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Multimedia documents are composed of multiple file format combinations, such 

as image and text, image and sound, or image, text and sound.   The type of multimedia 

document determines the form of analysis for knowledge architecture design and retrieval 

methods.   Over the last few decades, theories of text analysis have been proposed and 

applied effectively.   In recent years, theories of image and sound analysis have been 

proposed to work with text retrieval systems and progressed quickly due in part to rapid 

progress in computer processing speed.   Retrieval of multimedia documents formerly 

was divided into the categories of image and text, and image and sound.   While standard 

retrieval process begins from text only, methods are developing that allow the retrieval 

process to be accomplished simultaneously using text and image.    

Although image processing for feature extraction and text processing for term 

extractions are well understood, there are no prior methods that can combine these two 

features into a single data structure.   This dissertation will introduce a common 

representation format for multimedia documents (CRFMD) composed of both images and 

text.    

For image and text analysis, two techniques are used: the Lorenz Information 

Measurement and the Word Code.   A new process named Jeong’s Transform is 

demonstrated for extraction of text and image features, combining the two previous 



measurements to form a single data structure.   Finally, this single data structure is 

analyzed by using multi-dimensional scaling.   This allows multimedia objects to be 

represented on a two-dimensional graph as vectors.   The distance between vectors 

represents the magnitude of the difference between multimedia documents.    

This study shows that image classification on a given test set is dramatically 

improved when text features are encoded together with image features.   This effect 

appears to hold true even when the available text is diffused and is not uniform with the 

image features.   This retrieval system works by representing a multimedia document as a 

single data structure.   CRFMD is applicable to other areas of multimedia document 

retrieval and processing, such as medical image retrieval, World Wide Web searching, 

and museum collection retrieval. 
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CHAPTER 1. INTRODUCTION 

Problem Description 

 The World Wide Web produces an abundant amount of multimedia documents 

on a daily basis.   For example, images collected through satellite are used for 

forecasting weather, tracking ecological changes, and providing information on 

changes in space (Demers, 1999).   Images are also used in the medical field to 

determine diagnosis (Liu, 1998).   Image analyses are methods how images can be 

analyzed for retrieving and storing purpose.  Image retrieval is a method how images 

can be retrieved from the storage for user’s need.   As massive repositories of images 

are created for such countless purposes, the need for better image analysis has grown 

and many theories of image analysis have been proposed (Goodrum et al., 2000).    

However, use of images in information retrieval has been less successful than 

text retrieval.   Although shape, color, and texture are undoubtedly important for 

image representation, there is little understanding of how best to analyze these 

attributes for actual image retrieval.   In addition, two images can represent the same 

situation even if they are rotated, expanded, extracted, contracted, or colored.   The 

text itself is easily understood and organized and has been used efficiently in 

information retrieval (Korfhage, 1997).   The focus to date has been primarily on the 

use of features that can be computationally acquired from images, but little has been 

done to identify the visual attributes needed by users for various tasks and collections 

for searching (Goodrum et al., 2000).       

Nevertheless, previously no method existed to combine these two features into 

a single data structure (Rorvig et al., 2000).    

 

1 



 

Objectives of the Study 

 Several multimedia document retrieval systems have been released by 

commercial vendors and proactive researchers, such as CONVERATM, VIRAGETM, 

IBM’s QBICTM, AMORETM, ARTISANTM, BlobWorldTM, and CANDIDTM (Venters 

& Cooper, 1999).   However, these systems have two data structures for multimedia 

documents: one for image, and the other for text (Eakins & Graham, 1999); therefore, 

for retrieval purposes, these systems need to establish a link between image and text 

(Venters & Cooper, 1999). 

These two data structures used by commercial vendors must be maintained 

separately.   Unfortunately anomalies could exist between the two data structures 

(Eakins & Graham, 1999).   In that case the retrieval systems cannot use image data 

without linking text data structure to image data structure.   However, the common 

representation format for multimedia documents explained in this paper has a single 

data structure (Jeong et al., 2001).   The single combined data structure can solve the 

anomaly problem easily because the two data structures are combined.   Not only can 

text terms be used to retrieve images, but also a text data structure can be used with an 

image data structure in retrieving images.         

Research Questions 

Content-based image retrieval uses several primitive image features.   Features 

such as lines, edges, angles, grayscale, red, green, and blue color scale, pattern 

matching, and spatial proximity are used to extrapolate a meaning for limited image 

understanding and retrieval (Eakins & Graham, 1999).   Although many such 

primitive measures are available, there is not yet a small set of optimal measures that 
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leads to perfect retrieval.   Rather, it seems that more measures tend to work better 

than fewer (Jeong et al., 2001).    

For this reason, twelve primitive features from images were extracted, namely 

red, green, blue, gray, distance A (distance from the origin of the image to a specific 

pixel), distance B (distance from side-A to a specific pixel), distance C (distance from 

side-B to a specific pixel), distance D (distance from side-C to a specific pixel), 

distance E (distance from side-D to a specific pixel), angle, Hough Transform value 

which is representing a kind of distance (Young, 1993), and density of image.   All 

these features will be explained in chapter 4 in great detail.    

Numerous methods to extract data from text documents have been known 

since 1960 (Salton et al., 1994).   Typical of these are a term frequency method and a 

binary representation method.   In this research, binary representation of textual data 

was chosen because of its simplicity and ease of transformation.   Term frequency 

method uses the frequencies of each term in a document, but binary representation 

method uses “1” or “0” for each term depending on presence or absence of term in a 

document.   A term extraction from the text document is the best-known way of 

making a binary representation through using a text representation method.   Term 

extraction is a method of extracting words in a text document.   This term set consists 

of terms from the entire document set.   Extracted terms can then be represented in a 

binary representation for each document.   A binary expression comes from a term list 

that is made from the entire document set using the term extraction method chosen for 

this research.   The term list is used as a base, and a binary matrix is produced for 

representing each document and each term. 
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The binary matrix will be divided evenly into 11 groups called Word Code if 

that is possible and number of 1’s is counted for each group.   If the binary matrix is 

not divided evenly into 11 groups, then the 11th group will have the rest of them.   The 

12th group represents the total number of 1’s in that document.   After finding the 

largest frequency for each word group, the frequency of that group for each document 

is divided by the largest frequency for that group multiplied by 2.   This is done so 

that the measurements for text document are on the same scale as measurements for 

image features.   Using the above transform, twelve text measurements are made.   

Then, twelve measurements from image and twelve measurements from text are 

combined to construct a common representation format for multimedia documents.   

Constructing a common representation format for multimedia documents is easily 

accomplished through this method because it makes it possible for two totally 

different media formats to have a single data structure.        

 These are the hypotheses of the research:  

1) A single data structure combining text measures and image measures is 

possible.  

2) A combined representation format significantly improves the results of 

multimedia document retrieval. 
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CHAPTER 2. THEORIES AND RESEARCH ON THE NATURE OF CONTENT-

BASED IMAGE RETRIEVAL 

Introduction 

A Brief History of Text Retrieval 

Since the 1940s the problem of information storage and retrieval has attracted 

increasing attention for use with text documents.   An example of an information 

storage and retrieval system is the MEDLINETM system (McCarn & Leither, 1973) 

for on-line retrieval of medical information.   This illustration shows by means of a 

black box what a typical information retrieval system looks like. 

 

 

 

 

 

 

 
 
 
      Processor t 

  Documents

   Queries 

  Input 

 

Figure 2.1 A Typical Information Retrieval System (Korfhage, 1

 

The diagram shows three components: input, processor and outp

is a part of the processor.   Although information retrieval can be divide
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with exploiting relationships between documents to improve the efficiency and 

effectiveness of retrieval strategies; the third with the measurement of the 

effectiveness of retrieval.   Efficiency is usually measured in terms of the computer 

resources used such as central processing unit time, back-up time, and round-about 

time.   Effectiveness of retrieval is also measured in terms of precision and recall 

measures. 

For document representation Luhn (1957) used frequency counts of words in 

the document text to determine which words were sufficiently significant to represent 

or characterize the document in the computer.   Thus a list of what might be called 

'keyword' or 'term' was derived for each document.   The use of statistical information 

about distribution of words in documents was further exploited by Maron and Kuhns 

(1960) who obtained statistical associations between keywords. 

The term information structure covers specifically a logical organization of 

information, such as document representatives, for the purpose of information 

retrieval.   The development in information structures has been fairly recent.   The 

earlier experiments with text document retrieval systems usually adopted a serial file 

organization.   More recently experiments have used clustered files for on-line 

retrieval.   The organization of these files is produced by an automatic classification 

method.   Good (1958) and Fairthorne (1961) were among the first to suggest that 

automatic classification might prove useful in document retrieval.    

Evaluation of retrieval systems has proved extremely difficult.   Senko (1969) 

in an excellent survey paper states: "Without a doubt, system evaluation is the most 

troublesome in information retrieval system ..."   However, Lesk and Salton (1969) 

subsequently used a dichotomous scale on which a document is either relevant or non-
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relevant, when subjected to a certain probability of error.   They showed that this 

modification did not invalidate the results obtained for evaluation in terms of 

precision (the proportion of retrieved documents which are relevant) and recall (the 

proportion of relevant documents retrieved).   Precision and Recall have a long history 

dating back to the Cranfield experiments (Korfhage, 1997) in the late 1950s.     

A Brief History of Image Retrieval 

 With the rapid growth of digital technology in the last few years the potential 

use of digital images has increased enormously.   Researchers in many professional 

fields are exploiting the opportunities offered by the ability to access and manipulate 

images in all kinds of new and exciting ways.   Those explored in the early 1990s at 

National Aeronautics and Space Administration (NASA) (Rorvig, 1993; Rorvig et al., 

1993), QBICTM (Flickner et al., 1995) and VIRAGETM (Gupta et al., 1996) are fairly 

indicative of the types of approaches available today. 

Problems with past methods of image indexing (Enser, 1995) have led to the 

rise of interest in techniques for retrieving images on the basis of automatically-

derived features such as color, texture and shape – a technology now generally 

referred to as content-based image retrieval (CBIR).  To analyze and retrieve digital 

images, CBIR theories were created and are now being used in the market place 

worldwide (Eakins & Graham,1999; Ventors & Cooper, 1999) in the form of 

commercial products like QBIC (Flickner et al., 1995) and Virage (Gupta et al., 

1996).   CBIR has advantages and disadvantages with regard to the inherent nature of 

image analysis and retrieval.    

 Advantages: 

1) Easy to extract features from image 
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2) Able to change extracted features to other forms such as histogram 

3) Easy to build an automatic process 

Disadvantages: 

1) Hard to determine effectiveness 

2) Unknown usability in handling real-life images 

3) Difficult to choose features for extraction  

4) Hard to get the semantic meaning of image from low level features 

5) Difficult to process a specific region in the image 

6) Limited markets of profit for CBIR (Goodrum et al., 2000; Eakins 

& Graham, 1999; Venters & Cooper, 1999) 

Despite of the advantages and disadvantages CBIR is the most vigorously 

used image processing technique currently (Eakins & Graham, 1999; Venters & 

Cooper, 1999). 

Pattern matching technique is another favorite technique in CBIR (Nadler and 

Smith, 1992).   User’s image needs may occur at a primitive level that taps directly 

into the visual attributes of an image, in which case the accompanying text would not 

be relevant.   These attributes may best be presented by image exemplars and 

retrieved by systems performing pattern matches based on color, texture, shape, and 

other visual features (Hermes, 1995). 

A Brief Explanation of Main Concepts Used in the Paper 

To analyze image documents certain features have to be extracted.   Eleven 

primitive features such as red, green, blue, gray, 5 distances, angle and Hough 

Transform, extracted from images could be transformed into histograms using 

frequencies in each feature.   The density of image is calculated from the number of 
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edge-detected pixel.   The curve derived from the histograms is called the Lorenz 

Curve or the Lorenz Information Curve (Gastwirth, 1971; Chang & Yang, 1982).   It 

can be seen that once the histogram h is given, the Lorenz Curve is completely 

specified like the Figure 2.2.   The curve Cf and Cg represent the Lorenz Curves.   The 

Lorenz Information Measure (LIM) (Lorenz, 1893; Chang & Yang, 1982) 

LIM(p1,...,pn) is defined to be the area under the Lorenz Curve.   Clearly, 0 ≤ 

LIM(p1,...,pn) ≤ 0.5.   For any probability vector (p1,...,pn), LIM(p1,...,pn) can be 

computed by first ordering the pi's in order from least to greatest, then calculating the 

area under the piecewise linear curve.   Finally, the Lorenz Information Measure is the 

weighted sum of the Lorenz Curve (for example, Cf or Cg), so that LIM can be 

regarded as a global measure of information content because each distinct height of 

the Lorenz Curve represents the amount of information content in the image. 

 

                                                                    (1,1) 

 

 

                                                    Cf 

        Cg 

      

                     (0,0) 

                         Figure 2.2 Lorenz Curve (Chang & Yang, 1982) 

 

To analyze text documents the concept of codeword is adopted.   Originally, 

the concept of codeword was described by Liu (1977).   According to his explanation 
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the alphabet is the binary alphabet {0,1} and a sequence of letters from an alphabet is 

often referred to as a word.   A code is a collection of words that are to be used to 

represent distinct messages.   A word in a code is also called a codeword.   For 

example, let x = 00101 and y = 10110, then x and y are codes and “0” and “1” are 

word or codeword.   Let ⊕ be a binary operation, then x ⊕ y is a sequence of length n 

that has 1s in those positions x and y differ and has 0s in those positions x and y are 

the same.   For the above example, x ⊕ y produces 10011.   Originally, this idea was 

developed for the correction of error in information transmission.  Even though the 

idea came from Liu (1977) it has been changed somewhat for this research. 

The most important changes are a term list, a binary matrix, and the process to 

make them.   Term list represents the appearance of words in the text documents and 

binary matrix is a table of term list for each document.   For example, document A has 

“To be or not to be” and document B has “Life is to be happy”.   Then term list should 

be {to, be, or, not, life, is, happy} and binary matrix for document A should be 

{1,1,1,1,0,0,0} and binary matrix for document B should be {1,1,0,0,1,1,1}.   Unlike 

Liu’s approach, here the binary matrix is partitioned into sub-groups and each sub-

group is called a word code.    

Multi-dimensional scaling (MDS) as it is used today was invented by Shepard 

(1962a and 1962b).   However, Torgerson (1958) proposed this technique in 1958.   

MDS is designed to analyze distance-like (dissimilarity) data in a way that displays 

the structure of the dissimilarity data as a geometrical picture.   In other words MDS 

calculates Euclidean distances between given points and displays the result on the X-

Y axis.   Euclidean distance in 2-dimension means the shortest distance between two 

points.   Figure 2.3 shows Euclidean distance between two fields. 
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                                                                                          0 (Point B) 

                                   Euclidean distance         

       

                                               0 (Point A)    

                  Figure 2.3 Euclidean Distance between Two Points 

  

Here is the example that shows how Euclidean distance could be calculated.   

Lets assume there are three documents and each document has three terms and each 

term has frequencies in that document. 

    

     Term A     Term B     Term C 

   Document 1        6         54         3 

   Document 2        4       42        5 

   Document 3        8        36        5 

 

 Table 2.1 Term Frequencies for Euclidean Distance Calculation 

 

 Formula for Euclidean distance: 

Euclidean distance of Document 1 and Document 2 = square root of [((A of 

D-1 – A of D-2) / (Max (A) – Min (A)))2 + ((B of D-1 – B of D-2) / (Max (B) – Min 

(B)))2 + ((C of D-1 – C of D-2) / (Max (C) – Min (C)))2 ] 

 Euclidean distance between Doc#1 and Doc#2 = square root of [(2/4)2 + 

(12/18)2 + (2/2)2] = 1.9 
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Euclidean distance between Doc#1 and Doc#3 = square root of [(2/4)2 + 

(18/18)2 + (2/2)2] = 1.5 

Euclidean distance between Doc#2 and Doc#3 = square root of [(4/4)2 + 

(6/18)2 + (0/2)2] = 1.111 

Euclidean distances can be drawn on X-Y axis like the figure 2.4 using 

Multidimensional Scaling method. 

                    2 

                                                                           Doc#1  

                                                           1.5     

                     1                                1.9  

                                           Doc#3 

                                                                 1.111                  Doc#2 

                     0                            1                           2                             3 

 Figure 2.4 A Sample Illustration of Euclidean Distance using MDS 

 

Current Techniques 

Image Retrieval by Text 

“Long before images could be retrieved by image-contents like color, texture, 

shape and semantic features, access to image collections was provided by librarians, 

curators, and archivists through the manual assignment of text descriptors and 

classification codes” (Goodrum et al., 2000).   Text-based classification has a long 

enduring history including the ability to represent both general and specific instances 

where an object varies in levels of complexity. 

 Unfortunately, manual assignment of textual attributes introduces several 
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problems, such as time consumption, labor absorption, and high cost.   Furthermore, 

manual indexing suffers from low term agreement between indexers (Markey, 1984) 

and between users while using queries for retrieval (Enser & McGregor, 1993). 

 More recently, automatic assignment of textual attributes to images has been 

conducted utilizing the text from captions, transcripts, close captioning, or verbal 

description for the blind that accompany some videos (Turner, 1998).   Although 

these approaches greatly reduce the labor involved in manual assignment or 

keywords, they are only available with a small percentage of images.   Furthermore, a 

user’s image needs may occur at a primitive level that taps directly into the visual 

attributes of an image, in which case the accompanying text would not be relevant.   

These attributes may best be presented by image exemplars and retrieved by systems 

performing pattern matches based on color, texture, shape, and other visual features 

(Hermes, 1995). 

 Problems with text-based access to images have prompted increasing interest 

in the development of image-based solutions.   But, in reality, almost all products on 

the market today are still using a text driven method for image retrieval.     

Image Retrieval by Color 

Color is a prominent attribute considered in image retrieval, and one of few 

that most researchers use.   Researchers have added images to collections, extracted 

color features from the images, and transferred extracted color features to color 

histograms that show the proportion of pixels of each color within the image (Chang 

& Yang, 1982; Chang & Liu, 1984; Korfhage, 1997).   The color histogram for each 

image is stored in the database for image retrieval.   Users can provide color 

proportions or an example histogram to retrieve from within an image collection.   
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Based on the given data, retrieval systems use matching processes to decide which 

histogram is closest to the given data. 

This matching technique, named as “histogram intersection”, was developed 

by Swain and Ballard (1991).   Variants of this technique have emerged, improving 

the original idea of Swain and Ballard by combining histogram intersection with other 

elements of spatial matching (Stricker & Dimai, 1996) and by using region based 

color histogram querying (Carson et al., 1997). 

Image Retrieval by Texture 

Because of its complexity, use of texture similarity does not currently seem to 

be useful in image retrieval.   However, it may be useful in distinguishing areas of 

images with similar color, such as sky and sea, or grass and leaves (Eakins & Graham, 

1999; Korfhage, 1997; Ma & Manjunath, 1998).   Though there are several techniques 

to measure texture similarity, the most common technique involves second-order 

statistics. 

This technique calculates the relative brightness of selected pixels from each 

image and measures texture similarities such as the degree of contrast, coarseness, 

directionality and regularity (Tamura et al., 1978), or periodicity, directionality and 

randomness (Liu & Picard, 1996).   Ma and Manjunath (1998) disclosed a recent 

extension of texture similarity called texture thesaurus.   Systems using texture 

similarity can retrieve from within an image collection by given texture queries or 

sample images similar in ways to color retrieval. 

Image Retrieval by Shape 

Shape retrieval is another aspect of image retrieval.   Humans first begin 

matching images by shape.   For machines, however, this is not so simple.   All 
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possible features of shape have to be figured using appropriate methods; for example, 

edge detection method.   The main types of shape features are global and local.   

Global features include ratio, circularity and moment invariants (Niblack et al., 1993).   

Local features are sets of consecutive boundary segments (Mehrotra & Gary, 1995). 

Shape features are understandable in a two-dimensional space, but it is very 

difficult to grasp shape features from a three-dimensional space and to query three-

dimensional images using two-dimensional input data (Niblack et al., 1993; Mehrotra 

& Gary, 1995).   To form a query for a three-dimensional image using a three-

dimensional image might be more difficult.   Hence, there is no simple solution in 

shape retrieval. 

Image Retrieval by Semantic Feature 

Though the majority of image retrieval methods are developed at a primary 

stage, semantic feature retrieval focuses on more advanced measurements of scene 

recognition and object recognition.   Scene recognition is often used when the image 

retrieval system is searching for images and identifying specific image over all.   

Hermes et al (1995) designed a system for scene recognition, which uses color, 

texture, region and spatial information to derive the most likely interpretation of the 

scene, generating keyword text descriptors that can be input into any text retrieval 

system. 

Later, this idea was transformed to semantic visual templates and a visual 

thesaurus to retrieve the most likely relevant images (Chang, S.F., 1998).   In 

conjunction with scene recognition, object recognition was suggested by Brooks 

(1981) and has been enhanced by several researchers for recognizing and classifying 
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objects using primitive features of the region, such as color, shape and texture, and 

not-textual information, such as its position and type of background in the image. 

Image Retrieval by Other Types of Primitive Features 

Another well-known image retrieval method is the wavelet transform, which 

allows measurements of an image to be taken at several different resolutions.   Liang 

and Kuo (1998) reported a promising result of the wavelet transform method.   There 

are two versions of retrieval by appearance (Ravela & Manmatha, 1998a).   One is 

whole-image matching, the other is matching selected parts of an image. 

Accessing images by spatial location is the essential aspect of geographical 

information systems.   The basic concept is to retrieve maps that have been translated 

into numerical positions using longitude and latitude for a home address.    

Commercial Products using Content-Based Image Retrieval 

CONVERATM 

CONVERA (formerly ExcaliburTM) is an image management system 

developed and distributed by the Excalibur Corp.   This system supports image 

capture, image indexing and image retrieval.  This system also supports three 

matching techniques: color, shape, and texture.   Therefore this system enables images 

to be indexed, searched and retrieved through these three features characteristic. 

The color function analyzes the global distribution of color within the entire 

image.   The shape function measures the relative orientation, curvature, and contrast 

of lines in the image, and the texture function analyzes areas for periodicity, 

randomness, and roughness of fine-grained textures in images.   This system has been 

designed to process two-dimensional grayscale or color image data which are 

supported by a common industry standard format: BMP, GIF, TIFF, PNG, PPM, etc. 

16 



 

(http://www.convera.com; Ventors & Cooper, 1999).   Figure 2.5 is showing image 

management system, screening room, by CONVERA, explaining how it works. 

 

 

Figure 2.5 Image Management System, Screening Room, by CONVERA  

 

QBIC 

IBM Corp has developed the QBIC system that lets users make queries of 

large image databases based on visual image content -- properties such as color 

percentage, color layout, and textures occurring in the images.   Such queries use the 

visual properties of images, so QBIC can match colors, textures and their positions 

without describing them in words.   Content-based queries are often combined with 

text and keyword predicates to get powerful retrieval methods for image and 

multimedia databases. 
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This supports the ability of a query to retrieve a database object that is formed 

by data base management system (DBMS) or OracleTM.   QBIC is unique among 

image retrieval systems in that there are three types of queries: simple query, multi-

feature query, and multi-pass query.   A simple query supports only one feature for 

retrieval, the multi-feature query uses more than one feature of color, shape, and 

texture, and multi-pass feature queries allow for the first results of a search to be used 

as the basis of the next search. 

Like the CONVERA product, QBIC also supports the four matching features: 

global color, local color, shape, and texture.   However, there is some difference 

between CONVERA and QBIC.   For example, in QBIC, the global color function 

computes the average red, green and blue colors within the entire image, and the local 

color function computes the color distribution for both the dominant color and the 

variation for each image in a predetermined 256 color space. 

For the shape function, QBIC computes a combination of area, circularity, 

eccentricity, and major axis orientation.   For texture function, QBIC supports the area 

analysis for coarseness, contrast, and directionality. 

Like CONVERA, QBIC also supports many kind of industrial standard image 

format (http://wwwqbic.almaden.ibm.com/, Ventors & Cooper, 1999).    

VIRAGETM 

VIRAGE executes the two primary functions of image analysis and image 

comparison like CONVERA and IBM’s QBIC.   However, VIRAGE differs from 

CONVERA and QBIC in several ways.   First, it produces feature vector information 

from image analysis.   VIRAGE also uses the feature vector information for image 

comparison, and then produces a score dataset from this process.   A score set is used 
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to determine which image is close to the input data.   VIRAGE also supports four 

basic functions: global color, local color, structure, and texture.   The global color 

function calculates the distribution of color for the entire image set.   Just as the local 

color function analyzes the distribution of color in the localized area of each image, 

the structure function is as same as the shape function, but the company uses different 

names for large-scale shapes.   Finally, the texture function analyzes areas for 

periodicity, randomness, and roughness of fine-grained textures in images.   Like the 

other products, VIRAGE also supports several industrial standard image formats 

(http://www.virage.com; Ventors & Cooper, 1999).   Figure 2.7 is showing the main 

screen of VIRAGE. 

 

 Figure 2.7 VIRAGE Web Screen (http://www.virage.com) 
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Other Products 

One of the windows-based content-based retrieval systems is ImageFinderTM, 

developed by Attrasoft Corp (www.attrasoft.com ).   Unlike other image retrieval 

systems ImageFinder uses a neural network as its basic foundation.   The feature 

matching technique of this system is based on complete or incomplete pattern 

matching.   Performance problems can occur when this system searches huge amounts 

of images because of the inherent obstacle in speed in the pattern matching technique 

and accuracy in neural network.   Figure 2.8 is showing the starting window of 

ImageFinder user interface for training of key image. 

 

 

Figure 2.8 The ImageFinder User Interface 

 

ImatchTM, developed by Mario M. Westphal, is a shareware utility for the 

Windows operating system (www.imatch.com ).   Imatch allows users to perform a 
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variety of content-based image retrieval operations on their datasets, such as color 

similarity, color and shape (quick), color and shape (fuzzy), color percentage, and 

color distribution.   Imatch also supports non-CBIR features to identify images with 

CRC checksum, duplicate scanner, and fuzzy filename. 

Besides these systems, there are many prototypes for image retrieval based on 

CBIR, for example, the CANDIDTM (Comparison Algorithm for Navigating Digital 

Image Database) system developed at Los Alamos National Laboratory 

(kelly@lanl.gov), the ARTISANTM (Automatic Retrieval of Trademark Image by 

Shape ANalysis) developed at the University of Northumbria at Newcastle 

(http://www.artisan.demon.co.uk ), the BlobWorldTM developed at the University of 

California, Berkeley, etc. (http://www.elib.cs.berkeley.edu/photos/blobworld )    

Practical Applications of Content-Based Image Retrieval 

Medical Diagnosis 

Modern medical diagnostic technologies such as radiology, histopathology, 

and computerized tomography produce huge amounts of images everyday.   Currently 

these images are being stored in hospitals around the globe whether they are stored in 

computer systems or not.   Though the primary job of medical image retrieval systems 

is to retrieve the related patient’s image with the patient’s name, there is an increasing 

interest in the use of CBIR techniques to aid in diagnosis by identifying similar past 

cases. 

