Bacterial Challenge in Lumbricus Terrestris: A Terrestrial Invertebrate Immunotoxicity Model.

PDF Version Also Available for Download.

Description

A bacterial challenge assay was developed utilizing the earthworm, Lumbricus terrestris, in order to assess potential immunotoxic effects from exposure to specific polychlorinated biphenyl congeners. Earthworms were inoculated with Aeromonous hydrophila, establishing a 10-day LD50. In vitro assays for effects of PCBs on phagocytosis agreed with mammalian studies, demonstrating potent suppression of phagocytosis by the non-coplanar PCB congener 138 and no suppression by the coplanar congener 126. However, when the effects of the two PCB congeners were evaluated for suppression of resistance to a whole animal infection challenge assay, coplanar PCB 126 decreased the ability of L. terrestris to withstand ... continued below

Creation Information

McDonald, Jennifer C. May 2007.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 348 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • McDonald, Jennifer C.

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

A bacterial challenge assay was developed utilizing the earthworm, Lumbricus terrestris, in order to assess potential immunotoxic effects from exposure to specific polychlorinated biphenyl congeners. Earthworms were inoculated with Aeromonous hydrophila, establishing a 10-day LD50. In vitro assays for effects of PCBs on phagocytosis agreed with mammalian studies, demonstrating potent suppression of phagocytosis by the non-coplanar PCB congener 138 and no suppression by the coplanar congener 126. However, when the effects of the two PCB congeners were evaluated for suppression of resistance to a whole animal infection challenge assay, coplanar PCB 126 decreased the ability of L. terrestris to withstand infection while non-coplanar PCB 138 did not.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2007

Added to The UNT Digital Library

  • Sept. 28, 2007, 10:02 p.m.

Description Last Updated

  • June 25, 2015, 2:35 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 348

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McDonald, Jennifer C. Bacterial Challenge in Lumbricus Terrestris: A Terrestrial Invertebrate Immunotoxicity Model., thesis, May 2007; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc3640/: accessed April 29, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .