THE EFFECTS OF A KINDERGARTEN-FIRST GRADE LOOPING PROGRAM ON ACADEMIC ACHIEVEMENT AND SELF-ESTEEM

Doris Jo Murphy, B.S., M. Ed.

Dissertation Prepared for the Degree of

DOCTOR OF EDUCATION

UNIVERSTIY OF NORTH TEXAS

December 2002

APPROVED:

James Laney, Major Professor, Chair and Program Coordinator for Curriculum and Instruction Doctoral Program
Frank Kemerer, Minor Professor
Patricia Moseley, Committee Member
John Stansell, Chair of the Department of Teacher Education and Administration
M. Jean Keller, Dean of the College of Education
C. Neal Tate, Dean of the Robert B. Toulouse School of Graduate Studies
Murphy, Doris Jo, The Effects of a Kindergarten-First Grade Looping Program on Academic Achievement and Self-Esteem. Doctor of Education (Curriculum and Instruction), December 2002, 80 pp., 5 tables, references, 70 titles.

The purpose of this study was to determine if academic achievement and academic self-esteem can be linked to the non-traditional organizational pattern of looping in kindergarten and first grade classes. Looping is defined as one teacher remaining with the same students for two or more years. Using a control group-experimental group design where the experimental group participated in the looping program and the control group did not, and applying the statistical procedure of multivariate analysis of variance (MANAVO), it was found that there was no significant difference between the subjects in the two groups on the criterion variable of academic achievement as measured by the Iowa Test of Basic Skills, and the criterion variable of academic self-esteem as measured by the Culture-Free Self-Esteem Inventory, Second Edition. It was concluded that further study would need to be done to determine if there are advantages to an organizational pattern of looping for students in public elementary schools.
Copyright 2002

by

Doris Jo Murphy
ACKNOWLEDGMENTS

This study was facilitated through the guidance of my university advisor and committee chair, Dr. Jim Laney. I am indebted to him for the encouragement, leadership, and wisdom he offered to me during these three and a half years.

My deepest gratitude is also extended to my committee members Dr. Patricia Moseley-Grady and Dr. Frank Kemerer. Their professional leadership and support has been invaluable.

Special acknowledgment is extended to the central administration team, the principals, teachers, students and parents of the district where this study was conducted. This study could not have been completed without their participation and support.

The Delta Kappa Gamma Society International receives special acknowledgement for awarding me scholarships at local, state and international levels to complete this study.

To my husband, George Murphy, I am grateful for his unwavering support and encouragement, which helped me to realize the completion of this degree. He always believed in me and gave me words of encouragement whenever they were needed. I also express my appreciation to my extended family and especially to my mother, Inez Walker, who was my first teacher and my biggest cheerleader. She taught me to love to learn and to love to teach.
TABLE OF CONTENTS

Page

LIST OF TABLES.. vi

Chapter

1. INTRODUCTION.. 1

 Statement of the Problem
 Purposes of the Study
 Hypotheses
 Limitations
 Basic Assumptions
 Definition of Terms

2. REVIEW OF LITERATURE...15

 History
 Philosophy and Theory
 Research of Looping Programs
 Research of Multiage/Nongraded Programs
 Summary

3. METHODOLOGY..32

 Population
 Instruments Employed
 Research Design
 Treatment of Data

4. PRESENTATION OF DATA..45

iv
5. FINDINGS, CONCLUSIONS, INFERENCES AND RECOMMENDATIONS……………………………………………………………………………………………………53

Summary of Findings
Conclusions and Implications
Recommendations
Summary

REFERENCES…………………………………………………………………..66

APPENDIX………………………………………………………………………75
LIST OF TABLES

Table

 School Years...36

2. Ethnic Distribution Percentages of School District, Experimental
 Group, and Control Group..38

3. Reliability Data for the Iowa Test of Basic Skills, Form A, Level 7...41

4. Descriptive Statistics, Means and Standard Deviations for the
 Study...49

5. MANOVA Results..51
CHAPTER 1

INTRODUCTION

Nothing is less real than realism. Details are confusing. It is only by selection, by elimination, by emphasis that we get at the real meaning of things.

Georgia O’Keefe

When Georgia O’Keefe, one of the great artists of the twentieth century, made this statement, she was referring to art and the artistic processes she used to create masterpieces. However, the idea that taking the time to examine the world and eliminate several solutions to problems as they arise, before selecting the real meaning of things, can also apply to the way young children learn. Recent brain research shows that cognitive activity starts earlier than previously thought, and that later learning depends upon, or is rooted in, earlier learning much more than was ever before suspected (Jensen, 1998). In his 1999 keynote address to the National Academy of Sciences National Research Council Global Conference, Jerome Bruner called for practices and standards in classrooms for young children that would invite and encourage reflection and meta-cognitive processes. Bruner called for a continuous spiraling curriculum, smaller classes, extra help for disadvantaged children, language rich environments, and more concern for “self-building” or esteem building issues. He said that students’ earliest learning environments must include time for reflection for “It, reflection, is what turns a ‘spiral curriculum’ back on itself, connecting the before, the now, and the what next. We need it
in our schools, to create a continuity from class to class, from year to year, from a first version to a next more powerful one.” (National Academy of Sciences, National Research Council, 1999, p. 14).

The learning theories of J. Piaget, A. Bandura, L. S. Vygotsky and others have suggested that development is progressive from one stage to another, and if supported with developmentally appropriate practices, growth will be natural and normal (Bredekamp & Copple, 1997). Programs that are developmentally appropriate have curricula that focus on the unique needs of each child. Traditional public school organizational patterns and mandated daily schedules are barriers to realizing developmentally appropriate programs. Other challenges are the size of public school classes, and the physical environment of public schools (Wardle, 1999).

Current research on school organizational patterns calls for flexibility in student grouping to allow young students time to process information and develop the skills to become problem solvers using that information (Daniel & Terry, 1995). Research done by L. S. Vygotsky, J. Piaget, and A. Bandura supports the practices of giving young learners time to develop at their own developmental pace and learn from others who are progressing faster than they may be at a given developmental stage (Bacharach, Hasslen & Anderson, 1995; Kasten, 1998; Chase & Doan, 1994; Stegelin, 1997; Goodman, 1993; Jensen & Green, 1993).

Current interests in multiage practices are related to interest in developmentally appropriate teaching practices, especially in the primary grades. For example looping, defined as one teacher remaining with the same students for two or
more years, is a practice that emerged out of multiage practices (Grant, Johnson, & Richardson, 1996). Throughout the description of this research there are references to multiage practices, and a major section of the literature review in Chapter 2 looks at multiage practices. This was included to show the interrelatedness of looping and multiage practices. Looping grew out of the feelings of many educators that an age-graded structure does not meet the needs of many learners. Age-graded structures in schools are based on the assumption that students are all ready to learn the same concepts at the same chronological age, and that they will do this during a specific nine-month span that is the typical school year. Multiage practices take away the constraints of time that age-graded programs place on learners and teachers and allow children to progress naturally in a static learning environment over a longer span of time than just a single school year (Grant & Richardson, 1996).

Looping, while it emerged from multiage programs, is a much simpler process. It has the advantages of being less costly and requiring a shorter lead-time for implementation than fuller multiage practices. The practice of looping was sanctioned in America in 1913 by the Department of the Interior as a way of strengthening the teacher-student progression in schools (Forsten et al., 1997). A teacher and/or the administration of the school decide to implement looping. The teacher who is to loop with his/her class takes his/her current class to the next grade level. This means there must be a looping partner on that next higher grade level who drops back to the immediately previous level, thereby opening a spot for the looping teacher to move up with his/her current class. Many times this grows out of parental requests for a teacher to remain with their children
because the students have made great progress or because of terrific impact made by a teacher in the life of a group of students. The teacher will decide that he/she wants to remain, not only with that group of children, but also with the entire class. This teacher, designated as Teacher A, will talk a teacher on the next grade level up, Teacher B, into dropping back to Teacher A’s grade level, thus providing a space for Teacher A to move into as her class progresses. Administrative approval is an important step of this process (Grant et al., 1996). In the case of the current study Teacher A began with a class in kindergarten and moved with them to first grade, taking the place of Teacher B who was a first grade teacher. Teacher B then dropped back to become a kindergarten teacher and took that class of kindergarten students through first grade. Teacher A and Teacher B continued to rotate through these two grade levels in two-year cycles.

Some of the advantages of looping cited in the literature are as follows: (a) teachers have more time to cover needed concepts due to transitions being smoother from one year to the next; (b) behavioral patterns and expectations do not have to be reestablished each year; (c) confidence of students increases in a safe and comfortable environment; therefore, self-esteem of students is increased; and (d) there are extended year learning opportunities over the summer break (Jacoby, 1994; Bellis, 1999; Harding, 1997; Chapman, 1999).

A person’s self-esteem refers to how he/she perceives his/her own value or worth. Self-esteem affects one’s level of achievement and his/her ability to adjust in different environments throughout all phases and stages of life (Battle, 1987, 1990). According to Measelle, Ablon, Cowan & Cowan (1998) students who hold a higher degree of self
worth with more positive views of themselves in different academic and social environments are thought to be better adjusted in school. School adjustment refers to “the degree to which children become engaged, interested, and successful in the academic and nonacademic aspects of school” (Measelle et al., p. 1559). If students feel confident in their abilities they will perceive school as important and enjoyable (Sameroff & Haith, 1996; Ladd, 1996). Lawrence (1996) suggests that students with high self-esteem are more likely to be excited and eager to take on new challenges. Mack and Ablon (1983) compiled works for those attempting to build young children’s self-esteem. Geraty (in Mack & Ablon,) identified aspects of the educational settings of young children that could enhance and increase their positive self-esteem. Geraty reflects a great deal on the relationship of the young child to the teacher as he/she leaves the home environment and begins to transfer his/her sense of influence from the parent to the teacher. “It is in this new environment that the child first tests his view of himself as significant and competent” and “to be competent is, of course, to perform successfully in scholastic work” (Geraty in Mack & Ablon, p. 263). Geraty also stresses the importance of young children knowing the teacher well and vice versa. “Knowing the student well so that central beliefs are validated is important” (p. 266) in this first teacher student relationship. In describing an “ideal” environment, Geraty suggests that multiage settings are ideal because they strengthen the relationship between students and teachers over time and points out the need to determine if a multi-year experience with the same teacher plays a role in enhancing and increasing students’ self-esteem, therefore contributing to future school success.
This current study attempted to answer this question by looking at the practice of looping in a classroom environment within a public school. The impossibility of controlling all of the variables that affect student learning and student attitudes makes classroom research challenging. “Control is not easy in an experiment, especially in educational research where real live subjects are involved.” (Gay 1987, p. 263). The researcher must strive to ensure that the characteristic makeup of the subjects and the experiences that happen to the subjects during the experimental time are as equal as possible on all-important variables except the independent variable, which in this study is the organizational pattern of either looping or non-looping (Gay, 1987). Chapter 3 includes a detailed explanation of how this need for control of variables was addressed in this study.

Statement of the Problem

The problem for this study was to compare the academic achievement and future school success of students who have participated in a kindergarten and first grade looping program with students in the same public school setting who had a different teacher in kindergarten and first grade respectively. The independent variable was the organizational pattern, either looping or non-looping, for the students involved in the study. The dependent variables studied were academic achievement and children’s academic self-concept, or academic self-esteem. The measurement instrument for academic achievement was the Iowa Test of Basic Skills (ITBS), (©2001 by The University of Iowa and Riverside Publishing, Itasca, Illinois). This is a test that all second
grade students take in the school district where the study was conducted. The Culture-Free Self-Esteem Inventory, Second Edition (CFSEI-2), (©1992 by PRO-ED, Austin, Texas) was the instrument used to measure academic self-esteem.

Purposes of Study

Public schools today are continually being challenged in educational journals and by the media to “think outside of the box.” While looping is not a new idea, it has not been used for an organizational pattern extensively in public schools in the United States. This study seeks to determine if there are significant differences in variables that affect student success in school that can be linked to the practice of looping as defined above. More specifically, this study seeks to determine if academic achievement and academic self-esteem can be linked to the non-traditional organizational pattern of looping in kindergarten and first grade classes.

Hypotheses

1. Second grade students who participated in a looping program of classroom organization in kindergarten and first grade will score higher on the Iowa Test of Basic Skills than second grade students in a control group who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade.
2. Second grade students who participated in a looping program of classroom organization in kindergarten and first grade will score higher levels of academic self-esteem on the Culture-Free Self-Esteem Inventory, Second Edition than second grade students in a control group who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade.

Limitations

Classroom research done in the field is very difficult to accomplish because of the many variables associated with the individuality of subjects and the environment of the classroom, the school, and the community setting. It is impossible to control all of these variables, and the researcher must acknowledge this prior to undertaking any study within the classroom setting. It is important, however, to look at significant variables with statistical procedures to determine if educational practices have merit and can be shown to impact student learning, either positively or negatively. The following limitations deal with some of the issues related to the control of variables found in conducting classroom research.

1. This study provides information about the academic achievement of students in a public school in a suburban school district who have participated in a classroom environment that employed the practice of
looping. Generalization beyond these type students and district cannot be made.

2. This study provides information about the academic self-esteem of students in a public school in a suburban school district who have participated in a classroom environment that employed the practice of looping. Generalization beyond these type students and district cannot be made.

3. This study provides information about the academic achievement and academic self esteem of students who are primarily of the Caucasian race. Generalization beyond these type students and district cannot be made.

4. Due to mobility of families and transfer of students to other campuses within the district, the sample size of students who remained in the experimental group of looping students for the full two years was twenty-three. This may limit the power of the effect size of the study.

Basic Assumptions

It is assumed that the teachers in both the experimental looping classes and the control group traditional classes have followed the scope and sequence of the district adopted curriculum for kindergarten and first grade, as well as the Texas Essential
Knowledge and Skills (TEKS) for the respected grade levels. It is further assumed that
the instruments used to assess the variables of achievement and self-esteem have been
administered under similar conditions using the instructions provided by the author.

Definition of Terms

Looping is a concept that has grown out of multiage, mixed age, or multiyear
education. A teacher who loops with her class will decide to take her current class to the
next grade level, so she will find a looping partner on that grade level who will drop back
to her current level, thereby opening a spot for her to move up with her current class
(Grant et al., 1996). Some earlier attempts of a similar concept were sometimes referred
to as “teacher retention.” Due to the negative connotation of the word “retention” in
education, this term is not popular. Other terms, which have sometimes been used for
this practice, are “teacher-student progression,” “two-cycle teaching,” “multiyear
teaching,” and the “twenty-month classroom” (Forsten et al., 1997).

Throughout the description of this research there are references to multiage
practices, and a major section of the Chapter 2 literature review looks at multiage
practices. Therefore, the definitions of several multiage terms are included here.

Multiage, multiyear, and mixed-age are terms that identify different aspects of multiage
educational patterns. These terms are often used synonymously. Rathbone, Bingham,
Dorta, McClaskey, and O’Keefe (1993) defined the multiage classroom as one in which
“children of different ages and grades are intentionally placed together, where graded
distinctions are minimized, and teaching and learning make use of the range of knowledge inherent in the group” (p.ix).

A simple definition of multiage grouping that refers to it as putting children who are at least one year apart in age into the same classroom is found in many studies (Daniel & Terry, 1995; Katz, Evangelou, & Hartman, 1990). Gaustad (1994) says mixed-age grouping and dual-year grouping are terms referring to students who are one year apart in age being grouped in the same classroom. She makes the distinction that the terms “multiage,” “multiyear,” “family grouping,” “vertical grouping,” and “blended classes” all refer to age ranges of two or more years within the same classroom setting.

Grant and Richardson (1996) define a multiage continuous progress classroom as “the practice of blending two or more grades, four or more chronological ages, staying with the same teacher for more than one year” (p. 271). Nye (1993) indicated that students in a multiage classroom are expected to vary in ability, maturity, and experience. They will have different interests and skill levels that are not necessarily due to the difference in their ages, and they will have the opportunity of remaining with the same teacher for several years as they learn at their own developmental pace.

Nongraded is another term that is associated with multiage classrooms. A simple definition of nongraded elementary programs is “one in which children are flexibly grouped according to performance level, not age, and proceed through the elementary school at their own rates (Gutierrez & Slavin, 1992, p. 2). Grant and Richardson (1996) define nongradedness as “a way of organizing schools so that children learn a seamless curriculum, on a continuous basis, at their own pace and are not artificially placed in a
specific grade” (p. 271). These authors suggest “less-graded” (p. 272) is a better term because all multiage classrooms, as well as regular classrooms, have some elements of gradedness still in place.

One term not used in connection with the above definitions is “multigrade classroom.” Multiage, as well as all of its synonyms, does not acknowledge the grade levels of students within a classroom grouping. In a multigrade situation, one teacher teaches different grades, but that teacher uses the different graded curriculum for those levels. Usually, this form of grouping is done to facilitate issues of over-crowding. It may also be done in schools in which there are declining enrollments. States that have mandated laws regarding class size often use multigrade or combination classes (Lodish, 1992; Daniel & Terry, 1995; Veenman, 1995; Gorrell, 1998).

Most multiage, looping, and nongraded programs for young learners stress developmentally appropriate practices. This means, “providing curriculum and instruction that address the physical, social, intellectual, emotional, and aesthetic needs of young learners and permits them to progress through an integrated curriculum at their own rate and pace” (Daniel & Terry, 1995, p.8). Teachers who utilize developmentally appropriate practices recognize that children of the same age are at a wide range of differing ability levels and need to be taught at their appropriate level (Grant & Richardson, 1996). The belief that a continuous progress program provides a more stable environment and reduces the need for retentions is a critical tenet that supports multiage classroom organization (Chapman, 1999; Grant & Richardson, 1996; Rathbone et. al., 1993).
Academic achievement, for the purposes of this study, is defined as a measure of the learner’s progress as it relates to the effectiveness of the instructional plan (Tanner, 2001). The assessment of this achievement was completed after the instructional period of kindergarten and first grade where a looping organizational pattern was practiced. The assessment employed for academic achievement is routinely used with all second grade students in this district for the purpose of determining the learners’ levels of achievement.

Clemes and Bean (1980) differentiate between self-esteem and self-concept by identifying self-esteem as “a feeling that always expresses itself in the way people act (p. 6).” They state that self-esteem can be seen in children by observing what they do and how they do it. These authors believe that self-concept is a theory or a set of ideas that a child has about himself/herself, but that may not be seen by merely observing the child. Other writers discuss how children with high self-esteem approach schooling and schoolwork. Lawrence (1996) says “the child with high self-esteem is likely to be confident in social situations and in tackling school work” (p. 7). He believes that observers of these children will note their natural curiosity for learning and that they welcome new challenges. Conversely, the child with low self-esteem will lack confidence in his/her own abilities and will not readily take risks to learn new concepts or chart new courses. A more clinical definition of self-esteem states that it is “the individual’s evaluation of the discrepancy between self-image and ideal self. It is an affective process and is a measure of the extent to which the individual cares about this discrepancy” (Lawrence, 1996, p. 5). This study dealt with the assessment of the subject’s academic self-esteem as measured by a scale given to the students at
approximately the same time as the assessment measuring academic achievement. The construct definition of self-esteem, as measured by the instrument used in this study is “Self-esteem refers to the perception the individual possesses of his or her own worth” (Battle, 1992, p. 21). This scale is not a routine measurement given by the school district and was used only for the purposes of this study.

Most of these researchers have discussed the importance of young learners’ school environment and the importance of how they feel about their ability to do well in school. The review of the literature in Chapter 2 suggests that organizational patterns do have an effect on these variables.
CHAPTER 2

REVIEW OF LITERATURE

History

When the United States Department of the Interior sanctioned the concept of looping in schools in 1913, it was labeled “teacher retention.” The concept was encouraged as a way that the teacher-student progression in schools could be strengthened (Forsten et. al., 1997). The practice had its origins in Europe with an Austrian educator Rudolf Steiner, who founded the Waldorf School in the early twentieth century. The original Waldorf School, founded in order to educate the children of domestics who worked for the Waldorf Astoria cigarette factory in Stuttgart, Germany, and clones in Europe and America are still following his precepts today. Steiner believed that one teacher should stay with the same class throughout the elementary grades. This teacher would, in effect, serve as a third parent to these developing students. In Germany, teachers stay with the same class in primary school grades one through four and then work in teams of five or six teachers that follow students from grades five through ten in the middle schools (Hanson 1995; Grant et al., 1996).

The multiage concept goes back as far as the one room school. Many of today’s senior citizens, if they grew up in rural settings, can relate stories of what these schools were like (Daniel & Terry, 1995; Black, 1993; Bacharach et al., 1995). This was the...
way schools were organized from the beginning of education in our country in the 1600s, until the mid nineteenth century when cities began to grow in America, and large groups of people moved to the cities. Though many people could not afford private tutors for their children, they nevertheless wanted them to be educated. About this time, Horace Mann made a visit to Prussia, where he visited several schools that he considered to be excellent models of learning. All of them followed a plan of graded classrooms. He referred to that as the “proper classification of scholars” (Bacharach et al., p. 19).

In 1848, the Quincy Grammar School opened in Boston, with students grouped into grade levels by age and a unique idea of each teacher in a separate room. This was the beginning of graded schools in America and a pattern, sometimes referred to as age-graded structure, that has become a way of life in our schools (Bacharach et al., 1995; Anderson, 1992; Grant & Richardson, 1996). Goodlad and Anderson, in their book *The Non-graded Elementary School* (1987), write that schools that organized for instruction, putting students into a class with other students born at the same time that they were “became not a landmark, but a shrine” (p. 204).

Another reason for graded schools becoming entrenched in American society relates to the printing of textbooks. The first textbooks that were printed had one book for each grade level. The first such books were the very popular McGuffey Readers, which contained five separate volumes through which students were to progress. Although these books did not call for or mention grade levels, they fit right into the graded school design (Daniel & Terry, 1995; Bacharach et al., 1995). While one-room
schools could still be found in rural America, they were considered second rate and necessary only because they existed in sparsely populated areas (Bacharach et al.).

Compulsory attendance laws, the invention of automobiles, and the building of paved highways changed the face of education in rural America. It became possible to transport students to a central location, and grouping them into grades of classes allowed teachers to become more specialized. University and college programs began to focus on training teachers to teach at a certain level by organizing the curriculum into content areas for grade levels (Daniel & Terry, 1995).

In the 1920s, John Dewey began to voice opposition to gradedness. Dewey likened the organization of graded schools to a factory model. Kasten (1998) refers to graded school organization as an “industrial model where the leaders are called superintendents as they were in factories, kids move through our schools in an assembly line of grade levels, and we do quality control checks for standards and uniformity that we call promotion (and non-promotion)” (p. 2). Katz et al. (1990) state that “to a large extent the organization of our schools seems to be based on a factory model which uses an assembly line to subject homogeneous materials to identical treatments in order to yield uniform products” (p. 10). The interest in non-graded school organization went through a resurgence in the early twentieth century but faded in the decades of the nineteen sixties and early nineteen seventies. At that time, the outcry from the public was for a return to basics in education, which many perceived to be the graded concepts that they had experienced as students (Paven, 1992).
Current interest in multiage practices, like looping, may be based on interests in developmentally appropriate teaching practices, especially in the primary grades. Current research calls for flexibility in student grouping to allow young students time to process information and develop the skills to become problem solvers using that information (Daniel & Terry, 1995). Early childhood development practices allowing students to develop at their own paces are widely recognized as desirable (Bacharach et al., 1995; Kasten, 1998; Chase & Doan, 1994; Stegelin, 1997; Goodman, 1993; Jensen & Green, 1993).

Philosophy and Theory

Multiage and/or looping classrooms are almost always founded on the premise that a child-centered environment and curriculum with developmentally appropriate activities, strategies, and materials make up the classroom-learning environment (Kuball, 1999). Theories of Vygotsky, Piaget, Brunner, and others form the basis of developmentally appropriate practices for young learners (Gorrell, 1998; Chase & Doan, 1994; Jensen & Green, 1993).

Looping is considered a part of multiage education in most of the literature. Important to theories and philosophies of multiage education is the concept that a wider age range in a classroom provides more opportunity for children to hear and pick up on the learning of older children, as well as providing opportunities for the older student to model for and mentor to the younger students. Of course, this would not be true within a looping classroom unless the looping partner teachers work together on projects, as often
happens (Grant et al., 1996). Learning from “eavesdropping” on the learning of others is crucial to Vygotskey’s (1978) theory of the “zone of proximal development” (p. 86). The zone of proximal development (ZPD) is that area within which the learner cannot act alone, but can act and learn from a person of greater expertise. Sometimes called “scaffolding” (Brunner, 1977), this concept means that the more expert learner provides the intellectual structure for the novice learner. Therefore, children in a multiage classroom have more opportunities for successful learning experiences, and they collaborate with more skilled partners (McClellan, 1994). Many times looping partner teachers structure their classrooms so that opportunities are provided for the two ages of students to work together in a setting that resembles multiage. This provides learners and teachers with opportunities for scaffolding as defined above (Grant et al., 1996).

The findings from multiage classroom studies tell an interesting story. A case study done in the 1980s reported that teachers felt that the program where they taught the same students for three years, was primarily successful because of the relationships they were able to develop with the students and the parents (Jacoby, 1994; Grant et al., 1996). These writers stated that the core of looping is relationship--teacher to student, teacher to parents, teacher to the curriculum and teacher to other teacher. Looking critically at the organizational pattern of looping and the larger pattern of multiage, from which looping draws much of its structure, can show the advantages and disadvantages of these programs.
Research of Looping Programs

While some form of looping, usually on an informal basis, has been practiced for many years, only recently have researchers begun to take a closer look at looping programs separately from multiage programs. Rudolf Steiner, mentioned earlier, began the practice of looping in European schools at an earlier date than the American schools which have practiced looping as an organizational pattern (McClellan, 1994). Because American schools have not sanctioned looping to a great extent, there is not much in the literature about this practice. A better understanding of looping can be gained from reading about various multiage practices and how they have been used in schools in America for the past several decades.

Findings from some available studies are favorable. Much of the current literature on looping and multiyear programs cites surveys, case studies, and informal observations done by teachers and administrators (Burke, 1997). Results from one study (Burke, 1996) in which teachers stayed with the same students for three years, showed that 70% of the teachers reported the continuity of the program allowed them to use more positive approaches to teaching; 92% said they had more in-depth knowledge of the students; 69% said they believed their students were more willing to participate in class; and 84% reported more positive relationships with parents. Reports like these have caused more and more schools to investigate and pilot programs that keep students and teachers together for more than the traditional one-year assignments (Bellis, 1999; Black, 1993; Chase & Doan, 1994).
Through surveys on parent and student attitudes toward looping, Jankowsky (1996) found that these two groups had favorable attitudes and high rankings on personality test items related to their current program at their elementary school. Other writers who report on their own personal experiences with looping cite advantages of having more time to cover needed concepts due to transitions being smoother from one year to the next, behavioral patterns and expectations not having to be reestablished each year, confidence of students increasing in a safe and comfortable environment, and there being extended-year learning opportunities over the summer break (Jacoby, 1994; Bellis, 1999; Harding, 1997; Chapman, 1999). Milburn (1993) elaborated on the saving of time and how valuable this is to the young learner by stressing that, within the multiage classroom, there may be more opportunity for the teacher to remediate for students as well as accelerate, since students work at their own developmentally appropriate pace. He felt that in these classrooms curriculum can be matched to each student’s individual abilities, and more time can be allowed for the students to assimilate and accommodate learning. Milburn also stressed that the teacher who stays with the same group of students for two or more years can often “prevent fragmentation of unnecessary repetition of instruction” (p. 58).

Many of these same writers discuss the advantages of looping in connection to teacher’s relationships with parents. Harding (1997) states that she felt like a member of the family in many ways as parents shared more than just superficial information with her. Chapman (1999) states that she felt parents are more likely to face the needs of their
child sooner instead of “just writing off the current school year to a ‘bad teacher’ or negative peer influences” (p. 81).

Several authors have written about the concept of looping and students in special programs and/or students with special needs. Kuball (1999) writes that the continuity provided by a looping format in bilingual K-2 classes is extremely favorable. She feels that Spanish-speaking children need the sense of belonging and group dynamics provided by staying with the same teacher and same students for several years. Many proponents of looping feel that the consistency and stability afforded to all students in looping situations proves especially beneficial to special needs students. The other students who benefit include the child who needs to feel accepted because of his/her special needs, the child from an unstable home situation, and the child whose special needs require him/her to need more time to create products and grasp concepts. All benefit from the close-knit, family-like atmosphere of the looping classroom (Forsten et. al., 1997).

Much of the literature about looping addresses the issue of retention. Non-graded primary programs like multiage and looping may be one way to provide students the skills and knowledge they need for early school success. These programs benefit at-risk learners (Slavin, Karweit, & Wasik, 1992; Slavin & Madden, 1989). While most of the research on retention does not favor the practice, looping proponents do not guarantee that students in these programs will never need to be retained. Local district and state policies on retention must be considered. Proponents of looping and multiage grouping practices recommend looking at all other options first. School administrators must be sure that there are not other reasons such as a learning disability, emotional disturbance or
behavior disorder, family history, conditions in the home, poor school attendance patterns, and linguistic differences that are causing the need for retention. Many times the continuity, consistency, and stability of the looping program can assist in making up for some of these factors, and a child will make gains that make retention unnecessary (Grant et al., 1996).

Referral of students to special education programs is another issue that proponents of looping often cite as a favorable aspect of the practice. The teacher who stays with a child for more than one year has more time with that student to analyze his/her learning needs and styles. More effective reteaching and productive individual tutoring could result from the continuity of the teacher/student relationship in a looping class. Use of alternative strategies to help a student grasp a concept may result in higher academic achievement and more opportunities to perform on grade level and not fall behind. (Reynolds, Barnhart, & Martin, 1999).

A few researchers have studied the achievement gains of students in looping classes. In 1996, students in Attleboro, Massachusetts, scored significant gains on the Massachusetts state tests. In part, the assistant superintendent credited two-year assignments of students to the same teacher for this gain. At that time, the Attleboro schools claimed to be the only school district in the USA practicing one hundred percent, two-year assignments of teachers and students from top to bottom (Forsten et al., 1997).

Yang (1997) looked at mean scores of students on the Iowa Test of Basic Skills (ITBS) (©2001 by The University of Iowa and Riverside Publishing, Itasca, Illinois) and several other language measures in one California district. He studied scores of students
in second and fourth grades in the second year of a looping assignment. In general, looping students outperformed non-looping students, although on a test for Spanish language students in math computation at the fifth grade level, non-loopers scored higher. Yang did not feel that this was significant to the overall findings of the study. In both Yang’s study and the Attleboro school district report, the researchers and school administrators cautioned that solely crediting the looping program with these results would not be wise due to the fact that generalizing to another population is often risky with classroom research (Yang, 1997; Forsten et al., 1997).

Also published in 1997 (Hampton, Mumford & Bond) were reports of a program in East Cleveland, Ohio called Project FAST (Families Are Students and Teachers). The extensive program, which began in 1993 was conducted by the public schools, Cleveland State University, and The Cleveland Foundation with a goal of bringing academic stability to the lives of students in a severely economically depressed community. The program was more than just multiyear assignment of students to the same teacher. It was a year-round interaction program with students, teachers and family members of the students participating in academic activities and more. The students stayed with the teachers from kindergarten through the second grade. The statistical analysis reported was loosely structured, but the gains were highly significant for the student in overall academic growth on a comprehensive test of basic skills used in that district to measure student learning. Project FAST students outperformed their peers in their buildings, their peers throughout the district and even did better when compared to scores of former students of those same teachers and their own siblings who had gone to school in this
same building. A huge component of this program dealt with training of teachers and parents and increased parent involvement with their children and the teachers. It was for this reason that the researchers looked at former students of these same teachers and siblings of these project FAST students. They were trying to determine that the comprehensiveness of the program was making the difference in student achievement (Hampton et al.).

Skinner (1998) looked at students in a second grade looping program that had been with the same teachers since first grade and determined that while reading and math skills showed no specific gains, language arts skills like writing and spelling were significantly higher for these looping students. Skinner felt that this might possibly be due to teacher styles. She suggested, “teachers who choose to loop may have a teaching style more conducive to the affective nature of language arts” (1998, p. 128). This author also suggested that the students may feel more confident in writing and taking risks as young writers due to the aspect of familiarity with the teacher in a second year of looping. A final observation related to this finding was that students in a looping classroom often have more opportunities to write. Skinner found all of these factors to be related to positive aspects of looping.

Research of Multiage/Nongraded Programs

The traditional grouping or structure for students in public schools in the United States is a graded organization based on age of pupils. Many research studies have looked at the idea of determining the best method of organization for schools. Looping, a
non-traditional organization pattern was the subject of the current study. Looping grew out of multiage practices. As there is such a small volume of research available concerning looping practices, there was a need to look at multiage practices to be sure there is a full understanding of how non-traditional organizational patterns have been used in public schools in America. There are three major research documents that survey the body of studies done on multiage and nongraded programs since the late sixties.

The first of these reviews, a survey of the research on nongradedness done over twenty years ago by Barbara Nelson Paven (1992) has been updated. In the most recent study she added sixty-four more documents of research. She found that in terms of academic achievement, there were no substantial findings showing favorable results in graded programs when those programs are compared to nongraded programs. A great deal of the research is favorable to nongradedness. There are studies that show a nongraded approach benefits boys, black students, underachievers, and students from lower socioeconomic groups. (Anderson, 1993; Pavan, 1992).

The sixty-four studies that Pavan (1992 in press-b) looked at met the following criteria: 1) comparison of students using standardized tests or a pre-test/post-test method; 2) United States or Canadian schools; 3) no single subject plans were considered as all were nongraded in all subject areas; 4) schools in the studies had to have more than one single nongraded classroom; 5) publication dates for the studies fell between January, 1968, and December, 1990; and, 6) the three research variables reviewed were overall academic achievement, mental health, and achievement for a variety of at-risk populations.
Of these sixty-four studies, fifty-seven of them looked at the variable of academic achievement. Of those, 91% found that the nongraded groups performed better than or as well as the graded groups. In 9% of these studies, the graded students did better than the nongraded students in areas of academic achievement, on mental health measures, and attitudes toward school. Fifty-two percent (52%) of these studies found these measures similar in graded and nongraded programs. Five percent (5%) found students in graded schools to be mentally healthier and to be more positive in attitude than students in nongraded programs.

The studies in Paven’s (1992 in press-b) review looked at the following at-risk populations: black students; underachievers; low socioeconomic families; and boys (because they often lag developmentally behind girls as young learners). All of these groups scored higher on achievement tests measures in nongraded schools, except one study of boys that showed just the opposite. One study showed that black students in nongraded programs did not do as well as black students in graded programs. All studies showed underachievers did better in nongraded programs. Pavan (1992 in press-b) concluded that these sixty-four studies clearly support nongraded programs.

Gutierrez and Slavin (1992) reviewed research of the achievement effects of the nongraded school. These authors suggest that Paven’s study of research is limited because she did not look at the degree of nongradedness of the programs that she reviewed. Gutierrez’ and Slavin’s used best-evidence synthesis as their primary review method. Best-evidence synthesis combines elements of meta-analysis with narrative reviews. It “requires locating all research on a given topic, establishing well-specified
criteria of methodological adequacy and germaneness to the topic, and then reviewing this 'best-evidence’ with attention to the substantive and methodological contributions of each study” (p. 14). Studies included in this review met the following criteria: 1) an objective measure of achievement; 2) random assignment of subjects with matching of schools or classes; and 3) a nongraded program that lasted at least a semester. The categories included, one-subject nongraded programs, comprehensive multiple subject programs, nongraded individualized instruction programs, programs using a set and rigid individualized program, and studies which contained elements of nongradedness but were done with little or no specific evidence of this other than just the title of nongraded. In all, the review looked at forty-eight studies.

The most obvious finding of this best-evidence synthesis of research, some of which was done twenty to twenty-five years ago, was that the category of a nongraded program is significant to positive achievement gains. As educators look at similar programs today, what Gutierrez & Slavin (1992) suggest about these program components and/or categories are highly significant. The programs in which students learned from packets and stations in a more individualized setting did not produce achievement gains as positive as those in which students had interaction with teachers and peers. This supports the theories of Vygotsky (1978) and Brunner (1977) on the zone of proximal development and scaffolding new learning off the learning of others.

Many of the research reviews of nongraded, multiage programs were conducted prior to 1990. A more current body of research is the School Success Study in Tennessee. This study covers the years of 1993-1999 (Nye, Cain, Zaharias, Tollett &
Fulton, 1995). In this study, no significant academic gains were shown by students in grades 1-4 on state assessment measures in multiage classrooms versus single grade classrooms.

Veenman (1995) also conducted research reviews using best evidence synthesis methods. He reviewed studies that researched cognitive and noncognitive effects of multigrade and multiage classes. He divided his work into two categories, multigrade and multiage. Multigrade organization is primarily done as a matter of convenience in schools if they have too many or too few students on a particular grade level. The students in a multigrade classroom function as if they were in a single grade classroom strictly following the curriculum for their grade level even though there is another grade within the walls of their classroom. In the multiage category students of two or more grades are in the same classroom and the curriculum is a seamless blended one that meets the individual needs of the learner.

In the section of his research devoted to multiage versus single-age classes, Veenman (1995) looked at eleven studies. Only two of these were judged to have been conducted showing evidence of matching of the experimental and control groups. In a school in Georgia, the study looked at first through third graders in multiage classes, comparing them with first through third graders in single age classrooms. All classes used the same curriculum. Researchers found no significant gains for second and third graders in reading and math scores in either organizational group. However, the youngest students in multiage classrooms showed significant differences in achievement for other content areas.
The second of these experimentally-sound programs in this review looked at fifth grade students in Missouri. In a school in which students were accepted by application only and in which a local university supplied interns and teachers to the school, multiage students showed significant gains in achievement over the students in a traditional public school setting in the same community. The rest of the nine studies in this review used less rigorous research designs and controls and dealt with middle school age students.

Milburn (1993) looked at two schools for a period of five years. The experimental school used multiage organization in five classes. The control school followed traditional single grade class assignment and used traditional graded curriculum. Other characteristics, such as school size, socioeconomic, and similar demographics, were constant. Parent involvement was fairly equal in both schools, as were the number of discipline referrals. Student’s scores on a standardized reading and math test were compared to determine academic achievement differences. Results showed few achievement differences other than that multiage students consistently scored higher on vocabulary. The most significant find of Milburn’s study was in terms of self-concept and attitude toward school. These two factors proved to always rank higher and more positive for all age groups in the experimental multiage classes.

In the state of Kentucky, multiage classes in grades K-3 were mandated as a part of 1990 Kentucky Education Reform Act (KERA) (Osin & Lesgold, 1996). The earliest reports of the successes of these programs revealed that students in fourth grade who have been in multiage programs showed more rapid gains in test scores than students in eighth and twelfth grades. Many other reform measures, such as new statewide testing
programs and factors related to children’s academic growth, such as parent opposition to multiage programs, have complicated drawing significant conclusions in Kentucky (Viadero, 1996).

Summary

Gutierrez & Slavin (1992) stated that their review of forty-eight studies gave significant evidence to educators in the nineties so that mistakes of former nongraded programs were not repeated. Unlike Pavan (1992), these authors feel that nongraded programs of the fifties, sixties, and seventies failed to show conclusive positive achievement gains. They feel the significance of their research review lies in pointing the way for a new type of nongradedness in the nineties and into the next century. Research is needed that looks at how students in today’s multiage and multi-year assignment classes perform (Black, 1993; Gutierrez & Slavin, 1992). Teachers of young children in multiage classrooms today use developmentally appropriate practices that are appropriate both to the age of the child and to the unique characteristics of the individual learner. Some of these practices, such as cooperative learning, flexible grouping, pair-shares, and peer teaching, are all instructional strategies that teachers use routinely in their classrooms. Teachers are using more integrated thematic approaches to learning with their students. There is a need to determine if these current instructional strategies result in greater achievement gains when multiage and related programs such as looping are compared with more traditional single grade classrooms that follow a graded organizational approach (Black, 1993).
CHAPTER 3

METHODOLOGY

Population

The population for this study consists of students who were second graders at the time of data collection. Students in this study attended a public elementary school in a district that is a suburb of a large metropolitan area in north central Texas. They attended kindergarten and first grade at the same school in the district, and the students in the experimental group of the study were in two classes that looped for those two years. The students in the control group had one teacher for kindergarten and then another teacher for first grade. The population for this study consisted of students who were second graders at the time of data collection.

The kindergarten year for all students in the study was the school year 1999-2000, and the first grade year for all students in the study was the school year 2000-2001. At the beginning of these two years, the student population in the district was approximately 5,554, and by May of 2001 the student population had grown to 7,234. The district experienced rapid growth during this time period.

The ethnic population of the district in May of 2000 included 5.2% African Americans, 14.4% Hispanic, 77.3% White, 2.4% Asian/Pacific Islander, and .7% Native American. By May of 2001 these numbers had changed to 6.4% African American, 14.4% Hispanic, 76.2% White, 2.4% Asian/Pacific Islander, and .7% Native American.
Americans, 13.5% Hispanic, 76.3% White, 3.2% Asian/Pacific Islander, and .6% Native American. The economically disadvantaged comprised 12.9% of the student population in the district in 2000 and dropped to 9.6% in 2001 (Academic Excellence Indicator System, AEIS Report, 1999-2000 and 2000-2001). These numbers are considerably different from the state averages for ethnic groups and economically disadvantaged groups, and therefore, are also a limitation of the study. The AEIS Report that came out in January of 2002 shows that there were 14.4% African Americans, 40.6% Hispanics, 42% White, 2.7% Asian/Pacific Islander and .3% Native American students in the state of Texas during the 2000-2001 school year. Economically disadvantaged students made up 49.3% of the total student population in the state during that same school year (Academic Excellence Indicator System, AEIS Report 2000-2001). Chapter 5 contains suggestions for addressing this limitation and researching organizational patterns of schools with different populations.

The school district has one high school that moved up to the state University Interscholastic League classification of 4A at the beginning of the 2000-2001 school year. This classification is used by the state education agency to denote sizes of school districts. At that same time, the district opened a second middle school and a sixth elementary school. During the 1999-2000 school year, the district employed 451 professional teachers with 379 of those being classroom teachers. All teachers were certified with 77% holding bachelors’ degrees and 22% holding masters’ degrees. The average years of experience of the teachers was approximately 8.95 years (Academic
Excellence Indicator System, AEIS Report 1999-2000). 2000-2001 AEIS Report shows that the district employed 599.5 professional staff with 507 of those being classroom teachers. Again, all teachers were certified and the percentages of bachelors’ and masters’ degrees held by these teachers were approximately the same as the previous year. The average years of experience of the teachers in the district for the 2000-2001 school year was 8.4 years. (Academic Excellence Indicator System, AEIS Report 2000-2001).

The total budget for the district in 1999-2000 was $38.4 million with a per-pupil expenditure of $4,750. The major source of revenue for the district is property taxes on both personal property and commercial property (Academic Excellence Indicator System, AEIS Report, 1999-2000). In August of 2000 a major regional shopping mall and retail center opened in the southern section of the district. During the 2000-2001 school year the total budget rose to $51 million with a per-pupil expenditure of $7,089 (Academic Excellence Indicator System, AEIS Report, 2000-2001).

The students selected for this study attended the same elementary school in this district during the two academic years of the study. This school opened in August of the 1997-1998 school year. At the end of the 1999-2000 school year, the student population of the school was 713. It was 655 at the end of the 2000-2001 school year (Academic Excellence Indicator System, AEIS Report, 1999-2000 and 2000-2001). There were six sections of kindergarten and six sections of first grade during both of these years. Of the six sections in each of these grade levels, two were looping sections. Redrawn
attendance zones at the end of the 1999-2000 school year meant that not all of the students who began kindergarten in the looping classes remained at this school for the 2000-2001 school year. The students who were moved to a different school for their first grade year were not included in the study. As the district’s only school with a looping program, it was selected for this study to give district personnel more knowledge of the advantages and effects of looping practices.

All teachers at the school meet as horizontal grade-level teams to plan lessons, and all use similar teaching strategies within their grade levels. These strategies include guided reading instruction, reader/writer workshop strategies, hands-on math instruction using problem solving strategies, and best-practices strategies of small group instruction wherever possible, with the goal of providing instruction that is developmentally appropriate for the age of the learners involved. Students were randomly placed in kindergarten classes although parents were consulted about whether they wanted their child to be in a class where they would loop to first grade with the same teacher. If a parent had objections to this practice, then another child was randomly selected from the group of enrolling kindergarten students. Also, at the end of the kindergarten year, parents had the option of taking their child out of the looping program if they wished. Only one parent chose to do this. This decision was not based on objections to the looping program, but rather that the student had some extenuating circumstances in his life at the time.

The school offers education in regular heterogeneously grouped classes, special education classes that are resource and/or content mastery as well as speech-language
therapy, gifted and talented cluster classrooms, and students who have been identified as
dyslexic. The numbers of students in the school that qualified for each of these programs
during the two school years for the duration of the study are shown in Table 1.

Table 1: Program Enrollment of School X during 1999-2000 and 2000-2001 school

<table>
<thead>
<tr>
<th>Year</th>
<th>Special Education: Resource/Content Mastery</th>
<th>Speech-Language Therapy only</th>
<th>Gifted and Talented Clusters</th>
<th>Dyslexia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2000</td>
<td>73</td>
<td>17</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>2000-2001</td>
<td>68</td>
<td>15</td>
<td>28</td>
<td>14</td>
</tr>
</tbody>
</table>

Kindergarten students are not identified for gifted and talented clusters (GT) until
the end of the year. If they qualify, they are placed in a first grade cluster class.
However, to protect the integrity of the looping program, a student who was identified for
this program was not moved from the looping teacher’s class. Both first grade teachers in
the looping program have thirty-plus hours of training in gifted strategies and meet the
district qualifications to be a GT cluster teacher.

Since many of the indicators of dyslexia are developmental in nature, students are
not usually screened for dyslexic tendencies until sometime in second grade. It is
recommended that screening for dyslexia not take place until the second semester of second grade.

Many kindergarten and first grade students do meet the criteria for speech-language therapy. If a student has articulation problems of any of the sounds of the English language and is considered to be older than the chronological age at which these problems should be developmentally corrected, then he/she may be served by the speech therapist for articulation difficulties. If testers determine that a student has a deficiency with expressive or receptive language, this problem is also addressed by the speech therapist. Several students who were chosen for either the experimental or control group attended speech-language therapy classes during the study. The average time of instruction in this program for students at this age is sixty minutes a week, usually occurring in two thirty-minute sessions.

No student in either the control group or the experimental group on the designated campus was determined to meet eligibility criteria that qualify students for Special Education Services, except for the category of speech therapy as described above. Testing of this nature is not done until a student can be said to be performing at least one grade level behind his current grade level.

The ethnic make-up of the experimental/control groups was similar to that of the rest of the school. Table 2 presents the numbers in all sub groups for both the control and the experimental groups in this study.
Table 2: Ethnic Distribution Percentages of School District, Experimental Group and Control Group

<table>
<thead>
<tr>
<th></th>
<th>African Americans</th>
<th>Hispanic</th>
<th>White</th>
<th>Asian/Pacific Islander</th>
<th>Native Americans</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 99-00</td>
<td>287</td>
<td>802</td>
<td>4,293</td>
<td>133</td>
<td>39</td>
</tr>
<tr>
<td>District 00-01</td>
<td>462</td>
<td>976</td>
<td>5,519</td>
<td>230</td>
<td>47</td>
</tr>
<tr>
<td>Experimental Group</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control Group</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Instruments Employed

Data for this study included results from two instruments: the Culture-Free Self-Esteem Inventories Second Edition (CFSEI-2) (©1992 by PRO-ED, Austin, Texas) for children, form A by James Battle (Battle, 1992) and the Iowa Test of Basic Skills form A, level 7, (©2001 by The University of Iowa and Riverside Publishing, Itasca, Illinois) developed at the University of Iowa (Hoover, Hieronymus, Frisbie & Dunbar, 1996). The CFSEI-2 form A consists of sixty items and includes five subtests: 1) general self-esteem (20 items); 2) social/peer-related self-esteem (10 items); 3) academic/school-related self-esteem (10 items); 4) parental/home-related self-esteem (10 items); and 5) lie subtest (items that indicate defensiveness) (10 items). Of primary concern to this study
were the ten items that relate to academic/school-related self-esteem. The same administrator administered the test to students in both the control and experimental groups.

The CFSEI-2 for children was standardized on boys and girls in the United States and Canada in Grades 2 through 9. It can be administered to groups of students in 15 to 20 minutes. The items in the instrument are divided into two groups; those that indicate high self-esteem and those that indicate low self-esteem. Responses are of the forced-choice variety in which the individual checks each item either yes or no (Battle, 1992).

The author’s motivation for developing this test was to give school psychologists’ an instrument to determine why students of various intellectual abilities were not learning at their best and not achieving at their highest potential. In the 1970s there were limited instruments that would “assess the affective domain—that is, the emotional needs—of students.” (Battle, 1992). Battle developed a series of inventories while seeking a reliable instrument to show how students regard themselves. He conducted more than 60 studies over a 14-year period resulting in publication of the first edition of CFSEI-1 in 1981. Then in 1992 the second edition was published in an effort to be sure that the items were indeed remaining culture-free and not biased to any group of students. Reliability of form A was established with test-retest procedures. The correlations for the total inventory ranged from .81 to .89 and for the academic self-esteem subtest the correlation was .50.
The total possible score for form A is 50, with a total possible lie scale of 10. In addition to the total score, a separate score for each subtest may be calculated, and for the purpose of this study a separate score for academic self-esteem was used.

The construct definition of self-esteem, as measured by this instrument is “Self-esteem refers to the perception the individual possesses of his or her own worth.” (Battle, 1992, p. 21) An individual’s perception of self develops gradually and becomes more differentiated as he/she matures. However, once established, this self-esteem value seems to be fairly stable and resistant to change (Battle, 1990).

This school district in which this study occurred uses the form A, level 7 of the Iowa Test of Basic Skills (ITBS) to identify students’ areas of relative strength and weakness in core subject areas. The form of the test that is given includes the eight core battery tests, which are vocabulary, word analysis, reading, listening, language (spelling is included here), math concepts, math problems, and math computation. Questions are presented orally except for the vocabulary and reading tests. All questions are in a multiple-choice format and have three or four options each. Students mark their answers by filling in a small circle in the machine-scorable booklets. Scores are reported in raw score, percent correct, and grade equivalent forms to the district. The new edition of the Iowa Tests, form A was published in December of 2000. The authors of the test describe it as, “designed to measure the broadest range of skills possible in a norm-referenced achievement test….providing in-depth assessment of the important objectives in a comprehensive instructional program” (Hoover et al., 2001, p. 2).
Table 3 lists reliability data for the ITBS, form A, level 7 standard scores based on the Kuder-Richardson Formula 20 (K-R 20) procedures.

Table 3: Reliability Data for the Iowa Test of Basic Skills, Form A, Level 7

<table>
<thead>
<tr>
<th>Level 7</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mes.</th>
<th>K-R 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Total with Computation</td>
<td>151.08</td>
<td>12.19</td>
<td>2.32</td>
<td>.959</td>
</tr>
</tbody>
</table>

(Data given here is only for the core battery scores, which were used for this study)

Research Design

Random selection of students from the total school population was not possible for this study because only one school within the district practices looping and the rapid growth in the district has made movement of students between schools a consistent pattern for each school year. Students are moved from one campus to another as new campuses are opened based on the location of the residence of the student. The district has opened at least one campus a year for the past three school years. Several students who began the kindergarten year in the looping class were moved to another campus before the end of the study. Chapter 5 addresses issues related to this limitation in a discussion for future studies of organizational patterns within schools.

Students in the experimental and the control group were matched on two variables. The first of these variables was their scores on the Boehm-R Test of Basic Concepts, (©1986 by The Psychological Corporation, New York, New York). This test is given each year to all beginning kindergarten students. The other variable used for matching was gender. The Boehm-R scores were used in an attempt to ensure that all
students in the study fell within a certain range of prior-school knowledge. “The Boehm Test of Basic Concepts – Revised (Boehm-R) is designed to assess children's mastery of the basic concepts that are both fundamental to understanding verbal instruction and essential for early school achievement” (Boehm, 1986, p. 1).

The classroom teacher reads the test aloud to students in classes that were divided into two groups for management of administration purposes. The purpose of giving the test to kindergartners during the first two to three weeks of school is to determine the unique body of knowledge and set of understandings that each child has of certain relational concepts. Examples of the basic relational concepts measured by this test are *more-less, first-last*, and *same-different*. The concepts on the test are a subset of concepts that children use to make decisions about persons, objects and situations as pictured in the test booklet. The concepts targeted by the Boehm-R also involve judgments that can be made across the contexts of space, quantity, and time. These concepts become increasingly more complex in their levels of abstraction as the test proceeds, and therefore, they are essential to children’s ability to think and reason. Matching students for this study by their test results meant that the students in the matched pairs were at similar levels of knowledge on basic concepts at the time that they entered the kindergarten program in this elementary school. For this study the scores in raw score form were used to match subjects of the same gender in the control and experimental groups within a range of plus or minus two points.

A raw score was determined for each child and recorded on a class record by the teacher. The school counselor kept these data in her office and shared the results with
parents in a conference held at the end of the first grading period. Not entered on the students’ cumulative record folders, test results give the classroom teacher an indication of how much knowledge the student has upon entering school. It is one of several tools that the teacher uses to determine the level at which to begin each student’s instruction.

There were forty-six students in the study; twenty-three in each group. Twenty of the subjects were male and twenty-six were female. Students in the control group had one teacher in kindergarten and a different teacher in first grade. All were enrolled in this elementary school for their entire educational program for these two grades. Whether they were teaching in the looping program or in the regular organizational program, the entire team of kindergarten teachers met weekly to plan lessons, used the same district approved curriculum and materials, and received the same district training. This was also true of the entire team of first grade teachers.

Treatment of Data

ITBS scores for second grade students were reported to the district in several forms including a composite score for each of the core areas of math, reading and language. Academic achievement for the subjects in this study was determined by the composite scores of the core battery tests described above. Standard scores are used rather than raw scores, as raw scores tend to give greater weight to the tests in the battery with the most questions. Standard scores assure that all tests have the same weight (Hoover et al., 2001).
To arrive at a score for the self-esteem variable, only scores on the subtest inventory for academic self-esteem of the CFSEI-2 were used, because the ten questions in this sub-test deal specifically with student’s perceptions of their ability to succeed academically (Battle, 1992).

The statistical technique for comparing scores and determining significance on the variables was multivariate analysis of variance (MANOVA). The use of MANOVA allowed the researcher to evaluate mean differences on two or more dependent criterion variable simultaneously. MANOVA was chosen for this study because the study consists of an experimental design with two groups of students who received instruction during the first two years of their academic life in two different organizational patterns within the same school. The researcher was interested in whether or not the experimental organizational pattern of looping showed that students received gains on two variables, academic achievement and academic self-esteem. MANOVA allowed the researcher to look at the two-dimensional data simultaneously and therefore, by examining both variables together, provide a more powerful test than doing separate analysis of variance or ANOVA (Bray & Maxwell, 1985). This statistical procedure also allowed the researcher to control for the differences in teachers and teacher styles, since subjects in the control group came from a pool of students who had four different teachers in kindergarten and first grade.
CHAPTER 4

PRESENTATION OF DATA

Introduction

In this chapter, a summary of the research method and analysis of the resulting data are described. The purpose of this study was to determine if there were significant differences in the variables of self-esteem and academic achievement between an experimental group of students who participated in looping as an organizational pattern in kindergarten and first grade, and a control group of students who had different teachers for kindergarten and first grade. The problem of the study deals with whether or not students who loop have advantages over students who do not loop, and if these advantages can be measured in a quantitative study using data collection instruments and inferential statistics. Data were collected from these two groups of students on each variable during the fall semester of their second grade year.

Student academic success was measured by the Iowa Test of Basic Skills, form A, level 7 core battery (ITBS), (©2001 by The University of Iowa and Riverside Publishing, Itasca, Illinois), which includes eight separate tests on vocabulary, word analysis, reading, listening, language, math concepts and math computation. Student academic self-esteem was measured using the Culture-Free Self-Esteem Inventories Second Edition
All subjects in both the experimental and the control groups attended kindergarten and first grade on the same campus. All students in the experimental group were in one of two different classrooms and stayed with that teacher for both of the academic years of the study. The students in these classes were randomly assigned to the class when the counselor made up the class lists prior to the beginning of the kindergarten school year 1999-2000. Parents were consulted about whether they wanted their child to be in a class where they would loop to first grade with the same teacher. If a parent had objections to this placement, then another child was randomly selected from the group of enrolling kindergarten students. Also, at the end of the kindergarten year, parents had the option of taking their child out of the looping program if they wished. One parent felt that her son needed to repeat the kindergarten year and that doing so within the loop might make him feel different or make him lose self-esteem. The teacher and principal concurred with her, and the student was withdrawn from the looping class and placed into another regular kindergarten class for the following year. Many parents, when seeking consultation about looping, were given current literature to read about the practice of looping in order to assist them in understanding the process and the perceived benefits of the program.

Control group students had different teachers for each of their kindergarten and first grade years. Since random selection of subjects was not possible in this study, a matching process was used to select the students for the control group. In order to assure
that students in each group were at a similar developmental stage when they entered kindergarten, they were matched on the criteria of gender and each student’s score on the Boehm-R Test of Basic Concepts (©1986 by The Psychological Corporation, New York, New York) that was given at the beginning of the kindergarten school year. This test is designed to assess whether students have understanding and mastery of basic concepts that are necessary for the understanding of verbal instructions and that are considered to be essential for early school achievement. It is given to kindergarten students during the first two weeks of school in this district as a diagnostic assessment of the student’s knowledge of certain relational concepts. Examples of these concepts would be more-less, first–last, and same-different (Boehm, 1986). The scores from the Boehm-R test were used in an attempt to ensure that all students in the study fell within a certain range of prior-school knowledge.

Achievement and maturation levels for young learners often are different for boys and girls during early learning years. Some researchers have found that girls out-pace boys in reading and boys understand and grasp mathematical concepts quicker than girls (Relative Reading Achievement, 2002). In the current study, matching the students selected for the study by gender was used as a control factor for these differences. There were a total of forty-six students whose parents gave permission for them to be included in the study, with twenty-three in each of the respective groups—experimental and control. A more detailed description of the population, instrumentation, and research design can be found in Chapter 3 of this research report.
Presentation of the Data

Research hypothesis one stated that second grade students who participated in a looping program of classroom organization in kindergarten and first grade would score higher on the Iowa Test of Basic Skills (ITBS) than second grade students in a control group who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade. The null hypothesis for this was that there is no difference in ITBS scores for second grade students who participated in a looping program of classroom organization in kindergarten and first grade, and second grade students who did not loop, but rather had two different teachers for kindergarten and first grade.

Research hypothesis two stated that second grade students who participated in a looping program of classroom organization in kindergarten and first grade would have higher levels of academic self-esteem as measured by the Culture-Free Self-Esteem Inventory than second grade students in a control group who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade. The null hypothesis for research hypothesis two was that there is no difference in academic self-esteem scores for second grade students who participated in a looping program of classroom organization in kindergarten and first grade, and second grade students who did not loop, but rather had two different teachers for kindergarten and first grade. Table 4 presents the descriptive statistics for the data collected by both instruments of measurement for the subjects in the study.
The statistical technique used to test the hypotheses was multivariate analysis of variance (MANOVA). This analysis was conducted using The Statistical Package for the Social Sciences (SPSS). An alpha level of .05 was used for all statistical tests. Use of MANOVA allows the researcher to evaluate mean differences on two or more dependent criterion variables simultaneously. Simultaneous comparison is important because it shows if there is interaction between these two criterion variables of academic self-esteem and academic achievement and usually offers more complete analysis than considering each dependent variable separately. MANOVA is a two-step process with the first step being to test the null hypotheses of no differences in the means for the different groups. If this test is significant, then a follow-up test to explain group differences is conducted.

When using inferential statistic techniques, it is important to discuss the robustness of the technique and to examine whether the required mathematical assumptions are met by the design of the study. Bray and Maxwell (1985) have clarified
that while this is an important consideration, “in practice it is unlikely that all of the assumptions will be met precisely” (p.33). The first two assumptions of MANOVA are that subjects will be randomly selected from the population and that observations are statistically independent of one another. The first of these assumptions, random assignment of subjects, was not met as explained by the discussion above regarding the classroom assignment process used on this campus and the use of the matching process for the selection of students in the control group. Bray & Maxwell (1985) state that MANOVA is not robust to violations of these first two assumptions and that violating them “does not usually invalidate the results” (p.33).

The next two assumptions of MANOVA deal with the covariance of the matrices. These two assumptions state that the dependent variables have a multivariate normal distribution within each group and that the correlation between any two dependent variables must be the same in all \(k \) groups (Bray & Maxwell, 1985). These authors go on to state that “Departures from multivariate normality generally have only very slight effects on the Type I error rates” (Bray & Maxwell, p.33), and in this study the use of equal \(n \)’s and the matching of subjects (as described in Chapter 3) were features of the research that attempt to cancel out the fact that these assumptions were not met. According to Bray & Maxwell (1985), when sample sizes are equal, all of the test statistics tend to be robust.

For this study, the SPSS MANOVA results of \(\Lambda (2, 43) = .967, F = .724, p < .49 \) show that there was no significant difference in academic achievement or in academic self-esteem for students who looped and students who did not loop. The null hypothesis
was not rejected. The effect size or partial Eta Squared was .033, which showed that the independent variable of looping accounts for 3% of the variation. Table 5 gives all of the MANOVA data in numerical form.

Table 5: MANOVA Results:

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grouping: Wilks’ Lambda (Λ)</td>
<td>.967</td>
<td>.724</td>
<td>2.0</td>
<td>43.0</td>
<td>.490</td>
<td>.033</td>
</tr>
</tbody>
</table>

Since the significance level did not meet the criterion level of .05, the null hypothesis could not be rejected. When no significance is found in the first step of the MANOVA, it is not appropriate to test for group differences. Thus, there were no post-hoc tests conducted for between-subjects effects.

The problem of this study was to determine if there were advantages that could be measured by achievement tests and self-esteem inventories for students who participated in a looping organizational pattern in kindergarten and first grade. The purpose of the study was to determine if academic achievement and academic self-esteem could be linked to the non-traditional organizational pattern of looping in kindergarten and first grade classes.

In summary, the goal of looping in this school district was to provide a stable classroom environment that would enhance and advance the academic and emotional development of students. The teachers and administrators in the school had conducted
informal studies, but they had not used quantitative statistical techniques to study the effects of the program. The results of the data collection and the statistical analysis did not show significant gains on either the ITBS achievement test or on the CFSEI-2 self-esteem inventory. Chapter 5 provides a detailed discussion of the findings and how they relate to the literature review, as well as conclusions and suggestions for further research.
CHAPTER 5

FINDINGS, CONCLUSIONS, INFERENCES, RECOMMENDATIONS

Introduction

This study investigated the effects of the organizational pattern of looping on the academic achievement and academic self-esteem of students in a public elementary school environment. The forty-six total students in the study were in two groups. The experimental group of twenty-three students had the same teacher in kindergarten and first grade in a looping pattern that was instigated by the school in order to provide a more stable and consistent learning environment for students as they began their school life. The control group of twenty-three students was on the same public school campus, but they were in classrooms that followed a more traditional organizational pattern of having separate teachers for each grade level. The study compared data collected on these students in the fall semester of their second grade year on the Iowa Test of Basic Skills (ITBS) (©2001 by The University of Iowa and Riverside Publishing, Itasca, Illinois) and the Culture-Free Self-Esteem Inventory-2 (CFSEI-2) (©1992 by PRO-ED, Austin, Texas).

Summary of Findings

Raw score data on the CFSEI-2 was used for all of the students in the study, and standard score data on the ITBS was used for all subjects. For data analysis, a
multivariate analysis of variance (MANOVA) was run using the Statistical Package for the Social Sciences (SPSS) with an alpha level of .05.

Statistical analysis did not support the hypothesis stating second grade students who had participated in a looping program of classroom organization in kindergarten and first grade would score higher on the core battery of the Iowa Test of Basic Skills for academic achievement than second grade students who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade. Although it was not statistically significant, the control group of non-looping students actually did slightly better on this measurement than the experimental group of students who looped.

Statistical analysis did not support the hypothesis stating that second grade students who participated in a looping program of classroom organization in kindergarten and first grade would score higher levels of academic self-esteem on the Culture-Free Self-Esteem Inventory, Second Edition than second grade students who did not loop with their teacher, but rather had two different teachers for kindergarten and first grade. All students in the study scored very high levels of academic self-esteem with the mean for the experimental group of students who did loop being only slightly higher than the mean for the control group of non-looping students.

Conclusions and Implications

Research plays an important role in improving educational practice. However, because educational research is a very human process that is conducted by humans with human subjects, it is a process that often is very difficult. When it is carried out in the
classroom, there are many variables that cannot be controlled, and these variables can play a role in the final outcome of a study that will be very different from the stated hypotheses. The fact that the study conducted for this research project did not show significant gains for the experimental group on the criterion variables of academic achievement and academic self-esteem may have been due to several of these variables that were uncontrolled in the classroom setting. Further research may help to determine whether there are variables that are significantly affected by the organizational pattern of looping with young students.

There is evidence in the literature review in Chapter 2 of this study that other researchers have found significant factors pertaining to young learners’ achievement and school success after participating in looping programs. Burke (1996) used qualitative measures to determine that teachers who stayed with the same students for three years and who collected work samples from their students over a period of months during the second year of the loop, noticed vast improvements in student’s writing from when they began to work with those students.

Hampton, Mumford, and Bond (1997) studied students in a three-year looping program in East Cleveland, Ohio, called Project FAST (Families Are Students and Teachers). East Cleveland is a community with 99.4% African American student population and where 69% of the students come from single-parent households and 49% live at or below the poverty level. At the end of their first loop with the same teacher, there were significant increases in math and reading scores, with some students raising their scores as much as 40 points. In this study, as in the current study, students in a
looping program were compared with their peers in traditional classrooms within the same building. They were also compared with students across their district that were not in the looping program, with former students of their same teachers, and with their own siblings who had gone to this same school. The looping students did better in overall academic achievement in all of these comparisons (Hampton et al., 1997).

One other study that looked at academic gains with students who had looped (i.e. Yang, 1997) compared scores of students in second and fourth grade on the ITBS, and several other language scales. The students in this study had just completed a two-year loop. On thirty-six comparisons on the three instruments, looping students outperformed non-looping students. The means of the test scores on each measure were compared with the mean scores on the same test of the students in non-looping classes. On the ITBS, the looping students performed better in all areas of the core battery. The results in this study were given only in mean scores, and there was no inferential statistical analysis run to determine significance at a given alpha level or to look at between group interactions. The study was conducted for the purpose of giving the school district data about their looping program for their second language schools, and the results were presented at a seminar for year-round education.

It is important to note that both of the studies mentioned above as showing gains for looping students (i.e. Hampton et al., 1997 and Yang, 1997) were carried out in schools with very different populations and demographics than the research study described in this report. The school in East Cleveland, Ohio, had a very large (99.4%)
minority population, a high level of students from one-parent homes (69%), and almost half of the families (49%) living at or below the poverty level.

Of the forty-six students in the current study, only four students were minority. The entire campus had a minority population of 13%, mostly because it was one of only two English as a Second Language (ESL) campuses for the district. Economically disadvantaged students made up 2.6% of the student population for the 2000-2001 school year, which was the second year of the loop for the students in the study (Academic Excellence Indicator System, AEIS Report, 1999-2000 and 2000-2001). There were no data available on the number of single-parent households for the campus or the district.

The second study mentioned (i.e. Yang, 1997) was conducted in a California elementary school. This school had a high population of Hispanic students who were also ESL or bilingual Limited English Proficient (LEP) students, many of who had not been in the United States for a long period of time.

In contrast, at the end of the second year of the loop, the campus where the current study took place had a Hispanic population of 6.6%, while the district Hispanic population was 13.2%.

It might be possible to look at this data and conclude that looping has been associated with more significant gains in academic achievement for students in poverty situations and/or students of minority backgrounds. One of the limitations of the current investigation, as stated in Chapter 1, was that the study was being limited to students of the Caucasian race. Thus, the findings should not be generalized to other types of students.
A significant body of literature has been published in several formats about the looping program in the schools of Attleboro, Massachusetts, where the entire program for grades K-8 was a looping program for most of the decade of the 1990s. Most of the findings related to this program were from parent, teacher, and student surveys about their feelings and experiences in the looping program (Grant et al., 1996). However, the Attleboro district reported significant gains on the Massachusetts state tests in the areas of reading and math for students in fifth grade and seventh grade that had participated in at least two full two year loops. This report did not compare students to other students who had not been in a looping program, and it did not state that they believed looping was the only factor that contributed to these gains (Forsten et al., 1997). The program, as implemented in Attleboro, was more complex than just deciding to loop and placing students in the classroom. It consisted of a great deal of teacher training in a collection of instructional strategies and structures, such as critical thinking skills, cooperative learning, and other best practices that are usually considered to be good teaching practices. It is very likely that this focus on good teaching practices, as well as the organizational pattern of looping, had a great deal to do with student gains on the state tests. The Superintendent in Attleboro, Ted Thibodeau, described their community as one that is very diverse, with students who are limited in their proficiency in English and with a high concentration of Hispanic and Cambodian students. This data indicates that the demographics for the Attleboro district were very different from that of the district in the current study (Grant et al., 1996).
Skinner (1998) studied looping in both the academic and affective domains with second grade students who were completing a first-second grade loop. She divided her research into two parts. Using quantitative measurement and statistical techniques, she looked at reading, language arts, and mathematics scores for a control group and an experimental group on the state achievement tests given to Missouri students. The results showed no significant differences in the two groups on reading and math scores, but in the language arts skills of spelling and writing, the looping students in the experimental group outperformed the students in the control group of non-looping students. Skinner wrote that she felt that one possible reason for this might be that students in a looping classroom may have more opportunities to write since they are usually very comfortable with the teacher and his/her expectations for them during the second year of the loop. This familiarity with the teacher may also make them more willing to take risks as young writers (Skinner, 1998).