The need for better image retrieval systems in the medical field is growing 

quickly, and developmental work on this kind of system is still in its beginning stages.   

Researchers in this field are still focusing on delivering basic functionality and 

usability ensuring that medical images can be successfully digitized, stored and 
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transmitted over local area networks without loss of quality.   Ultimately, researchers 

hope to provide user-centered interfaces and integrate image storage and retrieval in 

order to better service for doctors and patients and management people. 

In 1994, researchers at the University of Crete developed a 2-dimensional 

radiological image retrieval system, and Liu et al (1998) unveiled a 3-dimensional 

neurological image retrieval system at Carnegie-Mellon University.   Both systems 

are targeted for assisting medical staff in diagnosing brain tumors. 

Geographical Information Systems (GIS) 

GIS combines numerical data with a map, a type of image, in several ways.   

The greatest benefit of GIS is that it provides explanations, which are statistically, 

geographically, and academically related.   Commercial GIS systems, like ArcInfoTM 

and ArcViewTM provided the capacity to search spatially referenced data by location 

or spatial attribute (Demers, 1999; ESRI, Inc. 1996; ESRI, Inc. 1997).   This is a 

greatly useful function, but ArcInfo and ArcView still do not use CBIR.   One team, 

Ma and Manjunath (1998), developed an experimental system which was aimed at 

identifying objects or regions within satellite images or digitized maps by shape, 

color, or texture similarity. 

World Wide Web Searching 

At an early age of Web search development, text-based image search engines 

have been adopted and progressed rapidly to meet the satisfaction of users.   However, 

soon after the systems known to the users, developers knew that text-based image 

search engines would not be enough because of the speed of technological growth.   A 

few years ago, several experimental content-based image searchers emerged for the 

World Wide Web.   One of them is WebSEEKTM developed at the Department of 
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Electrical Engineering, Columbia University.   This system supports color, spatial 

layout and textual matching features.   The Web demonstration can be located at 

http://disney.ctr.columbia.edu/WebSEEK . 

Another controversial and highly profitable topic on Web searching is 

identifying pornography and blocking access to pornographic content to children.   

One of the more basic problems involved in this process is to understand what 

constitutes pornography in the first place (Forsyth et al., 1997; Chan et al., 1999).   

This debate will continue, but in the meantime systems will continue to be developed 

to try and use CBIR and text/keyword extraction to achieve this end.    

Other Areas of Interest in CBIR 

Eventually CBIR will be a commonplace feature of nearly every field of 

interest.   CBIR technology has already established itself in areas such as crime 

prevent, on war games for the military, architectural and engineering design, 

journalism, advertising, training and education, museums, libraries, toll gates for 

automatic fee collection, fashion, and interior design.   Though all these fields 

currently use CBIR technology, they approach it from different perspectives. 

For example, law enforcement agencies use CBIR technology in identifying 

the fingerprints and faces of suspects using similarity matching.   A number of 

automatic fingerprint identification systems (AFIS) are now commercially available, 

including AFIX TrackerTM from Phoenix Group Inc, Pittsburg, Kansas 

(http://www.affix.com ) and the Finger Search EngineTM from East Shore 

Technologies, Inc. of New York (http://www.east-shore.com ).   In the architectural 

and engineering design fields, CBIR can be used with computer aided design (CAD), 

and acts as a fundamental resource for architectural and engineering design 
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(http://vision.ucsd.edu/papers/manu/manu.html ).   The fields of journalism and 

advertising are also facing problems in being able to better utilize text and video 

archives.   Archives are being produced every second, but it is difficult to get enough 

experts trained to do this job and then to pay them for the cost for this work, so 

automated systems significantly improve their performance.   So there is a good 

reason to use CBIR technology for the automatic indexing of these archives, though 

such systems are not yet available widely.    

Limitations of CBIR  

Storage of Multimedia Documents 

With the rapid growth of computer hardware peripheral devices, large 

amounts of data can be stored at relatively small costs.   In general, to store every kind 

of multimedia document would necessitate unlimited storage, but in reality the 

amount of storage is limited.   Multimedia documents need more storage space than 

do text only documents. 

For example, one black and white image that is 400 by 400 pixels could 

require 160KB to be stored without the use of a compression technique.   If it is a 

color image using RGB, then the size will grow to three times more than black and 

white approximately.   That is the reason why many multimedia retrieval systems 

adopt various compression techniques to reduce the size of storage.   To store one 

thousand images having 400 by 400 pixels in a RGB format without compression 

techniques would require 480MB (Eakins & Graham, 1999; Demers, 1999; Korfhage, 

1997; Forsyth, 1997).   However, if compression technique, WinZipTM, offered by 

Microsoft Inc. is used, the size of storage will be saved more than 50 percent of 

480MB. 
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Processing of Multimedia Documents 

Methods of processing multimedia documents differ widely depend on the 

combination of multimedia documents.   If it is combined with text and image 

multimedia retrieval system needs a method to retrieve image documents, but it is 

combined with image and sound multimedia retrieval system needs methods to 

retrieve images and sounds like CBIR technique for images and speech recognition 

technique for sound.   Even though lots of multimedia processing methods proposed 

such as QBIC, CONVERA, VIRAGE, WebSEEk, etc., there is no compelling method 

and each one has various benefits and drawbacks.   Multimedia retrieval systems 

based on the CBIR technique are relatively fast but do not currently give good results 

according to precision and recall (Venter & Cooper, 1999).   On the other hand, 

multimedia retrieval systems based on a pattern matching technique are somewhat 

slow but give more reliable results.   Depending on the purpose of the multimedia 

retrieval system, the method of processing and retrieval for multimedia document has 

to be chosen carefully. 

Justification of This Research 

Most image retrieval systems are text based such as YahooTM, GoogleTM and 

Amazon.comTM.   But text-based image retrieval systems give some misclassified 

documents because there is misconnection between text keyword and image 

document.    

Like QBIC computational image processing techniques provide a mechanism 

to retrieve images based on low-level image features such as color, shape, and texture.   

In this method there is still misclassification problem because images can not be 

25 



 

explained fully.   The degree of misclassification of this method was shown in chapter 

2.3.2.    

 Unlike the above two methods poly-representation methods generally provide 

better retrieval results like VIRAGE and CONVERA, but there are unique problems 

in combining textual features and visual features in a single representational space.   

Usually they maintain separate data structure for text and image documents.   The 

main reason they give misclassified documents is that text documents are no longer 

used in retrieving image documents after the retrieval system is initiated using text 

keywords. 

 This research endeavors to explore the feasibility of combining text and image 

features into a single representational space using Jeong’s Transform and tests the 

multimedia retrieval system of this approach to prove how much the above problems 

could be solved.   To prove the improvement four experimental retrieval systems were 

built.   For testing set of 26 multimedia documents 

http://archive4.lis.unt.edu/td26/www was built and this works exactly like poly-

representational methods.   Also, http://archive4.lis.unt.edu/tdt26/www was built in 

using a single representational space.   Precision and recall of two systems are 

calculated and compared in chapter 5.    For testing set of 994 multimedia documents 

http://archive4.lis.unt.edu/td/www was built and this works like poly-representational 

methods.   Also, http://archive4.lis.unt.edu/tdt/www was built in using a single 

representational space.   Precision of two systems are also calculated and compared in 

chapter 5.     
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CHAPTER 3. METHODOLOGY 

Introduction 

For this research, a new approach is introduced: a common representation 

format for text and image.   To ensure the validity of this research, three experimental 

methodologies are being suggested; namely: a parallel comparison of retrieved 

results, a visual comparison of vector graphs, and a gradual expansion of grouping 

terms on test set of text retrieval conference (TREC) data.   To illustrate this 

approach, two sets of multimedia documents are used: one from National Aeronautics 

and Space Administration (NASA) which has 26 multimedia documents and 105 

multimedia documents and 994 multimedia documents and one from TREC text 

document which has 100 text documents. 

The main idea for this common representation format is to obtain a single data 

structure for both text and image data.   To accomplish this goal, the Word Code from 

a binary matrix for text data is modified and the Lorenz Information Measurement 

(LIM) is used for calculating the area of a histogram from the image data.   The 

experiments are run to see the effect of grouping terms on text documents.   The 

experiment is using a gradual expansion of grouping terms on a test set of TREC 

document to see the effect of different number of grouping terms.   Grouping terms 

are expanding from 1 to 10, 20, 50, and 100 terms.   Two more experiments, a parallel 

comparison of retrieved results and a visual comparison of vector graphs, were done.   

Parallel comparison provides precision and recall values in the case of retrieval results 

using image data only and retrieval results based on text and image features 

combined.   Through the visual comparison of vector graphs the difference of shape 

on 2-dimension will be noticed.  
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Twelve measurements are generated from the Word Code and twelve 

measurements from the LIM.   These measurements from both the text and image data 

are then combined to twenty-four measurements.   These measurements are used for 

multi-dimensional scaling (MDS) analysis, which produces one vector for each 

multimedia document.   All the vectors derived from MDS are then used to evaluate 

the closeness of the multimedia documents.   The twenty-four measurements 

generated from the text and image documents are also used for multimedia document 

retrieval, and these retrieved images from the multimedia document are used as the 

heuristic judgment of this research. 

A parallel Comparison of Retrieved Results 

From many image representation methods, the content decomposition 

algorithm is chosen and combines three main components such as color, shape, and 

texture.   Through this algorithm, pixel values of twelve components are extracted.   

These twelve components are pixel values of Red, Green, Blue, Gray, Distance-A, 

Distance-B, Distance-C, Distance-D, Distance-E, Hough Transform, Angle, and 

Density.   All of the extracted pixel values except Density are transformed to 

histogram values.   Density is already in the form of area because number of edge-

detected pixels is used as Density here.   The area of each histogram is then 

calculated.   These twelve measurements (Table 3.1) are used for an image only 

retrieval system.   From the text document, twelve measurements are captured using 

the procedure explained in 3.3 (A gradual expansion of grouping is done on test set of 

TREC data).   For multimedia document retrieval, the twelve measurements from 

image data (Table 3.1) are combined with the twelve measurements from text data 
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(Table 3.2).   These twenty-four measurements constitute a common representation 

format for multimedia documents. 

 

 

 

Figure 3.1 Example of NASA image for S88E5001 
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Figure 3.2 Example of the histogram for Red values of the ground 

instrumentation image shown above 
 

 

Extractions 

Images 
Red Green .. .. .. .. .. .. .. Density

I1 0.234 0.326 .. .. .. .. .. .. .. 0.234 

I2 0.332 0.333 .. .. .. .. .. .. .. 0.332 

.. 0.453 0.432 .. .. .. .. .. .. .. 0.432 

.. 0.111 0.333 .. .. .. .. .. .. .. 0.321 

In 0.123 0.321 .. .. .. .. .. .. .. 0.113 

 

Table 3.1 Lorenz Information Measurements from Images  
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WCM 

Text 
G1 G2 .. .. .. .. .. .. .. G12 

T1 0.1234 0.2326 .. .. .. .. .. .. .. 0.1234 

T2 0.1332 0.3333 .. .. .. .. .. .. .. 0.3332 

.. 0.2453 0.432 .. .. .. .. .. .. .. 0.2432 

.. 0.3111 0.1333 .. .. .. .. .. .. .. 0.1321 

Tn 0.3123 0.1321 .. .. .. .. .. .. .. 0.2113 

 

Table 3.2 Word Code Measurements (WCM) from Text Documents 

 

To retrieve and then evaluate multimedia documents, two retrieval systems are 

constructed; one for the image measurements only, the other for the text and image 

measurements combined.   Text only retrieval system is not built because it is out of 

focus in this research. 

Precision is defined as the proportion of retrieved documents that are relevant, 

P = w / n2.   Recall is defined as the proportion of relevant documents that are 

retrieved, R = w / n1 (Korfhage, 1999). 

From the table; 

n1 = w + x 

n2 = w + y 

n = w + x + y + z 
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     Retrieved number of 
Docs 

Not retrieved 
number of Docs 

Relevant Docs w x 

Not relevant Docs y z 

  

  Table 3.3 Contingency Table for Evaluating Retrieval 

 

To test the result of this research, a person not related to the project prepared 

twenty-five questions with various possible answers for each question.   Testers are 

graduate student volunteers from the School of Library and Information Sciences at 

the University of North Texas.   24 testers in total are divided into groups of three. 

Two testing methods are used.   The first method retrieves the images using 

the given text questions from the data, twelve measurements, constructed from image 

data only, and calculates the precision and recall.   The second method retrieves the 

images using the given text questions from the common representation data of 

multimedia document, twenty-four measurements, to calculate the precision and 

recall.      All conclusions are based on agreement of three testers in the group. 

The Brighton Image Searcher shown below handles the process of retrieval for 

multimedia documents.  The search starts with text terms, then the Retrieval System 

yields images related to the given text terms.   From the retrieved images, tester can 

choose an image.   The chosen image is then used to retrieve similar images from the 

multimedia document set.   Finally, to calculate precision and recall the testers 

evaluated the retrieved images.   Table 3.4 is showing the evaluation results over the 
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multimedia testing sets.   Procedures and all the testing results will come in chapter 5 

in great detail.      

 

Image Only Image and Text Combined 

Threshold 0.2 Threshold 0.1 Threshold 0.2 Threshold 0.1 

 Precision Recall Precision Recall Precision Recall Precision Recall 
26 
multimedia 
documents 

0.18 1.00 0.21 0.98 0.68 0.70 0.71 0.68 

994 
multimedia 
documents 

0.13    0.43    

 
 
Table 3.4 The Evaluation Results of Precision and Recall over Multimedia Testing 
Sets  
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Figure 3.3 Image Retrieval System, the Brighton Image Searcher, for heuristic  
   judgment 

 

A Visual Comparison of Vector Graphs 

Visualization in information retrieval is attractive in that it allows for users to 

see what the IR is doing in a way that’s simpler to understand.   In this research, there 

are four categories for image decomposition -- color, distance, angle, and texture, and 

it is possible to draw documents into a visualized vector graph. 

For the visual comparison of vector graphs, all possible combinations are 

made without text measurements and all possible combinations are made with text 

measurements as shown in the Table 3.4 (The Combinations of LIM and Text 
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Measurement).   The vector graphs of thirty combinations are then evaluated to find 

the combination that most reliably measures the distances between vectors that are 

representing documents to be representative of similarities between documents.   

Among those vector graphs, Figure 3.4 the vector graph for 26 images only (C15 in 

Table 3.5 without text measurement) is shown and it shows that there are some 

clusters. 

 

Combination Categories Text Measurements 

C1 Color With Text, Without Text 

C2 Color, Distance .. 

C3 Color, Angle .. 

C4 Color, Texture .. 

.. .. .. 

.. .. .. 

.. .. .. 

C15 Color, Distance, Angle, Texture With Text, Without Text 

 

Table 3.5 The Combinations of LIM and Text Measurement 
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 Figure 3.4 Vector Graph of 26 Images from NASA (Color, Distance, Angle 

and Density) 

 

A Gradual Expansion of Grouping Terms on Test Set of TREC Data 

Since 1990, TREC data has been widely used for the research purpose to 

develop and evaluate text retrieval systems.  All terms extracted from the test set of 

TREC data are usually used in developing and evaluating the text retrieval system, but 

in this research, a grouping method of extracted terms is used, and visualized vectors 

on X-Y 2-dimensional graph are used to see if this method is more reliable.    

The best-known text representation method is term extraction from a text 

document.   A super term list is made from the whole documents set and a term list 

for each document is made based on the super term list.   Extracted terms can be 

represented in several ways, including by term frequencies where the number of times 
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a word appears in a given document or by binary representation.   The super term list 

is used as a base, and for each document, a binary matrix of documents and terms can 

be produced containing a combination of “0’s” and “1’s” (Table 3.7).   In the binary 

matrix, a “0” means that the term does not appear in the document and a “1” means 

that the term does appear within the document. 

Assume the terms are A1 through An and the documents are D1 through Dm.   

For the first experiment, a vector graph is drawn using MDS from the binary matrix of 

Table 3.7.   For the second experiment, the n terms are divided into groups (also 

called Word Code) of 10 terms (Table 3.8), and each group having the frequencies of 

1 of that group.   For the third experiment, the n terms are divided into groups of 20 

terms.   Groups of 50 terms and groups of 100 terms are also tested.   In the table 3.8, 

G1 through Gp are the groups, and Gp represents total number of frequency of 1’s in 

each document.  
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<DOC>  
<DOCNO> AP890102-0137 </DOCNO> 
<FILEID>AP-NR-01-02-89 1212EST</FILEID> 
<FIRST>a a BC-EXP--AIDSSurvivors Adv05   01-02 1115</FIRST> 
<SECOND>BC-EXP--AIDS Survivors, Adv 05,1144</SECOND> 
<HEAD>$adv05</HEAD> 
<HEAD>For release Thursday, Jan. 5, and thereafter</HEAD> 
<HEAD>Long-Term AIDS Survivors Defy Odds</HEAD> 
<HEAD>With LaserPhoto</HEAD> 
<BYLINE>By BRENDA C. COLEMAN</BYLINE> 
<BYLINE>Associated Press Writer</BYLINE> 
<DATELINE>CHICAGO (AP) </DATELINE> 
<TEXT> 
   Mike has lived twice as long as might have been expected when doctors diagnosed 
his AIDS. Dan Turner and Cristofer Shihar had one chance in five of seeing 1984.   
They don't know why they've survived what has been a death sentence for more than 
45,000 Americans, but say it may be a matter of attitude.   ``A lot of people don't die 
of the disease, they die because they give up,'' said Mike, a 34-year-old Chicagoan 
who was diagnosed with acquired immune deficienty syndrome in January 1984. He 
asked that his last name be withheld.   According to Judith Wiker, a Chicago holistic 
therapist who says she has counseled hundreds of clients with AIDS or AIDS-
related problems, Mike is one of many people with the disease who are well enough 
to feel and act normal.   ``Is the virus somehow different?'' asks Ann M. Hardy, a 
CDC epidemiologist now at the National Center for Health Statistics in Hyattsville, 
Md. ``Is it something in their immune system?''   Does survival time hinge on the 
mildness or severity of the infections that attack people with AIDS? Or could the 
key really be a ``lifestyle-psychosocial type of thing'' _ a positive attitude and 
emotional support?   All of these possibilities are now being studied, either by the 
CDC or in studies funded by the National Institutes of Health.   For the purposes of 
the CDC's 2-year-old study, long-term survivors were defined as people who lived at 
least three years after being diagnosed.   Unlike the estimated hundreds of thousands 
of Americans who are infected with the AIDS virus but do not have symptoms, 
long-term survivors actually have battled one or more ailments that define acquired 
immune deficiency syndrome _ including Kaposi's sarcoma, pneumonia, damaged 
immune systems and severe weight loss.      ``As of November 1988, we can assist 
somebody to stay alive and healthy for two years, with the current therapy,'' Piers 
said. ``And a great deal may occur in two years. We've seen an enormous change 
from 1986 to 1988.   ``Many people being diagnosed now may benefit from 
breakthroughs that will totally change the surface of the disease.'' 
</TEXT> 
<NOTE>End Adv for Jan. 5</NOTE> 
</DOC> 

 Table 3.6 An Example of TREC Data (AP890102-0137)   
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Term 

Doc 
A1 A2 .. .. .. .. .. .. .. An 

D1 1 0 .. .. .. .. .. .. .. 0 

D2 0 0 .. .. .. .. .. .. .. 0 

.. 0 0 .. .. .. .. .. .. .. 0 

.. 0 0 .. .. .. .. .. .. .. 0 

Dm 0 0 .. .. .. .. .. .. .. 0 

 

Table 3.7 A Sample of Binary Matrix from TREC Text Documents  

 

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 1 0 .. .. .. .. .. .. .. 213 

D2 1 0 .. .. .. .. .. .. .. 276 

.. 1 0 .. .. .. .. .. .. .. 185 

.. 1 0 .. .. .. .. .. .. .. 134 

Dm 3 0 .. .. .. .. .. .. .. 256 

 

Table 3.8 A Sample of 10 Terms Word Code Matrix from the Binary Matrix 

 

After finding the largest frequency from all the groups, the frequency of each 

group is divided by twice the largest frequency for the group.   This is done because 

LIM for image has less than or equal to 0.5.   As shown in the Table 3.9, Word Code 
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Matrix values of Table 3.8 are transformed using the rule explained above and all 

values are less than or equal to 0.5.   Using value of each group per document, a 

vector graph is drawn using MDS.   Using the process above, vector graphs are drawn 

using MDS for groups of 10 terms, groups of 20 terms, groups of 50 terms and groups 

of 100 terms.   Figure 3.5 shows a vector graph of 10 terms of Word Code 

corresponding to Table 3.9.   Finally, the vector graphs for all groups will be 

compared.   

 

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 0.16667 0 .. .. .. .. .. .. .. 0.198324

D2 0.16667 0 .. .. .. .. .. .. .. 0.256983

.. 0.16667 0 .. .. .. .. .. .. .. 0.172253

.. 0.16667 0 .. .. .. .. .. .. .. 0.124767

Dm 0.5 0 .. .. .. .. .. .. .. 0.238361

 

Table 3.9 A Sample of 10 Terms Normalized Matrix from Table 3.8 
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Figure 3.5 Vector Graph of 10 Terms of Word Code 
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CHAPTER 4. PROCESSING FOR TEST SETS 

Introduction 

For this research, three sets of multimedia documents were collected from the 

National Aeronautics and Space Administration (NASA) and one set of text document 

from the Text Retrieval Conference (TREC).   The first set of NASA multimedia 

document was composed of 26 images and text documents, the second was composed 

of 105 images and text documents, and the third was composed of 994 images and 

text documents.   For the TREC text documents, 100 TREC text documents were 

selected randomly from hundreds of text documents for this research. 

Processing for the text documents from TREC is shown in Figure 4.31.   

According to the process, terms are extracted from text documents to make a super 

term list.   Using the super term list a binary matrix is made.   After that a Word Code 

matrix is made, and then it is transformed to the final normalized Word Code matrix 

using Jeong’s Transform. 

Multimedia documents from NASA were composed of two parts; image and 

text.   For this test the first multimedia documents set from NASA were used and 

there were 26 multimedia documents.   Using the process as explained in Figure 4.30 

for image process and in Figure 4.31 for text process, image and text were analyzed 

separately.   After that the two results were combined to obtain a single data structure.   

The main idea for this Common Representation Format is to obtain a single data 

structure to combine text and image.   To accomplish this goal, the Word Code from a 

binary matrix for text data and the Lorenz Information Measurement (LIM) 

calculating the area from a histogram for the image data were used.   Finally, this 
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common representation format from multimedia documents (CRFMD) was used to 

draw each vector graph using multi-dimensional scaling (MDS) and visualize the 

multimedia documents.  

Processing for Text Documents 

Term Extraction 

Since 1990, TREC data has been widely used in a research to develop and 

evaluate text retrieval systems.  Even though there are several ways to represent text 

documents, terms extracted from text documents do well represent text documents.      

Terms extracted from the test set of TREC data and terms consist of a super term list.   

As a test set of TREC data, 100 documents were randomly chosen as a test set and 

6287 terms were extracted from the given test set.   Table 4.1 is an example of a text 

document and Table 4.2 is the Perl program developed by Oyarce in 1999 used to 

extract terms from the test set.   Table 4.3 is a part of super term list from among the 

6287 terms extracted from the test set.
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<DOCNO> AP890109-0313 </DOCNO> 
<FILEID>AP-NR-01-09-89 1035EST</FILEID> 
<FIRST>u f PM-Britain-GEC     01-09 0556</FIRST> 
<SECOND>PM-Britain-GEC,0578</SECOND> 
<HEAD>Government Looks at Possible Bid for British Electronics Giant</HEAD>
<DATELINE>LONDON (AP) </DATELINE> 
<TEXT> 
   The government said today that it was looking at a possible bid for the electronics 
giant General Electric Co. PLC that an international consortium is expected to 
launch within days.   The takeover, which analysts say could be worth between 
$11.5 billion and $14.2 billion, would be the largest in Britain.   The consortium is 
expected to include Plessey PLC, another 
electronics company which is the target of a $3 billion hostile takeover bid from 
GEC and Siemens AG of West Germany, another electronics company.   Although 
no bid for GEC has been formally launched, the Office of Fair Trading has legal 
powers to look at a bid ``in contemplation.''   ``We really are looking at the situation 
to see who the participants are involved before we can take real active steps,'' said a 
spokesman for the office, who asked not to be identified.   ``There hasn't actually 
been a statement of intention.''   The Office of Fair Trading usually reviews a bid 
and then makes a recommendation to the trade secretary on whether he should refer 
it to the monopolies commission for a full investigation.   The bid speculation 
prompted heavy trading in GEC on London's Stock Exchange by midday Monday.   
A GEC spokesman, who wasn't identified in accordance with British practice, called 
the developments vague and inconclusive but said 
that a takeover would be fought.   ``This appears to be a self-interested attempt by 
the board of 
Plessey and its advisers to form a consortium to break up GEC and therefore save 
Plessey,'' he said. 
   The possible bid for GEC began to be taken seriously after the investment firm 
Lazard Brothers and Co. said over the weekend that it had helped form a company 
called Metsun Ltd. to devise a proposal ``which may or may not'' lead to an offer for 
GEC.   Metsun is headed by Sir John Cuckney, chairman of helicopter maker 
Westland PLC, which was at the center of a 1986 takeover 
controversy that prompted the resignation of two British Cabinet ministers.   Metsun 
was talking to possible partners both in Britain and abroad, Lazard Brothers said, 
without identifying them.   French electronics company Thomson-CSF said it was 
considering joining the consortium.   Meanwhile, Barclays Bank PLC confirmed it 
was putting together a $6.2 billion syndicated loan to help finance such a bid.   GEC 
Managing Director Lord Weinstock said in a television interview that his company 
dropped Barclays Bank as one of its banks because the bank had ``behaved in a way 
that was not quite right.''    
</TEXT> 
</DOC> 

Table 4.1 An Example of a TREC Document (AP890109-0313)    
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###################      MAIN     ###################

#  Reads filenames in input stream
#  Reads Stop Words
#  Starts proc. on input stream

# open file is input stream
# get in documents to id TEXT field

 
getWORKfiles          

&getSTO              
foreach INfileList    
   
   $SEEi $  
   open $SEEin               
   while IN>                        
      
       $t=$_  
            &UPDATEgd  
            &LOCALcount  
      
close IN                                      
  
UPDATEg
&printGD
xit

;
Pw;
(@ )

{
n= _;
(IN, . );
(< )

{
;

;
;

} 
( );

} 
d; 
; 

e ; 
 
## Subroutines are excluded ## 

"<"

 
Table 4.2 Term Extraction Program using Perl Language  

 

 

 

 

 

 

 

 

 

 

 

 

threat:1 
depression:1 
regarding:1 
wildlife:1 
razed:1 
evening:1 
maintained:1 
depositary:1 
passenger:1 
maximize:1 
substantially:1 
estimate:1 
freeman:1 
running:1 
samuel:1 
leave:1 
independently:1 
radio:1 
paying:1 
south:1 
abroad:1 
women:1 
 

Table 4.3 A Part of Super Term List with Frequencies of Term 
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Binary Matrix 

Extracted terms called a super term list can be represented in several ways, 

including by term frequencies and by binary representation.   The binary 

representation method was chosen for this paper because of its simplicity.   A super 

term list was made from the entire document set using the term extraction method.   

Then using the super term list, a term-document binary matrix was produced, which 

contained a combination of “0’s” and “1’s” as shown in Table 4.4 using a Perl 

program (Table 4.5) to identify whether or not a particular term existed in a particular 

document.   In the binary matrix, a “0” means that the term does not appear in the 

document and a “1” means that the term does appear within the document.   In Table 

4.4, A1, A2 . . ., An represent terms extracted from the given TREC text document set 

and D1, D2 . . . Dm represent document from the given TREC text document set.   For 

this experiment, 100 documents from TREC data set were chosen randomly and 6287 

terms were extracted from the 100 documents.   Table 4.5 shows a Perl program to 

generate a binary matrix like Table 4.4 using a super term list.     

 

Term 

Doc 
A1 A2 .. .. .. .. .. .. .. An 

D1 1 0 .. .. .. .. .. .. .. 0 

D2 0 0 .. .. .. .. .. .. .. 0 

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 0 0 .. .. .. .. .. .. .. 0 

 
Table 4.4 An Example of a Binary Matrix from TREC Text Documents  
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###################      MAIN     ################### 
open(MatOUT,">$ofil"); 
&getWORKfiles;        #  Reads filenames in input stream 
&getFeatureW;         #  Reads Feature Words 
&clearMat;            #  Clear Matrix  
foreach(@INfileList)  #  Starts proc. on input stream 
  { 
   $DocNameRead=$_; 
   $SEEin=$_; 
   open (IN,"<".$SEEin);             # open file is input stream 
   &clearMat; 
   while (<IN>)                      # get in documents to id TEXT field 
     { 
          &makeMat; 
     } 
   &printMat; 
   close (IN);                                   
  } 
close(MatOUT); 
exit; 
 
## Subroutines are excluded ## 
 
 

Table 4.5 A Binary Matrix Generating Program using Perl Language 

    

Word Code 

For the first experiment, the 6287 terms were divided into groups (also called 

Word Code) of 10 terms (Table 4.6) with each group having the frequencies of “1” in 

that group.   For the second experiment, the 6287 terms were divided into groups of 

20 terms (Table 4.7) with each group having the frequencies of “1” in that group.   

Groups of 50 terms (Table 4.8) and groups of 100 terms (Table 4.9) were also made 

using the matrix grouping program using Perl language shown in Table 4.10.    
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WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 1 0 .. .. .. .. .. .. .. 213 

D2 1 0 .. .. .. .. .. .. .. 276 

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 3 0 .. .. .. .. .. .. .. 256 

 

Table 4.6 An Example of 10 Terms Word Code Matrix from the Binary Matrix 

   

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 1 1 .. .. .. .. .. .. .. 213 

D2 1 0 .. .. .. .. .. .. .. 276 

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 3 0 .. .. .. .. .. .. .. 256 

 

Table 4.7 An Eample of 20 Terms Word Code Matrix from the Binary Matrix 
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WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 2 2 .. .. .. .. .. .. .. 213 

D2 2 3 .. .. .. .. .. .. .. 276 

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 3 5 .. .. .. .. .. .. .. 256 

 

Table 4.8 An Example of 50 Terms Word Code Matrix from the Binary Matrix  

   

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 4 3 .. .. .. .. .. .. .. 213 

D2 5 3 .. .. .. .. .. .. .. 276 

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 8 5 .. .. .. .. .. .. .. 256 

 

Table 4.9 An Example of 100 Terms Word Code Matrix from the Binary Matrix   
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###################  Definitions  ################### 
print "input Matrix File = "; 
$MatrixF=<STDIN>; 
print "output Weight File = "; 
$Ofil=<STDIN>; 
print "Group Numbers = "; 
$GroupN=<STDIN>; 
$sw1=0; 
 
###################      MAIN     ################### 
open(WeightF,">$Ofil"); 
$SEEin=$MatrixF; 
open (IN,"<".$SEEin);             # open file in input stream 
while (<IN>)                      
     { 
 $sw=1;  
 &makeWeight; 
     } 
close (IN);                               
close(WeightF); 
exit; 
 
## Subroutines are excluded ## 
 
 

Table 4.10 A Matrix Grouping Program using Perl Language 

 

 Each group matrix was normalized using the matrix normalizing program in 

order for each result to be less than or equal to 0.5. 

The formula for normalization of group is this: 

    Normalized value = Group weight / (The highest value of that group * 2) 

Table 4.11 shows the result of normalized values to Table 4.6 using the above formula 

and Table 4.15 shows the matrix normalizing program using Perl language.   Table 

4.12 represents the result of normalized values for Table 4.7, Table 4.13 to Table 4.8 

and Table 4.14 to Table 4.9. 
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WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gp 

D1 0.16667 0 .. .. .. .. .. .. .. 0.198324

D2 0.16667 0 .. .. .. .. .. .. .. 0.256983

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dm 0.5 0 .. .. .. .. .. .. .. 0.238361

 

Table 4.11 An Example of 10 Terms Normalized Matrix from Table 4.6 

   

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gn 

D1 0.125 0.125 .. .. .. .. .. .. .. 0.198324

D2 0.125 0 .. .. .. .. .. .. .. 0.256983

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dn 0.375 0 .. .. .. .. .. .. .. 0.238361

 

Table 4.12 An Example of 20 Terms Normalized Matrix from Table 4.7 
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WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gn 

D1 0.142857 0.125 .. .. .. .. .. .. .. 0.198324

D2 0.142857 0.1875 .. .. .. .. .. .. .. 0.256983

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dn 0.214286 0.3125 .. .. .. .. .. .. .. 0.238361

 

Table 4.13 An Example of 50 Terms Normalized Matrix from Table 4.8  
   

WCM 

Doc 
G1 G2 .. .. .. .. .. .. .. Gn 

D1 0.181818 0.125000 .. .. .. .. .. .. .. 0.198324

D2 0.227273 0.125000 .. .. .. .. .. .. .. 0.256983

.. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. 

Dn 0.363636 0.208333 .. .. .. .. .. .. .. 0.238361

 

Table 4.14 An Example of 100 Terms Normalized Matrix from Table 4.9 
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###################  Definitions  ################### 
print "input Weight File = "; 
$MatrixF=<STDIN>; 
print "output Normalized File = "; 
$Ofil=<STDIN>; 
$array = (); 
###################      MAIN     ################### 
open(WeightF,">$Ofil"); 
$SEEin=$MatrixF; 
open (IN,"<".$SEEin);             # open file in input stream 
$loop = 1; 
while (<IN>)                      
     { 
  &findHighest; 
     } 
close (IN);                               
open (IN,"<".$SEEin);             # open file in input stream 
while (<IN>)                      
     { 
    &makeNormal; 
     } 
close (IN);                               
close(WeightF); 
exit; 
 
## Subroutines are excluded ## 
 
   

Table 4.15 A Matrix Normalizing Program using Perl Language  

 

Multi-Dimensional Scale 

The original binary matrix was used as it is without grouping to draw a vector 

graph using Multi-Dimensional Scaling (MDS).   Next, the 10 term groups of Word 

Code (WC), 630 groups in total for this experiment, were used to draw a vector graph 

using MDS.   The same was done for 20 term groups (316 groups in total), 50 term 

groups (127 groups in total) and 100 term groups of WC (64 groups in total) were also 

used to draw vector graphs using MDS.   A sample SAS program is shown in Table 

4.13.       
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 Figure 4.1 Vector Graph of Binary Matrix  
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 Figure 4.2 Vector Graph of 10 Term-Grouping of Word Code  
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 Figure 4.3 Vector Graph of 20 Term-Grouping of Word Code  
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 Figure 4.4 Vector Graph of 50 Term-Grouping of Word Code  
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 Figure 4.5 Vector Graph of 100 Term-Grouping of Word Code   

 

Processing for Multimedia Documents of NASA 

Feature Extraction 

The content decomposition algorithm, which is composed of the three main 

components of color, shape, and texture, was chosen from among various image 

representation methods.   All the algorithms developed for this research may be run 

on any industry standard image formats.   The first component employed was color 

such as red, blue and green including grayscale extraction.   Every color features have 

pixel values from “0” to “255” and each color feature shall have frequencies for pixel 

values from “0” to “255”.   Those frequencies were transformed to histograms in 

intervals from 0-255 for red, green, blue, and gray.   The red, green, and blue 

extractions were required before the grayscale histogram could be constructed. 
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The second component, shape, is composed of angle, five distances and 

Hough Transform value.   Edge-detection method was used to get pixels from the 

image.   Angle data were extracted from the edge-detected image ranged from zero 

degree to ninety degree for each pixel.   Five distances such as Distance-A, Distance-

B, Distance-C, Distance-D and Distance-E, and Hough Transform value were 

extracted from the edge-detected image.   Distance-A represents the distances from 

the origin to the pixels.   Distance-B represents the distances from the left side to the 

pixels.   Distance-C represents the distances from the top side to the pixels.   Distance-

D represents the distances from the right side to the pixels.    Distance-E represents 

the distances from the bottom side to the pixels.   Hough Transform value is 

calculated using Hough Transform formula. 

A third component, which is called “density”, is also extracted from the edge-

detected image.   The number of edge-detected pixels is counted and then the number 

of pixels is translated into a single value using the following formula, 

Density = Total number of edge-detected pixels / ((x-axis * y-axis) * 2). 

This can also be called a texture component.    

Histograms of Extracted Features 

 Shown below are histograms for 11 features; such as, Red, Green, Blue, Gray, 

Distance-A among 5 distances, Angle and Hough Transform value.   Figure 4.6 is the 

base image used for histograms. 

 Figure 4.7 is the histogram for Red values. 

 Figure 4.8 is the histogram for Green values. 

Figure 4.9 is the histogram for Blue values. 

Figure 4.10 is the histogram for Gray values. 
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Figure 4.11 is the histogram for Distance-A values. 

Figure 4.12 is the histogram for Angle values. 

Figure 4.13 is the histogram for Hough values. 

 

 

Figure 4.6 Example of NASA image for S88E5001 
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Figure 4.7 Example of the histogram for Red values  
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Figure 4.8 Example of the histogram for Green values 
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Figure 4.9 Example of the histogram for Blue values 
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Figure 4.10 Example of the histogram for Gray values 
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Figure 4.11 Example of the histogram for Distance-A values 
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Figure 4.12 Example of the histogram for Angle values 
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Figure 4.13 Example of the histogram for Hough Transform values 
 

Lorenz Information Measurement 

The final process of transforming the derived histograms into a single value 

utilized the technique known as a Lorenz Transformation (LT).   This transformation 

allows for the unwieldy histograms of image values to be reduced to single real 

numbers, cutting storage space from several mega bytes per image to only 12 bytes 

each. 

In a LT, histograms are sorted from the smallest to the largest value.   The 

histogram is then scaled to fit into a square or rectangular depending on the height of 

histograms and width of intervals.   This square or rectangular is divided into two 

triangles, and then the bottom triangle is only measured using the formula given 

under.    The area measured was then used to represent the image property.   In Figure 

4.14, Ca and Cb showed as an example of Lorenz Information curve. 
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Figure 4.14 General shape of Lorenz Information curve (Chang & Yang, 1982) 

    

Formula to compute LIM: 

1) P0 = 0 

2) W = Width (Interval of histogram) has to be equal distribution 

3) Pi = P1,…….,Pn 

4) 0 <= LIM (P1,…….,Pn) <= 0.5 

5) LIM = {W*P1/2+(W*P1+W*(P2-P1)/2)+….. 

   ….+(W*Pn-1+W*(Pn-Pn 1)/2)} / 2*# of pixels 

     = {W*∑n-1Pi+W*(∑n(Pi-Pi-1)/2)} / 2*# of pixels 

    = W*(∑n-1Pi+∑n(Pi-Pi-1)/2) / 2*# of pixels 

 

An example to understand this formula by visualization is given below. 

Let’s assume  

1) P0 = 0 

2) P1 = 2, P2 = 3, P3 = 4, P4 = 5, P5 = 6 

3) So, total number of pixels is 20. 

4) W = 1 

 

Then, according to the formula 

LIM = 1 ((2+3+4+5) + (2+1+1+1+1)/2) / 2*20 

    = 17 / 40 
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    = 0.425 

                   
                 

                     6          

                     5          

                     4          

                     3          

                     2 

                     1          

                     0 

                    0      1       2       3       4       5 
 

Figure 4.15 Visualized example of Lorenz Information curve  

 

 Here are the real LIM values computed by the above formula for the 

imageS88E5001 using a program (Table 4.17) developed based on Matlab software. 
Red            Green         Blue           Gray          Hough        Dist-A        Angle 
0.4915929   0.4900485   0.4908935   0.4925263   0.4077474   0.4972578   0.4982107 
Dist-B        Dist-C        Dist-D        Dist-E        Density 
0.4959731   0.4979530   0.4976284   0.4978013   0.1265480   
 

Table 4.16 LIM values for the image S88E5001 
 

 
 
% lim12.m 
% This is for Lorenz Information Measurement. 
% execution procedure 
% matlab 
% lim12 
% quit 
ofname=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/lim12.dat'); 
fido = fopen(ofname,'w'); 
fnums = 26; 
p = zeros(fnums,12); 
for f = 5001:5026 
if1=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hred%4.0f.dat',f); 
if2=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hgreen%4.0f.dat',f); 
if3=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hblue%4.0f.dat',f); 
if4=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hgray%4.0f.dat',f); 
if5=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hhough%4.0f.dat',f); 
if6=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hdist%4.0f.dat',f); 
if7=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hangle%4.0f.dat',f); 
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if8=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hdista%4.0f.dat',f); 
if9=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hdistb%4.0f.dat',f); 
if10=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hdistc%4.0f.dat',f); 
if11=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/hdistd%4.0f.dat',f); 
if12=sprintf('/home/jove/fs/mer0007/sol/jktmat/data/sts88/mdensity%4.0f.dat',f
); 
    fid1 = fopen(if1,'r'); 
    fid2 = fopen(if2,'r'); 
    fid3 = fopen(if3,'r'); 
    fid4 = fopen(if4,'r'); 
    fid5 = fopen(if5,'r'); 
    fid6 = fopen(if6,'r'); 
    fid7 = fopen(if7,'r'); 
    fid8 = fopen(if8,'r'); 
    fid9 = fopen(if9,'r'); 
    fid10 = fopen(if10,'r'); 
    fid11 = fopen(if11,'r'); 
    fid12 = fopen(if12,'r'); 
    x = 256; 
    w = 1/x; 
    d1 = fscanf(fid1,'%6d'); 
    d2 = fscanf(fid2,'%6d'); 
    d3 = fscanf(fid3,'%6d'); 
    d4 = fscanf(fid4,'%6d'); 
    d5 = fscanf(fid5,'%6d'); 
    d6 = fscanf(fid6,'%6d'); 
    d7 = fscanf(fid7,'%6d'); 
    d8 = fscanf(fid8,'%6d'); 
    d9 = fscanf(fid9,'%6d'); 
    d10 = fscanf(fid10,'%6d'); 
    d11 = fscanf(fid11,'%6d'); 
    d12 = fscanf(fid12,'%6d'); 
    sd1 = sort(d1); 
    sd2 = sort(d2); 
    sd3 = sort(d3); 
    sd4 = sort(d4); 
    sd5 = sort(d5); 
    sd6 = sort(d6); 
    sd7 = sort(d7); 
    sd8 = sort(d8); 
    sd9 = sort(d9); 
    sd10 = sort(d10); 
    sd11 = sort(d11); 
    t = zeros(11); 
    for i = 1:256 
        t(1) = t(1) + sd1(i); 
        t(2) = t(2) + sd2(i); 
        t(3) = t(3) + sd3(i); 
        t(4) = t(4) + sd4(i); 
        t(5) = t(5) + sd5(i); 
        t(6) = t(6) + sd6(i); 
        t(7) = t(7) + sd7(i); 
        t(8) = t(8) + sd8(i); 
        t(9) = t(9) + sd9(i); 
        t(10) = t(10) + sd10(i); 
        t(11) = t(11) + sd11(i); 
    end 
    j = f - 5000;     
    for i = 1:256 
        p(j,1) = p(j,1) + (x - i) * sd1(i) / t(1);    
        p(j,2) = p(j,2) + (x - i) * sd2(i) / t(2);    
        p(j,3) = p(j,3) + (x - i) * sd3(i) / t(3);    
        p(j,4) = p(j,4) + (x - i) * sd4(i) / t(4);    
        p(j,5) = p(j,5) + (x - i) * sd5(i) / t(5);    
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        p(j,6) = p(j,6) + (x - i) * sd6(i) / t(6);    
        p(j,7) = p(j,7) + (x - i) * sd7(i) / t(7); 
        p(j,8) = p(j,8) + (x - i) * sd8(i) / t(8); 
        p(j,9) = p(j,9) + (x - i) * sd9(i) / t(9); 
        p(j,10) = p(j,10) + (x - i) * sd10(i) / t(10); 
        p(j,11) = p(j,11) + (x - i) * sd11(i) / t(11); 
    end 
    for i = 1:11 
        p(j,i) = w * (p(j,i) + 0.5); 
    end 
% for density 
    p(j,12) = d12 / 320000; 
    fclose(fid1); 
    fclose(fid2); 
    fclose(fid3); 
    fclose(fid4); 
    fclose(fid5); 
    fclose(fid6); 
    fclose(fid7); 
    fclose(fid8); 
    fclose(fid9); 
    fclose(fid10); 
    fclose(fid11); 
    fclose(fid12); 
end 
for i = 1:fnums 
    for j = 1:12 
        fprintf(fido,'%10.7f  ',p(i,j)); 
    end 
    fprintf(fido,'\n'); 
end 
fclose(fido); 

 
 

Table 4.17 Sample program to calculate LIM values for STS-88 26 images 

 

Multi-Dimensional Scale 

 Those 12 content-based image features are grouped into 6 distinguished 

feature groups; such as, 1) RGB (red, green and blue) content-based image feature 

(CBIF), 2) Gray CBIF, 3) Hough CBIF, 4) Distance (distance-A, distance-B, distance-

C, distance-D, distance-E) CBIF, 5) Angle CBIF, and 6) Density CBIF.   From the six 

feature groups we can get six combination groups, and from the six combination 

groups 63 combinations should be derived according to these formulas: 1) 6C1 = 6   2) 

6C2 = 15   3) 6C3 = 20   4) 6C4 = 15   5) 6C5 = 6   6) 6C6 = 1.   For combination group 1 

(6C1 = 6), six vector graphs were drawn.   For combination group 2 (6C2 = 15), fifteen 
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vector graphs were drawn.   For combination group 3 (6C3 = 20), twenty vector graphs 

were drawn.   For combination group 4 (6C4 = 15), fifteen vector graphs were drawn.   

For combination group 5 (6C5 = 6), six vector graphs were drawn.   For combination 

group 6 (6C6 = 1), one vector graph was drawn.   After that each vector graph was 

analyzed for choosing the best shape in clustering.   It was assumed that similar 

images might be clustered closely and combination group 6 was comparatively well 

distributed and clustered vector graph among all vector graphs.    

 The following vector graphs were drawn by Statistical Analysis SoftwareTM 

(SAS) using the multi-dimensional scaling method (MDS), using data provide by the 

LIM extracted from the NASA images.   Figure 4.16 through figure 4.21 are 

representations for each combination group of the first test set STS-88 (26 images).   

In addition, Figure 4.22 is representing combination group six for 105 images and 

figure 4.23 is also representing combination group six for 994 images. 

 Figure 4.16 represents combination group one among 6 vector graphs.   Figure 

4.17 represents combination group two among 15 vector graphs.   Figure 4.18 

represents combination group three among 20 vector graphs.   Figure 4.19 represents 

combination group four among 15 vector graphs.   Figure 4.20 represents combination 

group four among 6 vector graphs.   Figure 4.21 represents combination group six. 
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Figure 4.16 Vector graph for combination group one (STS-88) 
 
   

 
 

Figure 4.17 Vector graph for combination group two (STS-88) 
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Figure 4.18 Vector graph for combination group three (STS-88) 
 
 

 
 

Figure 4.19 Vector graph for combination group four (STS-88) 
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Figure 4.20 Vector graph for combination group five (STS-88) 
 
  

 
 

Figure 4.21 Vector graph for combination group six (STS-88) 
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Figure 4.22 Vector graph for combination group six (STS-96) 
 
  

 
 

Figure 4.23 Vector graph for combination group six (STS-82) 
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 Here are six more vector graphs.   Figure 4.24 shows STS-88 26 text 

documents.   There are only six vectors because many images in STS-88 use same 

text document to explain each image.   Figure 4.25 shows STS-96 105 text documents 

and Figure 4.26 shows STS-82 994 text documents.   There are not many vectors for 

STS-96 and STS-82 for the same reason like STS-88. 

On the other hand, Figure 4.27 shows combined vector graph for STS-88 26 

multimedia documents, Figure 4.28 shows combined vector graph for STS-96 105 

multimedia documents and Figure 4.29 shows combined vector graph for STS-82 994 

multimedia documents.   These graphs are showing better distributed and clustered 

than not combined graphs, image only or text only graphs.   Afterwards, a sample 

SAS program, which will draw the X-Y axis for a vector graph, is shown in Table 

4.18. 
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Figure 4.24 STS-88 Text Documents (26) 
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Figure 4.25 STS-96 Text Documents (105) 
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Figure 4.26 STS-82 Text Documents (994) 
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Figure 4.27 Combined Format for STS-88 Multimedia Documents (26) 
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Figure 4.28 Combined Format for STS-96 Multimedia Documents (105) 
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Figure 4.29 Combined Format for STS-82 Multimedia Documents (994) 
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filename io '/export/olddata/mrorvig/jktmat/data/sts88'; 
data d1;  
   infile io(lim12.dat); 
   input v1-v12; 
 
proc print; 
 
 
/***** MACRO TO COMPUTE SQUARED EUCLIDEAN DISTANCES 
*******************/ 
 
%MACRO E_DIST(RC=C, DATA=_LAST_, OUT=DISTOUT); 
   PROC IML; XZX=0; 
      USE &DATA; SETIN &DATA; 
      READ ALL VAR _NUM_ INTO M(|COLNAME=V_NAMES|); 
      CLOSE &DATA; 
     %IF &RC=R %THEN %DO; M=M`; %END; 
      NC=NCOL(M); D=J(NC,NC,0); 
      START EDIST; 
         DO I=1 TO NC-1; DO J=I+1 TO NC; 
            D(|I,J|)=SSQ( M(|,I|)-M(|,J|) ); D(|J,I|)=D(|I,J|); 
         END; END; 
      FINISH; 
      RUN EDIST; 
     %IF &RC=C %THEN %DO; 
         CREATE &OUT FROM D(|COLNAME=V_NAMES|); 
     %END; 
     %ELSE %DO; CREATE &OUT FROM D; %END; 
 
      APPEND FROM D; CLOSE &OUT; 
%MEND; 
 
/********************************************************************
**/ 
 
 
%e_dist(DATA=D1, RC=R, OUT=DIST); 
 
 proc mds data=DIST 
  level=loginterval   
  dimension=2 
  pfinal 
  out=coord; 
 run; 
 
proc print data=coord; 
 
 proc plot data=coord vtoh=1.7; 
 PLOT DIM2*DIM1='*' $ _name_  
    / box haxis=by .5 vaxis=by .5; 
    where _type_='CONFIG'; 
 run; 

 

Table 4.18 A Sample SAS Program to get MDS Coordination for STS-88 LIM 12  
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Flowcharts for Multimedia Documents Processing 

Two flowcharts, one for image processing and the other for text processing, 

are shown below in Figure 4.30 and Figure 4.31.   A flow chart is one of the most 

efficient ways to explain the procedure of the job from beginning to end. 
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Figure 4.31 Flowchart for Text Document Process 
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CHAPTER 5. FINDINGS AND ANALYSIS 

Introduction 

 A binary term-document matrix (Table 4.4) made from a set of text documents 

is more widely used in the processing of text documents than the process of directly 

using words from the text document.   The binary term-document matrix does not 

combine well with image features as derived here, so a new format has to be used. 

 A grouping method was used so that there are as many text features as there 

are image features.   The weight of each group shown in Table 4.6 through Table 4.9 

represents the frequencies of 1’s in that group.   Then, the highest weight of the group 

must be identified for normalization.   Finally, the weight of each group for each 

document is normalized so that all normalized values are less than or equal to 0.5.   

The reason for this procedure is so that the text features are to scale within image 

features utilizing the Lorenz Information Measurement (LIM).   The entire processes 

for converting these text documents is named Jeong’s Transform (JT).       

Vector representation was used because the closeness of two vectors on the X-

Y axis can be easily visualized.   In vector representation, each vector stands for one 

of the images and its related text descriptions.   Therefore, the distance between 

vectors could be described as how close the images and text descriptions were to each 

other.   The process of vector representation was possible using the multi-dimensional 

scaling (MDS) method in statistical analysis software (SAS). 

In analyzing the vectors a clustering method is used.   If the vectors are 

clustered, it is said that those documents represented by the clustered vectors are very 

closely related.   For this analysis, three sets of vector representations, namely a text 
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vector representation, an image vector representation, and a combined vector 

representation (image and text), were used, as shown on the graphs below.   The 

combined vector representation from the National Aeronautics and Space 

Administration (NASA) image and text description set on the Hubble telescope 

repairing mission STS-88 strongly represents the closeness of the similar image and 

text documents. (Refer Figure 4.27) 

Precision and recall measurements in Table 5.13 do also strongly support that 

using combined representation format in multimedia retrieval system is very valuable 

choice.  

Findings 

Development of Jeong’s Transform 

 In processing text documents, a binary matrix shown in Table 4.4 is often used 

instead of directly using words from a text document.   In this research, it was chosen 

particularly in order to combine totally different types of documents into one data 

structure that is called “A Common Representation Format”.   To create a balance 

between text documents and image documents and to combine these two features, the 

binary matrix has to be transformed to a new format that was not previously known. 

To solve the problem of combining two different types of documents such as 

text documents and image documents, a grouping method is used so that there are 12 

text features, as there are 12 image features currently.   The weight of each group in 

the Word Code matrix represents the frequencies of 1’s in that group for each 

document.   Table 4.6 represents the weight of 10 term-groups, Table 4.7 represents 

the weight of 20 term-groups, Table 4.8 represents 50 term-groups and Table 4.9 

represents 100 term-groups.   After that the weight of each group has to be normalized 
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again using the highest weight of that group.   Finally, the weight of each group is 

normalized and the normalized values are less than or equal to 0.5.   The values of 

Lorenz Information Measurement (LIM) should be less than or equal to 0.5 according 

to the Lorenz theory.   This is well explained in Chapter 4.3.3.   The entire process of 

changing from a binary term-document matrix to a 12 Word Code matrix for text 

documents and combining 12 text measurements and 12 image measurements is 

named Jeong’s Transform.          

Test Set Analysis 

Clustering of Vectors 

Visualization in Information Retrieval is attractive, especially when it is 

possible to draw documents into a visualized vector graph.   For this research, there 

were four categories for image decomposition -- color, distance, angle, and texture.   

For the visual comparison of vector graphs, fifteen combinations of these four 

categories were made without text measurements and fifteen combinations of these 

four categories were made with text measurements as shown in the Table 3.4 (The 

Combinations of LIM and Text Measurements).   The vector graphs of thirty 

combinations are then drawn to find the combination that most reliably measures the 

distances between vectors that are representing documents. 

Evaluation is done through the clustering method to support the precision and 

recall in Table 5.13.   Human eyes can measure the distances between vectors and the 

distances represent the closeness between the vectors.   In addition, if the vectors are 

clustered in any position on X-Y axis, the clustered vectors represent closely related 

documents.   When the first test set, STS-88 26 images and text documents, are used, 

some clustering groups appeared in Figure 5.2, and are well clustered.   Figure 5.1 

82 



 

shows the example images in that cluster.   In Figure 5.2, the vectors representing 

multimedia documents, number 1 through 26, are shown.   Figure 4.21 shows the 

image only vector graph and Figure 4.24 shows the text only vector graph.   The 

combined vector graph of STS-96 105 multimedia documents is well clustered in 

comparison to the image only vector graph or the text only vector graph.   Each vector 

graph is shown in Figure 4.22, Figure 4.25 and Figure 4.28.   Also, the combined 

vector graph of STS-82 994 multimedia documents is well clustered in comparison to 

the image only vector graph or the text only vector graph.   Each vector graph is 

shown in Figure 4.23, Figure 4.26 and Figure 4.29.   For three test sets, STS-88 (26 

multimedia documents), STS-96 (105 multimedia documents) and STS-82 (994 

multimedia documents), combined vector graphs are all better distributed and 

clustered than image only vector graphs or text only vector graphs.          

    

 

Figure 5.1 Display of the classification of images only mapped from STS88 
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Figure 5.2 Display of the classification of images and text combined mapped from 

STS88  

 

Precision and Recall based on Heuristic Judgment 

Precision and recall measurements are very useful methods used to verify how 

the vector representation is correctly explaining the closeness between multimedia 

documents and how reliable the retrieval system is.    

Precision is defined as the proportion of retrieved documents that are relevant, 

 P = w / n2. 

Recall is defined as the proportion of relevant documents that are retrieved, 

R = w / n1. 

Where n1, n2, w, x, y and z are as follows. 

From the table; 
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n1 = w + x 

n2 = w + y 

n = w + x + y + z 

 

     Retrieved Not retrieved 

Relevant w x 

Not relevant y z 

  

  Table 5.1 Contingency Table for Evaluating Retrieval 

 

To compute precision and recall, 26 images are chosen.   A table to show the 

similarity (Table 5.2) between the images is made by human.   To test the result of 

this research, two testing methods are used.   The first method retrieves the images 

using a term from the text documents, and records the retrieved results in the table 

(Table 5.3) under threshold 0.2, and calculates the precision and recall according to 

the formula, which is given the above.   In here, threshold is used for the boundary of 

similarity between documents in the retrieval system.   The first method is only using 

image document, which have 12 measurements.   The second method is using image 

and text multimedia document, which have 24 measurements.   Each one has 12 

measurements.   The third test uses the same method as the first one except that the 

threshold is changed to 0.1.   The fourth one uses the same method as the second one 

except that the threshold is changed to 0.1.  

The Brighton Image Searcher handles the process of retrieval for multimedia 

documents.  For the first and the third method http://archive4.lis.unt.edu/td26/www is 
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used and for the second and the fourth http://archive4.lis.unt.edu/tdt26/www is used.   

The similarity of image number 1 through 26 is decided by tester’s heuristics and 

recorded below the tables.   For Table 5.2, Table 5.3, Table 5.5, Table 5.7 and Table 

5.9, the numbers in the row represent document number and the numbers in the 

column also represent document number, which is similar to the row document 

number if it is marked as “0”.   Table 5.2 shows the similarities between images over 

26 Images by human heuristics.   For example, document number 1 in row 1 has five 

ovals, document number 1, 3, 6, 8 and 9.   So these five documents might be retrieved 

if any one of five documents is given.     
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 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 0  0   0  0 0                  
2  0                         
3 0  0   0  0 0            0      
4    0 0                      
5    0 0                      
6 0  0   0  0 0            0      
7       0                    
8 0  0     0 0            0      
9 0  0     0 0            0      
10          0 0 0  0             
11          0 0 0  0             
12          0 0 0  0             
13             0              
14          0 0 0  0             
15               0 0           
16               0 0           
17                 0 0 0 0       
18                 0 0 0 0       
19                 0 0 0 0       
20                 0 0 0 0       
21 0  0   0  0 0            0      
22                      0 0 0  0
23                      0 0 0  0
24                      0 0 0  0
25                         0  
26                      0 0 0  0

 

Table 5.2 A Similarity Table on 26 Images by Human Heuristics 

 

 Table 5.3 shows the retrieved results on 26 images only under threshold 0.2 

using the Brighton Image Searcher (http://archive4.lis.unt.edu/td26/www) designed 

and implemented for this research.   When image number 1 in row 1 was given, 25 

images were retrieved except image number 10.   This result means that image only 

measurements are not favorable for using alone.
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 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0  0  0  0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0  0  0  0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
10          0 0 0 0 0             
11 0 0  0 0 0 0   0 0 0 0 0             
12 0         0 0 0 0 0             
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0    0 0   0 0 0 0 0             
15 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
 

 Table 5.3 Retrieved Results on 26 Images only under Threshold 0.2 

 

 The contingency table (Table 5.4) is calculated from Table 5.2 and Table 5.3, 

and the precision and the recall is also calculated from the contingency table (Table 

5.4).   Precision and Recall for 26 images only under threshold 0.2 is calculated like 

the below.    

Precision = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Retrieved 

but not Relevant)) 
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P = 96 / 530 

P = 0.181132 

So, precision is approximately 18.11 %. 

Recall = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Not 

Retrieved but Relevant)) 

 R = 96 / 96 

 R = 1 

 So, recall is 100 %. 
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Image Number Retrieved and 
Relevant

Retrieved but not 
Relevant

Not Retrieved but 
Relevant

1 6 19 0
2 1 23 0
3 6 16 0
4 2 21 0
5 2 21 0
6 6 18 0
7 1 23 0
8 6 16 0
9 6 16 0

10 4 1 0
11 4 7 0
12 4 2 0
13 1 25 0
14 4 5 0
15 2 20 0
16 2 20 0
17 4 18 0
18 4 18 0
19 4 18 0
20 4 18 0
21 6 16 0
22 4 18 0
23 4 18 0
24 4 18 0
25 1 21 0
26 4 18 0

Total 96 434 0
 
 

Table 5.4 Contingency Table for 26 Images only under Threshold 0.2 

 

 Table 5.5 shows the retrieved results on 26 image and text combined 

measurements under threshold 0.2 using the Brighton Image Searcher 

(http://archive4.lis.unt.edu/tdt26/www) designed and implemented for this research.   

When image number 1 in row 1 was given, 6 images were retrieved.   This result 
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means that the images retrieved are including the images driven by human heuristics 

on Table 5.2.   These are very favorable results. 

 

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 0 0 0 0 0 0                     
2 0 0 0 0 0 0                     
3 0 0 0 0 0 0                     
4 0 0 0 0 0 0                     
5 0 0 0 0 0 0                     
6 0 0 0 0 0 0                     
7       0 0 0                  
8       0 0 0                  
9       0 0 0                  
10          0 0 0  0             
11          0 0 0 0 0             
12          0 0 0 0 0             
13           0 0 0 0             
14          0 0 0 0 0             
15               0 0           
16               0 0           
17                 0 0 0 0       
18                 0 0 0 0       
19                 0 0 0 0       
20                 0 0 0 0       
21                     0      
22                      0 0 0   
23                      0 0 0   
24                      0 0 0   
25                         0  
26                          0
 

Table 5.5 Retrieved Results on 26 Image and Text Combined under Threshold 0.2 

 

 The contingency table (Table 5.6) is calculated from Table 5.2 and Table 5.5, 

and the precision and the recall is also calculated from the contingency table (Table 

5.6).   Precision and Recall for 26 images only under threshold 0.2 is calculated like 

the below.    
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Precision = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Retrieved 

but not Relevant)) 

P = 68 / 100  

P = 0.68 

So, precision is approximately 68 %. 

Recall = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Not 

Retrieved but Relevant)) 

 R = 68 / 96 

 R = 0.7083333 

 So, recall is 70.83 %. 
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Image Number Retrieved and 
Relevant

Retrieved but not 
Relevant

1 3 3 3
2 1 5 0
3 3 3 3
4 2 4 0
5 2 4 0
6 3 3 3
7 1 2 0
8 2 1 4
9 2 1 4

10 4 0 0
11 4 1 0
12 4 1 0
13 1 3 0
14 4 1 0
15 2 0 0
16 2 0 0
17 4 0 0
18 4 0 0
19 4 0 0
20 4 0 0
21 1 0 5
22 3 0 1
23 3 0 1
24 3 0 1
25 1 0 0
26 1 0 3

Total 68 32 28

Not Retrieved but 
Relevant

 
 
Table 5.6 Contingency Table for 26 Images and Text Combined under Threshold 0.2 

 

Table 5.7 shows the retrieved results on 26 images only under threshold 0.1 

using the Brighton Image Searcher (http://archive4.lis.unt.edu/td26/www) designed 

and implemented for this research.   When image number 1 in row 1 was given, 14 

images were retrieved.   However, Table 5.7 shows that there are a lot more ovals 
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than the similarity table in Table 5.2.   This result means that image only 

measurements are still not favorable for using alone. 

 

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 0 0 0 0 0 0 0 0 0    0     0 0 0     0  
2 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0    0  0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
10          0 0 0  0             
11          0 0 0 0 0             
12          0 0 0  0             
13 0 0    0 0    0  0              
14          0 0 0  0             
15  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
16  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
17  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
21  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
22  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
23  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
24  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
26  0 0 0 0 0 0 0 0      0 0 0 0 0 0 0 0 0 0 0 0
 

Table 5.7 Retrieved Results on 26 Images only under Threshold 0.1 

 

 The contingency table (Table 5.8) is calculated from Table 5.2 and Table 5.7, 

and the precision and the recall is also calculated from the contingency table (Table 

5.8).   Precision and Recall for 26 images only under threshold 0.1 is calculated like 

the below.    
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Precision = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Retrieved 

but not Relevant)) 

P = 95 / 452 

P = 0.2101769 

So, precision is approximately 21.02 %. 

Recall = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Not 

Retrieved but Relevant)) 

 R = 95 / 96 

 R = 0.9895833 

 So, recall is 98.96 %. 

 Precision is still very low, so this is not so favorable. 
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Image Number Retrieved and 
Relevant

Retrieved but not 
Relevant

Not Retrieved but 
Relevant

1 5 9 1
2 1 21 0
3 6 15 0
4 2 19 0
5 2 19 0
6 6 16 0
7 1 21 0
8 6 15 0
9 6 15 0

10 4 0 0
11 4 1 0
12 4 0 0
13 1 5 0
14 4 0 0
15 2 18 0
16 2 18 0
17 4 16 0
18 4 17 0
19 4 17 0
20 4 17 0
21 6 14 0
22 4 16 0
23 4 16 0
24 4 16 0
25 1 20 0
26 4 16 0

Total 95 357 1
 

Table 5.8 Contingency Table for 26 Images only under Threshold 0.1 

 

Table 5.9 shows the retrieved results on 26 image and text combined 

measurements under threshold 0.1 using the Brighton Image Searcher 

(http://archive4.lis.unt.edu/tdt26/www) designed and implemented for this research.   

When image number 1 in row 1 was given, 5 images were retrieved.   This result 
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means that the images retrieved are including the images driven by human heuristics 

on Table 5.2.   These are very favorable results. 

