

APPROVED:

Elias Kougianos, Major Professor
Saraju P. Mohanty, Co-Major Professor
Shuping Wang, Committee Member
Dan Cline, Committee Member
Vijay Vaidyanathan, Program Coordinator
Albert B. Grubbs, Jr., Chair of the Department

of Engineering Technology
Oscar Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B.

Toulouse School of Graduate Studies

FPGA PROTOTYPING OF A WATERMARKING

ALGORITHM FOR MPEG-4

Wei Cai, B.E.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2007

 Cai, Wei. FPGA Prototyping of a Watermarking Algorithm for MPEG-4. Master of

Science (Engineering Technology), May 2007, 96 pp., 13 tables, 50 figures, references,

77 titles.

In the immediate future, multimedia product distribution through the Internet will

become main stream. However, it can also have the side effect of unauthorized

duplication and distribution of multimedia products. That effect could be a critical

challenge to the legal ownership of copyright and intellectual property. Many schemes

have been proposed to address these issues; one is digital watermarking which is

appropriate for image and video copyright protection.

Videos distributed via the Internet must be processed by compression for low bit

rate, due to bandwidth limitations. The most widely adapted video compression

standard is MPEG-4. Discrete cosine transform (DCT) domain watermarking is a secure

algorithm which could survive video compression procedures and, most importantly,

attacks attempting to remove the watermark, with a visibly degraded video quality result

after the watermark attacks. For a commercial broadcasting video system, real-time

response is always required. For this reason, an FPGA hardware implementation is

studied in this work.

This thesis deals with video compression, watermarking algorithms and their

hardware implementation with FPGAs. A prototyping VLSI architecture will implement

video compression and watermarking algorithms with the FPGA. The prototype is

evaluated with video and watermarking quality metrics. Finally, it is seen that the video

qualities of the watermarking at the uncompressed vs. the compressed domain are only

1dB of PSNR lower. However, the cost of compressed domain watermarking is the

complexity of drift compensation for canceling the drifting effect.

 ii

Copyright 2007

by

Wei Cai

 iii

ACKNOWLEDGEMENTS

 I would like to take this opportunity to express my profound gratitude to my thesis

advisors: Dr. Elias Kougianos (Major Professor), and Dr. Saraju P. Mohanty (Co-Major

Professor) for sharing with me their wealth of knowledge, vision and insights in the

areas of video compression, watermarking and VLSI architectures and for their support

with all necessary resources to accomplish my research work. Without their kindly help,

encouragement and guidance, it would have been impossible for me to complete this

thesis.

 I would also like to thank my committee member Dr. Shuping Wang from the

Engineering Technology department for her assistance during my early academic

studies and my colleagues at the VLSI Design and CAD Laboratory at the department

of Computer Science and Engineering for their advice during this work. I also thank Dr.

Nourredine Boubekri, Dr. Albert B. Grubbs, Dr. Robert G. Hayes, Dr. Michael R. Kozak,

Dr. Vijay Vaidyanathan, Mrs. Sandy Warren, Mr. Bobby Grimes, Mr. Mark Zimmerer and

the staff of the Department of Engineering Technology for their friendly help and

support.

Special thanks to Cheryl, Ben and my parents.

 iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ...iii

LIST OF TABLES..viii

LIST OF FIGURES ...ix

Chapters

1. INTRODUCTION... 1

 1.1 Motivation... 1

1.1.1 MPEG-4 Video Compression Standards... 1

1.1.1.1 MPEG’s History .. 2

1.1.1.2 MPEG-4 Visual Overview... 3

1.1.1.3 MPEG-4 Video Objects .. 3

1.1.1.4 Intra, Predicted and Bidirectional Predicted VOPs 4

1.1.2 Watermarking.. 7

1.1.3 FPGA (Field Programmable Gate Array) Implementation................................. 8

1.2 Problem Statements .. 9

2. RELATED WORKS AND LITERATURE ... 10

 2.1 Video Compression Algorithms ... 10

2.1.1 Color Spaces Conversion and Sampling Rate.. 10

2.1.1.1 RGB Color Space... 10

2.1.1.2 YCbCr Color Space.. 11

2.1.1.3 Sampling Rate.. 12

 v

2.1.1.4 Macroblock ... 13

2.1.2 Motion Estimation and Motion Compensation... 13

2.1.2.1 Motion Estimation... 14

2.1.2.1.1 Four Motion Vectors per Marcoblock ... 18

2.1.2.1.2 Sub-pixel Motion Estimate ... 18

2.1.2.2 Block Based Motion Compensation.. 20

2.1.3 Discrete Cosine Transform (DCT)... 21

2.1.3.1 Fourier Transform... 21

2.1.3.2 Discrete Cosine Transform (DCT) .. 22

2.1.4 Quantization of DCT Coefficients.. 29

2.1.4.1 Scalar Quantization .. 29

2.1.5 Zigzag Scanning of DCT Coefficients ... 31

2.1.5.1 Discrete Cosine Transform Coefficients Matrix .. 32

2.1.5.2 Compression at DCT/Frequency Domain... 33

2.1.6 Entropy Coding ... 35

2.1.6.1 Variable Length Coding (VLC).. 35

2.1.6.2 Huffman Coding ... 35

 2.2 Video Watermarking... 38

2.2.1 Watermarking at Spatial Domain .. 38

2.2.2 Watermarking at DCT Domain .. 39

2.2.3 Visible and Invisible Watermarking ... 41

2.2.4 Drift Compensation of Visible Watermarking in Compressed Domain 43

 2.3 FPGA (Field Programmable Gate Array) Implementation 43

 vi

3. VIDEO COMPRESSION AND WATERMARKING ALGORITHMS............................ 45

 3.1 Video Compression Algorithms .. 45

3.1.1 Color Space Conversion and Sample Rate Algorithm 45

3.1.2 Motion Estimation Algorithm ... 45

3.1.3 Fast Discrete Cosine Transform (FDCT) Algorithm .. 47

3.1.4 Quantization Algorithm.. 48

3.1.5 Zigzag Scanning Algorithm ... 50

3.1.6 Entropy Coding Algorithm ... 51

3.1.7 MPEG Video Compression Algorithm ... 53

 3.2 Watermark Embedding Algorithms.. 53

3.2.1 Watermarking Algorithm in Uncompressed Domain 54

3.2.2 Watermarking with Drift Compensation Algorithm in Compressed Domain 55

4. SYSTEM ARCHITECTURE .. 58

 4.1 Architecture of MPEG Watermarking in Uncompressed Domain 58

 4.2 Architecture of MPEG Watermarking in Compressed Domain.............................. 62

5. PROTOTYPE DEVELOPMENT AND EXPERIMENTS... 67

 5.1 System Level Modeling with MATLAB/Simulink™.. 67

5.1.1 System Level Modeling Methodology ... 67

5.1.2 Modeling Watermarking in Uncompressed Domain .. 68

5.1.3 Modeling Watermarking in Compressed Domain.. 70

5.2 System Level Modeling with VHDL and FPGA Performances............................... 74

5.2.1 Controller Performance... 75

5.2.2 2-D DCT Performance .. 76

 vii

5.2.3 Motion Estimation ... 77

5.2.4 Quantization Performance .. 78

5.2.5 Zigzag Scanning Performance.. 78

 5.3 Discussions ... 79

5.3.1 The Video Quality of Video Compression and Watermarking 79

5.3.2 Physical and Timing Analyzing. .. 81

6. CONCLUSIONS AND FUTURE WORK.. 83

 6.1 Conclusions.. 83

 6.2 Future Work.. 83

6.2.1 MPEG-4 Video Compression .. 84

6.2.2 Watermarking.. 84

6.2.3 Hardware Implementation... 85

REFERENCES.. 86

 viii

LIST OF TABLES

Page

1.1 Prediction equations for I, B and P frames . .. 6

2.1 Sub-pixel motion estimate in MPEGs. ... 20

2.2 DC and AC coefficients 27

2.3 Huffman code example 36

3.1 Loeffler’s fast 8 element 1-D Inverse DCT algorithm.. 47

3 2 DCT adders and multipliers in total 47

3.3 MPEG video compression algorithm flow.. 53

3.4 MPEG watermarking algorithm flow in uncompressed domain 55

3.5 MPEG watermarking algorithm flow in compressed domain. 56

3.6 Comparison of first 20 coefficients of simulation and MATLAB™ dct2................ 77

3.7 Compilation and Time report of 128X128 Y frame processing in 100Mhz clock.. 78

3.8 Video quality metrics of video compression and watermarking.. 80

3.9 Physical and Timing results for 128X128 YCbCr frames at 400Mhz.. 81

 ix

LIST OF FIGURES

Page

1.1 Video object and video object planes. ... 4

1.2 Synthesize VOs into a scene.. .. 4

1.3 I, B and P frames, forward, backward and interpolated predictions.. 6

2.1 4:2:0 macroblock.. ... 13

2.2 The redundancy among movie frames.. .. 14

2.3 Searching regions overlap.. 16

2.4 Three searching regions for motion estimate.. .. 17

2.5 Even and odd signals.. .. 23

2.6 Constructing signals with cosine and sine transforms.. ... 23

2.7 Calculating an 8x8 2-D DCT with 1x8 1-D DCT.. .. 26

2.8 DCT and DST frequency domain coefficients.. ... 27

2.9 Comparing the matrixes before and after DCT.. 28

2.10 Zigzag scanning of DCT coefficient matrix.. .. 32

2.11 Compress image at DCT domain.. .. 33

2.12 Huffman tree for Huffman coding. ... 37

2.13 Embedding a watermark at mid frequency. ... 39

2.14 Watermark embedding at 16X16 DCT coefficients matrix..................................... 41

2.15 Watermarking at uncompressed and compressed domain. 42

3.1 Motion estimate data path block diagram.. 46

3.2 Motion estimate flow chart... 46

3.3 2-D DCT component data path block structure.. ... 47

 x

3.4 2-D DCT algorithm flow chart.. .. 48

3.5 Quantization component data path block diagram.. .. 49

3.6 Quantization algorithm flow chart. ... 49

3.7 Zigzag scanning component data path block diagram.. 50

3.8 Zigzag scanning algorithm flow chart. ... 51

3.9 Entropy coding (Huffman) component data path block diagram............................ 52

3.10 Entropy coding (Huffman) algorithm flow chart.. ... 52

3.11 Watermark embedding algorithm flow chart. ... 54

3.12 Watermarking in uncompressed domain data path and flow chart........................ 54

3.13 Watermarking in compressed domain and drift compensation.............................. 56

4.1 Block level view of MPEG video compression and visible watermark embedding

module. ... 58

4.2 System architecture of MPEG video compression and watermarking in

compressed domain. ... 59

4.3 System data path of watermarking in uncompressed domain (data bus width is 12-

bits). .. 61

4.4 System address and signals of watermarking in uncompressed domain.. 61

4.5 Block level view of MPEG video compression and visible watermark embedding

module on compressed domain.. .. 62

4.6 System architecture of MPEG video compression and watermarking in

compressed domain.. 63

4.7 System address and signals in compressed domain.. .. 66

 xi

5.1 Simulink™ system block set diagram for MPEG watermarking in uncompressed

domain. ... 68

5.2 Watermarking in uncompressed domain results (resolution 240X320). 70

5.3 Simulink™ system block set diagram for MPEG watermarking in compressed

domain.. .. 72

5.4 Watermarking in compressed domain results (resolution 240X320).. 73

5.5 Side effect of drift compensation of blur moving object.. 74

5.6 Controller’s FSM states diagram.. ... 75

5.7 Controller simulation. S0 and S1 for 297us in clock 50Mhz 76

5.8 2D DCT simulation. Total processing time: 1281ns in clock 100Mhz.. 76

5.9 Motion estimate simulation. Total processing time: 51112.7ns in 100Mhz............ 77

5.10 Quantization Simulation.. .. 78

5.11 Zigzag scanning simulation. Total processing time: 1281ns in clock 100Mhz....... 78

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Presently, most multimedia products like audio, video, images and text are

transacted in physical media, at physical stores. However, as broadband Internet

becomes available to commercial and private users, those multimedia resources can be

openly accessed by the masses, and could be distributed much more quickly and widely.

From this trend, one can predict that as more and more songs, movies and images will

be exchanged in the Internet, the download multimedia sales will finally surpass the

traditional sales channels in the near future. This trend could benefit the multimedia

product owners, but also could challenge their ownership because most multimedia

resources are distributed in unsecured formats. Furthermore, this situation is further

degraded by the fact that duplicating and distributing digital multimedia products is

almost cost-free and instantaneous. To legal authorities, arbitrating the ownership of

multimedia products is not easy, unless a mechanism can guarantee the genuine

integrity of copyright. Multimedia watermarking is a secure solution for copyright

declaration and intellectual property protection. This thesis will study one type of multi-

media, namely video and its watermarking algorithm techniques.

1.1.1 MPEG-4 Video Compression Standards

 MPEG (moving picture experts group) is a branch of the ISO (International

Standardization Organization) for video/audio compression and related techniques in

commercial and industrial applications. The famous MPEG-1, MPEG-2, and MPEG-4

 2

video compression standards are the results of the group’s work. New standards like

MPEG-9 and MPEG-21 are still under development. MPEG-1 mainly is applied for video

distribution with laser video compact disks (VCD); MPEG-2 is for high-definition

television (HDTV) broadcasting and high quality movie/video distribution in digital video

disks (DVD). MPEG-4 is the mainstream exchangeable video format in the Internet

because MPEG-4 has higher and flexible compression rate, lower bit rate, and higher

efficiency. Microsoft©, Real© and Apple© support MPEG-4 standard and already have

embedded MPEG-4 decoders into some of their products. Other companies or

organizations also provide MPEG-4 encoders/decoders or Codecs, and there are even

free products such as Xvid™ [1]. The main techniques involved in MPEG standards are

color space conversion and sampling rate, block-based motion estimation and motion

compensation, discrete cosine transform (DCT), zigzag scanning and entropy coding

compression. The data format of the MPEG stream is in hierarchical layers.

1.1.1.1 MPEG’s History

 In 1991, the first MPEG standard (MPEG-1) was finalized, which can compact

audio and video high quality. The MPEG-1’s audio specification, MPEG-1 Audio Layer 3

or popularly referred as MP3, is broadly accepted as a digital audio lossy compression

format. Since it supports progressive frames only, MPEG-1 could not be utilized in

television broadcasting. The next is MPEG-2 which was finalized in 1994. MPEG-2

supports interlaced field coding and scalability ao that it is widely adapted in television

video broadcasting. The movie industry accepts MPEG-2 for digital versatile disk (DVD)

to distribute high quality movie/video products. To achieve greater compression rate

and more flexible scalability, MPEG-4 was finalized in 1998. MPEG-4 can support very

 3

low bit rates (<64kbps), and variable compression rates for different applications. It

quickly becomes the main multimedia distribution format in the Internet [2].

1.1.1.2 MPEG-4 Visual Overview

 The goal of this thesis is to implement video watermarking insertion, so only the

video part or MPEG-4 Visual is researched. The MPEG-4 Visual consists of tools, visual

objects, profiles and levels. The tools are coding functions to support specified video

features. Objects, which are coded by the tools, are a video’s elements, like rectangular

frames, arbitrary shapes, still texture, animation models, etc. The profiles are a set of

objects a MPEG-4 Codec will process. A brief description of MPEG-4 visual profiles is

given as in [2]. Furthermore, a profile contains the levels which define the constraints of

a bit stream’s parameters. For example, profile advanced simple level 5 has typical

resolution 720X576, maximum bit rate 8 Mbps, maximum objects 4 AS or simple [2]

pp103. Generally, MPEG-4 refers to MPEG-4 visual profile advanced simple when

discussing video exchanging format for Internet multimedia.

1.1.1.3 MPEG-4 Video Objects

 The hierarchical structures and terms in MPEG-4 are different from those in

MPEG-1 and MPEG-2. However, the MPEG-4 Visual part is extended from MPEG-2, so

the different terms in some profiles could be the same as in the early MPEG standards.

MPEG-4 manipulates a movie as a collection of video objects, not only the rectangle

frames as previous standards. Each video object can be accessed individually, such as

searching, browsing, cutting and pasting. For the video objects which exist within a

certain span of time and at a particular point of time, an instance of a video object is

defined as video object plane (VOP), which is shown in figures (1.1) and (1.2). The

 4

older term “frame” is equivalent to VOP if the objects are rectangular frames. But

“frame” could not properly describe the arbitrary-shape video objects in MPEG-4.

However, for MPEG-4 visual advanced simple profile, the rectangle video object planes

(VOPs) could be treated as frames, and in this thesis, the term “frame” and “rectangular

video object planes (VOPs)” are interchangeable.

Figure (1.1) Video object and video object planes.

(a) Video object 1 (b) Video object 2 (texture) (c) Synthesized scene

Figure (1.2) Synthesis of video objects into a scene.

1.1.1.4 Intra, Predicted and Bidirectional Predicted VOPs

 In early MPEG standards, these VOPs also are called intra frames, predicted and

bidirectional predicted frames. In motion estimation and motion compensation, the ever

 5

first base frame to predicate other frames is defined as Intra frame since there will be no

temporal compression occurring, but only the compression within the frame itself. The

intra frames are referred to as I frames in short. If one frame is reconstructed by

predicting from other frames with motion estimation and motion compensation, it is

called Intermedial frame or Inter frame in short. Furthermore, Inter frames can have two

categories: Predicted or P frame and Bidirectional or B frame. P frames can be

predicted from an I frame or another P frame while B frames need two frames, I and P

or two P frames, to rebuild the frame. A group of VOPs (video object planes of MPEG-4)

or GOPs (group of pictures in MPEG-1/2) will contain one I frame as base, some P

frames and B frames interpolated between I frame and P frame or two P frames. For

example, a GOP has one I frame, 7 P frames and 7 B frames interlaced between I and

P frame or two P frames, for a total of 15 frames. Two such kinds of GOPs will be 30

frames for one second frame sequence of a standard NTSC video. A natural reduction

of prediction is a previous frame as the base frame to predict other following. Actually, a

later frame can also become a base frame to predicate previous frames. From this,

three prediction directions are defined: forward prediction, backward prediction and

interpolated prediction. Figure (1.3) demonstrates an example of I, B and P frames,

forward, backward and interpolated prediction.

 6

Figure (1.3) I, B and P frames, forward, backward and interpolated predictions.

From Figure (1.3), one can estimate that the coding sequence of a GOP is I-P-B-P-B-P-

B…, which is not the video play back sequence I-B-P-B-P-B-P… because the P frame

will always be coded before the B frame. Certainly, the B and P order in the decoding

end must be re-sorted back: B followed by P. The B frame in Figure (1.3) will be

predicted by interpolating a frame from two frames with a bilinear equation as [3]:

Table (1.1) Prediction equations for I, B and P frames.
Frame type Prediction equation Prediction error

Intra (I) frame)(0 xF
Forward prediction)()(0101 mvxFxF +=
Backward prediction)()(2121 mvxFxF +=
Interpolated prediction

2
)()(

)(212010
1

mvxFmvxF
xF

+++
=

)()(11 xFxF −

In the above table, 0F is Intra I frame; 1F is predicated frame; 2F is P frame; 01mv is

motion vector related with forward prediction from 0F to 1F ; 21mv is motion vector

 7

related with backward prediction from 2F to 1F ; 1F is original frame, and Prediction Error

is for motion compensation. B frames will greatly reduce temporal redundancy among

frames and will not propagate errors like a P frame. The quantity of B frames

interpolated between two frames could be adaptable according to compression ratio,

and picture quality. But if there are too many interpolated B frames, much more time

delay could occur [3].

1.1.2 Watermarking

Watermarking is embedding extra data, called a watermark, into a message

while, at the receiving end, the embedded data can be detected or extracted by proper

methods. Watermarking originally can be traced back to steganography, a technique to

hide data into the host message without the knowledge of end users. The name of the

watermark is taken from the special processing in paper, money bills and security bonds

for security.

The categories of watermarking can be seen from different aspects: according to

human perception, it can be visible or invisible; according to its strength, it can be robust

or fragile; according to applications, it can be source based or destination based;

according to document types, it can be text, image, audio or video; according to the

working domain, it can be spatial or in the frequency domain [4]. Visible and invisible

watermarking can both be used for copyright protection; additionally, invisible

watermarking also is utilized in security applications such as covert communications.

Robust watermarking can withstand attacks of the attempt to remove the watermark,

unless the attacker is willing to accept downgraded image or video. On the contrary,

fragile watermarking will be prone to corruption if any unauthorized attempts to modify

 8

the original document occur. The strength of robust and fragile watermarking comes

from digital cryptographic algorithms. A watermark can be embedded into text, images,

audio or video as redundant data. The procedure of inserting a watermark into a host is

called embedding, and the inverse procedure is called extraction or detection.

Depending on embedding algorithms, some watermarks could not be extracted exactly

as the embedded one; however, with proper detection algorithms, the existence of a

certain watermark can be confirmed. This feature can also be desirable for copyright

protection.

There are some schemes to attack video watermarking, described in [5], [6], [7],

[8], and [9]. Due to the robust nature of DCT (discrete cosine transform) watermarking,

visible watermarking in the DCT domain was chosen in this thesis to accomplish MPEG

video copyright protection.

1.1.3 FPGA (Field Programmable Gate Array) Implementation

The implementation of watermarking could be in many platforms such as

software, hardware, embedded controller, DSP, etc. For commercial applications like

movie production, video recording, on-spot video surveillance, real-time response will

be always required, so a software solution is not recommended due to its long time

delay. Since the goal of this research is a high performance encoding & watermarking

unit in an integrated circuit (IC) for commercial applications, and since FPGAs (field

programmable gate arrays) have advantages in both fast processing speed and field

programmability, it was determined that an FPGA is the best approach to build a fast

prototyping module for verifying design concepts and performance. Two companies

 9

Altera© [10] and Xilinx© [11] are chosen as the suppliers of prototype platforms to

implement MPEG and watermark embedding algorithms.

1.2 Problem Statements

 The MPEG-4 standard is not freely available so that the full text of the standard

could not be obtained from the Internet. Library and published papers can be resources;

and open source projects like Xvid™ become another source. Xvid™ only fulfils MPEG-

4 visual profile advanced simple so that the module described in this work will not

support more advanced algorithms.

First, the MPEG video compression module should be built with a high level

architectural design tool like MATLAB/Simulink™ [12] to verify the video compression

algorithms and their performance. In this step, the algorithms like discrete cosine

transform (DCT), motion estimation/motion compensation, quantization, zigzag

scanning and entropy coding will be implemented and tested in a high level language

environment. Then a visible watermark algorithm will be embedded into a video. The

solution for the problem of watermark drifting can be tested at this stage. After all the

algorithms are verified, the working module will be converted into an appropriate

intermediate description language for simulation and then programmed into an FPGA

device for the prototype.

 10

CHAPTER 2

RELATED WORKS AND LITERATURE

2.1 Video Compression Algorithms

 Video compression algorithms in MPEG are color space conversion and

sampling rate, discrete cosine transform (DCT) and inverse discrete cosine transform

(IDCT), motion estimation and motion compensation, quantization, zigzag scanning and

entropy coding.

2.1.1 Color Spaces Conversion and Sampling Rate

Human visual perception or human visual system (HVS) can only perceive a

short range of wavelengths of light in the electromagnetic spectrum: from 400nm to

700nm, or commonly called seven-color rainbow: red, orange, yellow, green, blue,

indigo and violet. Furthermore, the seven-color rainbow can be constructed from three-

original colors. In the video and movie industries, two three-original colors are widely

used: RGB and YCbCr. Each three-original color is called a color space.

2.1.1.1 RGB Color Space

 RGB color space has three original colors: red, green, and blue. They are the

colors human eyes can see, and their combination in different brightness will create all

colors in the real world. In digital image or video, each pixel has three elements to

represent the three colors in brightness. The three colors have the same importance in

a final combination result; therefore, the three color’s brightness must be stored in the

same resolution.

 11

2.1.1.2 YCbCr Color Space

 YCbCr is another color space besides RGB. Y presents the luminance or

brightness of a pixel; Cb and Cr are chrominance or color difference. RGB and YCbCr

are interchangeable. According to the ITU-R recommendation BT.601, the exchange

equations between RGB and YCbCr are [3]:

CrYR 402.1+=
CrCbYG 714.0344.0 −−= (2.1)

CbYB 772.1+= ⎪
⎭

⎪
⎬

⎫

,

We can estimate that the Cb and Cr in Equation (2.2) could be negative values, but to

the actual digital image or video pixels in 8-bits, the data range is 0~255 and only

positives are permitted. So, the Equation (2.2) is adjusted as Equation (2.3):

 The RGB color space and YCbCr color space are interchangeable; however,

they are not the same in applications. The RGB color space presents the final image for

visual results, YCbCr color space is the intermediate data for image and video

processing.

 BGRY 114.0587.0299.0 ++=
)(564.0 YBCb −= (2.2)

)(713.0 YRCr −= ⎪
⎭

⎪
⎬

⎫

.

 BGRY 114.0587.0299.0 ++=
)(564.0 YBCb −= +128 (2.3)

)(713.0 YRCr −= +128 ⎪
⎭

⎪
⎬

⎫

.

 12

2.1.1.3 Sampling Rate

Because the human visual system is more sensitive to brightness than to

difference in color, unlike RGB colors which are stored in the same resolution, Cb and

Cr could be in lower resolution than Y although the alteration of the final image quality is

still beyond human perception. That observation results in three types of image pixel

sampling rates called 4:4:4, 4:2:2 and 4:2:0 sampling rates as shown in [2]. A 4:4:4

sampling rate means each pixel’s Y, Cb, Cr will be sampled completely. Consider a 4

pixels group: the samples of them will contain 4 Y samples, 4 Cb samples and 4 Cr

samples. That is where the term 4:4:4 sampling rate comes from. The 4:4:4 sampling

rate preservers the complete fidelity of the image’s luminance and chrominance

components, so it is utilized in very high quality and resolution commercial, industrial, or

military applications. 4:2:2 sampling rate will sample same the pixel group in 4 Y

samples, but 2 Cb and 2 Cr samples. Compared with 4:4:4 sampling rate, the 4:2:2

sampling produces less samples and less data density. Even though some

chrominance is ignored, the 4:2:2 sampling rate is still fair enough for high resolution

commercial image or video reproduction. The more commonly one, 4:2:0 sampling in a

4 pixels group contains 4 Y samples, 1 Cb and 1 Cr sample. The 4:2:0 sampling rate is

widely accepted in television broadcasting, video/movie industry. The MPEG standard

adopts 4:2:0 sample rate for VCD, DVD, HDTV, etc.

 The 4:2:0 sampling rate will reduce the sampling rate of color space into half that

of the 4:4:4 sampling rate by neglecting 75% chrominance samples. However, because

of the nature of human visual system, human eyes generally could not distinguish the

difference. To different applications and algorithms, Y, Cb, and Cr could be combined

individually to accomplish different effects.

 13

2.1.1.4 Macroblock

 In the MPEG standard, one macroblock is a 16x16, 8x8 or 4x4 sampling

luminance or chrominance block, and it is the basic data element for processing. It is

the object of the coding operations such as motion estimation, motion compensation,

discrete cosine transform, quantization, and entropy coding. According to different

MPEG algorithms, a macroblock’s constituents could be of different pixel size. The most

commonly accepted one is 16x16 block, called a pel. Regarding 4:2:0 sampling, with 4

Y block samples, 1 Cb and 1 Cr block sampling, if the macroblock is a 16x16 pixel

block, it will contain four 8x8 sampling Y blocks, one 8x8 Cb and one 8x8 Cr blocks.

One such 4:2:0 macroblock’s details are shown in Figure (2.1):

8X8 8X8 8X8

8X8

8X8 8X8
Y

Cb

Cr

Figure (2.1) 4:2:0 macroblock.

2.1.2 Motion Estimation and Motion Compensation

 Video compression can be accomplished with color space sampling, DCT high

frequency coefficient removing, quantization scaling, entropy lossless coding, and

motion estimation with motion compensation in temporal domain. MPEG standard

adopts spatial domain block based motion estimation and motion compensation.

Actually, motion estimation and motion compensation also work in DCT domain

because the position variables in spatial domain are exchangeable with the frequency

variables in DCT domain. The goal of this work is an implementation of watermarking in

MPEG video stream, so only the spatial domain motion estimation and motion

compensation will be introduced.

 14

2.1.2.1 Motion Estimation

 A video playing is actually a serial of frames that are been playing continuously.

However, the human eye will view those continuous images as a movie because of

human visual perception’s persistence of vision. For example, to play a smooth and

flicker-free movie, the television broadcasting standard NTSC requires a movie playing

at a rate of 29.97 frames per second. If all those frames are transmitted without any

compression, the communication bit rate will be very high and overflow most present

communication carrier’s bandwidth. For example, an uncompressed HDTV of resolution

1920X1080 in 30 frames per second will demand a bandwidth of 1.39 Gbps [2]. Figure

(2.2) indicates the significant redundancy in two adjacent frames.

(a) Amplitude of a frame. (b) Amplitude difference of two frames.

(c) Brightness difference of two frames. (d) Brightness difference in contour.

Figure (2.2) The redundancy among movie frames.

 15

The Figures of (2.2), (b) (c) and (d) indicates that the difference of two adjacent frames

in a movie could be trivial. To remove the redundancy among frames, a based frame

and the difference between two frames will be transmitted rather than two whole frames.

That is the general concept of MPEG temporal compression model; however, MPEG

compresses the frame differences further by motion estimation.

 Before running motion estimation, an image is required to be split into smaller

pixel groups called macroblocks as the element of the image rather than a single pixel

for the compromise between efficiency and performance to analyze a video’s temporal

model. A macroblock commonly has the size of 16X16, 8X8 or 4X4 pixel. For two

frames following each other in time, we can consider the difference between two frames

is the macroblock position changing within a certain area of the frame. The variable to

describe the position change is called motion vector. With the macroblock in the base

frame and its two dimensional motion vector, the current frame can be predicted from

the previous frame. The region in which the macroblock is sought for match could be a

square, diamond, or arbitrary shape as in MPEG-4. For most applications, a square

region is considered. For example, if the macroblock is 16X16 pixel size, the searching

region will be 48X48 pixels block (some algorithms also use a diamond shaped region

rather than a square one). The criterion of match for two blocks is the minimized

difference between two blocks. For computation simplification, we apply sum of

absolute difference (SAD) as the criterion for matching. Its equation is [3]:

⎪
⎪
⎩

⎪⎪
⎨

⎧

++−

=−−
=
∑∑

∑∑
−

=

−

=

−

=

−

=
1

0

1

0

1

0

1

0

),(),(

)0,0(),(),(),(
),(N

i

N

j

N

i

N

j
N

yjxipjic

yxforCjipjic
yxSAD (2.4)

 16

Where, c(i,j) are the pixels of current block, and i, j = 0, 1, … , N-1; p(m,n) are the pixels

of previous block for searching region, and m,n= -R, -R+1, ..., 0,1,…, R+N-1. From

Equation (2.4), we can speculate that this SAD algorithm will search exhaust every

where of the region in the step of one pixel, and the block with minimum SAD result will

be taken as a match. To those applications whose searching speed is critical, some fast

searching algorithms can be adapted, such as three-step search algorithm (TSS), four-

step search algorithm (FSS), and cross search algorithm (CRS) [3]. In our design,

exhaust SAD is used.

 One problem will arise if the match block is located at the boundary across two

adjacent regions; the match block could then not be found. The solution is to arrange

two adjacent regions overlapping with each other with a width of macroblock minus 1.

For example, for a 16X16 macroblock searching in a 48x48 region, the next region will

have a 15X47 or 47X15 overlap with each other. If the match block is within the overlap

and could not find the match, it can be matched in next region. This is shown in Figure

(2.3).

From this Figure (2.3), we observer that the region for 3X3 in macroblock sizes, only the

center one, or the block’s present position, does not overlap with other regions. That

 16x

16

Figure (2.3) Searching regions overlap.

 17

guarantees that there could be no neglect in searching at the boundary area. One

consideration of searching region block could be if the current block is at the image’s

boundary, what the searching region in the previous frame will be? Beside the above

3X3 region in macroblock size, there are another two cases needed to investigate: at a

corner or at a boundary. For the corner macroblock, the search region in previous frame

will be a 2X2 in macroblock size; for the boundary macroblock, it will be a 2X3 or 3X2 in

macroblocks size. They are clearly shown in Figure (2.4):

Figure (2.4) Three searching regions for motion estimate.

To make all searching region same size, four extra strips in 15X47 or 47X15 are added

along image four boundaries. Another purpose of adding strips to solve the problem of

matching a macroblock moving out of or into the boundary of a frame. In that case, the

search could not have a match such that a disorder at the boundary will occur in the

reconstructed frame. A simple solution is adding extra blank strips in width of 15 pixels

along the outside of the image boundary. That ensures, even in the worst condition, at

least 15 pixels will match in current macroblock and searching region. In the MPEG

video compression, we only run motion estimation for Y macroblock. The Cb and Cr will

directly use Y’s motion vector. To the 4:2:0 sampling block, the motion vectors for Cb

and Cr are half of Y’s:

 18

2
Y

CrCb
MVMVMV == . (2.5)

 For fine image quality and high resolution applications, some advanced motion

estimation methods are introduced, such as four motion vectors per marcoblock and

sub-pixel motion estimate.

2.1.2.1.1 Four Motion Vectors per Marcoblock

 In 4:2:0 sampling rate video, the traditional motion estimation only generates

one Motion Vector for the whole 16X16 pixel Y macroblock. From Equation (2.5), the

motion vectors for the 8X8 Chrominance blocks can be calculated. An improved way for

finer match is that the16X16 pixel Y macroblock will be split further into four 8X8 blocks,

and for each 8X8 block the motion estimation will be calculated individually to search for

their own motion vectors [3] p92.

2.1.2.1.2 Sub-pixel Motion Estimate

 The traditional motion estimation is also called integer-pixel motion estimation

because it only produces the motion vectors in integer displacement values. But the real

world is analog, and the image elements will be continuous, so the displacements of

each pixel could not be necessarily integer values. In the case of presenting such

images with integer displacement, an error could not be avoided. To accomplish further

better match resolution, a motion estimation can be run on an interpolated bilinear

frame, and the resulting motion vectors could be fractional displacements rather than

integers. For example, if running half-pixel motion estimates, a motion vector could be

(4.5, -1.5); if running quarter-pixel motion estimates, a motion vector could become

(4.25, -1.75). To obtain sub-pixel motion estimates, the bilinear frames need to be

 19

interpolated. For half-pixel motion estimate, it is can be imagined that the original search

region is zoomed in two times, and the blank pixel between two adjacent pixels will be

interpolated two extra pixels according to bilinear algorithm. Similarly, the quarter-pixel

motion estimate will zoom in the region in four times and four extra pixels will be

inserted between two original pixels with bilinear algorithm computing results. The

concept of sub-pixel motion estimate and interpolation is indicated in [3] p58. The

bilinear equation of sub-pixel interpolation is:

421 AAA == ,

4
,

2
,

2
1111

2
11

2
11

2
DCBADCACBAB +++

=
+

=
+

= , (2.6) {
 8

,
4

,
4

1111
2

11
2

11
4

DCBADCACBAB +++
=

+
=

+
= .

Understandably, if the sub-pixel motion estimate scheme is applied, both the

compression and decompression ends need to interpolate extra frames. That will

consume more computation resources and more time.

 The sub-pixel motion estimation search approach could be implemented in two

different ways. One is searching after inserting extra bilinear pixels; another is firstly

running integer-pixel search, then interpolating bilinear pixels, later searching match. In

the latter approach, so-called from gross to fine, one can avoid searching in bigger

region so that it can reduce computation complexity and run much faster. For better

resolution and smoother image, 1/8th, 1/16th or further pixel motion estimation also could

be considered. Actually, for balance of fine quality and fast processing time, most video

compression standards accept half- and quart-pixel motion estimation. Table (2.1) gives

the motion estimates commonly implemented in MPEG standard.

 20

Table (2.1) Sub-pixel motion estimate in MPEGs.
Standard Integer ME Half ME Quarter ME
MPEG-1 Yes Yes No
MPEG-2 Yes Yes Yes
MPEG-4 Yes Yes Yes

 Motion estimation will reduce redundancy among frames in the temporal

domain significantly. With motion estimation, only the base frame called Intra frame and

the motion vectors are needed to be transmitted to predict the next frame. However,

motion estimation will propagate and accumulate the errors created by prediction from

the Intra frame and motion vectors. To compensate for the accumulated errors, motion

compensation is introduced.

2.1.2.2 Block Based Motion Compensation

 Even the best match in motion estimation could not guarantee two macroblocks

are exactly same. The small difference between the prediction by motion estimation and

the original image will keep on accumulating until the whole video image is smashed. A

smart method called motion compensation is introduced [3] p63. As the block based

motion estimation works in spatial domain, the block based motion compensation also

corrects the prediction error in spatial domain. The motion compensation procedure can

be describes as that, first the predicted frame will be built from the base frame and

motion vectors from the motion estimate. Then the original frame related with predicted

frame will be subtracted with the predicted frame, and the resulting difference is called

residual frame. The macroblocks in residual frame are called prediction errors. The

residual frame can compensate the error from the motion estimate. The motion

compensation equation is defined as:

1,...,1,0,),(),(),(−=++−= NjiMVMVipjicjid yx (2.7)

 21

Where d(i,j) is motion compensation, c(i,j) is current frame to be predicated, p is

predicated result, MVx, MVy are two dimensional motion vectors. Therefore the whole

video compression in temporal model has only three elements: base frame, motion

vector to predict the next frame produced by motion estimation, and the residual frame

for motion compensation by subtracting between the original frame and predicted frame.

They will be coded and transmitted to the receiver end. The decoding receiver will

rebuild the movie with Equation (2.8) [3]:

1,...,1,0,),(),(),(−=+++=
∧∧

NjiMVMVipjidjic yx (2.8)

2.1.3 Discrete Cosine Transform (DCT)

Discrete cosine transform is a mathematical tool to process signals like images

or video. It will transform the signal variables from the spatial domain to the frequency

domain or with its inverse transform, from the frequency domain back to the spatial

domain without quality loss. The discrete cosine transform is the real part of the Fourier

transform, and it can be quickly computed with hardware or software. For real-time

video compression and watermarking processing, a fast discrete cosine transform will

be implemented.

2.1.3.1 Fourier Transform

Before discussing the discrete cosine transform, the Fourier transform will be

briefly introduced because the discrete cosine transform is derived from the Fourier

transform. The Fourier theorem states that any signal can be constructed by summing

a series of sines and cosines in increasing frequency. It is written as [13]:

∫
+∞

∞−

−= dxuxiuxxfuF))2sin()2)(cos(()(ππ

(2.9)

 22

Here, f(x) is the signal with time variable x, and F(u) is the transformed result with

frequency variable u. A very important feature of the Fourier transform is that an inverse

function (Equation (2.10)) can transform the frequency domain expression back to the

time domain expression [13].

∫
+∞

∞−

−= duuxiuxuFxf))2sin()2)(cos(()(ππ

(2.10)

Besides transforming the time domain back-and-forth to the frequency domain, the

Fourier transform also can work on spatial domain from-and-to frequency domain. To

process discrete signals like digitized images, sound, etc, which are discrete rather than

continuous, the discrete Fourier transform and its reverse expressions are deduced as

Equations (2.11) and (2.12) [13].

∑
−

−=
1

0
))2sin()2)(cos((1)(

N

N
uxi

N
uxxf

N
uF ππ

(2.11)

∑
−

−=
1

0
))2sin()2)(cos(()(

N

N
uxi

N
uxuFxf ππ

(2.12)

Here F(u) is discrete Fourier transform coefficient, f(x) is input raw data, and N is the

discrete frequency component for constructing the discrete Fourier transform.

2.1.3.2 Discrete Cosine Transform (DCT)

If an image is treated as a function of amplitude with the distance as variable,

according to the Fourier theorem, that function can be built up with a series of cosines

and sines in increasing frequency. When the function is with sine parts only, it is called

Sine transform, and with cosine parts only, it is called cosine transform. All the Fourier

transforms, the sine transform and the cosine transform have their specialized

applications in image processing. However, in MPEG video compression and

 23

watermarking, the cosine transform is the mostly commonly used one. To understand it,

consider two signals, even and odd as in Figure (2.5):

The even signal has non-zero amplitude at time 0 or frequency 0 while the odd signal

has zero amplitude. To construct the even or odd signal, either the cosine or sine

transform function can be chosen, however, with cosine transform, the result for even

signal requires less frequency range while with sine transform, the result for odd signal

will have less frequency range. This can be indicated by Figure (2.6).

Figure (2.6) Constructing signals with cosine and sine transforms.

Figure (2.5) Even and odd signals.

 24

An image can be considered as an even signal because its average brightness or the

brightness at frequency 0, generally, is of non-zero amplitude. Reasonably, building the

image with Cosine transform could require less frequency parts than with the Sine one.

A digital image, unlike one in a continuous mode in the real world, is in a discrete mode

with the pixels as elements. Technically, the discrete cosine transform (DCT) is applied

especially in the digital image processing. The reasons for applying discrete Cosine

transform in digital image processing are, first, it can remove the correlation among

image pixels in the spatial domain. Secondly, discrete cosine transform requires less

computation complexity and resources. The one dimensional discrete cosine transform

Equation (2.13) and its inverse transform Equation (2.14) are given by [14].

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛ +

=
1

0 2
)12(cos)()()(

N

x N
uxxfuuC πα

,

(2.13)

 ∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛ +

=
1

0 2
)12(cos)()()(

N

u N
uxuCuxf πα

.

(2.14)

Here, C(u) is discrete cosine transform coefficient, f(x) is signal variable, N is element

numbers, u=0,1,2,…, N-1.

For both Equations (2.13) and (2.14)

0

0

2

1

)(
≠

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
u

u
for

N

Nuα

.

(2.15)

The above one-dimensional discrete cosine transform algorithm will consume too much

computation for a real time system. If computing an 8 element transform, it needs 56

adders and 72 multipliers. So, some fast algorithms are presented. Chen introduced a

fast DCT algorithm in [15], and Leoffler presented an improved fast one dimensional

DCT algorithm in [16]. Leoffler’s fast algorithm of 8 elements DCT and inverse DCT [17]

 25

was selected for this work. Because of the symmetrical feature of the Cosine Transform,

the inverse discrete cosine transform can be directly obtained by reversing the direction

of the discrete cosine transform.

 The above one dimensional discrete cosine transform can only process one

dimensional input data, however, images are two dimensional matrixes. Therefore, a

two dimensional discrete cosine transform Equation (2.16) and its inverse transform

Equation (2.17) are used for image processing [14].

N
vy

N
uxyxfvuvuC

N

y

N

x 2
)12(cos

2
)12(cos),()()(),(

1

0

1

0

ππαα ++
= ∑∑

−

=

−

=
,

(2.16)

N
vy

N
uxvuCvuyxf

N

u

N

v 2
)12(cos

2
)12(cos),()()(),(

1

0

1

0

ππαα ++
= ∑∑

−

=

−

=
.

(2.17)

Here, C(u,v) is the discrete cosine transform coefficient, α(u) and α(v) have been defined

in (2.15), f(x,y) is the input two dimensional matrix element, and N is input matrix row or

column number.

For an 8x8 matrix with 8-bits for each coefficient, which is widely adapted as a

unit data block in image processing, the data range of that discrete cosine transform

coefficients can be estimated from Equation (2.16). Considering the worst condition, the

value of one coefficient could be:

From equations (2.16) and (2.17), we can estimate that the two-dimensional discrete

cosine transform structure will still be complicated for hardware or software

implementation in terms of resources. However, because the discrete cosine transform

 2040
8

64*255),()()(),(
7

0

7

0
maxmaxmaxmax === ∑∑

= =y x
yxfvuvuC αα ,

 2040),(),(maxmin −=−= vuCvuC .

(2.18)

 26

is an orthogonal transform, the two-dimensional discrete cosine transform can be simply

calculated by running the one-dimensional discrete cosine transform in rows and then

the results are transformed again in columns as demonstrated in Figure (2.7) [14].

Figure (2.7). Calculating an 8x8 2-D DCT with 1x8 1-D DCT.

In the same manner, a two-dimensional inverse discrete cosine transform matrix can be

obtained by executing the one-dimensional inverse discrete cosine transform two times.

 The spatial correlation in an image cannot be compacted in the spatial domain

because every pixel in the image is correlated with each other, and human visual

perception can easily detect the position displacement at spatial domain. To remove the

correlation among the pixels, discrete cosine transform can change the tightly correlated

position variables at spatial domain into different discrete frequencies at frequency

domain.

Figure (2.8): DCT and DST frequency domain coefficients.

 27

From this figure, we can see that, for the same input signal, the coefficients generated

by the discrete cosine transform will cluster in lower frequencies and their amplitudes

decrease sharply while those by the discrete sine transform will spread among different

frequencies and the amplitude change is not as sharp as the discrete cosine

transform’s. The meaning of each coefficient of the discrete cosine transform is: the first

coefficient of the DCT is the DC part, and can be interpreted as the average value of the

pixel matrix while all other remaining coefficients are the AC part. For example, to an

8x8 element pixel matrix, the DC coefficient is:

∑∑
= =

=
7

0

7

0
),(

8
1)0,0(

y x
yxfC .

(2.19)

It is the mean of all pixel values of the 8x8 matrix in spatial domain. That DC coefficient

indicates the average brightness of the matrix. Table (2.2) shows the locations of DC

and AC coefficients in an 8x8 Discrete Cosine transform coefficient matrix.

Table (2.2) DC and AC coefficients.
 DC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC
 AC AC AC AC AC AC AC AC

Furthermore, Figure (2.9) displays an 8x8 original pixel matrix and its discrete cosine

transform coefficient matrix. The bar graphs of the coefficients clearly demonstrate that

the energy at the frequency domain clusters at DC and lower frequencies.

 28

(a) 8x8 pixel matrix. (b) 8x8 DCT coefficient matrix from (a).

(c) Amplitude bars in spatial domain. (d) coefficient bars in frequency domain.

Figure (2.9) Comparing the matrixes before and after DCT.

To human visual perception, the high frequency parts in the frequency domain

are not so sensitive as the lower ones. Even though we have difficulty in moderating an

image or video’s pixels in spatial domain without obviously disturbing its quality, in the

frequency domain after discrete cosine transform, we can easily manipulate data at high

frequency parts without degrading the image or video quality under human visual

perception [14]. This feature is essentially useful for image compression and

watermarking.

 29

2.1.4 Quantization of DCT Coefficients

 After discrete cosine transform, the correlation of pixels of an image in spatial

domain already have been de-correlated into different discrete frequencies in frequency

domain. Since human visual perception is more acute to the DC coefficient and low

frequencies, a carefully designed scalar quantization approach can reduce data

redundancy while keeping the fidelity of image.

2.1.4.1 Scalar Quantization

 For most analog to digital conversion schemes, linear quantization is a simple

and fast solution. Its drawbacks are:

• The resolution or dynamic range is the same for the entire data range, i.e., the

greater digits have less derivative error while less digits have more error

relatively.

• The bit rates for different values are same.

• Flickering noise exists around zero.

To solve these problems, some quantization schemes are introduced, such as A-low

approach in telecommunications which adopts non-uniform quantization. But in the

MPEG video compression standard, a uniform module called scalar quantization is

adopted. The feature of the scalar quantization scheme is adaptive quantized step size

according to discrete cosine transform coefficients of each macroblock [3].

The nonlinear scalar quantization introduces wider dead zone and greater step size at

small input to achieve the following effects for MPEG video compression [3]:

• DC and low frequency coefficients will have fine step size while high frequencies

will have more aggressive quantization step size.

 30

• Wider dead zone around origin will block the small signal noise.

• The scalar quantization will generate more zeros which will benefit entropy

coding.

For computation and hardware simplification, the scalar quantization step size can be

chosen from pre-define tables as in [3]:

For the MPEG encoder and decoder, the quantization tables used are the default

and being kept by both encoder and decoder. Intra frame will apply one quantization to

determine the quantization step size while non-intra frame will use another table. By

simple observation, we can find two tables approximately matches the 8x8 discrete

cosine transform coefficient result, i.e., the DC and low frequency parts could have

much finer step size, and high frequency parts will have grosser step size. To the non-

intra frames or predicted and bi-directional frames, the residual results will have less bit

rate and fixed quantization step size. Similarly, different quantization formulas are

introduced as follows [3]. For intra frames:

,
),(2

)),(),((),(16),(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

××+×
=

jiqtqs
jiqtqsjiCsignjiCRNDjiQ (2.20)

16
)),((5.0),((),(2),(1 jiQsignjiQjiqtqsjiQ ×+×××

=− , (2.21)

⎪
⎩

⎪
⎨

⎧

<−
=
>+

=
.0,1

,0,0
,0,1

)(
xfor

xfor
xfor

xsign (2.22)

Here, Q(i,j): the quantization result, and Q -1(i,j): the inverse quantization results. RND:

round function, C(i,j): Discrete cosine transform coefficients, qs: quantization scale

factor, the value is from 1 to 40. Smaller value will generate finer step size. qt(i,j): the

quantization table as Table (2.5) (a).

 31

For the non-intra frames:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

×
=

),(2
),(16),(
jiqtqs

jiCRNDjiQ , (2.24)

16
),(),(2),(1 jiQjiqtqsjiQ ×××

=− . (2.25)

Here, Q(i,j), Q-1(i,j), RND, C(i,j), qs, qt(i,j) are defined the same as the intra frame

quantization equations above. qt(i,j) here should be from Table (2.5) (b).

 From the above scalar quantization and inverse quantization equations, we can

conclude that the quantization algorithm will discard some details of discrete cosine

transform coefficients to reduce bit rate, so it is not lossless computation. However, the

effects of loss will trade off the benefits like extra “0” for the future compression in the

entropy coding, better resolution for DC and low frequency coefficients, blocking small

signal noise, and adaptability according to different resolutions for different applications.

2.1.5 Zigzag Scanning of DCT Coefficients

 After the two dimensional Discrete Cosine transform, an 8x8 image pixel block

will be transformed from the spatial domain to the frequency domain. As we have

already seen, the coefficient matrix presents the coefficients of frequencies, and the low

frequency parts will cluster in the upper left corner of the discrete cosine transform

coefficient matrix. Zigzag scanning will rearrange the order of the matrix so that the

coefficients are sorted by frequency in an ascendant order in a linear pattern.

 32

(a)Zigzag scanning route [2]. (b) Matrix after zigzag scanning.

(c) coefficient bars before zigzag. (d) coefficient after zigzag.

Figure (2.10) Zigzag scanning of DCT coefficient matrix.

2.1.5.1 Discrete Cosine Transform Coefficients Matrix

For ease of programming, the discrete cosine transform must be rearranged in a

linear order with ascending frequencies. The processing is called zigzag scanning

because the route to choose the coefficients in the matrix goes in a zigzag way as

shown in Figure (2.17) (a).

 From parts (c) and (d) of Figure (2.17), we observe that, after zigzag scanning,

the coefficients are approximately sorted by their amplitudes. The purpose of zigzag

scanning is to aggregate “0”s and other small values as much as possible to decrease

bit rate. For the discrete cosine transform matrix from progressive video frames, the

zigzag scanning route can go the zigzag way as in [3]. However, in MPEG2 and

 33

MPEG4, both progressive and interlaced frames need to be supported; the blocks from

interlaced frames or fields should be different from the progressive ones to achieve

better aggregation of “0”s and smaller values. The alternative zigzag scanning route is

described in [3] as well.

2.1.5.2 Compression at DCT/Frequency Domain

 Three features make the compression work in the DCT domain rather than the

spatial domain:

1) The discrete cosine transform will de-correlate the position in the spatial

domain, and focus the energy into the DC coefficient while the AC coefficients

will have small amplitudes in energy.

2) After the discrete cosine transform, the DC and AC coefficients of low

frequencies will cluster at the upper left corner of the matrix and the AC

coefficient of high frequencies will aggregate at the lower right corner. And,

3) Human visual perception is sensitive to DC and AC at low frequencies but not

AC of high frequency energy, which relates to the fine details. There is no

criterion on how many ACs will be chosen for a given quality of the

reconstructed image. Reasonably, the better compression bit rate to

accomplish, the worse the quality of reconstructed image. The trade off

between compression and quality will compromise each other [14]. A group of

compressed images in different compression rates by neglecting some AC

coefficients are displayed in Figure (2.11):

 34

(a) Rebuild with 1 of 64 coefficients. (b) Rebuild with 4 of 64 coefficients.

(c) Rebuild with 16 of 64 coefficients. (d) Uncompressed original image.

Figure (2.11) Compress image in DCT domain.

The method to process the original uncompressed image (d) is: the image is split into

8x8 pixel blocks. Then each 8x8 block will be transformed by DCT to create an 8x8

DCT coefficient matrix. After that, according to different compression rates, keep DC

and some low frequency ACs. The remaining ACs will be replaced with “0”. Finally, run

the inverse DCT to rebuild a new image resembling the original one. By observing the

images in Figure (2.12), we can conclude that even with 16 out of 64 DCT coefficients,

the reconstructed image’s quality is fairly acceptable for most video playback

applications, but the compression rate achieved is 4:1.

 35

2.1.6 Entropy Coding

 After DCT and quantization compression, more compression still can be

achieved. The code domain compression algorithms generally are called entropy

coding, which includes Huffman coding, Arithmetic coding, etc. Unlike lossy

compressions as in the color space, DCT and quantization procedures, the entropy

coding compression is lossless. The basic idea of entropy coding is that the more

frequently occurring symbols will be coded with short bits while uncommon ones with

longer code bits such that the over all bit rate of the stream will be reduced.

2.1.6.1 Variable Length Coding (VLC)

 From a general view, unlike fixed length coding such as ASCII, BCD, etc, entropy

coding is a kind of variable length coding, which means that the code bits for different

symbols are different. After the procedure of quantizing and truncating higher

frequencies, most coefficient values of the DCT matrix will be zeros. With a proper

variable length coding, most ‘0’ coefficients are compacted. The variable length coding

in MPEG standards is also called run level code: “run” refers to how many ‘0’ precede a

non-zero number; “level” presents the number’s level or value. For example, a series of

coefficients is: 7, 0, 5, 0, 0, 0, 4, 3, 0, -3…, they can be re-written into run level codes

as: (0,7), (1,5), (3,4), (0,3), (1,-3)…. The (R, L) pair like (1, 5) can be interpreted as one

run ‘0’ is preceding level ‘5’. Such run level coding will greatly compact bit length for a

stream with many continuous ‘0’ so that it will benefit DCT coefficient encoding.

2.1.6.2 Huffman Coding

 To accomplish further compression in code domain after run level coding,

entropy coding like Huffman coding is needed. Huffman originally contributed the idea of

 36

building an optimizing symbol binary coding in his paper in 1952 [18]. According to a

fundamental theorem of Shannon [19], the minimized binary code length of a symbol is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
s P

L 1log2 . (2.26)

Where, sL is the optimized length of a symbol; sP is the probability of the symbol’s

occurrence in a message stream, and the entropy, the average number of bits for a total

symbol is as:

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s s
s P

PEntropy 1log2 . (2.27)

Where, Entropy is lowest limit of the total average code length we can achieve in a

compressed message. From the above equations, the optimized binary code lengths for

the symbol probability of the power of 2 are easily obtained, but in most cases, the

occurrence probability could not be always a power of 2; for example, 1/23, the code

length generated by accepting approximate probability will not be the minimized one.

Huffman’s idea is using a Huffman tree to find out a unique code prefix. For example, a

serial of symbols and their probabilities are as Table (2.3):

Table (2.3). Huffman code example.
Symbol Probability Code Bits(actual) Bits(ideal)

A 0.8 1 1 0.3219
B 0.02 0000 4 5.6439
C 0.03 0001 4 5.0589
D 0.07 001 3 3.8365
E 0.08 01 2 3.6439

The Huffman tree for searching code of the symbols in Table (2.3) is:

 37

Figure (2.12) Huffman tree for Huffman coding.

Where, the tree’s branches are arranged by their probabilities. The node’s probability is

the sum of two branches, and the two branches will be in code either ‘1’ or ‘0’. If one

branch is leaf, it is ‘1’; otherwise it is ‘0’; If both are leaves, the higher probability one is

‘1’, and the lower one is ‘0’. By searching the tree from root to leaf, Huffman encoding

can be achieved. Similarly, with the same Huffman tree, the Huffman codes are

decoded to the corresponded symbols. However, for the compression purpose, to

transmit all symbols’ probabilities is not practical. In practice, a pre-calculated code

table for generic image data is applied by both encoder and decoder. Besides no extra

bits for probabilities table, Huffman tree searching is avoided so that improved

processing speed results. A pre-calculated Huffman code table is [3], [14]. One

observation from the above table is that it does not include all combinations of whole

run-levels. It can be estimated that most run-level code combinations are in above table.

For those are not in the table, they can be coded as: 6 bits ESCAPE, followed by 6 bits

P=1.0

P=0.2
0

P=0.08

A B

P=0.07 P=0.03 P=0.02

P=0.12

P=0.05

1 1 11

0

0

0

E D C

P=0.8

 38

run code, and then 8 or 16 bit level code [14]. For example, a run-level pair (45,113), its

code is: 000001 101101 11100010.

 With all above modules, a MPEG video compression module called hybrid

DPCM/DCT is built as in [2].

2.2 Video Watermarking

The general idea of watermarking is embedding some extra data into a host

message. The embedded information is a watermark, and the host message is a carrier.

From the view of spread spectrum communication, the watermark is a message needed

to be sent, and the carrier is a communication channel with noise. At a transmitting end,

the embedding procedure will modulate the watermark message into a noise channel;

on the other hand, the receiving end will extract the watermark message from the noise

channel [20]. Watermarking applications could be in copyright protection, image

authentication, data hiding, and covert communications [21]. In this thesis, only

copyright protection will be discussed.

2.2.1 Watermarking at Spatial Domain

 The first generation watermarking algorithms work in the spatial domain because

it is less expensive and less demanding in computer complexity. One method is called

LSB coding: the LSB bit of data byte will be modified for embedding watermark. LSB

coding is brittle under attack by just masking the LSB of data bytes so that it is quickly

replaced by other new techniques. Spread spectrum techniques can spread watermark

in a wider spectrum against the attack which works on only one particular bandwidth

[22]. Authors in [23], [24] implement spatial watermarking algorithms in low cost

 39

hardware. However, spatial domain techniques could not easily achieve the needs of

robust requirements.

2.2.2 Watermarking at DCT Domain

 Similarly as DFT, DWT, the DCT watermarking is working at frequency domain.

The examples of DFT (discrete Fourier transform) and DWT (discrete wavelet transform)

watermarking are [25], [26]. But most commonly watermarking techniques are DCT

domain based. We have seen that after changing working domain from spatial domain

to DCT domain, the correlation of spatial pixels will be de-correlated into discrete

frequency parts. The DC and low frequency coefficient of DCT matrix will determine

most natural features of an image. After truncating higher frequency coefficients, the

image fidelity will remain fair enough to human perception by applying inverse DCT. So,

a natural approach is embedding a watermark DCT coefficients matrix into image DCT

coefficients matrix in lower or middle frequencies area to achieve the robust watermark

([27], [28], [24], [30], [31], [32], [33]). Figure (2.13) shows the DCT watermarking

inserting locations:

 DC

Figure (2.13) Embedding a watermark in mid frequency [34].

The robustness of DCT watermarking comes from the fact that if an attacker tries to

remove watermarking at mid frequencies, he will risk degrading the fidelity of the image

Low Frequencies

Mid Frequencies
for watermarking

High Frequencies

 40

because some perceptive details are at mid frequencies [35]. A watermark embedding

equation is proposed in [28]:

),(),(),(jiWjiCjiCw βα += . (2.28)

Where,),(jiCw is the DCT coefficient (i,j) after watermarking embedding; α and β are

watermark strength factors which can determine whether the watermark is visible or

invisible;),(jiC is original DCT coefficient before watermarking;),(jiW is watermark

DCT coefficient.

Even though the above watermarking algorithms were originally applied to still

images, considering that a video frame sequence could be treated as a series of still

images, a reasonable approach is processing each frame of video as a still picture with

above methods in spatial or frequency domain to embed watermark. The video

watermarking in spatial domain is proposed as [36]; in DWT domain as [37], [38]; in

DFT domain as [39]; in DCT domain as [20], [40], [41], [42], [43], [44], [45], [46], [47],

[48], [49], [50]; in Compressed domain (bit stream)[20], [44], [48], [49], [50], [51] or

uncompressed domain (raw data) [20], [44]. The reason of DCT watermarking solution

is more common in video is that MPEG video compression also requires DCT function.

To reduce system complexity, watermarking in DCT domain is an understandable

choice. If the watermarking subject is a compressed video stream, one option is directly

watermarking the compressed video bit stream which is already in DCT domain rather

than decoding the stream back to video frames for watermarking at spatial domain.

However, if a visible watermark is embedded in compressed domain, the visible

watermark will drift with moving object in the scene when the decoded frames are

playing back such that drift compensation is needed [20], [44].

 41

2.2.3 Visible and Invisible Watermarking

 Invisible watermarking at DCT also can be implemented with watermarking

Equation (2.25). By just adjusting the watermarking factors α and β , the watermark

could become visible or invisible. The same equation is simply run to extract an invisible

watermark [52], [53]. A safe way is inserting an invisible watermark in wherever of

image DCT coefficients against attacker’s removing attempts or use pseudo-random

sequence to spread the invisible watermark DCT coefficients among frames’ DCT

matrix blocks. For this technique, both DC and AC could be subject of watermarking

equation [41], [44], [45].

 Visible watermarking in video is very commonly applied in video broadcasting.

For the prototype working module, the image DCT 16X16 coefficients matrix will directly

add with watermark image DCT 16X16 coefficients matrix as above Equation (2.14),

and it is illustrated as:

Figure (2.14) Watermark embedding at 16X16 DCT coefficients matrix.

 The reason to choose 16X16 block rather than 8X8 block is that in the

watermarking embedding Y color frames, one pel is 16X16 pixels. Unlike mid frequency

inserting, DC and all ACs of image DCT coefficients matrix will be modified by the

watermark embedding because the watermarking will result in a noticeable and visible

perception to human visual system. Two choices to insert watermark into frames of a

video are watermarking before or after compression:

 42

Figure (2.15) Watermarking in uncompressed and compressed domain.

The slight difference of the above two watermarking schemes is the location the

watermark is inserted. The scheme Figure (b) of Figure (2.15) results in the watermark

drifting with moving objects in a scene while scheme (a) does not have such issue. To

understand scheme (b) and watermark drift, suppose a frame sequence of a video is

three adjacent frames, the first frame is I frame, second frame is B frame and third

frame is P frame in encoding (compressing) and decoding (decompressing) procedures.

At compressing stage, after I frame runs DCT, I frame’s DCT coefficient matrix is ready

for mid-frequency watermark embedding with a watermark DCT coefficient matrix. If

only I frame is watermarked, the same watermark also appears on predicted P and B

frames because they are predicted from I frame as base frame with motion estimation

and motion compensation. Since the motion vector indicates the marcoblock’s

displacement between two frames, the watermark generally should keep still among

frames. So after applying motion vector to rebuild the predicted frame, the watermark

overlapping with moving object in the frames drifts back and forth with the moving

objects. But why is it necessary to watermark compressed video stream rather than

uncompressed one? The reason is most videos/movies could already have been in

Video
frames

Watermarking Video compression
MPEG bit
stream

Video
frames

Video compression
MPEG bit
stream

(a) Watermarking in uncompressed domain (before compressing).

(b) Watermarking in compressed domain (within compressing).

Watermarking

 43

compressed format. If decoding them to spatial domain and watermarking them, extra

noise could be generated and PSNR (peak signal noise ratio) could be reduced.

2.2.4 Drift Compensation of Visible Watermarking in Compressed Domain

A solution called drift compensation is introduced by Hartung [20]. The scheme is:

the un-watermarked inter frame (P or B) is subtracted from the watermarked inter frame

(P or B) to extract the drifting watermark. The extracted drifting watermark to cancel the

inter frame’s drift and inter frames are embed the watermark again. The scheme’s block

diagram of drift compensation is given in [20]. Notice the drift compensation scheme

works at spatial domain rather in DCT domain so the entropy decoding, inverse

quantization and inverse DCT decodes quantized DCT coefficients to pixels. Assuncao

and Ghanbari introduce a simplified scheme on DCT domain motion compensation to

achieve drift compensation [54]. The simplified scheme requires the motion

compensation be in DCT domain rather than in spatial domain so that at encoding

procedure, two different types of motion compensations are generated, one from spatial

domain motion compensation for MPEG decoding, and one from DCT domain motion

compensation for drift compensation.

2.3 FPGA (Field Programmable Gate Array) Implementation

 FPGA is a programmable logic device which allows a designer to change its

internal logic gate connection with a hardware description language (HDL). The Most

popular HDLs are VHDL, Verilog, System C, and AHDL. Because most engineers use

MATLAB/Simulink™ to create mathematical modules for prototype design, Mathworks©

[12], Altera© and Xilinx© also supply product modules to apply MATLAB™ codes or

Simulink™ block sets directly to program the FPGA. The new generation Simulink™

 44

can handle blocks less than 80 in number to program FPGA [12]. Altera©’s DSP

Builder™ can link Mathworks©’ MATLAB™ and Simulink™ to its Quartus II™ IDE tools,

and then program FPGA [10]. Xilinx©’s similar product is DSP Generator™ [11]. Both

Altera© and Xilinx© offer IP packages for speedy development. However, most

developers are willing to use HDL languages to program FPGA to build their prototyping

modules.

 45

CHAPTER 3

VIDEO COMPRESSION AND WATERMARKING ALGORITHMS

The main algorithms for video compression are color space conversion and

sampling rate, DCT and IDCT, quantization, zigzag scanning re-order, entropy coding.

The watermarking algorithms are watermarking embedding and drift compensation if

watermarking in compressed domain.

3.1 Video Compression Algorithms

 Each algorithm of MPEG video compression is described; and the overall MPEG

algorithm is integrated with individual modules.

3.1.1 Color Space Conversion and Sample Rate Algorithm

 From color space conversion equations:

 BGRY 114.0587.0299.0 ++=
128)(564.0 +−= YBCb (3.1)

128)(713.0 +−= YRCr ⎪
⎭

⎪
⎬

⎫

.

Where only total 7 adders and 5 multipliers are need, the VHDL codes are concurrent.

The delay is from adders and multipliers so that it is not critical path. The sample rate is

4:2:0 so that every Y pixel is sampled while one of every 4 Cb and Cr is sampled.

3.1.2 Motion Estimation Algorithm

Motion estimation is in the critical path of video compression coding since most

time delay occurs at this step. The SAD (sum of abstract difference) algorithm searches

the 48X48 pixels square target region exhaustively to find out a matching 16X16 pixel

macroblock. The output of this procedure is prediction error for motion compensation

and motion vector. The data path block diagram is:

 46

Figure (3.1) Motion estimate data path block diagram

The flow chart of motion estimate and motion compensation is:

Figure (3.2) Motion estimate flow chart.

The VHDL program for motion estimate and motion compensation is sequential code,

and causes much time delay.

Read 16X16 current MB and 48X48 searching region

Match a 16X16 block with current MB

Mini SAD

Prediction error = matched 16X16 - current 16X16 MB

Write prediction error to buffer, output motion vector

END

N

48X48 research region 16X16 current marcoblock

SAD

16X16 ME buffer Motion vector

 47

3.1.3 Fast Discrete Cosine Transform (FDCT) Algorithm

 The inverse fast DCT algorithm is from Loeffler [16]. For the ease of

implementation, the algorithm is expressed as the table follows [55]:

In the above table, m1~m7 are pre-calculated constants, a0~a7 are raw input values,

and f0~f7 are one dimensional IDCT transform results. The fast DCT algorithm reduces

the number of adders and multipliers so that the execution of DCT is accelerated. The

comparison of total number of adders and multipliers is:

Table (3.2) DCT adders and multipliers in total.
Type Total adders Total multipliers

Classic 1-D 1X8 DCT 56 72
Fast 1-D 1X8 DCT 26 14

The 2-dimentional DCT and IDCT algorithms can be achieved by running 1-

dimentional algorithms in two times, one time in rows (horizontal) and one time in

columns (vertical). The data path block diagram of 2-dimensional 8X8 DCT is as:

Figure (3.3) 2-D DCT component data path block structure.

Table (3.1) Loeffler’s fast 8 elements 1-D inverse DCT algorithm.
Step 1 Step 2 Step 3 Step 4 Step 5
b0=a0+a4 c0=b0 d0=c0+c3 e0=d0 f0=e0+e7
b1=a0-a4 c1=b1 d1=c1+c2 e1=d1 f1=e1+e6
b2=a2*m1-a6*m2 c2=b2 d2=c1-c2 e2=d2 f2=e2+e5
b3=a2*m2+a6*m1 c3=b3 d3=c0-c3 e3=d3 F3=e3+e4
b4=a7*m3 c4=b7-b4 d4=c4+c6 e4=d4*m4-d7*m5 F4=e3-e4
b5=a3 c5=b5 d5=c7-c5 e7=d4*m5+d7*m4 f5=e2-e5
b6=a5 c6=b6 d6=c4-c6 e5=d5*m6-d6*m7 f6=e1-e6
b7=a1*m3 c7=b7+b4 d7=c7+c5 e6=d5*m7+d6*m7 f7=e0-e7
m1=sqrt(2)*cos(6*pi/16)
m2=sqrt(2)*sin(6*pi/16)
m4=sqrt(2)*cos(3*pi/16)

m5=sqrt(2)sin(3*pi/16)
m6=sqrt(2)*cos(pi/16)
m7= sqrt(2)*sin(pi/16)

m3=sqrt(0.5)

1-D DCT 1X8

8X8 Buffer
Input Output

 48

The flow chart of 2-D 8X8 DCT is:

Figure (3.4) 2-D DCT algorithm flow chart.

The 2-D IDCT algorithm flow chart is similar as Figure (3.2). The only modification is

replacing block “1-D 1X8 DCT” with “1-D 1X8 IDCT.”

 Because of the 8X8 buffer, VHDL program for 2-D DCT/IDCT could not be

concurrent, but must be sequential codes. That causes some time delay.

3.1.4 Quantization Algorithm

 After DCT, the quantization algorithm quantizes the DCT coefficient matrix to

generate more “0” coefficients at high frequency sections while keeping good resolution

at lower frequency parts. For video compression, the quantization equation for Intra

frames and non-intra frames and the quantization scale factor which determine

Input 8X8 raw data into Buffer

1-D 1X8 DCT

1 row DCT coefficients into buffer

Last row Next row

1-D 1X8 DCT

1 col DCT coefficients into buffer

Last col Next col

END

N

N

 49

quantization resolution are different. The quantization equations are Equations (2.14),

(2.15), (2.16) and (2.17); the quantization scale factor tables are from Table (2.4). The

data path block diagram of the quantization procedure is:

Figure (3.5) Quantization component data path block diagram

The flow chart of quantization for MPEG is:

Figure (3.6) Quantization algorithm flow chart.

To VHDL programming, the quantization procedure could be concurrent codes to

minimize time delay.

Read a DCT coefficient & its index in 8X8 Matrix

Intra Frame

Lookup Intra quantization scale
table with index

Lookup non-Intra quantization scale
table with index

Run Intra quantization equation Run non-intra quantization equation

Write quantized DCT coefficient back

END

Y

Quantization

Quantization scale factor tables (intra & non-Intra)

DCT coefficient Input DCT coefficient Output

 50

3.1.5 Zigzag Scanning Algorithm

 Zigzag scanning re-orders the DCT coefficients of a matrix ascending in

frequency. For progressive frames and interlacing fields, the zigzag scanning routes are

provided as Table (2.5). The data path of zigzag scanning block diagram is:

Figure (3.7) Zigzag scanning component data path block diagram.

8X8 DCT coefficient
Buffer

8X8 zigzag scanning
buffer

8X8 progressive zigzag
scanning table

8X8 interlacing zigzag
scanning table

DCT coefficients input DCT coefficients output

 51

The flow chart of zigzag scanning is:

Figure (3.8) Zigzag scanning algorithm flow chart.

Because of two buffers in the structure, the VHDL program for zigzag scanning could

not be concurrent codes. The sequential codes have smaller time delay.

3.1.6 Entropy Coding Algorithm

 The entropy coding efficiency depends on the precision of calculation for

computing each coefficient’s occurring probability. However, calculating probabilities of

all coefficients is impossible in real-time MPEG codec. One solution is utilizing pre-

calculating Huffman code Table (2.8) for generic images. The entropy coding can apply

Read 8X8 DCT
coefficients into buffer

Progressive

Re-arrange according to
interlacing ZZ scanning table

Re-arrange according to
progressive ZZ scanning table

Write to scanning buffer

Next coefficient

End of matrix

Write to buffer

End

N

Y

 52

on the DC coefficients of different blocks, the AC coefficients within one block, and the

motion vectors within one frame. Here the data path block diagram for the entropy

coding of AC coefficients within one block is given:

Figure (3.9) Entropy coding (Huffman) component data path block diagram.

The algorithm flow chart is:

Figure (3.10) Entropy coding (Huffman) flow chart.

The entropy coding operated upon a block; the sequential code must be used.

Read 8X8 DCT coefficients in to buffer

Rewrite coefficients with VLC

Search match VLC in Huffman table

Match

Build Huffman code with ESCAPE

Write Huffman code to buffer

END

Y

8X8 DCT
coefficients Buffer

Huffman code table

DCT coefficients
input

DCT coefficients
output

 53

3.1.7 MPEG Video Compression Algorithm

 With above individual algorithm, the whole MPEG video compression algorithm

as Figure (2.15) is described in procedure step flow as follows:

Table (3.3) MPEG video compression algorithm flow.
Input Video RGB frames(NxM)

Output MPEG stream
Step 1 RGB color frames converted to YCbCr frames
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate
Step 3 YCbCr frames go to Buffer which hold a GOP (for example, 15 continuous

adjacent frames).
Step 4 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and

Cr are split into 8x8 blocks
Step 5 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8

blocks. If the even first frame (I) of GOP, go Step 9; If P frame, go to Step 6;
If B frame, go to Step 8.

Step 6 Y frame forward or backward motion estimate P frames with reference
frames (I or P frames). The motion vectors (MV) and prediction errors of
residual frame for motion compensation (MC) are found. If Y frame, go to
Step 9;

Step 7 Find Cb, Cr motion vector and prediction error. Go to step 9
Step 8 Y frame interpolated motion estimate B frames with two P frames or I and P

frames in bilinear algorithm. The motion vectors (MV) and prediction errors
of residual frame for motion compensation (MC) are found.

Step 9 2-D DCT on blocks of frames from Step 5, 6, 7, 8.
Step 10 Quantize 2-D DCT coefficient matrix.
Step 11 Zigzag scan quantized 2-D DCT coefficient matrix.
Step 12 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector.
Step 13 Y, Cb and Cr frames to buffer
Step 14 Build structured MPEG stream from buffer

3.2 Watermark Embedding Algorithms

 Two watermarking schemes are investigated: watermarking on uncompressed or

in compressed domain. For the watermarking in compressed domain, drift

compensation is required.

 54

3.2.1 Watermarking Algorithm in Uncompressed Domain

 Watermarking in uncompressed domain can be in spatial domain or frequency

domain. Because of its robustness, the DCT domain watermark embedding algorithm is

chosen. The watermark embedding flow chart is:

Figure (3.11) Watermark embedding component flow chart.

The data path and flow chart of DCT watermarking in uncompressed domain is:

Figure (3.12) Watermarking in uncompressed domain data path and flow chart.

Watermark
image

DCT
Input
video

frames

DCT

),(),(),(jiWjiCjiCw βα +=

C

W

Cw Watermarked
frames

Watermarking

DCTDCT

Watermarking

Water
mark
buffer

I DCT

Video
frames
I,B,P

Water
mark
image

Q

Entropy code

Output
buffer

I

ME

B,P

IBP?

DCT

ZZ

 55

To clarify further above flow chart figure, a step flow to describe the watermarking in

uncompressed domain algorithm is as the table follows:

Table (3.4) MPEG watermarking algorithm flow in uncompressed domain.
Input Video RGB frames(NxM), watermark monochrome image(NxM)

Output MPEG stream
Step 1 RGB color frames converted to YCbCr frames
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate
Step 3 Split Y frame and watermark image into 8X8 blocks
Step 4 Each 8X8 block runs 2-D DCT to generate 8X8 DCT coefficient matrix
Step 5 Each 8X8 Y DCT matrix watermarked with a 8X8 watermark DCT matrix at

same location as),(),(),(jiWjiCjiCw βα += at DCT domain
Step 6 Each 8X8 watermarked matrix runs 2-D IDCT to transform back to Y color

pixels
Step 7 Watermarked Y frame, non watermark Cb and Cr frames go to Buffer,

which hold a GOP (for example, 15 continuous adjacent frames).
Step 8 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and

Cr are split into 8x8 blocks
Step 9 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8

blocks. If the even first frame (I) of GOP, go to Step 13; If P frame, go to
Step 10; If B frame, go to Step12.

Step 10 Y frame forward or backward motion estimate P frames with reference
frames (I or P frames). The motion vectors (MV) and prediction errors of
residual frame for motion compensation (MC) are found. If Y frame, go to
Step 13;

Step 11 Find Cb, Cr Motion Vector and Prediction error. Go to step 13
Step 12 Y frame interpolated motion estimate B frames with two P frames or I and P

frames in bilinear algorithm. The motion vectors (MV) and prediction errors
of residual frame for motion compensation (MC) are found. If Y frame, go to
Step 13; If Cb and Cr frames, go to Step 11.

Step 13 Run 2-D DCT on blocks of frames from Step 9, 10, 11, 12.
Step 14 Quantize 2-D DCT coefficient matrix.
Step 15 Zigzag scan quantized 2-D DCT coefficient matrix.
Step 16 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector.
Step 17 Build structured MPEG stream from buffer

3.2.2 Watermarking with Drift Compensation Algorithm in Compressed Domain

Watermarking on the compressed domain is also DCT watermarking, and drift

compensation is essential, otherwise parts of the watermark drift with moving objects in

the scene. The data path and flow chart of DCT watermarking in compressed domain

are:

 56

Figure (3.13) Watermarking in compressed domain and drift compensation.

Similarly, a flow step to clarify above figure to describe compressed domain

watermarking and drift compensation is as Table (3.5):

Table (3.5) MPEG watermarking algorithm flow in compressed domain.
Input Video RGB frames(NxM), watermark monochrome image(NxM)

Output MPEG stream
Step 1 RGB color frames converted to YCbCr frames
Step 2 YCbCr frames re-sampled according to 4:2:0 sampling rate

DCT

Watermarking

I DCT

Video
frames
I,B,P

Q

Entropy code

Output
buffer

ME

B,P

IBP?

ZZ

I frame

Water
mark
image

DCT

Inverse entropy code

Inverse Q

MC

Motion vector

Y

Motion
vector

Drift compensation

Watermarking P/B frame

 57

Step 3 YCbCr frames go to buffer which hold a GOP (for example, 15 continuous
adjacent frames).

Step 4 MPEG video compression starts. Y frame is split into 16x16 blocks, Cb and
Cr are split into 8x8 blocks

Step 5 Only Y frames run motion estimate. Each 16x16 Y block rescale to 8x8
blocks. If the even first frame (I) of GOP, go Step 9; If P frame, go to Step 6;
If B frame, go to Step 8.

Step 6 Y frame forward or backward motion estimate P frames with reference
frames (I or P frames). The motion vectors (MV) and prediction errors of
residual frame for motion compensation (MC) are found. If Y frame, go to
Step 9;

Step 7 Find Cb, Cr motion vector and prediction error. Go to step 9
Step 8 Y frame interpolated motion estimate B frames with two P frames or I and P

frames in bilinear algorithm. The motion vectors (MV) and prediction errors
of residual frame for motion compensation (MC) are found.

Step 9 2-D DCT on blocks of frames from Step 9, 10, 11, 12.
Step 10 2-D DCT on the 1st 8x8 block for each 16x16 blocks of watermark image
Step 11 Watermark Y of I, B, P frames with),(),(),(jiWjiCjiCw βα += at DCT

domain with blocks from Step9, 10
Step 12 Quantize 2-D DCT coefficient matrix.
Step 13 Zigzag scan quantized 2-D DCT coefficient matrix.
Step 14 Entropy coding re-ordered 2-D DCT coefficient matrix and motion vector.
Step 15 Cb and Cr frames to buffer
Step 16 Entropy decoding Y frame
Step 17 Inverse zigzag scanning
Step 18 Inverse quantization
Step 19 Inverse DCT
Step 20 If B, P frames, predicate frame with reference frame, motion vector and run

motion compensation with predication error. Go to Step 25
Step 21 Original Y frame run video compression without watermarking as above

without step 10, 11.
Step 22 Original Y frame run video compression as above except just watermarking

I frame at Step 11.
Step 23 Decode MPEG stream from step 21, 22 respectively
Step 24 Extract drifting watermark by subtract decoded video frames between

watermarked and un-watermarked frames from Step 23.
Step 25 Subtract IBP watermarked frames with drifting watermark frames
Step 26 MPEG compression Y frames again as Step 5,6,8,9,12,13,14
Step 27 Build structured MPEG stream from buffer

The procedure extracting the drift watermark of above in compressed domain could be

simplified.

 58

CHAPTER 4

SYSTEM ARCHITECTURE

The algorithms of visible watermarking in uncompressed domain and

compressed domain are implemented into two different architectures. The

watermarking architecture in uncompressed domain is in low-cost and low-complexity;

the one in compressed domain with drift compensation has extra video compression

and decompression modules.

4.1 Architecture of MPEG Watermarking in Uncompressed Domain

 The watermarking in uncompressed domain is directly watermarking raw

uncompressed video frames such that the watermark embedding can work at spatial

domain or frequency domain (DFT, DCT, DWT, etc). The techniques can be quickly

adapted from still image watermarking. The architecture is merged from two parts: one

is MPEG video compressing; and another is still image watermarking. The

watermarking works at Y (brightness) frames only for human visual perception is

sensitive to them if the watermark image is monochrome. For a color watermark image,

the Cb and Cr color space must be watermarked with same techniques for Y frames as

well. The top level simplified view of watermarking in uncompressed domain is follows:

Figure (4.1) Block level view of MPEG video compression and visible watermark

embedding module in uncompressed domain.

Watermark
embedding module

Input
video

frames

Watermark image

DPCM/DCT video
compression

module

Output
compressed
watermarked

stream

 59

The high level architecture of the module is tested with Simulink™ firstly, and the

prototyping implementation is created with VHDL. The system architecture for FPGA

implementation is as:

Figure (4.2) System architecture of MPEG video compression and watermarking in
uncompressed domain.

In above system architecture, “DCT watermark embedding module” processes

watermark embedding. After that procedure, the watermarked video frames are

resulted. By simply replacing it with other watermarking technique modules, spatial,

DFT or DWT watermarking can be achieved. “DPCM/DCT video compression module”

processes watermarked video frames to generate MPEG video stream. The data bus

length is 12-bits. Each block in above figure is detailed as follows:

• Watermark embedding: watermark algorithm processing. It embeds a

watermark image into a video frame with watermarking equation (2.25).

The input and output are buffered to frame buffer.

• Frame buffer: It buffers the frames for every block procedure. Its size

capacity is enough for one input GOP (for example, 15 frames for each

DPCM/DCT video compression module

 DCT watermark embedding module
DCT

Input
video

frames

Watermark
image DCT

Watermark
embedding I DCT

Frame
buffer

DCTQuantZZ ME
Entropy
Coding

Controller

Output
compressed
watermarked
stream

 60

color, so 45 frames in total for Y, Cb and Cr color spaces), output motion

vectors, and output stream.

• DCT/IDCT: 2-D DCT with 12-bits data bus and 6-bits address bus for 64

bytes internal buffer. The input data is 8-bits unsigned integer, the output

is a 12-bits unsigned integer. For further higher precision, greater bit

length could be considered. The detail algorithms are in Table (3.1), (3.2),

and Figure (3.4). The input and output are buffered to frame buffer.

• ME: motion estimate searches exhaust a 48X48 block for a 16X16 block

match. The detail flow chart is as Figure (3.1) and (3.2). The input and

output motion vector and prediction error for motion compensation are

buffered to frame buffer.

• Quant: quantization procedure. It quantizes 8X8 DCT coefficients

according to quantization Table (2.4) with quantization Equation (2.14)

and (2.16). The input and output are buffered to frame buffer.

• ZZ: zigzag scanning procedure. It re-orders 8X8 DCT coefficients

according to the Table (2.5). The input and output are buffered to frame

buffer.

• Entropy: entropy coding procedure. Actually, it is Huffman coding table

look up processing. The input and output are buffered to frame buffer.

• Controller: It generates addressing and control signals with clock for each

individual component module in the system to synchronies the system

working functions. It is a finite state machine.

 61

The MPEG video compression and visible watermarking in uncompressed domain

system data path and its block diagram is:

Figure(4.3) System data path in uncompressed domain (data bus width is 12-bits).

The system has a controller which generates addressing signals and control signals to

synchronize all components. The address bus and signals diagram is:

Figure(4.4) System address and signals of watermarking in uncompressed domain.

Controller

I DCT ME Q ZZ Entropy

Water
mark
image

Frame
buffer

DCT

WM
buffer

Output
buffer

Signals Address bus

Watermarking

Water
mark
buffer

DCT
I DCT

ME Q ZZ Entropy

Water
mark
image

Watermarking

Frame
buffer

DCT
WM
buffer

Output
buffer

DCT

Water
mark
image

Buffer

 62

4.2 Architecture of MPEG Watermarking in Compressed Domain

 Unlike watermarking in uncompressed domain, the watermarking in compressed

domain is following DCT module inside a DCPM/DCT video compression component

module. The watermarking subjects here is not independent frames as still images, they

are correlated frames with each other in temporal mode, i.e., inter frames (P or B)

predicated from intra frame. So, every object in base intra frame is inherited by

predicted inter frames (P or B) such that the watermark in intra frame appears in inter

frames (P or B) even though they are not embedded with the watermark. However, if it

overlaps with any moving objects in the video scene, the watermark drifts around with

the moving objects. To obtain a stable watermark, drift compensation is propose to

cancel the side effect [20]. The concept is extracting drift watermark in inter frames (P or

B), and cancel it subtracting. Generally, the watermarking here works at DCT domain

for sharing same DCT component with video compression module. Extra video decode

module is required for drift compensation procedure. Similarly, a monochrome

watermark image is embedded into Y color space only. For the color watermark image

embedding, all Y, Cb and Cr color spaces needs to be inserted with the watermarks

respectively. The top level simplified view of watermarking in compressed domain is

follows:

Figure (4.5) Block level view of MPEG video compression and visible watermark

embedding module in compressed domain.

DPCM/DCT video compression
module

Input video frames

Watermark image

Output
compressed &
watermarked

stream Watermark
embedding module

 63

The high level architecture of the module also is tested with Simulink™ firstly, and the

prototyping implementation is generated with VHDL. The system architecture in

compressed domain for FPGA implementation is as:

Figure (4.6) System architecture of MPEG video compression and watermarking in

compressed domain.*
* Every block receives control signals from controller but not all of them are depicted

The architecture of compressed domain watermarking is much more complex than the

one in uncompressed domain. The new components not existing in uncompressed

domain one are: IE, IZZ, IQuan, MC and the watermarking embedding modules as

follows:

+

Input Video frames

Drift compensation

Watermark image

IDCT

IDCT

Watermark
embedding IBP

DCT Frame
buffer

DCTQuantZZ ME
Entropy
coding

Controller

Output
compressed
watermarked

stream

DCT Watermark
embedding

QuantZZ
Entropy
coding

Watermark
embedding I

IZZ IQuan

IQuanIZZ IE

IE

QuantZZ
Entropy
coding

IDCTIQuanIZZ IE

+

-

-

DCT

Quant

ZZ

Entropy
coding

Drifting watermark Data path
Control signals

A

B

C

A

B

C
MC

MC

MC

 64

• IE: inverse entropy coding, or decoding. It applies Huffman pre-calculating

table as decoding lookup table similarly as encoding. The input and output

are buffered to frame buffer.

• IZZ: inverse zigzag scanning. It also applies zigzag table to resume the

original order of 8X8 DCT coefficient matrix. The input and output are

buffered to Frame Buffer.

• IQuan: Inverse quantization. It applies quantization table and inverse

quantization Equation (2.15) and (2.17) to resume the original 8X8 DCT

coefficient matrix. The input and output are buffered to frame buffer.

• MC: motion compensation. With reference frame and motion vectors,

prediction errors, a new frame is rebuilt resemble with original one. If it is

intra frame, this block is skipped. The input and output are buffered to

frame buffer.

• Watermark embedding IBP: the block embeds a watermark to every frame,

I, B, P, sequentially, inter frames as B and P have two watermarks. One

inherited from intra frame, one is embedded by the component module.

The one inherited is the one drifting in inter frames (B and P).

• Watermark embedding I: the block embed a watermark to intra frame only.

The inter frames (B and P) have the same one watermark in intra frame by

predicating. If the watermark overlaps with moving objects, it will drift back

and forth with the moving objects.

In the Figure (4.6), there are three coding branches: branch A, B and C. In

branch A, the watermarking is embedded to all frames, i.e., I, B and P frames. So,

 65

in this branch, inter frames B and P have two watermarks: one is predicted from

intra frame, and one is embedded. In branch B, the watermark is inserted to intra

frame only. However, inter frame B and P have the same watermark by

prediction. This watermark is the drift one and need to be cancel in inter frames.

In branch C, the frames are compressed without any watermark. So after

decompressing, branch A has two watermarks, one is stable, another is drifting;

branch B has one drifting watermark; branch C has no watermark. By subtracting

branch B with branch C, the drifting watermark is extracted, and furthermore, by

subtracting branch A with the extracted drifting watermark, the drifting watermark

effect in inter frames is cancelled.

 The purpose of branch C is canceling encoding noise in the drift

compensation result. But by inspecting above drifting compensation architecture,

one could consider that branch C is not essential because it could be replaced

with original video frame directly. It could be removed to simplify drift

compensation component’s complexity if encoding procedure does not generate

too noticeable noise.

 Similarly to architecture of watermarking in uncompressed domain, the

one in compressed domain has architecture as follows after adding IE, IZZ,

IQuan, MC, and modified watermarking module:

 66

Figure(4.7) System address and signals in compressed domain.

Other components are same as those in the model for uncompressed domain. But the

controller is different.

 Comparing two watermarking architectures, the conclusion is that the

architecture complexities are different. As estimate, the time delay is different as well.

Controller

IDCTMQ Z Entropy

Water
mark
image

Frame
buffer

DCT

Buffer Output
buffer

Signals Address Bus

WM

Water
mark
buffer

IE IZ IQ MC

 67

CHAPTER 5

PROTOTYPE DEVELOPMENT AND EXPERIMENTS

5.1 System Level Modeling with MATLAB/Simulink™

 To verify algorithm and architecture, firstly, a fast prototyping module is built with

MATLAB/Simulink™ in function block sets. The methodology at this high level system

modeling is top-down: with MATLAB/Simulink™ building-in functions or block sets to

create a top level conceptual system module, then each functions will be tuned in

details, or add new functional blocks. Both watermarking in uncompressed domain and

compressed domain are investigated at this stage.

5.1.1 System Level Modeling Methodology

 MATLAB/Simulink™ has already offered video and image processing functions

and modules for building fast prototype. The available function units are: DCT/IDCT,

SAD for motion estimate, block processing (split), and delay (buffer). With minor work,

quantization, zigzag scanning and entropy coding are built. Then the system level-

modeling is accomplished as sub-tasks as follows:

 Sub-task 1: Color conversion and sampling rate compression

Sub-task 2: DCT domain compression in each frame

Sub-task 3: Quantization and zigzag scanning re-order

Sub-task 4: Entropy coding by looking up Huffman coding table

Sub-task 5: Motion estimate and motion compensation only on I and P frames

Sub-task 6: Interpolating B frames

Sub-task 7: Uncompressed domain watermarking

Sub-task 8: Compressed domain watermarking without drift compensation

 68

Sub-task 9: Drift compensation in compressed domain watermarking

5.1.2 Modeling Watermarking in Uncompressed Domain

 The system block diagrams in Simulink™ are [12]:

(a) Top level block set diagram.

(b) Block set inside “Encoder” in (a).
Figure (5.1) Simulink™ system block set diagram for MPEG watermarking in

uncompressed domain.

 69

From Figure (5.1) (b), the video frames are watermarked at DCT domain before being

compressed. For the three Y, Cb and Cr color frames, only Y color frame is

watermarked for the following reasons:

• The watermark image which is black-white monochrome or gray scale should

only modify brightness of picture. If the watermark is color, Cb and Cr must be

watermarked as well.

• Y color space is more sensitive to human perception such that any unauthorized

modification is easily detected so that it makes watermarking Y color frames ideal

for copyright protection.

• To avoid too much redundancy added to frames, the watermark is not embedded

into Cb or Cr.

To protect against frame interpolating attacks on watermarking, all I, B, P frames must

embed the watermark. The results of watermarking on uncompressed frames are:

(a) Watermark image 1. (b) Watermark image 2.

 70

(c) Watermarked video 1 with image 1. (d) Watermarked video 1 with image 2.

(e) Watermarking video 2 with image 1. (f) Watermarking video 1 with image 2.
Figure (5.2) Watermarking in uncompressed domain results (resolution 240X320).

In testing, two different types of watermark images are considered: one is small size

font but covers different locations as (a) in Figure (5.2); one is big size font but covers

only one location as (b) in Figure (5.2). Similarly, two different types of video clips are

under testing: one is a complex but slowly changing scene as (c) and (d) in Figure (5.2);

one is a simple but quickly changing scene as (e) and (f) in Figure (5.2). The same

testing methodology is applied to other tests during the design.

5.1.3 Modeling Watermarking in Compressed Domain

 The system block sets in Simulink™ are [12]:

 71

(a) System block set diagram.

(b) Block set inside “Encoder” of (a).

(c) Watermark embedding block set inside “Encoder YUV” in (b).

 72

(d) Drift compensation block set inside “Drift Compensation” in (b).

Figure (5.3) Simulink™ system block set diagram for MPEG watermarking in
compressing domain.

The watermarking block in Figure (5.3) (c) embeds the watermark in all I, B and P

frames. As estimate, the watermark in I frame also appears in B and P because they

are predicted from I frame. It will result in two watermarks in non-intra frames. The

watermark predicted from I frame will drift if it overlaps with moving objects in the scene.

So the drift compensation is applied to cancel the B and P’s watermark predicted from I

frame. In Figure (5.3) (d), the block “Encoder Y only I WM” compresses the original

video and watermarks I frame only. Another block “Encode Y without WM” just

compresses original video, but does not embed watermark. The two encoders’

difference is the drifting watermark. After decoding two video compression codes, the

drifting watermark can be extracted by subtracting above two videos. The “Drift

Compensation1” block cancels the drifting watermark on B and P by subtracting. From

the above description, the conclusion is that above drift compensation works at spatial

domain.

 The video compression and watermarking in compressed domain with drift

compensation results are:

 73

(a) No drift compensation. (b) Drift compensation.

(c) No drift compensation.

 (d) Drift compensation.

 (e) No drift compensation. (f) No drift compensation.

(g) Drift compensation.

(h) Drift compensation.
Figure (5.4) Watermarking in compressed domain results (resolution 240X320).

 74

Comparing two video clips and two watermark images in uncompressed domain or in

compressed domain, and with or without drift compensation, the result demonstrates

that the drift compensation cancels the drifting watermark effect, especially for quickly

moving objects.

 But one phenomenon is also observed: if the moving object is very fast, while

drift compensation canceling the drifting watermark, it also causes another side effect of

blur shape moving object or even totally erased area. It is shown as figure follows:

(a) Stable watermark but moving bird blur. (b) Drifting watermark but moving bird clear.

Figure (5.5) Side effect of drift compensation of blur moving object.

This phenomena is not observed in intra frames, only inter (P and B) frames. By

monitoring extracted watermark, no extra video object is found with the extracted

watermark. The suspicious one could be motion estimate failure.

5.2 System Level Modeling with VHDL and FPGA Performances

 Unlike previous modeling with MATLAB/Simulink™, the high-level synthesis in

FPGA applies a different bottom-up methodology: the low level components are built

and verified, then, with functional components, the whole system is created. At this

 75

system-level prototyping development, the video compression and watermarking

working module are implemented in FPGA with VHDL. The modules are controller,

frame buffer, watermark buffer, DCT/IDCT, quantization, zigzag, Huffman coding and

watermarking.

5.2.1 Controller Performance

 The controller generates address and control signals to synchronize other

components. It is a finite state machine and its states are:

Figure (5.6) Controller’s FSM states diagram.

If using traditional FSM design, the controller has more states than those in above

Figure (5.6) because the video compression and watermarking procedures are

complicated. The solution is to merge several sub-states into one state, however, the

 76

inside structure of each state become complex. The simulation of the controller by

Altera Quartus II is:

Figure (5.7) Controller simulation. S0 and S1 for 297us in clock 50Mhz.

5.2.2 2-D DCT Performance

 The 2-dimensioal DCT is implemented with Loeffler’s fast 1-dimensional DCT

algorithm [16]. The simulation in Xilinx© ISE is as:

Figure (5.8) 2D DCT simulation. Total processing time: 1281ns in clock 100Mhz.

 77

The simulation result comparing with MATLAB™ function dct2:

Table (5.1) Comparison of first 20 coefficients of simulation and MATLAB™ dct2.
Index dct2 Simulation Index dct2 Simulation

0 252 251 10 0 0
1 -18.2 -17 11 0 0
2 0 0 12 0 0
3 -1.9 -1 13 0 0
4 0 0 14 0 0
5 -0.56 0 15 0 0
6 0 0 16 0 0
7 -0.14 0 17 0 0
8 -145.78 -152 18 0 0
9 0 0 19 0 0

5.2.3 Motion Estimation

Figure (5.9) Motion estimate simulation. Total processing time: 51112.7ns in 100Mhz.

 78

5.2.4 Quantization Performance

Figure (5.10) Quantization simulation.

5.2.5 Zigzag Scanning Performance

Figure (5.11) Zigzag scanning simulation. Total processing time: 1281ns in clock
100Mhz.

The VHDL compilation report of components by Altera© Quartus II™ is:

Table (5.2) Compilation and timing report of 128X128 Y frame processing in
100Mhz clock.

Component Logic
elements

Registers Pins Multipliers Time(ns)

Controller 588 157 69 0 75+30X2+150X3
2D DCT X 4 80459X4 1006X4 40X4 70X4 1281ns
Quantization 2363 0 31 1 0
Zigzag 1028 780 35 0 1281
Watermark 24 37 0 0 0
Frame buffers 7701 6156 43 0 0

 79

Motion vector buffer 667 520 31 0 0
Watermark buffer 4043 3048 41 0 0
RGB to YCbCr 1501 0 48 0 0
Motion estimate n/a n/a n/a n/a 51112+4194304
Total 339754 14722 457 281 4248563

The above FPGA compilation and timing report is generated by Altera© Quartus II™

high level simulation and synthesis IDE tools Quartus II™. The module is DE2 Cyclone

II™ module board. The clock 27 MHz is applied to verify FPGA performance.

5.3 Discussions

 With the performance of above functional components and integrated system,

the whole all performance of system is estimated. The video quality metrics are applied

to verify the system’s performance.

5.3.1 The Video Quality of Video Compression and Watermarking

 The video quality metrics are the RGB color image mean square error (MSE) [3]

and peak-signal-noise-ration (PSNR) as equations [2]:

MN

knmqknmp
MSE

M

m

N

n k

3

),,(),,(
1 1

3

1

2∑∑∑
= = =

−
= , (5.1)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

MSE
PSNR

i 2

10
)12(log10

.
 (5.2)

Where, m is the image pixel row from 1 to M, n is the image pixel column from 1 to N,

and k is from 1 to 3 as RGB color pixels. p(m,n,k) and q(m,n,k) are images’ pixels after

and before processing. i is the bit length of image pixel, in common RGB 24-bits digital

video system, it is 8. From the above MSE and PSNR equations, the quality metrics

results of video compression and watermarking in the working model are:

 80

Table (5.3) Video quality metrics of video compression and watermarking.
Compression ration Video processing type PSNR

(dB)
MSE

Average Range Estimate
Video compression only 30 71 27 (16~39) 16
Video compression and watermarking in
uncompressed domain

20 616 26.7 (15~38) 16

Video compression and watermarking in
compressed domain

19 812 26 (15~38) 16

The criteria of video quality are: PSNR between 40dB to 50dB, the noise is beyond

human perception; 10dB to 20dB, the noise can be detected by human visual system

[13]. The video compression working module has PSNR 30dB, which implies that the

current implementation of MPEG video compression generates noticeable noises. The

procedures of MPEG video compressions are lossy unnoticeable color space sample

rate compression, the motion estimate with great errors, lossy DCT compression,

quantization with noise by different step sizes, and lossless Huffman coding. More

improvement should come from the motion estimation and the quantization procedures.

 The PNSR of watermarking at uncompressed and compressed domain is about

20dB. It satisfies the fact that the watermarks are visible. The 1dB difference in PNSR

for two different watermarking schemes indicates that they are effectively same in

watermarking even though their complexities are different. The extra complexity of the

watermarking in compressing is caused by the drift compensation.

 The video compression rate is contributed from two categories, the constant one

like 4:2:0 color space sample rate whose compression rate is always 2:1, and the

content adaptive compression whose compression rate is variable and depends on its

content data in the motion estimation, DCT coefficients quantization and Huffman

coding procedures. Here the variable compression rate is estimated as: assume half

 81

DCT coefficients are truncated so the compression rate is 2:1. The redundancy of two

frames is removed in 75% by the motion estimate or compression rate is 4:1, and in the

working module, one GOP is constituted with one I frame, one B frame and 1 P frame or

IBP structure. The motion estimation compression could be (1+1+1)/(1+1/4+1/16) ≈ 2:1.

The DCT coefficients quantization and Huffman coding could have compression rates

are 2:1. So the estimated average compression rate of the video compression working

module is: 2X2X2X2=16:1. The observed average compression rate in the experiment

is 26:1. To achieve higher compression rate, one way is to interpolate more B frames

and more P frames in one GOP. After tuning, the average compression rate could be

greater than 100:1.

5.3.2 Physical and Timing Analyzing.

 From Table (5.2), the physical and time parameters of the working module are

estimated by simply adding extra Cb and Cr processing. Since the motion estimation

and watermarking only occur in Y color space, the physical structure of Y processing is

more complicated than Cb and Cr such that it is safe to estimate the total logic elements

by tripling with Y color processing branch. However, the Y, Cb and Cr processing are

concurrent; the time delay in Y color processing could be considered as the total delay

in the whole working module. The physical and timing results of the working module are:

Table(5.4) Physical and timing results for 128X128 YCbCr frames at 400Mhz.
Elements Registers Multipliers Time(us) Frame/s
1,019,262 44,166 843 1,063 940

Above result is upon the ideal assumption that there is no physical delay in logic gates,

but only processing delay. The total elements are a great amount because only the

high-level modeling and simulation in behave has been achieved. The structure and

 82

performance need to be optimized in algorithms and RTL level. If the model is utilized in

resolution 720X486 applications, like NTSC television video broadcasting system, the

working model processing speed could reach 44 frame/s, which exceeds with the

required 29.97 frame/s.

 83

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The working module has demonstrated the basic algorithms of MPEG-4 visual

part advanced simple profile. Two visible watermarking schemes, watermarking in

uncompressed domain and compressed domain, have been proved achieving similar

visual output result (difference in 1dB), however, the compressed domain watermarking

is more complex in structure than the uncompressed one. The similar result in the two

working modules is based on the fact that video compression processing with PSNR 30

dB; otherwise, the watermarking in uncompressed domain could have better PSNR than

that in compressed domain.

The uncompressed and compressed domain watermarking also demonstrate the

robust of DCT domain watermarking because after every compression procedures, the

watermark is still noticeable and integrity.

 The simulation reports of working module with FPGA performance confirm that 2-

D DCT/IDCT is more complex in structure, and motion estimation has the greatest time

delay. If not considering physical constraints, the encoding speed could satisfy the

standard real time NTSC video encoding/watermarking applications in clock 400Mhz,

but the video encoding PSNR 30 dB is still lower than normal requirement 40~50 dB.

6.2 Future Work

 The present model just implements basic MPEG and watermarking algorithms,

further optimization needs to utilize for minimize physical parameters like logic gates

 84

number in RTL level and pipeline to reduce time delay. The robust of watermark should

be tested further by emulating more different attacks attempting to remove watermark.

6.2.1 MPEG-4 Video Compression

 The prototype only implements the integer pixel motion estimation, to reach the

goal of a fine resolution as MPEG-4, the half and quarter- pixel motion estimation must

be implemented. The motion estimation is exhaustive square searching, but in MPEG-4,

it is diamond 3-steps algorithm which can greatly improve searching speed. The

prototype module only has an average compression rate 26:1 because an IBP GOP

model is applied, but most commercial video compression could be more than 100:1. To

gain higher compression rate, the GOP could be interpolated with more B and P frames.

In the prototyping module, the video compressed stream is raw, unformatted, however,

if a standard MPEG-4 decoder is a received ender, the prototyping module must

generate MPEG-4 stream headers.

6.2.2 Watermarking

 The prototyping module only achieves the basic watermarking embedding at

DCT domain, and it could be fragile under some attacks [53], [56], [58], [59], [60], [61]

and [62]. More watermarking algorithms could be considered for copyright protection

such as [53], [54], [56], [57], [59], and [62].

 The watermarking techniques discussed in this paper also can embed color or

animation watermark even though just an implement of still monochrome watermark

image is discussed for simplifying reasons.

 85

 The error of blur or even disappearing fast moving video object after the drift

compensation could be caused by failure of motion estimate. Further testing should be

conducted, and a solution upon testing will be proposed.

6.2.3 Hardware Implementation

The working module FPGA performance is investigated with simulation. More

optimization on the lower RTL levels and physical structures are needed.

 86

REFERENCES
[1] www.xvid.org

[2] Iain E.G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons,

Ltd. England, USA, 2003.

[3] Jie Chen, Ut-Va Koc Koc, and K.J. Ray Liu, Design of Digital Video Coding Systems

– A Complete Compressed Domain Approach, Marcel Dekker, Inc. New York,

USA, 2002.

[4] S. P. Mohanty, Digital Watermarking: A Tutorial Review,

 http://www.csee.usf.edu/~smohanty/research/Reports/WMSurvey1999Mohant

y.pdf

[5] S. Emmanuel, M.S. Kankanhalli, “Security and Copyright Protection for Broadcast

Video”, International Conference on Multimedia Modeling (MMM 2000), pp.

123-140, Nagoya, Japan, Nov 2000.

[6] W.Q. Yan and M.S. Kankanhalli, “Erasing Video Logos Based on Image Inpainting”,

Proc. IEEE International Conference in Multimedia and Expo (ICME 2002),

Lausanne, August 2002.

[7] W. Q. Yan, J. Wang, and M.S. Kankanhalli, “Automatic Video Logo Detection and

Removal”, ACM/Springer-Verlag Multimedia Systems Journal, Volume 10,

No. 5, 2005, pp. 379–391.

[8] M. Awrangjeb and M.S.Kankanhalli, “Reversible Watermarking Using a Perceptual

Model”, Journal of Electronic Imaging, Vol. 14, No. 1, Jan-Mar 2005.

[9] W.Q. Yan and M.S. Kankanhalli, “Detection and Removal of Lighting & Shaking

Artifacts in Home Video”, Proc. ACM International Conference on Multimedia

(ACMMM 2002), Juan Les Pins, France, December 2002.

 87

[10] www.altera.com

[11] www.xilinx.com

[12] www.mathworks.com

[13] C. John Russ. The Image Processing Handbook. 4th Edition, CRC Press. USA,

2002.

[14] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J. LeGall.

MPEG Video Compression Standard, pages 33-49, Chapaman & Hall, New

York, USA, 1996.

[15] W. W. A. Chen, C. Harrison, and S. C. Fralick, “A Fast computational Algorithm for

the Discrete Cosine Transform,” IEEE Transactions on Communications, Vol.

COM-25, No. 9, pp. 1004-1011, Sept. 1977.

[16] C. Loeffler, A. Lightenberg, and G. Moschytz, “Practical fast 1-D DCT algorithms

with 11 multiplications,” Proc. IEEE ICASSP, vol. 2, pp.988–991, Feb. 1989.

[17] C.-Y. Pai el U/., “Low-power data-dependent 8x8 DCT/IDCT for video

compression”, IEE Pmc.-vis. Image Signol Process., Vol. 150, Iss. 4, pp. 245

– 255, 22 Aug. 2003.

[18] D. Huffman, “A method for the construction of minimum redundancy codes”, Proc.

Of the IRE, 40, pp. 1098-1101, 1952.

[19] C.E. Shannon. The Mathematical Theory of Communication. The University of

Illinois Press, 1949.

[20] F. Hartung, B. Girod, “Watermarking of uncompressed and compressed video”,

Signal Processing, v 66, n 3, May 1998, p 283-301

 88

[21] Stefan Katzenbeisser, Fabien, A.P. Petitcolas, Information Hiding Techniques for

Steganography and Digital Watermarking, Idea Group, USA, 2000.

[22] Michael Arnold, Martin Schmucker, Stephen D. Wolthusen, Techniques and

Applications of Digital Watermarking and Content Protection, Artech Hosue,

Inc, 2003, England.

[23] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kanakanhalli, "A Dual Watermarking

Technique for Images", in Proceedings of the 7th ACM International

Multimedia Conference (ACMMM) (Vol. 2), pp.49-51, 1999.

[24] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kanakanhalli, "A DCT Domain

Visible Watermarking Technique for Images", in Proceedings of the IEEE

International Conference on Multimedia and Expo (ICME) (Vol. 2), pp.1029-

1032, 2000.

[25] P. Premaratne, C.C., “A novel watermark embedding and detection scheme for

images in DFT domain”, Image Processing and Its Applications, 1999.

Seventh International Conference on (Conf. Publ. No. 465) (Vol. 2), pp.780-

783, 1999.

[26] X. G. Xia, C. Boncelet, and G. Arce, "Wavelet transform based watermark for

digital images," Opt. Express 3, pp.497-511, 1998.

[27] O. B. Adamo, S. P. Mohanty, E. Kougianos, M. Varanasi, and W. Cai, "VLSI

Architecture and FPGA Prototyping of a Digital Camera for Image Security

and Authentication", in Proceedings of the IEEE Region 5 Technology and

Science Conference, pp. 154-158, 2006.

 89

[28] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kanakanhalli, "An Adaptive DCT

Domain Visible Watermarking Technique for Protection of Publicly Available

Images", in Proceedings of the International Conference on Multimedia

Processing and Systems (ICMPS), pp.195-198, 2000.

[29] Y.H. Wu, X. Guan, M.S. Kankanhalli, Z.Y. Huang, “Robust Invisible Watermarking

of Volume Data”, 27th International Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH 2000), Sketches & Applications, pp. 252,

July 2000.

[30] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, "VLSI Implementation of

Invisible Digital Watermarking Algorithms Towards the Development of a

Secure JPEG Encoder", Proceedings of the IEEE Workshop on Signal

Processing System (SIPS), pp.183-188, 2003.

[31] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, "VLSI Implementation of

Visible Watermarking for a Secure Digital Still Camera Design", Proceedings

of the 17th IEEE International Conference on VLSI Design (VLSID), pp.1063-

1068, 2004

[32] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, "A VLSI Architecture for

Visible Watermarking in a Secure Still Digital Camera (S^2DC) Design", IEEE

Transactions on Very Large Scale Integration Systems (TVLSI), Vol. 13, No.

7, July 2005, pp. 808-818

[33] S. P. Mohanty, N. Ranganathan, and K. Balakrishnan, "A Dual Voltage-Frequency

VLSI Chip for Image Watermarking in DCT Domain", IEEE Transactions on

Circuits and Systems II (TCAS-II), Vol. 53, No. 5, May 2006, pp. 394-398.

 90

[34] M. Bansal, W.Q. Yan and M.S. Kankanhalli, “Dynamic Watermarking of

Images”,Proc. IEEE Pacific-Rim Conference On Multimedia (PCM 2003),

Singapore, December 2003.

[35] M. Barni, F. Bartolini, V. Cappellini, A. Piva, “A DCT-domain system for robust

image watermarking”. Signal Processing, v 66, n 3, May 1998, p 357-72.

[36] S. Pranata, Y.L. Guan, H.C. Chua, “Improved bit rate control for real-time MPEG

watermarking”, 2004 International Conference on Image Processing (ICIP)

(IEEE Cat. No.04CH37580), 2004, pt. 4, p 2619-23 Vol. 4

[37] K. Wiatr, P.Russek, “Embedded zero wavelet coefficient coding method for FPGA

implementation of video codec in real-time systems”, Proceedings

International Conference on Information Technology: Coding and Computing

(Cat. No.PR00540), 2000, p 146-51

[38] A. Piva, R. Caldelli, A. De Rosa, “A DWT-based object watermarking system for

MPEG-4 video streams”, Proceedings 2000 International Conference on

Image Processing (Cat. No.00CH37101), 2000, pt. 3, p 5-8 vol.3

[39] D. He, Q. Sun, Q. Tian, “A secure and robust object-based video authentication

system”, EURASIP Journal on Applied Signal Processing, v 2004, n 14, 15

Oct. 2004, p 2185-200.

[40] S. Biswas, S.R. Das, E.M. Petriu, “ An adaptive compressed MPEG-2 video

watermarking scheme”, IEEE Transactions on Instrumentation and

Measurement, v 54, n 5, Oct. 2005, p 1853-61

[41] Tian-Hang Chen, Shao-Hui Liu, Hong-Xun Yao, Wen Gao, “Robust video

watermarking based on DC coefficients of selected blocks”, Proceedings of

 91

2005 International Conference on Machine Learning and Cybernetics (IEEE

Cat. No. 05EX1059), 2005, pt. 9, p 5273-8 Vol. 9

[42] Mauro Barni, Franco Bartolini, Nicola Checcacci, “Watermarking of MPEG-4 video

objects”, IEEE Transactions on Multimedia, v 7, n 1, February, 2005, p 23-31

[43] M. J. Garrido, C. Sanz, M. Jimenez, J.M. Meneses, “An FPGA implementation of a

flexible architecture for H.263 video coding” 2002 Digest of Technical Papers.

International Conference on Consumer Electronics (IEEE Cat.

No.02CH37300), 2002, p 274-5

[44] Jianhao Meng, Shih-Fu Chang, “Embedding visible video watermarks in the

compressed domain”, Proceedings 1998 International Conference on Image

Processing. ICIP98 (Cat. No.98CB36269), 1998, pt. 1, p 474-7 vol.1

[45] L. Qiao, K. Nahrstedt, “Watermarking Methods for MPEG Encoded Video: Towards

Resolving Rightful Ownership”, 1998 IEEE International Conference on

Multimedia Computing and Systems (ICMCS'98), 1998, p. 276

[46] Wei Zhang, Sen-Ching S. Cheung, Minghua Chen, “Hiding privacy information in

video surveillance system”, Proceedings - International Conference on Image

Processing, ICIP, v 3, IEEE International Conference on Image Processing

2005, ICIP 2005, 2005, pp 868-871

[47] Wen-Nung Lie, Guo-Shiang Lin, Ta-Chun Wang, “Digital watermarking for object-

based compressed video”, ISCAS 2001. The 2001 IEEE International

Symposium on Circuits and Systems (Cat. No.01CH37196), 2001, pt. 2, p 49-

52 vol. 2

 92

[48] M.S. Kankanhalli and T.G. Teo, “Compressed Domain Scrambler/Descrambler for

Digital Video”, IEEE Transactions on Consumer Electronics, Vol. 48, No. 2,

pp. 356-365, May 2002.

[49] S. Emmanuel and M.S. Kankanhalli, “A Digital Rights Management Scheme for

Broadcast Video”, ACM Multimedia Systems Journal, Vol. 8, No. 6, pp. 444-

458, 2003.

[50] E.C. Chang, M.S. Kankanhalli, X. Guan, Z.Y. Huang and Y.H. Wu, “Robust Image

Authentication Using Content-based Compression”, ACM Multimedia

Systems Journal, Vol. 9, No. 2, pp. 121-130, 2003.

[51] C.M. Chew and M.S Kankanhalli, “Compressed Domain Summarization of Digital

Video”, Proc. Second IEEE Pacific-Rim Conference on Multimedia (PCM

2001), Beijing, October 2001.

[52] S. P. Mohanty, R. Kumara C., and S. Nayak, "FPGA Based Implementation of an

Invisible-Robust Image Watermarking Encoder", Lecture Notes in Computer

Science (LNCS), CIT 2004,Springer-Verlag, Vol. 3356, pp. 344-353, 2004.

[53] S.D. Lin, Chin-Feng Chen, “A robust DCT-based watermarking for copyright

protection”, IEEE Transactions on Consumer Electronics, v 46, n 3, Aug.

2000, p 415-21.

[54] P.A.A. Assuncao, M. Ghanbari, “Transcoding of MPEG-2 video in the frequency

domain”, 1997 IEEE International Conference on Acoustics, Speech, and

Signal Processing (Cat. No.97CB36052), 1997, pt. 4, p 2633-6 vol.4.

 93

[55] L. Agostini, I. Silva, and S. BAMPI. “Pipelined Fast 2-D DCT Architecture for JPEG

Image Compression”, SBCCI2000 – XIII Symposium on Integrated Circuits

and System Design, GO-Brazil, 2001.

[56] Seong-Whan Kim, Hyun Jin Park, Hyunseong Sung, “A natural modification of

autocorrelation based video watermarking scheme using ICA for better

geometric attack robustness”, Lecture Notes in Computer Science, v 3611, n

PART II, Advances in Natural Computation: First International Conference,

ICNC 2005. Proceedings, 2005, p 451-460.

[57] Guo-Zua Wu, Yi-Jung Wang, Wen-Hsing Hsu, “Robust watermark

embedding/detection algorithm for H.264 video”, Journal of Electronic

Imaging, v 14, n 1, Jan. 2005, p 13013-1-9.

[58] P. Vinod, P.K. Bora, “Motion-compensated inter-frame collusion attack on video

watermarking and a countermeasure”, IEE Proceedings-Information Security,

v 153, n 2, 12 June 2006, p 61-73.

[59] K. Su, D. Kundur, D. Hatzinakos, “A content dependent spatially localized video

watermark for resistance to collusion and interpolation attacks”, Proceedings

2001 International Conference on Image Processing (Cat. No.01CH37205),

2001, pt. 1, p 818-21 vol.1.

[60] B. Vassaux, P. Nguyen, S. Baudry, P. Bas, J.-M. Chassery, “Survey on attacks in

image and video watermarking”, Proceedings of the SPIE - The International

Society for Optical Engineering, v 4790, 2002, p 169-79.

 94

[61] Jiang Du, Choong-Hoon Lee, Heung-Kyu Lee, Youngho Suh, “BSS: a new

approach for watermark attack”, Proceedings Fourth International Symposium

on Multimedia Software Engineering, 2002, p 182-7.

[62] Chun-Shien Lu, Jan-Ru Chen, Kuo-Chin Fan, “Resistance of content-dependent

video watermarking to watermark-estimation attacks”, 2004 IEEE

International Conference on Communications (IEEE Cat. No.04CH37577),

2004, pt. 3, p 1386-90 Vol.3.

[63] Iain E.G. Richardson. H.264 and MPEG-4 Video Compression, John Wiley & Sons,

Ltd. England, USA, 2003.

[64] Chun-Shien Lu, Multimedia Security: Stegranograhy and Digital Watermarking

Techniques for Protection of Intellectual Property, Idea Group Inc, 2005, USA.

[65] M.S. Kankanhalli and K.F. Hau, ”Watermarking of Electronic Text Documents”,

Electronic Commerce Research, Vol. 2, No. 1/2, pp. 169-187, Kluwer

Academic Publishers, 2002.

[66] S. Emmanuel and M.S. Kankanhalli, “Mask-based Interactive Watermarking

Protocol for Video”, Proc. SPIE International Symposium on the Convergence

of Information Technologies and Communications (ITCOM 2001), Denver,

August 2001.

[67] S. Emmanuel and M.S. Kankanhalli, “Mask-based Fingerprinting Scheme for Digital

Video Broadcasting”, Multimedia Tools and Applications, 2006.

[68] Thomas Sikora, “The MPEG-4 Video Standard Verification Model”, IEEE

Transactions on Circuits and Systems for Video Technology Vol.7, No.1,

1997, p19-31.

 95

[69] X.D. Sun, M.S. Kankanhalli, Y.W. Zhu and J.K. Wu, “Content-based Representative

Frame Extraction for Digital Video”, Proc. IEEE International Conference on

Multimedia Computing and Systems (ICMCS 1998), pp. 190-193, Austin,

Texas, July 1998.

[70] M.S. Kankanhalli, Rajmohan and K.R. Ramakrishnan, “Content-based

Watermarking of Images”, Proc. of The 6th ACM International Multimedia

Conference, pp. 61-70, Bristol, UK, September 1998.

[71] M.S. Kankanhalli, Rajmohan and K.R. Ramakrishnan,”Adaptive Visible

Watermarking of Images”, IEEE International Conference on Multimedia

Computing and Systems (ICMCS 1999), Florence, Italy, June 1999.

[72] T.S. Chua, Y. Lin and M.S. Kankanhalli, “A General Framework for Video

Segmentation based on Temporal”, Multi-resolution Analysis, Proc.

International Workshop on Advanced Image Technology (IWAIT 2000), pp.

119-124, Fujisawa, Japan, January 2000.

[73] S. Emmanuel, M.S. Kankanhalli, “A System for Security and Copyright Protection in

Broadcast Video”,Proc. International Workshop on Advanced Image

Technology (IWAIT 2001), Taejon, Korea, February 2001.

[74] S. Emmanuel and M.S. Kankanhalli, “Copyright Protection for MPEG-2

Compressed Broadcast Video”, IEEE International Conference on Multimedia

and Expo (ICME2001), Tokyo, Japan, August 2001.

[75] P.K. Atrey, W.Q. Yan and M.S. Kankanhalli, “A Scalable Signature Scheme for

Video Authentication”, Multimedia Tools and Applications, 2007.

 96

[76] M. Awrangjeb and M.S. Kankanhalli, “Lossless Watermarking Considering the

Human Visual System”, Proc. International Workshop on Digital

Watermarking (IWDW 2003), Seoul, October 2003.

[77] Mauro Barni, Franco Bartolini, Watermarking Systems Engineering Enabling Digital

Assets Security and Other Applications, Marcel Dekker Inc, New York, USA,

2004.

