Resequencing of Treponema pallidum ssp. pallidum Strains Nichols and SS14: Correction of Sequencing Errors Resulted in Increased Separation of Syphilis Treponeme Subclusters

PDF Version Also Available for Download.

Description

Article on the resequencing of Treponema pallidum ssp. pallidum strains nichols and SS14 and how the correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters.

Physical Description

8 p.

Creation Information

Pĕtrošová, Helena; Pospíšilová, Petra; Strouhal, Michal; Čejková, Darina; Zobaníková, Marie; Mikalova, Lenka et al. September 10, 2013.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by UNT College of Arts and Sciences to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 351 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Editor

Publisher

Provided By

UNT College of Arts and Sciences

The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Article on the resequencing of Treponema pallidum ssp. pallidum strains nichols and SS14 and how the correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters.

Physical Description

8 p.

Notes

Abstract: Background: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. Methodology/Principal Findings: The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. Conclusion/Significance: We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.

Source

  • PLoS One, 2013, San Francisco: Public Library of Science

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: PLoS One
  • Volume: 8
  • Issue: 9
  • Pages: 8
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 10, 2013

Added to The UNT Digital Library

  • Aug. 29, 2014, 2:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 351

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pĕtrošová, Helena; Pospíšilová, Petra; Strouhal, Michal; Čejková, Darina; Zobaníková, Marie; Mikalova, Lenka et al. Resequencing of Treponema pallidum ssp. pallidum Strains Nichols and SS14: Correction of Sequencing Errors Resulted in Increased Separation of Syphilis Treponeme Subclusters, article, September 10, 2013; [San Francisco, California]. (digital.library.unt.edu/ark:/67531/metadc333038/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT College of Arts and Sciences.