 

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 0 0  0 0 0                     

0 0 0 0 0                    
3  0 0 0 0  0                    
4 0 0 0 0 0 0                     

0 0 0 0 0 0             
0 0 0 0 0 0                     

7       0 0 0                  
8       0 0 0                  
9       0 0 0                  
10          0 0 0  0             
11          0 0 0   0             

         0 0  0             
13             0              
14          0 0 0  0             
15               0 0           

              0 0           
17                 0 0 0 0       
18                 0 0 0 0       
19                 0 0 0 0       
20                 0 0 0 0       
21                     0      
22                      0 0 0   
23                      0 0 0   
24                      0 0 0   
25                         0  
26 

2 0  

5         
6 

12 0

16 

                         0
 

Table 5.9 Retrieved Results on 26 Image and Text Combined under Threshold 0.1 

 

 The contingency table (Table 5.10) is calculated from Table 5.2 and Table 5.9, 

and the precision and the recall is also calculated from the contingency table (Table 

5.10).   Precision and Recall for 26 images only under threshold 0.1 is calculated like 

the below.    

97 



 

Precision = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Retrieved 

but not Relevant)) 

P = 66 / 92 

P = 0.7173913 

So, precision is approximately 71.74 %. 

Recall = (Retrieved and Relevant) / ((Retrieved and Relevant) + (Not 

Retrieved but Relevant)) 

 R = 66 / 96 

 R = 0.68.75 

 So, recall is 68.75 %. 

 These are very favorable.  
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Image Number Retrieved and 
Relevant

Retrieved but not 
Relevant

Not Retrieved but 
Relevant

1 2 3 4
2 1 5 0
3 2 3 4
4 2 4 0
5 2 4 0
6 3 3 3
7 1 2 0
8 2 1 4
9 2 1 4

10 4 0 0
4 0 0

12 4 0 0
13 1 0 0
14 4 0 0
15 2 0 0

2 0 0
17 4 0 0
18 4 0 0
19 4 0 0
20 4 0 0

0 5
22 3 0 1
23 3 0 1
24 3 0 1
25 1 0 0
26 1 0 3

Total 66 26 30

11 

16 

21 1

 
 
Table 5.10 Contingency Table for 26 Image and Text Combined under Threshold 0.1 

 

Depending on the change of the threshold, the results of precision and recall 

changes.   “Threshold” means, “the width of searching”.   If the threshold goes bigger, 

then it will give back more retrieved images, and if the threshold goes smaller, then it 

will give back less retrieved images.   When the threshold changes from 0.2 to 0.1 for 

image only, the precision is changed from 18.11% to 21.02% and the recall is 
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changed from 100% to 98.96%.   Then, when the threshold changes from 0.2 to 0.1 

for image and text combined format, the precision is changed from 68% to 71.74% 

and the recall is changed from 70.83% to 68.75%.   This trend demonstrates the 

inverse relationship between the precision and the recall, which is true for any set 

(Korfhage, 1997).   According to these statistics the precision for a threshold of 0.2 is 

improved about 375%, when the combined representation format is used rather than 

image only format.   For a threshold of 0.1, precision still improves 341%.   The 

precision is still greatly improved when threshold 0.1 is used, about 341%.   That is, 

the precision is improved from 18.11% to 70.83% for threshold 0.2 and 21.02% to 

68.75% for threshold 0.1 when the combined representation format is used rather than 

image only format is used.   Conclusion will be made from these statistics that 

precision might be improved when a combined format for multimedia documents is 

used.      

Another test is designed for over 994 multimedia documents.   Like the testing 

on 26 images, the first method uses 994 images for 12 measurements under the 

threshold 0.2.   The second method uses 994 multimedia documents under the 

threshold 0.2 (Image and text combined, 24 measurements).   It starts from the given 

text questions to retrieve the images.   http://archive4.lis.unt.edu/td/www is used for 

the first method and http://archive4.lis.unt.edu/tdt/www is used for the second 

method.   All conclusions are based on agreement of three testers in the group.   On 

the other hand recall is not calculated because of time.   It is too time consuming to 

decide a relative or non-relative relationship between 994 images.   We already know 

that precision/recall have an inverse relationship, so we can limit our concern to 
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precision.   The Table 5.11 shows 25 questions and Table 5.12 shows the retrieved 

results. 

 

11. Hubble image over Earth limb 

23. Ken Bowersox looing through the Crew Optical Alignment Sight (COAS) 

 

 

1. Discovery OB-103 launch and landing 
2. Crew portrait in middeck wearing a various shirts 
3. Orbiter name “Discovery” is visible on the orbiter 
4. EVA tool preparation for upcoming Hubble Space Telescope servicing 

spacewalks 
5. Commander Kenneth D.Bowersox looking out the aft flight desk window 
6. Astronaut Tanner reads a checklist in the external airlock 
7. External airlock from middeck of STS-82 Discovery 
8. Orbiter name “Discovery” is visible on the orbiter 
9. STIC & NICMOS EVA 
10. Electronic image of Mark Lee and Steve Smith setting up for EVA 

12. Hubble in orbiter payload bay 
13. A bubble of contact lens solution enclosing an actual lens 
14. EVA with astronaut and sunburst 
15. Hubble EVA shots 
16. Flat Stanley paper doll  
17. Launch on February 11, 1997 
18. Astronaut Mark Lee, wearing an extravehicular mobility unit (EMU), working 

on the Hubble Space Telescope with the assistance of the Remote Manipulator 
System (RMS) arm during mission 

19. Crew portrait in the orbiter flight deck 
20. Specialist Joe Tanner conducts Intravehicular Activity (IVA) during flight day 

6 
21. Astronaut Lee holding CCT camera and pointing it at the HST to survey the 

damage 
22. Steve Smith waving to the camera near the end of the EVA 

24. Scott Horowitz fashioning Multilayer Insulation (MLI) patches 
25. Hubble with golden solar arrays  

 

Table 5.11 Twenty-five Questions made by NASA Employee 
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            Retrieved Result without Text               Retrieved Result with Text 
 Documents    

 
Documents   

Questions Retrieved Number 
of Images

Relative Number 
of Images

Retrieved Number of 
Images 

Relative Number of 
Images

  

1 12 0 5 0   
2 12 2 2 2   
3 12 0 5 0   
4 12 3  6 6  

1 3 3   
12 0 1 1   

7 12 1 1 1   
12 0 5 0   

9 12 3 12 6   
9 0   

11 12 4 5 5   
12 12 4 7 0   
13 0 0 0 0   
14 0 0 0 0   
15 12 3 3 3   
16 12 2 6 6   
17 0 0 0 0   
18 12 5 5 3   
19 12 0 2 2   
20 0 0 0 0   

12 5 4  
22 12 12  1 1  

0 0 0  
24 12 0 3  0  
25 12 1 12 4   

Total 240 33 109 47   

5 12
6 

8 

10 12 1

21 2  

23 0  

 

Table 5.12 Retrieved Results by Three Testers 

 

Using the retrieved results of Table 5.12, the precision is calculated like the 

below.   The precision of image retrieval without using text document is, 

0.4312 = 47 / 109 

0.1375 = 33 / 240 

On the other hand, the precision of image retrieval using text document is, 
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Note that the precision is increased almost 319% when image and text features 

are combined into a single data structure.   Table 5.13 is showing the evaluation 

results of precision and recall over multimedia testing sets. 

 

Image Only Image and Text Combined 

Threshold 0.2 Threshold 0.1 Threshold 0.2 Threshold 0.1 

 Precision Recall Precision Recall Precision Recall Precision Recall
0.18 1.00 0.98 0.68 0.71 0.68 

994 
multimedia 
documents 

0.13     0.43   

26 
multimedia 
documents 

0.21 0.70 

 
 
Table 5.13 The Evaluation Results of Precision and Recall over Multimedia Testing  

      Sets 
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CHAPTER 6. DISCUSSIONS AND CONCLUSION 

Introduction 

For image and text analysis, two techniques are used: the Lorenz Information 

Measure (LIM) and the Word Code (WC).   A new process is demonstrated for 

extraction of text and image features, and then combination to produce a single data 

structure.   Finally, this single data structure is analyzed by using multi-dimensional 

Multimedia documents exist in a variety of file formats, and various types of 

multimedia documents require different forms of analysis for knowledge architecture 

design and retrieval methods.   Multiple multimedia retrieval systems by different 

commercial vendors have been researched, including CONVERA , QBICTM, 

VIRAGE , Image FinderTM, Imatch , CANDIDTM, ARTISAN , etc.   On the 

other hand, theories of text analysis have been proposed and applied effectively over 

the decades.   In recent years, theories of image and sound analysis have been 

proposed in conjunction with text retrieval systems and implemented along with the 

rapid progress of computer hardware efficiency.   Retrieval of multimedia documents 

formerly was divided into image and text, and image and sound.   Also the existing 

process begins from text only, but now the retrieval process can be accomplished 

simultaneously using text and image features.    

TM

TM TM TM

Although image processing for feature extraction and text processing for term 

extractions are well understood, there are no prior methods that can combine these 

two features into a single data structure.   This dissertation introduces a common 

representation format for multimedia documents (CRFMD) composed of both images 

and text.    

104 



 

scaling (MDS).   Then multimedia objects are represented on a two-dimensional 

graph as vectors.   The distance between vectors represents the magnitude of the 

similarity between multimedia documents.    

Discussions on Research Findings 

Image classification on the given test set was dramatically improved when text 

features were encoded together with image features.   This effect appears to hold true, 

even when the available text is diffused and is not uniform with the image features.   

In order to retrieve multimedia documents, a single data structure constructed through 

this process is used. 

In processing text documents, a binary matrix (Table 4.4) made from text 

document sets are often used.   But the binary matrix itself was out of consideration 

for this research in combining two totally different types of documents into one data 

structure that is called “A Common Representation Format (CRF)”.   To combine 

these two documents: text and image document, the binary matrix has to be 

transformed to a new format. 

To solve the problem of combining two different types of documents such as 

text document and image document, a grouping method is used to create the same 

number of text features as image features.   The weight of each group (Table 4.6 

through Table 4.9) represents the number of terms from that group that a particular 

document contained.   Then the highest weight must be identified.   Finally, the 

weight of each group is normalized (Table 4.11 through Table 4.14) and the 

normalized values are less than or equal to 0.5, due to the characteristics of the Lorenz 

Information Measurement.   This is well explained in Chapter 4.3.3.   Likewise, the 

binary matrix driven from National Aeronautics and Space Administration text 
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documents is transformed to twelve groups matrix.   Then, twelve image 

measurements and twelve text measurements are combined for multi-dimensional 

scaling process.   The entire process used to change from a binary matrix to twelve 

groups matrix for text document and to normalize the group matrix and to combine 

text measurements and image measurements is named Jeong’s Transform.   

The results of precision and recall supports that “A Common Representation 

Format” is a very promising theory for multimedia document retrieval system.   The 

precision of the first test set (26 multimedia documents) is greatly improved from 

18.11% to 70.83%, almost 375%, when combined measurements were used instead of 

using image measurements alone.   It stands for the third test set (994 multimedia 

documents).   The precision is improved almost 319%.    

Discussions for Further Research 

An interesting follow-up question is regarding the compatibility of other 

languages with this process.   The Japanese language will be tested to determine the 

possibility of multilingual adaptation.   Though Japanese is significantly different 

from English grammatically, there are similarities in the sentence components 

between the two languages.   Though space is the primary delimiter between words, 

words are not conveniently separated by spaces in some cases.   However, commas, 

periods, exclamation points, hyphens, etc. are also used just as in English.   For this 

reason, the bigram approach, in which every two bytes are assumed as one word, will 

be tested, and then the results of the Japanese and English language may be compared. 

For security reasons, the process of moving objects without text documents is 

very important.   Currently, in most of security systems, moving objects are viewed, 

checked and analyzed by security personal.   After that, the security on duty decides 
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how to handle the situation according to his or her personal heuristics. 

Though the primary job of medical image retrieval systems is to retrieve the 

related patient’s image with the patient’s name, there is an increased interest in the 

use of content-based image retrieval (CBIR) techniques to aid in diagnosis by 

identifying similar past cases.   In addition, this can be used in various ways, such as, 

surveillance of patients, virus tracking, heart movement, etc.   For these reasons alone, 

processing of image itself without text documents has validity. 

Finally, though all these fields such as crime prevention, war games in the 

military, architectural and engineering design, journalism, advertising, training in 

education, museums, libraries, toll gates for automatic fee collection, fashion, 

Geographic Information System, Web searching, and interior design, use their own 

image retrieval systems and approach it at different angles, but to combine this 

research in the above areas is greatly desired, and will define a large and active field 

of research.    

Conclusion 

 Content-based image retrieval is the retrieval of imagery from a collection by 

means of internal measures of the information content of the images.   Although 

CBIR has been available for more than a decade, most systems operate with only 

limited success.   This paper describes a new method for incorporating text features 

into the CBIR content measures using Jeong’s Transform, which was developed by 

the author.  The results show a dramatic increase in the precision of image retrieval 

with the new text context measures on 26 multimedia documents from 18.11% to 

70.83%, that is 375% improvement.   The results indicate an increase in the precision 
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of image retrieval with the new text context measures on 994 multimedia documents 

from 13% to 43%, that is 319% improvement. 

Though visualization exercises could not give digitized values, but 

visualization exercises on textual descriptions for image collections of greatly varying 

quality suggest that this technique will be successful in a variety of domains.   Based 

on the visualized vector graphs, we could see the possible results figuratively. 

 The greatest achievement of this research was that Jeong’s Transform is 

developed.   Jeong’s Transform represents the entire process changing from text 

documents to a certain number of text measurements and to combine text 

measurements and image measurements into a single data structure.    
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