Formation and Quantification of Corrosion Deposits in the Power Industry

PDF Version Also Available for Download.

Description

The presence of deposits on the secondary side of pressurized water reactor (PWR) steam generator systems is one of the main contributors to the high maintenance costs of these generators. Formation and transport of corrosion products formed due to the presence of impurities, metals and metallic oxides in the secondary side of the steam generator units result in formation of deposits. This research deals with understanding the deposit formation and characterization of deposits by studying the samples collected from different units in secondary side system at Comanche Peak Steam Electric Station (CPSES). Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy ... continued below

Creation Information

Namduri, Haritha May 2007.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 2678 times , with 17 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Namduri, Haritha

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

The presence of deposits on the secondary side of pressurized water reactor (PWR) steam generator systems is one of the main contributors to the high maintenance costs of these generators. Formation and transport of corrosion products formed due to the presence of impurities, metals and metallic oxides in the secondary side of the steam generator units result in formation of deposits. This research deals with understanding the deposit formation and characterization of deposits by studying the samples collected from different units in secondary side system at Comanche Peak Steam Electric Station (CPSES). Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) have been used for studying the phases, morphologies and compositions of the iron oxides formed at Unit 1 and Unit 2 of secondary side of steamgenerator systems. Hematite and magnetite were found to be the dominant phases of iron oxides present in the units. Fe, Cr, O, Ni, Si, Cl and Cu were found in samples collected from both the units. A qualitative method was developed to differentiate iron oxides using laser induced breakdown spectroscopy (LIBS) based on temporal response of iron oxides to a high power laser beam. A quantitative FTIR technique was developed to identify and quantify iron oxides present in the different components of the secondary side of the steam generator of CPSES. Amines are used in water treatment to control corrosion and fouling in pressurized water reactors. CPSES presently uses an amine combination of dimethylamine (DMA), hydrazine and morpholine to control the water chemistry. Along with the abovementioned amines, this study also focuses on corrosion inhibition mechanismsof a new amine DBU (1, 8-diazabicyclo [5.4.0] undec-7-ene). Electrochemical impedance spectroscopy and polarization curves were used to study the interaction mechanism between DBU solution and inconel alloys 600 and 690 at steamgenerator operating temperatures and pressures. Of all the amines used in this study (DMA, DBU, ETA, and morpholine), DMA was more effective at keeping the passive film formed on the alloy 600 surface from failing at both ambient and high temperatures. Morpholine was found result in higher corrosion resistance compared to the other amines in case of alloy 690.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2007

Added to The UNT Digital Library

  • Sept. 28, 2007, 10:03 p.m.

Description Last Updated

  • Feb. 29, 2008, 10:58 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 17
Total Uses: 2,678

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Namduri, Haritha. Formation and Quantification of Corrosion Deposits in the Power Industry, dissertation, May 2007; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc3635/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .