16, 8X8 or 4X4 pixel. For two 

frames following each other in time, we can consider the difference between two frames 

is the macroblock position changing within a certain area of the frame. The variable to 

describe the position change is called motion vector. With the macroblock in the base 

frame and its two dimensional motion vector, the current frame can be predicted from 

the previous frame. The region in which the macroblock is sought for match could be a 

square, diamond, or arbitrary shape as in MPEG-4. For most applications, a square 

region is considered. For example, if the macroblock is 16X16 pixel size, the searching 

region will be 48X48 pixels block (some algorithms also use a diamond shaped region 

rather than a square one). The criterion of match for two blocks is the minimized 

difference between two blocks. For computation simplification, we apply sum of 

absolute difference (SAD) as the criterion for matching. Its equation is [3]: 
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Where, c(i,j) are the pixels of current block, and i, j = 0, 1, … , N-1; p(m,n) are the pixels 

of previous block for searching region, and m,n= -R, -R+1, ..., 0,1,…, R+N-1. From 

Equation (2.4), we can speculate that this SAD algorithm will search exhaust every 

where of the region in the step of one pixel, and the block with minimum SAD result will 

be taken as a match. To those applications whose searching speed is critical, some fast 

searching algorithms can be adapted, such as three-step search algorithm (TSS), four-

step search algorithm (FSS), and cross search algorithm (CRS) [3]. In our design, 

exhaust SAD is used.  

 One problem will arise if the match block is located at the boundary across two 

adjacent regions; the match block could then not be found. The solution is to arrange 

two adjacent regions overlapping with each other with a width of macroblock minus 1. 

For example, for a 16X16 macroblock searching in a 48x48 region, the next region will 

have a 15X47 or 47X15 overlap with each other. If the match block is within the overlap 

and could not find the match, it can be matched in next region. This is shown in Figure 

(2.3). 

 
 
 

 

 

 

 

From this Figure (2.3), we observer that the region for 3X3 in macroblock sizes, only the 

center one, or the block’s present position, does not overlap with other regions. That 

           
           
  16x

16         
           
           
           
           

Figure (2.3) Searching  regions overlap. 
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guarantees that there could be no neglect in searching at the boundary area. One 

consideration of searching region block could be if the current block is at the image’s 

boundary, what the searching region in the previous frame will be? Beside the above 

3X3 region in macroblock size, there are another two cases needed to investigate: at a 

corner or at a boundary. For the corner macroblock, the search region in previous frame 

will be a 2X2 in macroblock size; for the boundary macroblock, it will be a 2X3 or 3X2 in 

macroblocks size. They are clearly shown in Figure (2.4): 

 
Figure (2.4) Three searching regions for motion estimate. 

To make all searching region same size, four extra strips in 15X47 or 47X15 are added 

along image four boundaries. Another purpose of adding strips to solve the problem of 

matching a macroblock moving out of or into the boundary of a frame. In that case, the 

search could not have a match such that a disorder at the boundary will occur in the 

reconstructed frame. A simple solution is adding extra blank strips in width of 15 pixels 

along the outside of the image boundary. That ensures, even in the worst condition, at 

least 15 pixels will match in current macroblock and searching region. In the MPEG 

video compression, we only run motion estimation for Y macroblock. The Cb and Cr will 

directly use Y’s motion vector. To the 4:2:0 sampling block, the motion vectors for Cb 

and Cr are half of Y’s: 



 18

2
Y

CrCb
MVMVMV == . (2.5) 

 For fine image quality and high resolution applications, some advanced motion 

estimation methods are introduced, such as four motion vectors per marcoblock and 

sub-pixel motion estimate. 

2.1.2.1.1 Four Motion Vectors per Marcoblock 

  In 4:2:0 sampling rate video, the traditional motion estimation only generates 

one Motion Vector for the whole 16X16 pixel Y macroblock. From Equation (2.5), the 

motion vectors for the 8X8 Chrominance blocks can be calculated. An improved way for 

finer match is that the16X16 pixel Y macroblock will be split further into four 8X8 blocks, 

and for each 8X8 block the motion estimation will be calculated individually to search for 

their own motion vectors [3] p92.  

 

2.1.2.1.2 Sub-pixel Motion Estimate 

 The traditional motion estimation is also called integer-pixel motion estimation 

because it only produces the motion vectors in integer displacement values. But the real 

world is analog, and the image elements will be continuous, so the displacements of 

each pixel could not be necessarily integer values. In the case of presenting such 

images with integer displacement, an error could not be avoided. To accomplish further 

better match resolution, a motion estimation can be run on an interpolated bilinear 

frame, and the resulting motion vectors could be fractional displacements rather than 

integers. For example, if running half-pixel motion estimates, a motion vector could be 

(4.5, -1.5); if running quarter-pixel motion estimates, a motion vector could become 

(4.25, -1.75). To obtain sub-pixel motion estimates, the bilinear frames need to be 
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interpolated. For half-pixel motion estimate, it is can be imagined that the original search 

region is zoomed in two times, and the blank pixel between two adjacent pixels will be 

interpolated two extra pixels according to bilinear algorithm. Similarly, the quarter-pixel 

motion estimate will zoom in the region in four times and four extra pixels will be 

inserted between two original pixels with bilinear algorithm computing results. The 

concept of sub-pixel motion estimate and interpolation is indicated in [3] p58. The 

bilinear equation of sub-pixel interpolation is: 
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Understandably, if the sub-pixel motion estimate scheme is applied, both the 

compression and decompression ends need to interpolate extra frames. That will 

consume more computation resources and more time. 

 The sub-pixel motion estimation search approach could be implemented in two 

different ways. One is searching after inserting extra bilinear pixels; another is firstly 

running integer-pixel search, then interpolating bilinear pixels, later searching match. In 

the latter approach, so-called from gross to fine, one can avoid searching in bigger 

region so that it can reduce computation complexity and run much faster.  For better 

resolution and smoother image, 1/8th, 1/16th or further pixel motion estimation also could 

be considered. Actually, for balance of fine quality and fast processing time, most video 

compression standards accept half- and quart-pixel motion estimation. Table (2.1) gives 

the motion estimates commonly implemented in MPEG standard. 
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Table (2.1) Sub-pixel motion estimate in MPEGs. 
Standard Integer ME Half ME Quarter ME 
MPEG-1 Yes Yes No 
MPEG-2 Yes Yes Yes 
MPEG-4 Yes Yes Yes 

 Motion estimation will reduce redundancy among frames in the temporal 

domain significantly. With motion estimation, only the base frame called Intra frame and 

the motion vectors are needed to be transmitted to predict the next frame. However, 

motion estimation will propagate and accumulate the errors created by prediction from 

the Intra frame and motion vectors. To compensate for the accumulated errors, motion 

compensation is introduced. 

2.1.2.2 Block Based Motion Compensation 

 Even the best match in motion estimation could not guarantee two macroblocks 

are exactly same. The small difference between the prediction by motion estimation and 

the original image will keep on accumulating until the whole video image is smashed. A 

smart method called motion compensation is introduced [3] p63.  As the block based 

motion estimation works in spatial domain, the block based motion compensation also 

corrects the prediction error in spatial domain. The motion compensation procedure can 

be describes as that, first the predicted frame will be built from the base frame and 

motion vectors from the motion estimate. Then the original frame related with predicted 

frame will be subtracted with the predicted frame, and the resulting difference is called 

residual frame. The macroblocks in residual frame are called prediction errors. The 

residual frame can compensate the error from the motion estimate. The motion 

compensation equation is defined as: 

1,...,1,0,),(),(),( −=++−= NjiMVMVipjicjid yx  (2.7) 
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Where d(i,j) is motion compensation,  c(i,j) is current frame to be predicated, p is 

predicated result, MVx, MVy are two dimensional motion vectors. Therefore the whole 

video compression in temporal model has only three elements: base frame, motion 

vector to predict the next frame produced by motion estimation, and the residual frame 

for motion compensation by subtracting between the original frame and predicted frame.  

They will be coded and transmitted to the receiver end. The decoding receiver will 

rebuild the movie with Equation (2.8) [3]: 

1,...,1,0,),(),(),( −=+++=
∧∧

NjiMVMVipjidjic yx  (2.8) 

2.1.3 Discrete Cosine Transform (DCT) 

Discrete cosine transform is a mathematical tool to process signals like images 

or video. It will transform the signal variables from the spatial domain to the frequency 

domain or with its inverse transform, from the frequency domain back to the spatial 

domain without quality loss. The discrete cosine transform is the real part of the Fourier 

transform, and it can be quickly computed with hardware or software. For real-time 

video compression and watermarking processing, a fast discrete cosine transform will 

be implemented. 

2.1.3.1 Fourier Transform 

Before discussing the discrete cosine transform, the Fourier transform will be 

briefly introduced because the discrete cosine transform is derived from the Fourier 

transform. The Fourier theorem states that any signal can be constructed by summing 

a series of sines and cosines in increasing frequency.  It is written as [13]: 
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Here, f(x) is the signal with time variable x, and F(u) is the transformed result with 

frequency variable u. A very important feature of the Fourier transform is that an inverse 

function (Equation (2.10)) can transform the frequency domain expression back to the 

time domain expression [13]. 

∫
+∞

∞−

−= duuxiuxuFxf ))2sin()2)(cos(()( ππ
 

 
(2.10) 

Besides transforming the time domain back-and-forth to the frequency domain, the 

Fourier transform also can work on spatial domain from-and-to frequency domain. To 

process discrete signals like digitized images, sound, etc, which are discrete rather than 

continuous, the discrete Fourier transform and its reverse expressions are deduced as 

Equations (2.11) and (2.12) [13]. 
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Here F(u) is discrete Fourier transform coefficient, f(x) is input raw data, and N is the 

discrete frequency component for constructing the discrete Fourier transform. 

2.1.3.2 Discrete Cosine Transform (DCT) 

If an image is treated as a function of amplitude with the distance as variable, 

according to the Fourier theorem, that function can be built up with a series of cosines 

and sines in increasing frequency. When the function is with sine parts only, it is called 

Sine transform, and with cosine parts only, it is called cosine transform. All the Fourier 

transforms, the sine transform and the cosine transform have their specialized 

applications in image processing. However, in MPEG video compression and 



 23

watermarking, the cosine transform is the mostly commonly used one. To understand it, 

consider two signals, even and odd as in Figure (2.5): 

 
 
 
 
 
 
 

 

 

 

 

The even signal has non-zero amplitude at time 0 or frequency 0 while the odd signal 

has zero amplitude. To construct the even or odd signal, either the cosine or sine 

transform function can be chosen, however, with cosine transform, the result for even 

signal requires less frequency range while with sine transform, the result for odd signal 

will have less frequency range. This can be indicated by Figure (2.6). 

Figure (2.6) Constructing signals with cosine and sine transforms. 

 
Figure (2.5) Even and odd signals. 
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An image can be considered as an even signal because its average brightness or the 

brightness at frequency 0, generally, is of non-zero amplitude. Reasonably, building the 

image with Cosine transform could require less frequency parts than with the Sine one. 

A digital image, unlike one in a continuous mode in the real world, is in a discrete mode 

with the pixels as elements. Technically, the discrete cosine transform (DCT) is applied 

especially in the digital image processing. The reasons for applying discrete Cosine 

transform in digital image processing are, first, it can remove the correlation among 

image pixels in the spatial domain. Secondly, discrete cosine transform requires less 

computation complexity and resources. The one dimensional discrete cosine transform 

Equation (2.13) and its inverse transform Equation (2.14) are given by [14]. 
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Here, C(u) is discrete cosine transform coefficient, f(x) is signal variable, N is element 

numbers, u=0,1,2,…, N-1.  

For both Equations (2.13) and (2.14) 
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The above one-dimensional discrete cosine transform algorithm will consume too much 

computation for a real time system. If computing an 8 element transform, it needs 56 

adders and 72 multipliers.  So, some fast algorithms are presented. Chen introduced a 

fast DCT algorithm in [15], and Leoffler presented an improved fast one dimensional 

DCT algorithm in [16]. Leoffler’s fast algorithm of 8 elements DCT and inverse DCT [17] 
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was selected for this work. Because of the symmetrical feature of the Cosine Transform, 

the inverse discrete cosine transform can be directly obtained by reversing the direction 

of the discrete cosine transform.  

 The above one dimensional discrete cosine transform can only process one 

dimensional input data, however, images are two dimensional matrixes. Therefore, a 

two dimensional discrete cosine transform Equation (2.16) and its inverse transform 

Equation (2.17) are used for image processing [14]. 
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Here, C(u,v) is the discrete cosine transform coefficient, α(u) and α(v) have been defined 

in (2.15), f(x,y) is the input two dimensional matrix element, and N is input matrix row or 

column number. 

For an 8x8 matrix with 8-bits for each coefficient, which is widely adapted as a 

unit data block in image processing, the data range of that discrete cosine transform 

coefficients can be estimated from Equation (2.16). Considering the worst condition, the 

value of one coefficient could be: 

 

 

 

From equations (2.16) and (2.17), we can estimate that the two-dimensional discrete 

cosine transform structure will still be complicated for hardware or software 

implementation in terms of resources. However, because the discrete cosine transform 
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is an orthogonal transform, the two-dimensional discrete cosine transform can be simply 

calculated by running the one-dimensional discrete cosine transform in rows and then 

the results are transformed again in columns as demonstrated in Figure (2.7) [14]. 

 
Figure (2.7). Calculating an 8x8 2-D DCT with 1x8 1-D DCT.  

In the same manner, a two-dimensional inverse discrete cosine transform matrix can be 

obtained by executing the one-dimensional inverse discrete cosine transform two times. 

 The spatial correlation in an image cannot be compacted in the spatial domain 

because every pixel in the image is correlated with each other, and human visual 

perception can easily detect the position displacement at spatial domain. To remove the 

correlation among the pixels, discrete cosine transform can change the tightly correlated 

position variables at spatial domain into different discrete frequencies at frequency 

domain. 

  
Figure (2.8): DCT and DST frequency domain coefficients. 
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From this figure, we can see that, for the same input signal, the coefficients generated 

by the discrete cosine transform will cluster in lower frequencies and their amplitudes 

decrease sharply while those by the discrete sine transform will spread among different 

frequencies and the amplitude change is not as sharp as the discrete cosine 

transform’s. The meaning of each coefficient of the discrete cosine transform is: the first 

coefficient of the DCT is the DC part, and can be interpreted as the average value of the 

pixel matrix while all other remaining coefficients are the AC part. For example, to an 

8x8 element pixel matrix, the DC coefficient is: 
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It is the mean of all pixel values of the 8x8 matrix in spatial domain. That DC coefficient 

indicates the average brightness of the matrix. Table (2.2) shows the locations of DC 

and AC coefficients in an 8x8 Discrete Cosine transform coefficient matrix. 

Table (2.2) DC and AC coefficients. 
 DC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  
 AC AC AC AC AC AC AC AC  

 

Furthermore, Figure (2.9) displays an 8x8 original pixel matrix and its discrete cosine 

transform coefficient matrix. The bar graphs of the coefficients clearly demonstrate that 

the energy at the frequency domain clusters at DC and lower frequencies.  
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(a) 8x8 pixel matrix. (b) 8x8 DCT coefficient matrix from (a). 

  
(c) Amplitude bars in spatial domain. (d) coefficient bars in frequency domain. 

Figure (2.9) Comparing the matrixes before and after DCT. 

To human visual perception, the high frequency parts in the frequency domain 

are not so sensitive as the lower ones.  Even though we have difficulty in moderating an 

image or video’s pixels in spatial domain without obviously disturbing its quality, in the 

frequency domain after discrete cosine transform, we can easily manipulate data at high 

frequency parts without degrading the image or video quality under human visual 

perception [14]. This feature is essentially useful for image compression and 

watermarking. 
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2.1.4 Quantization of DCT Coefficients 

 After discrete cosine transform, the correlation of pixels of an image in spatial 

domain already have been de-correlated into different discrete frequencies in frequency 

domain. Since human visual perception is more acute to the DC coefficient and low 

frequencies, a carefully designed scalar quantization approach can reduce data 

redundancy while keeping the fidelity of image. 

2.1.4.1 Scalar Quantization 

 For most analog to digital conversion schemes, linear quantization is a simple 

and fast solution. Its drawbacks are: 

• The resolution or dynamic range is the same for the entire data range, i.e., the 

greater digits have less derivative error while less digits have more error 

relatively.  

• The bit rates for different values are same. 

• Flickering noise exists around zero. 

To solve these problems, some quantization schemes are introduced, such as A-low 

approach in telecommunications which adopts non-uniform quantization. But in the 

MPEG video compression standard, a uniform module called scalar quantization is 

adopted. The feature of the scalar quantization scheme is adaptive quantized step size 

according to discrete cosine transform coefficients of each macroblock [3].  

The nonlinear scalar quantization introduces wider dead zone and greater step size at 

small input to achieve the following effects for MPEG video compression [3]: 

• DC and low frequency coefficients will have fine step size while high frequencies 

will have more aggressive quantization step size. 
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• Wider dead zone around origin will block the small signal noise. 

• The scalar quantization will generate more zeros which will benefit entropy 

coding. 

For computation and hardware simplification, the scalar quantization step size can be 

chosen from pre-define tables as in [3]: 

For the MPEG encoder and decoder, the quantization tables used are the default 

and being kept by both encoder and decoder. Intra frame will apply one quantization to 

determine the quantization step size while non-intra frame will use another table. By 

simple observation, we can find two tables approximately matches the 8x8 discrete 

cosine transform coefficient result, i.e., the DC and low frequency parts could have 

much finer step size, and high frequency parts will have grosser step size. To the non-

intra frames or predicted and bi-directional frames, the residual results will have less bit 

rate and fixed quantization step size. Similarly, different quantization formulas are 

introduced as follows [3]. For intra frames: 
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Here, Q(i,j): the quantization result, and Q -1(i,j): the inverse quantization results. RND: 

round function, C(i,j): Discrete cosine transform coefficients, qs: quantization scale 

factor, the value is from 1 to 40. Smaller value will generate finer step size. qt(i,j): the  

quantization table as Table (2.5) (a). 
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For the non-intra frames: 
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Here, Q(i,j), Q-1(i,j),  RND, C(i,j), qs, qt(i,j) are defined the same as the intra frame 

quantization  equations above. qt(i,j) here should be from Table (2.5) (b).  

 From the above scalar quantization and inverse quantization equations, we can 

conclude that the quantization algorithm will discard some details of discrete cosine 

transform coefficients to reduce bit rate, so it is not lossless computation. However, the 

effects of loss will trade off the benefits like extra “0” for the future compression in the 

entropy coding, better resolution for DC and low frequency coefficients, blocking small 

signal noise, and adaptability according to different resolutions for different applications.  

2.1.5 Zigzag Scanning of DCT Coefficients 

 After the two dimensional Discrete Cosine transform, an 8x8 image pixel block 

will be transformed from the spatial domain to the frequency domain. As we have 

already seen, the coefficient matrix presents the coefficients of frequencies, and the low 

frequency parts will cluster in the upper left corner of the discrete cosine transform 

coefficient matrix.  Zigzag scanning will rearrange the order of the matrix so that the 

coefficients are sorted by frequency in an ascendant order in a linear pattern.   
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(a)Zigzag scanning route [2]. (b) Matrix after zigzag scanning. 

  
(c) coefficient bars before zigzag. (d) coefficient after zigzag. 

Figure (2.10) Zigzag scanning of DCT coefficient matrix. 

2.1.5.1 Discrete Cosine Transform Coefficients Matrix 

For ease of programming, the discrete cosine transform must be rearranged in a 

linear order with ascending frequencies. The processing is called zigzag scanning 

because the route to choose the coefficients in the matrix goes in a zigzag way as 

shown in Figure (2.17) (a). 

 From parts (c) and (d) of Figure (2.17), we observe that, after zigzag scanning, 

the coefficients are approximately sorted by their amplitudes. The purpose of zigzag 

scanning is to aggregate “0”s and other small values as much as possible to decrease 

bit rate. For the discrete cosine transform matrix from progressive video frames, the 

zigzag scanning route can go the zigzag way as in [3]. However, in MPEG2 and 
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MPEG4, both progressive and interlaced frames need to be supported; the blocks from 

interlaced frames or fields should be different from the progressive ones to achieve 

better aggregation of “0”s and smaller values. The alternative zigzag scanning route is 

described in [3] as well. 

2.1.5.2 Compression at DCT/Frequency Domain 

 Three features make the compression work in the DCT domain rather than the 

spatial domain:  

1) The discrete cosine transform will de-correlate the position in the spatial 

domain, and focus the energy into the DC coefficient while the AC coefficients 

will have small amplitudes in energy.  

2) After the discrete cosine transform, the DC and AC coefficients of low 

frequencies will cluster at the upper left corner of the matrix and the AC 

coefficient of high frequencies will aggregate at the lower right corner.  And,  

3) Human visual perception is sensitive to DC and AC at low frequencies but not 

AC of high frequency energy, which relates to the fine details.  There is no 

criterion on how many ACs will be chosen for a given quality of the 

reconstructed image. Reasonably, the better compression bit rate to 

accomplish, the worse the quality of reconstructed image. The trade off 

between compression and quality will compromise each other [14]. A group of 

compressed images in different compression rates by neglecting some AC 

coefficients are displayed in Figure (2.11): 
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(a) Rebuild with 1 of 64 coefficients. (b) Rebuild with 4 of 64 coefficients. 

 
(c) Rebuild with 16 of 64 coefficients. (d) Uncompressed original image. 

Figure (2.11) Compress image in DCT domain. 

The method to process the original uncompressed image (d) is: the image is split into 

8x8 pixel blocks.  Then each 8x8 block will be transformed by DCT to create an 8x8 

DCT coefficient matrix. After that, according to different compression rates, keep DC 

and some low frequency ACs. The remaining ACs will be replaced with “0”. Finally, run 

the inverse DCT to rebuild a new image resembling the original one. By observing the 

images in Figure (2.12), we can conclude that even with 16 out of 64 DCT coefficients, 

the reconstructed image’s quality is fairly acceptable for most video playback 

applications, but the compression rate achieved is 4:1. 
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2.1.6 Entropy Coding 

 After DCT and quantization compression, more compression still can be 

achieved. The code domain compression algorithms generally are called entropy 

coding, which includes Huffman coding, Arithmetic coding, etc. Unlike lossy 

compressions as in the color space, DCT and quantization procedures, the entropy 

coding compression is lossless. The basic idea of entropy coding is that the more 

frequently occurring symbols will be coded with short bits while uncommon ones with 

longer code bits such that the over all bit rate of the stream will be reduced.  

2.1.6.1 Variable Length Coding (VLC) 

 From a general view, unlike fixed length coding such as ASCII, BCD, etc, entropy 

coding is a kind of variable length coding, which means that the code bits for different 

symbols are different. After the procedure of quantizing and truncating higher 

frequencies, most coefficient values of the DCT matrix will be zeros. With a proper 

variable length coding, most ‘0’ coefficients are compacted. The variable length coding 

in MPEG standards is also called run level code: “run” refers to how many ‘0’ precede a 

non-zero number; “level” presents the number’s level or value. For example, a series of 

coefficients is: 7, 0, 5, 0, 0, 0, 4, 3, 0, -3…, they can be re-written into run level codes 

as: (0,7), (1,5), (3,4), (0,3), (1,-3)…. The (R, L) pair like (1, 5) can be interpreted as one 

run ‘0’ is preceding level ‘5’. Such run level coding will greatly compact bit length for a 

stream with many continuous ‘0’ so that it will benefit DCT coefficient encoding.  

2.1.6.2 Huffman Coding 

 To accomplish further compression in code domain after run level coding, 

entropy coding like Huffman coding is needed. Huffman originally contributed the idea of 
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building an optimizing symbol binary coding in his paper in 1952 [18]. According to a 

fundamental theorem of Shannon [19], the minimized binary code length of a symbol is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
s P

L 1log2 . (2.26) 

Where, sL  is the optimized length of a symbol; sP is the probability of the symbol’s 

occurrence in a message stream, and the entropy, the average number of bits for a total 

symbol is as: 

∑ ⎟⎟
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⎞
⎜⎜
⎝

⎛
=

s s
s P

PEntropy 1log2 . (2.27) 

Where, Entropy is lowest limit of the total average code length we can achieve in a 

compressed message. From the above equations, the optimized binary code lengths for 

the symbol probability of the power of 2 are easily obtained, but in most cases, the 

occurrence probability could not be always a power of 2; for example, 1/23, the code 

length generated by accepting approximate probability will not be the minimized one. 

Huffman’s idea is using a Huffman tree to find out a unique code prefix. For example, a 

serial of symbols and their probabilities are as Table (2.3): 

Table (2.3). Huffman code example. 
Symbol Probability Code Bits(actual) Bits(ideal) 

A 0.8 1 1 0.3219 
B 0.02 0000 4 5.6439 
C 0.03 0001 4 5.0589 
D 0.07 001 3 3.8365 
E 0.08 01 2 3.6439 

 

The Huffman tree for searching code of the symbols in Table (2.3) is: 
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Figure (2.12) Huffman tree for Huffman coding.  

Where, the tree’s branches are arranged by their probabilities. The node’s probability is 

the sum of two branches, and the two branches will be in code either ‘1’ or ‘0’. If one 

branch is leaf, it is ‘1’; otherwise it is ‘0’; If both are leaves, the higher probability one is 

‘1’, and the lower one is ‘0’. By searching the tree from root to leaf, Huffman encoding 

can be achieved. Similarly, with the same Huffman tree, the Huffman codes are 

decoded to the corresponded symbols.  However, for the compression purpose, to 

transmit all symbols’ probabilities is not practical. In practice, a pre-calculated code 

table for generic image data is applied by both encoder and decoder. Besides no extra 

bits for probabilities table, Huffman tree searching is avoided so that improved 

processing speed results. A pre-calculated Huffman code table is [3], [14]. One 

observation from the above table is that it does not include all combinations of whole 

run-levels. It can be estimated that most run-level code combinations are in above table. 

For those are not in the table, they can be coded as: 6 bits ESCAPE, followed by 6 bits 
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run code, and then 8 or 16 bit level code [14]. For example, a run-level pair (45,113), its 

code is: 000001 101101 11100010.   

 With all above modules, a MPEG video compression module called hybrid 

DPCM/DCT is built as in [2]. 

2.2 Video Watermarking 

The general idea of watermarking is embedding some extra data into a host 

message. The embedded information is a watermark, and the host message is a carrier. 

From the view of spread spectrum communication, the watermark is a message needed 

to be sent, and the carrier is a communication channel with noise.  At a transmitting end, 

the embedding procedure will modulate the watermark message into a noise channel; 

on the other hand, the receiving end will extract the watermark message from the noise 

channel [20]. Watermarking applications could be in copyright protection, image 

authentication, data hiding, and covert communications [21]. In this thesis, only 

copyright protection will be discussed.  

2.2.1 Watermarking at Spatial Domain 

 The first generation watermarking algorithms work in the spatial domain because 

it is less expensive and less demanding in computer complexity. One method is called 

LSB coding: the LSB bit of data byte will be modified for embedding watermark. LSB 

coding is brittle under attack by just masking the LSB of data bytes so that it is quickly 

replaced by other new techniques. Spread spectrum techniques can spread watermark 

in a wider spectrum against the attack which works on only one particular bandwidth 

[22]. Authors in [23], [24] implement spatial watermarking algorithms in low cost 
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hardware. However, spatial domain techniques could not easily achieve the needs of 

robust requirements. 

2.2.2 Watermarking at DCT Domain 

 Similarly as DFT, DWT, the DCT watermarking is working at frequency domain. 

The examples of DFT (discrete Fourier transform) and DWT (discrete wavelet transform) 

watermarking are [25], [26]. But most commonly watermarking techniques are DCT 

domain based. We have seen that after changing working domain from spatial domain 

to DCT domain, the correlation of spatial pixels will be de-correlated into discrete 

frequency parts. The DC and low frequency coefficient of DCT matrix will determine 

most natural features of an image. After truncating higher frequency coefficients, the 

image fidelity will remain fair enough to human perception by applying inverse DCT. So, 

a natural approach is embedding a watermark DCT coefficients matrix into image DCT 

coefficients matrix in lower or middle frequencies area to achieve the robust watermark 

([27], [28], [24], [30], [31], [32], [33]). Figure (2.13) shows the DCT watermarking 

inserting locations: 

  DC         
           
           
           
           
           
           
           

Figure (2.13) Embedding a watermark in mid frequency [34]. 

The robustness of DCT watermarking comes from the fact that if an attacker tries to 

remove watermarking at mid frequencies, he will risk degrading the fidelity of the image 

Low Frequencies 

Mid Frequencies 
for watermarking 

High Frequencies 
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because some perceptive details are at mid frequencies [35]. A watermark embedding 

equation is proposed in [28]: 

),(),(),( jiWjiCjiCw βα += . (2.28) 

Where, ),( jiCw is the DCT coefficient (i,j) after watermarking embedding; α  and β  are 

watermark strength factors which can determine whether the watermark is visible or 

invisible; ),( jiC  is original DCT coefficient before watermarking; ),( jiW is watermark 

DCT coefficient.   

Even though the above watermarking algorithms were originally applied to still 

images, considering that a video frame sequence could be treated as a series of still 

images, a reasonable approach is processing each frame of video as a still picture with 

above methods in spatial or frequency domain to embed watermark. The video 

watermarking in spatial domain is proposed as [36]; in DWT domain as [37], [38]; in 

DFT domain as [39]; in DCT domain as [20], [40], [41], [42], [43], [44], [45], [46], [47], 

[48], [49], [50]; in Compressed domain (bit stream)[20], [44], [48], [49], [50], [51] or 

uncompressed domain (raw data) [20], [44]. The reason of DCT watermarking solution 

is more common in video is that MPEG video compression also requires DCT function. 

To reduce system complexity, watermarking in DCT domain is an understandable 

choice. If the watermarking subject is a compressed video stream, one option is directly 

watermarking the compressed video bit stream which is already in DCT domain rather 

than decoding the stream back to video frames for watermarking at spatial domain. 

However, if a visible watermark is embedded in compressed domain, the visible 

watermark will drift with moving object in the scene when the decoded frames are 

playing back such that drift compensation is needed [20], [44].  
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2.2.3 Visible and Invisible Watermarking 

 Invisible watermarking at DCT also can be implemented with watermarking 

Equation (2.25). By just adjusting the watermarking factors α  and β , the watermark 

could become visible or invisible. The same equation is simply run to extract an invisible 

watermark [52], [53]. A safe way is inserting an invisible watermark in wherever of 

image DCT coefficients against attacker’s removing attempts or use pseudo-random 

sequence to spread the invisible watermark DCT coefficients among frames’ DCT 

matrix blocks. For this technique, both DC and AC could be subject of watermarking 

equation [41], [44], [45].  

 Visible watermarking in video is very commonly applied in video broadcasting. 

For the prototype working module, the image DCT 16X16 coefficients matrix will directly 

add with watermark image DCT 16X16 coefficients matrix as above Equation (2.14), 

and it is illustrated as: 

 
Figure (2.14) Watermark embedding at 16X16 DCT coefficients matrix. 

 The reason to choose 16X16 block rather than 8X8 block is that in the 

watermarking embedding Y color frames, one pel is 16X16 pixels. Unlike mid frequency 

inserting, DC and all ACs of image DCT coefficients matrix will be modified by the 

watermark embedding because the watermarking will result in a noticeable and visible 

perception to human visual system. Two choices to insert watermark into frames of a 

video are watermarking before or after compression: 
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Figure (2.15) Watermarking in uncompressed and compressed domain. 

The slight difference of the above two watermarking schemes is the location the 

watermark is inserted. The scheme Figure (b) of Figure (2.15) results in the watermark 

drifting with moving objects in a scene while scheme (a) does not have such issue. To 

understand scheme (b) and watermark drift, suppose a frame sequence of a video is 

three adjacent frames, the first frame is I frame, second frame is B frame and third 

frame is P frame in encoding (compressing) and decoding (decompressing) procedures. 

At compressing stage, after I frame runs DCT, I frame’s DCT coefficient matrix is ready 

for mid-frequency watermark embedding with a watermark DCT coefficient matrix. If 

only I frame is watermarked, the same watermark also appears on predicted P and B 

frames because they are predicted from I frame as base frame with motion estimation 

and motion compensation. Since the motion vector indicates the marcoblock’s 

displacement between two frames, the watermark generally should keep still among 

frames. So after applying motion vector to rebuild the predicted frame, the watermark 

overlapping with moving object in the frames drifts back and forth with the moving 

objects. But why is it necessary to watermark compressed video stream rather than 

uncompressed one? The reason is most videos/movies could already have been in 
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(a) Watermarking in uncompressed domain (before compressing). 
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compressed format. If decoding them to spatial domain and watermarking them, extra 

noise could be generated and PSNR (peak signal noise ratio) could be reduced. 

2.2.4 Drift Compensation of Visible Watermarking in Compressed Domain 

A solution called drift compensation is introduced by Hartung [20]. The scheme is: 

the un-watermarked inter frame (P or B) is subtracted from the watermarked inter frame 

(P or B) to extract the drifting watermark. The extracted drifting watermark to cancel the 

inter frame’s drift and inter frames are embed the watermark again. The scheme’s block 

diagram of drift compensation is given in [20]. Notice the drift compensation scheme 

works at spatial domain rather in DCT domain so the entropy decoding, inverse 

quantization and inverse DCT decodes quantized DCT coefficients to pixels. Assuncao 

and Ghanbari introduce a simplified scheme on DCT domain motion compensation to 

achieve drift compensation [54]. The simplified scheme requires the motion 

compensation be in DCT domain rather than in spatial domain so that at encoding 

procedure, two different types of motion compensations are generated, one from spatial 

domain motion compensation for MPEG decoding, and one from DCT domain motion 

compensation for drift compensation. 

2.3 FPGA (Field Programmable Gate Array) Implementation 

 FPGA is a programmable logic device which allows a designer to change its 

internal logic gate connection with a hardware description language (HDL). The Most 

popular HDLs are VHDL, Verilog, System C, and AHDL. Because most engineers use 

MATLAB/Simulink™ to create mathematical modules for prototype design, Mathworks© 

[12], Altera© and Xilinx© also supply product modules to apply MATLAB™ codes or 

Simulink™ block sets directly to program the FPGA. The new generation Simulink™ 
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can handle blocks less than 80 in number to program FPGA [12]. Altera©’s DSP 

Builder™ can link Mathworks©’ MATLAB™ and Simulink™ to its Quartus II™ IDE tools, 

and then program FPGA [10]. Xilinx©’s similar product is DSP Generator™ [11].  Both 

Altera© and Xilinx© offer IP packages for speedy development. However, most 

developers are willing to use HDL languages to program FPGA to build their prototyping 

modules. 
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CHAPTER 3 

VIDEO COMPRESSION AND WATERMARKING ALGORITHMS 
 

The main algorithms for video compression are color space conversion and 

sampling rate, DCT and IDCT, quantization, zigzag scanning re-order, entropy coding. 

The watermarking algorithms are watermarking embedding and drift compensation if 

watermarking in compressed domain.

 
3.1 Video Compression Algorithms 

 Each algorithm of MPEG video compression is described; and the overall MPEG 

algorithm is integrated with individual modules.  

3.1.1 Color Space Conversion and Sample Rate Algorithm 

 From color space conversion equations: 

 BGRY 114.0587.0299.0 ++=   
128)(564.0 +−= YBCb  (3.1) 

 

128)(713.0 +−= YRCr  ⎪
⎭

⎪
⎬

⎫

.

 
 

Where only total 7 adders and 5 multipliers are need, the VHDL codes are concurrent. 

The delay is from adders and multipliers so that it is not critical path.  The sample rate is 

4:2:0 so that every Y pixel is sampled while one of every 4 Cb and Cr is sampled. 

3.1.2 Motion Estimation Algorithm 

Motion estimation is in the critical path of video compression coding since most 

time delay occurs at this step. The SAD (sum of abstract difference) algorithm searches 

the 48X48 pixels square target region exhaustively to find out a matching 16X16 pixel 

macroblock. The output of this procedure is prediction error for motion compensation 

and motion vector. The data path block diagram is: 
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Figure (3.1) Motion estimate data path block diagram 

The flow chart of motion estimate and motion compensation is: 

Figure (3.2) Motion estimate flow chart. 

The VHDL program for motion estimate and motion compensation is sequential code, 

and causes much time delay.  

Read 16X16 current MB and 48X48 searching region 

Match a 16X16 block with current MB 

Mini SAD 

Prediction error = matched 16X16 - current 16X16 MB 

Write prediction error to buffer, output motion vector 

END

N 

48X48 research region 16X16 current marcoblock 

SAD 

16X16 ME buffer Motion vector 
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3.1.3 Fast Discrete Cosine Transform (FDCT) Algorithm 

 The inverse fast DCT algorithm is from Loeffler [16]. For the ease of 

implementation, the algorithm is expressed as the table follows [55]: 

In the above table, m1~m7 are pre-calculated constants, a0~a7 are raw input values, 

and f0~f7 are one dimensional IDCT transform results. The fast DCT algorithm reduces 

the number of adders and multipliers so that the execution of DCT is accelerated. The 

comparison of total number of adders and multipliers is: 

Table (3.2) DCT adders and multipliers in total. 
Type Total adders Total multipliers 

Classic 1-D 1X8 DCT 56 72 
Fast 1-D 1X8 DCT 26 14 

  

The 2-dimentional DCT and IDCT algorithms can be achieved by running 1-

dimentional algorithms in two times, one time in rows (horizontal) and one time in 

columns (vertical). The data path block diagram of 2-dimensional 8X8 DCT is as: 

 

Figure (3.3) 2-D DCT component data path block structure. 

 

Table (3.1) Loeffler’s fast 8 elements 1-D  inverse DCT algorithm. 
Step 1 Step 2 Step 3 Step 4 Step 5 
b0=a0+a4 c0=b0 d0=c0+c3 e0=d0 f0=e0+e7 
b1=a0-a4 c1=b1 d1=c1+c2 e1=d1 f1=e1+e6 
b2=a2*m1-a6*m2 c2=b2 d2=c1-c2 e2=d2 f2=e2+e5 
b3=a2*m2+a6*m1 c3=b3 d3=c0-c3 e3=d3 F3=e3+e4 
b4=a7*m3 c4=b7-b4   d4=c4+c6 e4=d4*m4-d7*m5 F4=e3-e4 
b5=a3 c5=b5 d5=c7-c5 e7=d4*m5+d7*m4 f5=e2-e5 
b6=a5 c6=b6 d6=c4-c6 e5=d5*m6-d6*m7 f6=e1-e6 
b7=a1*m3 c7=b7+b4 d7=c7+c5 e6=d5*m7+d6*m7 f7=e0-e7 
m1=sqrt(2)*cos(6*pi/16) 
m2=sqrt(2)*sin(6*pi/16) 
m4=sqrt(2)*cos(3*pi/16) 

m5=sqrt(2)sin(3*pi/16) 
m6=sqrt(2)*cos(pi/16) 
m7= sqrt(2)*sin(pi/16) 

m3=sqrt(0.5) 

1-D DCT 1X8 

8X8 Buffer 
Input Output 
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The flow chart of 2-D 8X8 DCT is: 

 
Figure (3.4) 2-D DCT algorithm flow chart. 

The 2-D IDCT algorithm flow chart is similar as Figure (3.2). The only modification is 

replacing block “1-D 1X8 DCT” with “1-D 1X8 IDCT.” 

 Because of the 8X8 buffer, VHDL program for 2-D DCT/IDCT could not be 

concurrent, but must be sequential codes. That causes some time delay. 

3.1.4 Quantization Algorithm 

 After DCT, the quantization algorithm quantizes the DCT coefficient matrix to 

generate more “0” coefficients at high frequency sections while keeping good resolution 

at lower frequency parts. For video compression, the quantization equation for Intra 

frames and non-intra frames and the quantization scale factor which determine 
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quantization resolution are different. The quantization equations are Equations (2.14), 

(2.15), (2.16) and (2.17); the quantization scale factor tables are from Table (2.4). The 

data path block diagram of the quantization procedure is: 

Figure (3.5) Quantization component data path block diagram 

 

The flow chart of quantization for MPEG is: 

Figure (3.6) Quantization algorithm flow chart. 

To VHDL programming, the quantization procedure could be concurrent codes to 

minimize time delay. 
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3.1.5 Zigzag Scanning Algorithm 

 Zigzag scanning re-orders the DCT coefficients of a matrix ascending in 

frequency. For progressive frames and interlacing fields, the zigzag scanning routes are 

provided as Table (2.5). The data path of zigzag scanning block diagram is: 

Figure (3.7) Zigzag scanning component data path  block diagram. 
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The flow chart of zigzag scanning is: 

 

Figure (3.8) Zigzag scanning algorithm flow chart. 

Because of two buffers in the structure, the VHDL program for zigzag scanning could 

not be concurrent codes. The sequential codes have smaller time delay. 

3.1.6 Entropy Coding Algorithm 

 The entropy coding efficiency depends on the precision of calculation for 

computing each coefficient’s occurring probability. However, calculating probabilities of 

all coefficients is impossible in real-time MPEG codec. One solution is utilizing pre-

calculating Huffman code Table (2.8) for generic images. The entropy coding can apply 
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on the DC coefficients of different blocks, the AC coefficients within one block, and the 

motion vectors within one frame. Here the data path block diagram for the entropy 

coding of AC coefficients within one block is given: 

 

Figure (3.9) Entropy coding (Huffman) component data path block diagram. 

The algorithm flow chart is: 

Figure (3.10) Entropy coding (Huffman) flow chart. 

The entropy coding operated upon a block; the sequential code must be used. 
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3.1.7 MPEG Video Compression Algorithm 

 With above individual algorithm, the whole MPEG video compression algorithm 

as Figure (2.15) is described in procedure step flow as follows:  

Table (3.3) MPEG video compression algorithm flow. 
Input Video RGB frames(NxM) 

Output MPEG stream 
Step 1 RGB color frames converted to YCbCr frames 
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate 
Step 3 YCbCr frames go to Buffer which hold a GOP (for example, 15 continuous 

adjacent frames). 
Step 4 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and 

Cr are split into 8x8 blocks 
Step 5 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8 

blocks. If the even first frame (I) of GOP, go Step 9; If P frame, go to Step 6; 
If B frame, go to Step 8. 

Step 6 Y frame forward or backward motion estimate P frames with reference 
frames (I or P frames). The motion vectors (MV) and prediction errors of 
residual frame for motion compensation (MC) are found. If Y frame, go to 
Step 9;  

Step 7 Find Cb, Cr motion vector and prediction error. Go to step 9 
Step 8 Y frame interpolated motion estimate B frames with two P frames or I and P 

frames in bilinear algorithm. The motion vectors (MV) and prediction errors 
of residual frame for motion compensation (MC) are found.  

Step 9 2-D DCT on blocks of frames from Step 5, 6, 7, 8. 
Step 10 Quantize 2-D DCT coefficient matrix. 
Step 11 Zigzag scan quantized 2-D DCT coefficient matrix. 
Step 12 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector. 
Step 13 Y, Cb and Cr frames to buffer 
Step 14 Build structured MPEG stream from buffer 

 

3.2 Watermark Embedding Algorithms 

 Two watermarking schemes are investigated: watermarking on uncompressed or 

in compressed domain. For the watermarking in compressed domain, drift 

compensation is required. 
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3.2.1 Watermarking Algorithm in Uncompressed Domain 

 Watermarking in uncompressed domain can be in spatial domain or frequency 

domain. Because of its robustness, the DCT domain watermark embedding algorithm is 

chosen. The watermark embedding flow chart is: 

 

Figure (3.11) Watermark embedding component flow chart. 

The data path and flow chart of DCT watermarking in uncompressed domain is: 

 
Figure (3.12) Watermarking in uncompressed domain data path and flow chart. 
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To clarify further above flow chart figure, a step flow to describe the watermarking in 

uncompressed domain algorithm is as the table follows: 

Table (3.4) MPEG watermarking algorithm flow in uncompressed domain. 
Input Video RGB frames(NxM), watermark monochrome image(NxM) 

Output MPEG stream 
Step 1 RGB color frames converted to YCbCr frames 
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate 
Step 3 Split Y frame and watermark image into 8X8 blocks 
Step 4 Each 8X8 block runs 2-D DCT to generate 8X8 DCT coefficient matrix 
Step 5 Each 8X8 Y DCT matrix watermarked with a 8X8 watermark DCT matrix at 

same location as ),(),(),( jiWjiCjiCw βα +=  at DCT domain 
Step 6 Each 8X8 watermarked matrix runs 2-D IDCT to transform back to Y color 

pixels 
Step 7 Watermarked Y frame, non watermark Cb and Cr frames go to Buffer, 

which hold a GOP (for example, 15 continuous adjacent frames). 
Step 8 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and 

Cr are split into 8x8 blocks 
Step 9 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8 

blocks. If the even first frame (I) of GOP, go to Step 13; If P frame, go to 
Step 10; If B frame, go to Step12. 

Step 10 Y frame forward or backward motion estimate P frames with reference 
frames (I or P frames). The motion vectors (MV) and prediction errors of 
residual frame for motion compensation (MC) are found. If Y frame, go to 
Step 13;  

Step 11 Find Cb, Cr Motion Vector and Prediction error. Go to step 13 
Step 12 Y frame interpolated motion estimate B frames with two P frames or I and P 

frames in bilinear algorithm. The motion vectors (MV) and prediction errors 
of residual frame for motion compensation (MC) are found. If Y frame, go to 
Step 13; If Cb and Cr frames, go to Step 11. 

Step 13 Run 2-D DCT on blocks of frames from Step 9, 10, 11, 12. 
Step 14 Quantize 2-D DCT coefficient matrix. 
Step 15 Zigzag scan quantized 2-D DCT coefficient matrix. 
Step 16 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector. 
Step 17 Build structured MPEG stream from buffer 

3.2.2 Watermarking with Drift Compensation Algorithm in Compressed Domain 

Watermarking on the compressed domain is also DCT watermarking, and drift 

compensation is essential, otherwise parts of the watermark drift with moving objects in 

the scene. The data path and flow chart of DCT watermarking in compressed domain 

are: 
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Figure (3.13) Watermarking in compressed domain and drift compensation. 

Similarly, a flow step to clarify above figure to describe compressed domain 

watermarking and drift compensation is as Table (3.5): 

Table (3.5) MPEG watermarking algorithm flow in compressed domain.  
Input Video RGB frames(NxM), watermark monochrome image(NxM) 

Output MPEG stream 
Step 1 RGB color frames converted to YCbCr frames 
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate 
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Step 3 YCbCr frames go to buffer which hold a GOP (for example, 15 continuous 
adjacent frames). 

Step 4 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and 
Cr are split into 8x8 blocks 

Step 5 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8 
blocks. If the even first frame (I) of GOP, go Step 9; If P frame, go to Step 6; 
If B frame, go to Step 8. 

Step 6 Y frame forward or backward motion estimate P frames with reference 
frames (I or P frames). The motion vectors (MV) and prediction errors of 
residual frame for motion compensation (MC) are found. If Y frame, go to 
Step 9;  

Step 7 Find Cb, Cr motion vector and prediction error. Go to step 9 
Step 8 Y frame interpolated motion estimate B frames with two P frames or I and P 

frames in bilinear algorithm. The motion vectors (MV) and prediction errors 
of residual frame for motion compensation (MC) are found.  

Step 9 2-D DCT on blocks of frames from Step 9, 10, 11, 12. 
Step 10 2-D DCT on the 1st 8x8 block for each 16x16 blocks of watermark image  
Step 11 Watermark Y of I, B, P frames with ),(),(),( jiWjiCjiCw βα +=  at DCT 

domain with blocks from Step9, 10 
Step 12 Quantize 2-D DCT coefficient matrix. 
Step 13 Zigzag scan quantized 2-D DCT coefficient matrix. 
Step 14 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector. 
Step 15 Cb and Cr frames to buffer 
Step 16 Entropy decoding Y frame 
Step 17 Inverse zigzag scanning 
Step 18 Inverse quantization 
Step 19 Inverse DCT 
Step 20 If B, P frames, predicate frame with reference frame, motion vector and run 

motion compensation with predication error. Go to Step 25 
Step 21 Original Y frame run video compression without watermarking as above 

without step 10, 11. 
Step 22 Original Y frame run video compression as above except just watermarking 

I frame at Step 11. 
Step 23 Decode MPEG stream from step 21, 22 respectively 
Step 24 Extract drifting watermark by subtract decoded video frames between 

watermarked and un-watermarked frames from Step 23. 
Step 25 Subtract IBP watermarked frames with drifting watermark frames 
Step 26 MPEG compression Y frames again as Step 5,6,8,9,12,13,14 
Step 27 Build structured MPEG stream from buffer 

 

The procedure extracting the drift watermark of above in compressed domain could be 

simplified. 
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CHAPTER 4 

SYSTEM ARCHITECTURE 
 

The algorithms of visible watermarking in uncompressed domain and 

compressed domain are implemented into two different architectures.  The 

watermarking architecture in uncompressed domain is in low-cost and low-complexity; 

the one in compressed domain with drift compensation has extra video compression 

and decompression modules. 

4.1 Architecture of MPEG Watermarking in Uncompressed Domain 

 The watermarking in uncompressed domain is directly watermarking raw 

uncompressed video frames such that the watermark embedding can work at spatial 

domain or frequency domain (DFT, DCT, DWT, etc). The techniques can be quickly 

adapted from still image watermarking. The architecture is merged from two parts: one 

is MPEG video compressing; and another is still image watermarking. The 

watermarking works at Y (brightness) frames only for human visual perception is 

sensitive to them if the watermark image is monochrome. For a color watermark image, 

the Cb and Cr color space must be watermarked with same techniques for Y frames as 

well. The top level simplified view of watermarking in uncompressed domain is follows: 

 
Figure (4.1) Block level view of MPEG video compression and visible watermark 

embedding module in uncompressed domain. 
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The high level architecture of the module is tested with Simulink™ firstly, and the 

prototyping implementation is created with VHDL. The system architecture for FPGA 

implementation is as: 

Figure (4.2) System architecture of MPEG video compression and watermarking in 
uncompressed domain. 
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• Watermark embedding: watermark algorithm processing. It embeds a 
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color, so 45 frames in total for Y, Cb and Cr color spaces), output motion 

vectors, and output stream. 

• DCT/IDCT: 2-D DCT with 12-bits data bus and 6-bits address bus for 64 

bytes internal buffer. The input data is 8-bits unsigned integer, the output 

is a 12-bits unsigned integer. For further higher precision, greater bit 

length could be considered. The detail algorithms are in Table (3.1), (3.2), 

and Figure (3.4). The input and output are buffered to frame buffer. 

• ME: motion estimate searches exhaust a 48X48 block for a 16X16 block 

match. The detail flow chart is as Figure (3.1) and (3.2). The input and 

output motion vector and prediction error for motion compensation are 

buffered to frame buffer. 

• Quant: quantization procedure. It quantizes 8X8 DCT coefficients 

according to quantization Table (2.4) with quantization Equation (2.14) 

and (2.16). The input and output are buffered to frame buffer. 

• ZZ: zigzag scanning procedure. It re-orders 8X8 DCT coefficients 

according to the Table (2.5). The input and output are buffered to frame 

buffer. 

• Entropy: entropy coding procedure. Actually, it is Huffman coding table  

look up processing. The input and output are buffered to frame buffer. 

• Controller: It generates addressing and control signals with clock for each 

individual component module in the system to synchronies the system 

working functions. It is a finite state machine. 
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The MPEG video compression and visible watermarking in uncompressed domain 

system data path and its block diagram is: 

  
Figure(4.3) System data path in uncompressed domain (data bus width is 12-bits). 

The system has a controller which generates addressing signals and control signals to 

synchronize all components. The address bus and signals diagram is: 

  
Figure(4.4) System address and signals of watermarking in uncompressed domain. 
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4.2 Architecture of MPEG Watermarking in Compressed Domain 

 Unlike watermarking in uncompressed domain, the watermarking in compressed 

domain is following DCT module inside a DCPM/DCT video compression component 

module. The watermarking subjects here is not independent frames as still images, they 

are correlated frames with each other in temporal mode, i.e., inter frames (P or B) 

predicated from intra frame. So, every object in base intra frame is inherited by 

predicted inter frames (P or B) such that the watermark in intra frame appears in inter 

frames (P or B) even though they are not embedded with the watermark. However, if it 

overlaps with any moving objects in the video scene, the watermark drifts around with 

the moving objects. To obtain a stable watermark, drift compensation is propose to 

cancel the side effect [20]. The concept is extracting drift watermark in inter frames (P or 

B), and cancel it subtracting.  Generally, the watermarking here works at DCT domain 

for sharing same DCT component with video compression module. Extra video decode 

module is required for drift compensation procedure.  Similarly, a monochrome 

watermark image is embedded into Y color space only. For the color watermark image 

embedding, all Y, Cb and Cr color spaces needs to be inserted with the watermarks 

respectively. The top level simplified view of watermarking in compressed domain is 

follows: 

 

 
Figure (4.5) Block level view of MPEG video compression and visible watermark 

embedding module in compressed domain. 
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The high level architecture of the module also is tested with Simulink™ firstly, and the 

prototyping implementation is generated with VHDL. The system architecture in 

compressed domain for FPGA implementation is as: 

 
Figure (4.6) System architecture of MPEG video compression and watermarking in 

compressed domain.* 
* Every block receives control signals from controller but not all of them are depicted 
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• IE: inverse entropy coding, or decoding. It applies Huffman pre-calculating 

table as decoding lookup table similarly as encoding. The input and output 

are buffered to frame buffer. 

• IZZ: inverse zigzag scanning. It also applies zigzag table to resume the 

original order of 8X8 DCT coefficient matrix. The input and output are 

buffered to Frame Buffer. 

• IQuan: Inverse quantization. It applies quantization table and inverse 

quantization Equation (2.15) and (2.17) to resume the original 8X8 DCT 

coefficient matrix. The input and output are buffered to frame buffer. 

• MC: motion compensation. With reference frame and motion vectors, 

prediction errors, a new frame is rebuilt resemble with original one. If it is 

intra frame, this block is skipped. The input and output are buffered to 

frame buffer. 

• Watermark embedding IBP: the block embeds a watermark to every frame, 

I, B, P, sequentially, inter frames as B and P have two watermarks. One 

inherited from intra frame, one is embedded by the component module. 

The one inherited is the one drifting in inter frames (B and P). 

• Watermark embedding I: the block embed a watermark to intra frame only. 

The inter frames (B and P) have the same one watermark in intra frame by 

predicating. If the watermark overlaps with moving objects, it will drift back 

and forth with the moving objects. 

In the Figure (4.6), there are three coding branches: branch A, B and C. In 

branch A, the watermarking is embedded to all frames, i.e., I, B and P frames. So, 
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in this branch, inter frames B and P have two watermarks: one is predicted from 

intra frame, and one is embedded. In branch B, the watermark is inserted to intra 

frame only. However, inter frame B and P have the same watermark by 

prediction. This watermark is the drift one and need to be cancel in inter frames. 

In branch C, the frames are compressed without any watermark. So after 

decompressing, branch A has two watermarks, one is stable, another is drifting; 

branch B has one drifting watermark; branch C has no watermark. By subtracting 

branch B with branch C, the drifting watermark is extracted, and furthermore, by 

subtracting branch A with the extracted drifting watermark, the drifting watermark 

effect in inter frames is cancelled.   

 The purpose of branch C is canceling encoding noise in the drift 

compensation result. But by inspecting above drifting compensation architecture, 

one could consider that branch C is not essential because it could be replaced 

with original video frame directly. It could be removed to simplify drift 

compensation component’s complexity if encoding procedure does not generate 

too noticeable noise.  

 Similarly to architecture of watermarking in uncompressed domain, the 

one in compressed domain has architecture as follows after adding IE, IZZ, 

IQuan, MC, and modified watermarking module: 
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Figure(4.7) System address and signals in compressed domain. 
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CHAPTER 5 

PROTOTYPE DEVELOPMENT AND EXPERIMENTS 

5.1 System Level Modeling with MATLAB/Simulink™ 

 To verify algorithm and architecture, firstly, a fast prototyping module is built with 

MATLAB/Simulink™ in function block sets. The methodology at this high level system 

modeling is top-down: with MATLAB/Simulink™ building-in functions or block sets to 

create a top level conceptual system module,  then each functions will be tuned in 

details, or add new functional blocks. Both watermarking in uncompressed domain and 

compressed domain are investigated at this stage. 

5.1.1 System Level Modeling Methodology 

 MATLAB/Simulink™ has already offered video and image processing functions 

and modules for building fast prototype. The available function units are: DCT/IDCT, 

SAD for motion estimate, block processing (split), and delay (buffer). With minor work, 

quantization, zigzag scanning and entropy coding are built. Then the system level-

modeling is accomplished as sub-tasks as follows: 

 Sub-task 1: Color conversion and sampling rate compression 

Sub-task 2: DCT domain compression in each frame 

Sub-task 3: Quantization and zigzag scanning re-order 

Sub-task 4: Entropy coding by looking up Huffman coding table 

Sub-task 5: Motion estimate and motion compensation only on I and P frames 

Sub-task 6: Interpolating B frames 

Sub-task 7: Uncompressed domain watermarking 

Sub-task 8: Compressed domain watermarking without drift compensation 
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Sub-task 9: Drift compensation in compressed domain watermarking 

5.1.2 Modeling Watermarking in Uncompressed Domain 

 The system block diagrams in Simulink™ are [12]: 

 
(a) Top level block set diagram. 

(b) Block set inside “Encoder” in (a). 
Figure (5.1) Simulink™ system block set diagram for MPEG watermarking in 

uncompressed domain. 
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From Figure (5.1) (b), the video frames are watermarked at DCT domain before being 

compressed. For the three Y, Cb and Cr color frames, only Y color frame is 

watermarked for the following reasons: 

• The watermark image which is black-white monochrome or gray scale should 

only modify brightness of picture. If the watermark is color, Cb and Cr must be 

watermarked as well. 

• Y color space is more sensitive to human perception such that any unauthorized 

modification is easily detected so that it makes watermarking Y color frames ideal 

for copyright protection. 

• To avoid too much redundancy added to frames, the watermark is not embedded 

into Cb or Cr. 

To protect against frame interpolating attacks on watermarking, all I, B, P frames must 

embed the watermark. The results of watermarking on uncompressed frames are: 

 
(a) Watermark image 1. (b) Watermark image 2. 
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(c) Watermarked video 1 with image 1. (d) Watermarked video 1 with image 2. 

(e) Watermarking video 2 with image 1. (f) Watermarking video 1 with image 2. 
Figure (5.2) Watermarking in uncompressed domain results (resolution 240X320). 

In testing, two different types of watermark images are considered: one is small size 

font but covers different locations as (a) in Figure (5.2); one is big size font but covers 

only one location as (b) in Figure (5.2). Similarly, two different types of video clips are 

under testing: one is a complex but slowly changing scene as (c) and (d) in Figure (5.2); 

one is a simple but quickly changing scene as (e) and (f) in Figure (5.2). The same 

testing methodology is applied to other tests during the design. 

5.1.3 Modeling Watermarking in Compressed Domain 

 The system block sets in Simulink™ are [12]: 



 71

 
(a) System block set diagram. 

 
(b) Block set inside “Encoder” of (a). 

 
(c) Watermark embedding block set inside “Encoder YUV” in (b). 
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(d) Drift compensation block set inside “Drift Compensation” in (b). 

Figure (5.3) Simulink™ system block set diagram for MPEG watermarking in 
compressing domain. 

The watermarking block in Figure (5.3) (c) embeds the watermark in all I, B and P 

frames. As estimate, the watermark in I frame also appears in B and P because they 

are predicted from I frame. It will result in two watermarks in non-intra frames. The 

watermark predicted from I frame will drift if it overlaps with moving objects in the scene. 

So the drift compensation is applied to cancel the B and P’s watermark predicted from I 

frame. In Figure (5.3) (d), the block “Encoder Y only I WM” compresses the original 

video and watermarks I frame only. Another block “Encode Y without WM” just 

compresses original video, but does not embed watermark. The two encoders’ 

difference is the drifting watermark. After decoding two video compression codes, the 

drifting watermark can be extracted by subtracting above two videos. The “Drift 

Compensation1” block cancels the drifting watermark on B and P by subtracting. From 

the above description, the conclusion is that above drift compensation works at spatial 

domain. 

 The video compression and watermarking in compressed domain with drift 

compensation results are: 
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(a) No drift compensation. (b) Drift compensation. 

  
(c) No drift compensation. 

 
 (d) Drift compensation. 

  
 (e) No drift compensation. (f) No drift compensation. 

 
(g) Drift compensation.  

(h) Drift compensation. 
Figure (5.4) Watermarking in compressed domain results (resolution 240X320). 
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Comparing two video clips and two watermark images in uncompressed domain or in 

compressed domain, and with or without drift compensation, the result demonstrates 

that the drift compensation cancels the drifting watermark effect, especially for quickly 

moving objects.   

 But one phenomenon is also observed: if the moving object is very fast, while 

drift compensation canceling the drifting watermark, it also causes another side effect of 

blur shape moving object or even totally erased area. It is shown as figure follows: 

 
(a) Stable watermark but moving bird blur. (b) Drifting watermark but moving bird clear. 

Figure (5.5) Side effect of drift compensation of blur moving object. 

This phenomena is not observed in intra frames, only inter (P and B) frames. By 

monitoring extracted watermark, no extra video object is found with the extracted 

watermark. The suspicious one could be motion estimate failure. 

5.2 System Level Modeling with VHDL and FPGA Performances 

 Unlike previous modeling with MATLAB/Simulink™, the high-level synthesis in 

FPGA applies a different bottom-up methodology: the low level components are built 

and verified, then, with functional components, the whole system is created. At this 
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system-level prototyping development, the video compression and watermarking 

working module are implemented in FPGA with VHDL. The modules are controller, 

frame buffer, watermark buffer, DCT/IDCT, quantization, zigzag, Huffman coding and 

watermarking. 

5.2.1 Controller Performance 

 The controller generates address and control signals to synchronize other 

components. It is a finite state machine and its states are: 

 
Figure (5.6) Controller’s FSM states diagram. 

If using traditional FSM design, the controller has more states than those in above 

Figure (5.6) because the video compression and watermarking procedures are 

complicated. The solution is to merge several sub-states into one state, however, the 
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inside structure of each state become complex.  The simulation of the controller by 

Altera Quartus II is: 

Figure (5.7) Controller simulation. S0 and S1 for 297us in clock 50Mhz. 

5.2.2 2-D DCT Performance 

 The 2-dimensioal DCT is implemented with Loeffler’s fast 1-dimensional DCT 

algorithm [16]. The simulation in Xilinx© ISE is as: 

Figure (5.8) 2D DCT simulation. Total processing time: 1281ns in clock 100Mhz. 
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The simulation result comparing with MATLAB™ function dct2: 

Table (5.1) Comparison of first 20 coefficients of simulation and MATLAB™ dct2. 
Index dct2 Simulation Index dct2 Simulation 

0 252 251 10 0 0 
1 -18.2 -17 11 0 0 
2 0 0 12 0 0 
3 -1.9 -1 13 0 0 
4 0 0 14 0 0 
5 -0.56 0 15 0 0 
6 0 0 16 0 0 
7 -0.14 0 17 0 0 
8 -145.78 -152 18 0 0 
9 0 0 19 0 0 

 

5.2.3 Motion Estimation 

Figure (5.9) Motion estimate simulation. Total processing time: 51112.7ns in 100Mhz. 
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5.2.4 Quantization Performance 

Figure (5.10) Quantization simulation. 

5.2.5 Zigzag Scanning Performance 

Figure (5.11) Zigzag scanning simulation. Total processing time: 1281ns in clock 
100Mhz. 

The VHDL compilation report of components by Altera© Quartus II™ is: 

Table (5.2) Compilation and timing report of 128X128 Y frame processing in 
100Mhz clock. 

Component Logic 
elements

Registers Pins Multipliers Time(ns) 

Controller 588 157 69 0 75+30X2+150X3 
2D DCT X 4 80459X4 1006X4 40X4 70X4 1281ns 
Quantization 2363 0 31 1 0 
Zigzag 1028 780 35 0 1281 
Watermark 24 37 0 0 0 
Frame buffers 7701 6156 43 0 0 
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Motion vector buffer 667 520 31 0 0 
Watermark buffer 4043 3048 41 0 0 
RGB to YCbCr 1501 0 48 0 0 
Motion estimate n/a n/a n/a n/a 51112+4194304 
Total 339754 14722 457 281 4248563 
 

The above FPGA compilation and timing report is generated by Altera© Quartus II™ 

high level simulation and synthesis IDE tools Quartus II™. The module is DE2 Cyclone 

II™ module board. The clock 27 MHz is applied to verify FPGA performance. 

 

5.3 Discussions 

 With the performance of above functional components and integrated system, 

the whole all performance of system is estimated. The video quality metrics are applied 

to verify the system’s performance.  

5.3.1 The Video Quality of Video Compression and Watermarking 

 The video quality metrics are the RGB color image mean square error (MSE) [3] 

and peak-signal-noise-ration (PSNR) as equations [2]:  
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Where, m is the image pixel row from 1 to M, n is the image pixel column from 1 to N, 

and k is from 1 to 3 as RGB color pixels. p(m,n,k) and q(m,n,k) are images’ pixels after 

and before processing. i is the bit length of image pixel, in common RGB 24-bits digital 

video system, it is 8. From the above MSE and PSNR equations, the quality metrics 

results of video compression and watermarking in the working model are: 
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Table (5.3) Video quality metrics of video compression and watermarking. 
Compression ration Video processing type PSNR 

(dB) 
MSE 

Average Range Estimate
Video compression only 30 71 27 (16~39) 16 
Video compression and watermarking in 
uncompressed domain   

20 616 26.7 (15~38) 16 

Video compression and watermarking in 
compressed domain 

19 812 26 (15~38) 16 

The criteria of video quality are: PSNR between 40dB to 50dB, the noise is beyond 

human perception; 10dB to 20dB, the noise can be detected by human visual system 

[13].  The video compression working module has PSNR 30dB, which implies that the 

current implementation of MPEG video compression generates noticeable noises. The 

procedures of MPEG video compressions are lossy unnoticeable color space sample 

rate compression, the motion estimate with great errors, lossy DCT compression, 

quantization with noise by different step sizes, and lossless Huffman coding. More 

improvement should come from the motion estimation and the quantization procedures. 

 The PNSR of watermarking at uncompressed and compressed domain is about 

20dB. It satisfies the fact that the watermarks are visible. The 1dB difference in PNSR 

for two different watermarking schemes indicates that they are effectively same in 

watermarking even though their complexities are different. The extra complexity of the 

watermarking in compressing is caused by the drift compensation.  

 The video compression rate is contributed from two categories, the constant one 

like 4:2:0 color space sample rate whose compression rate is always 2:1, and the 

content adaptive compression whose compression rate is variable and depends on its 

content data in the motion estimation, DCT coefficients quantization and Huffman 

coding procedures. Here the variable compression rate is estimated as: assume half 
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DCT coefficients are truncated so the compression rate is 2:1. The redundancy of two 

frames is removed in 75% by the motion estimate or compression rate is 4:1, and in the 

working module, one GOP is constituted with one I frame, one B frame and 1 P frame or 

IBP structure. The motion estimation compression could be (1+1+1)/(1+1/4+1/16) ≈ 2:1. 

The DCT coefficients quantization and Huffman coding could have compression rates 

are 2:1. So the estimated average compression rate of the video compression working 

module is: 2X2X2X2=16:1. The observed average compression rate in the experiment 

is 26:1. To achieve higher compression rate, one way is to interpolate more B frames 

and more P frames in one GOP. After tuning, the average compression rate could be 

greater than 100:1.   

5.3.2 Physical and Timing Analyzing. 

 From Table (5.2), the physical and time parameters of the working module are 

estimated by simply adding extra Cb and Cr processing. Since the motion estimation 

and watermarking only occur in Y color space, the physical structure of Y processing is 

more complicated than Cb and Cr such that it is safe to estimate the total logic elements 

by tripling with Y color processing branch. However, the Y, Cb and Cr processing are 

concurrent; the time delay in Y color processing could be considered as the total delay 

in the whole working module. The physical and timing results of the working module are: 

Table(5.4) Physical and timing results for 128X128 YCbCr frames at 400Mhz. 
Elements Registers Multipliers Time(us) Frame/s 
1,019,262 44,166 843 1,063 940 

 

Above result is upon the ideal assumption that there is no physical delay in logic gates, 

but only processing delay. The total elements are a great amount because only the 

high-level modeling and simulation in behave has been achieved. The structure and 
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performance need to be optimized in algorithms and RTL level. If the model is utilized in 

resolution 720X486 applications, like NTSC television video broadcasting system, the 

working model processing speed could reach 44 frame/s, which exceeds with the 

required 29.97 frame/s. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

The working module has demonstrated the basic algorithms of MPEG-4 visual 

part advanced simple profile. Two visible watermarking schemes, watermarking in 

uncompressed domain and compressed domain, have been proved achieving similar 

visual output result (difference in 1dB), however, the compressed domain watermarking 

is more complex in structure than the uncompressed one. The similar result in the two 

working modules is based on the fact that video compression processing with PSNR 30 

dB; otherwise, the watermarking in uncompressed domain could have better PSNR than 

that in compressed domain.  

The uncompressed and compressed domain watermarking also demonstrate the 

robust of DCT domain watermarking because after every compression procedures, the 

watermark is still noticeable and integrity.  

 The simulation reports of working module with FPGA performance confirm that 2-

D DCT/IDCT is more complex in structure, and motion estimation has the greatest time 

delay. If not considering physical constraints, the encoding speed could satisfy the 

standard real time NTSC video encoding/watermarking applications in clock 400Mhz, 

but the video encoding PSNR 30 dB is still lower than normal requirement 40~50 dB. 

6.2 Future Work 

 The present model just implements basic MPEG and watermarking algorithms, 

further optimization needs to utilize for minimize physical parameters like logic gates 
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number in RTL level and  pipeline to reduce time delay. The robust of watermark should 

be tested further by emulating more different attacks attempting to remove watermark. 

6.2.1 MPEG-4 Video Compression 

 The prototype only implements the integer pixel motion estimation, to reach the 

goal of a fine resolution as MPEG-4, the half and quarter- pixel motion estimation must 

be implemented. The motion estimation is exhaustive square searching, but in MPEG-4, 

it is diamond 3-steps algorithm which can greatly improve searching speed. The 

prototype module only has an average compression rate 26:1 because an IBP GOP 

model is applied, but most commercial video compression could be more than 100:1. To 

gain higher compression rate, the GOP could be interpolated with more B and P frames. 

In the prototyping module, the video compressed stream is raw, unformatted, however, 

if a standard MPEG-4 decoder is a received ender, the prototyping module must 

generate MPEG-4 stream headers. 

6.2.2 Watermarking 

 The prototyping module only achieves the basic watermarking embedding at 

DCT domain, and it could be fragile under some attacks [53], [56], [58], [59], [60], [61] 

and [62]. More watermarking algorithms could be considered for copyright protection 

such as [53], [54], [56], [57], [59], and [62]. 

 The watermarking techniques discussed in this paper also can embed color or 

animation watermark even though just an implement of still monochrome watermark 

image is discussed for simplifying reasons. 
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 The error of blur or even disappearing fast moving video object after the drift 

compensation could be caused by failure of motion estimate. Further testing should be 

conducted, and a solution upon testing will be proposed. 

6.2.3 Hardware Implementation 

The working module FPGA performance is investigated with simulation. More 

optimization on the lower RTL levels and physical structures are needed.  
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