The second part of this study focused on the affective components of a looping program and used qualitative measures to examine student, parent, and teacher feelings about the looping program. Students in this study were in two different schools within one urban school district, one with looping and the other without looping. The socio-economic data for the two schools showed that the school with looping had a poverty level of 29.83%, while the non-looping control school had a poverty level of 16.72% (Skinner, 1998). Both of these are significantly higher than the 2.6% economically disadvantaged level of the school in the current study. Again, it is important to note that in all of these studies and reports that show that students who looped have done better
academically than students who did not loop, the demographic data for the population from which the subjects were chosen shows a fairly high level of students from poverty backgrounds and/or minority students.

The other criterion variable that was studied in this research project was that of academic self-esteem as measured by the CFSEI-2. A subset of the total self-esteem inventory asked questions related to how the students think their teachers feel about them, how they feel they do on their school work, and how their parents view their school progress was used for this measure. In the literature review of research on looping, there were reports of surveys that dealt with student attitudes about looping and student attitudes about school since they had begun the looping programs, as well as parent and teacher attitudes about the practice of looping. (Bellis, 1999; Burke, 1996; Forsten et al., 1997; Grant et al., 1996; Jankowsky, 1996; Skinner, 1998). No studies were found that looked at academic self-esteem of students who had participated in a looping program.

Much of the literature discusses the advantages of looping and mentions strengthened relationships as major keys to success in looping programs. The teacher-to-student relationship is the primary focus of these discussions, but also mentioned is the parent-teacher relationship and the parent-school relationship. Teachers felt that they got to know their students better, had more time to study each student’s learning style, and could therefore foster more learning and more growth for their students (Grant et al., 1996; Jacoby, 1994; Skinner, 1998). There were only implied references to students feeling better about themselves because of the looping programs in comments like that of Jessica who said, “I am smart and so is looping,” (Reynolds et al., 1999, p. 19).
Way (1981) studied achievement and self-concept in multiage classrooms and found no significant differences in students in multiage classrooms and students in single grade classrooms on the self-concept variable. This study was conducted entirely in a public school setting with a general population of children. No significant defining factors for the population demographics, such as low socio economic status or single parent families, were given in the report. Also, the ethnic make-up of the students in the study was not given.

The students in the current study all scored extremely high on the sub-test items related to academic self-esteem. The ten questions in this sub-test were simple one-sentence statements about whether the students felt successful on their schoolwork and whether they perceived that others (specifically their parents, teachers and peers) saw them as successful at school. The author of the CFSEI-2 instrument, Battle (1992), reported on research by Yaniw in 1983 that showed the correlation between academic self-esteem and achievement in math to be .57 (p<.01) and the correlation between academic self-esteem and achievement in language arts to be .59 (p<.01). While it is good to know that the students in the current study have a high level of academic self-esteem, there is no evidence that supports that looping had anything to do with this finding. The control group student’s scores on this measure also fell within the very high range. Since all of these students attended the same school for both of the academic years of kindergarten and first grade, it is possible that overall school-related factors have contributed to these findings.
Possibly the greatest human factor of any study done within the setting of an existing classroom is that of teacher differences. In all of the prior studies on looping, the authors mention this variable. Skinner (1998) discussed the high degree of community that the looping teachers in her study exhibited, and she acknowledged that this could have caused an emotional feeling about the program that skewed some of the results. She noted that “when teachers experience a level of high community, they are more likely to be effective teachers, personally committed to teaching, open to personal growth, and feel that a student’s learning potential is not static” (p. 132).

In the current research project, the researcher noted much collaboration and collegiality among the looping partner teachers. The families and students who participated in the study could not help but feel this also. The two teachers who looped with their students were careful to spend equal amounts of planning time with all of the other teachers on the kindergarten and first grade levels, and of course, the district-approved teaching practices and the district curriculum were carried out in all classrooms.

However, the variable of teacher differences is a strong factor and very difficult to control. The Project FAST study in East Cleveland, Ohio (Hampton, Mumford & Bond, 1997) reported a unique attempt at trying to control some of the human variables with the comparisons they made in their report. They not only compared looping students to non-looping students on the same campus, but also compared scores of loopers to students these same teachers had had in previous years before they received the intensive training to become more effective teachers that was a part of the project. The looping students out performed these former students by a difference of 86% to 52% overall on the
Comprehensive Tests of Basic Skills used by their district to measure academic growth. This implies that longitudinal data for the same teachers over a period of time would be a good way to look at individual teacher differences in a looping program.

Recommendations

This study has opened up many more questions than it answered for the educators in the district where the research occurred. Action research in the classroom is very valuable to practitioners in the field as it gives a practical look at programs, strategies, and patterns that are happening on a daily basis with the students within the population of a given school or school district. There is still a need to find out what the value of the looping organizational pattern to this school district is. Since several more schools within this district are now using looping patterns on their campuses, a more wide-spread study of this same nature is planned with students who are currently in looping classes. Also, the looping organizational pattern is now being practiced on two of the Title I campuses in the district that have a much higher percentage of students who are identified as economically disadvantaged. These campuses also have a more ethnically diverse population. Cross campus data as well as same campus data will be examined in these future studies. On one campus, administrators have made the decision to have kindergarten and first grade looping teams and also one second and third grade looping team. The district plans to continue looking at the data for all of these students. An important aspect of future research will be to look at how students who have looped
perform on state tests when they are in the third grade and take the first Texas Assessment of Knowledge and Skills (TAKS) test.

Another feature of the on-going research regarding looping in this school district is that of looking at case-studies comparing students on several campuses who are in looping classes, but who come from different socio economic backgrounds and who have different environmental experiences when they enter the public school. As a part of this research, data are being gathered using parent, teacher, and student surveys and interviews. Throughout the district, most of the feedback concerning the program has been favorable from parents, teachers, administrators, and students. Many parents who have one student who looped want to put their younger children into a looping class. Pinpointing the reasons why it is a popular and favorable experience has been more difficult, but continues to intrigue district officials and school board members.

Summary

Second grade students who participated in a looping organizational pattern in kindergarten and first grade did not show significant gains on the core battery of the ITBS test over students who did not loop. In addition they did not show significant increases in academic self-esteem over their peers who did not participate in the looping program. There is a need to continue to look at looping programs in this school district to try to determine why these programs are popular and successful and whether they really do make a significant difference in the academic life and learning of students. If there is a significant difference, it may be found with students of different ethnic and socio-
economic status. The stability of having the same teacher with the same set of expectations and classroom norms also may contribute to success in other areas than those examined by the research in this study. Success stories were found in the literature on looping and other multiage and multiyear assignments. Many parents, teachers, administrators, and students have stated that looping made a positive difference in the education of some students who have participated in the programs.
APPENDIX A

LETTER OF ENDORSEMENT FROM DISTRICT
November 7, 2001

Institutional Review Board for the
Protection of Human Subjects in Research
Office of Research Services
University of North Texas
P.O. Box 305250
Denton, Texas 76203-5250

Dear Board Members:

I am writing this letter to let your board know that the Frisco Independent School District endorses and supports the research being conducted by Mrs. Doris Jo Murphy. Her research study is entitled The Effects of a Kindergarten-First Grade Looping Program on Student Achievement and Academic Self-Esteem. This study will give us valuable and necessary information about our looping program. It will help our district make decisions regarding the continuation of our existing looping program and the possible addition of this program at other campuses in our district.

Mrs. Murphy is an administrator in our district and we regard her research and her efforts in this endeavor as a valuable asset to our district.

Sincerely,

Dr. Debra Nelson,
Assistant Superintendent for Curriculum and Instruction
APPENDIX B

PARENT CONSENT FORM
Dear Parents of

Most of you know and remember me as the Assistant Principal at Smith Elementary from 1998-2001. During that time your child was enrolled at Smith in Kindergarten and First Grade as either a student in the looping classes or the regular classroom organization pattern of having a different teacher in each grade. I am currently serving as the Principal of Fisher Elementary in Frisco ISD.

I am writing to you now to ask your permission to use assessment data compiled by the school district and found in your child’s school record, in my doctoral dissertation study at the University of North Texas in Denton. I will also be using one other piece of data for your child. That piece is the score that was achieved by your child on Boehm-R test during the first three weeks of their kindergarten year. This information is found in your child’s files at the office of the school they now attend. My study is under the direction of my major professor, Dr. James Laney in the College of Education. It is based on the question of how students’ participation in a looping organizational pattern compares with students’ participation in the more traditional organizational pattern. The two areas that are being considered in this study are academic achievement and self-esteem.

To assess academic achievement, I will use scores from the Iowa Test of Basic Skills that all second graders in Frisco ISD take in October. To assess student self-esteem I will be using scores from an instrument called the Culture-Free Self-Esteem Inventory, Second Edition, (CFSEI-2) Form A. If your child was in either Ms. Kim Piske’s class or Ms. Shannon Ratliff’s class at Smith in Kindergarten and First Grade, they will be in the experimental group of the study. If you are receiving this letter and your child was in other classrooms for Kindergarten and first grade, then they are being asked to be in the control group of the study. The scores from both of these instruments will be compared for students in the two groups.

The purpose of the study is to determine if there are advantages to students if they participate in a looping program that can be noted by academic achievement test scores. With the self-esteem inventory, we are trying to determine if the students who were in a looping class have different academic self-esteem ratings than students in a more traditional program. This will be beneficial as educators, both within our district and outside of our district, try to make decisions about organizational patterns in our schools. As principal of a school in our district, I am trying to decide if looping is a practice that will be beneficial on my campus. We want to decide if there are indeed benefits to this type of long-term relationship with a teacher and a group of students.

All information that will be obtained from the scores on both of these instruments will be kept confidential. Upon receiving your consent form for your child to participate in this study, an identification code will be assigned for your child. All data collected for your child will be input into a computer program under this code. The program will calculate and total my results. No child’s name will appear in the study or be seen by anyone other than me.
Since some of you are now at different campuses from Smith, and since I no longer work at Smith, I will be hiring an outside person to give the self-esteem inventory. I have received permission for this from your child’s principal. The administration of this instrument takes approximately 20 to 30 minutes and the person administering it will be a teacher that has previously worked in our district. You will be given prior notice of the exact time and date of the administration. Also, if you would like to look at the literature that explains the instrument, I would love to meet with you and go over it with you. Due to issues related to reliability of administration, I cannot show you the exact instrument.

Participation by your child and you in this study is strictly voluntary. I hope that since all of you have known me for the last two years, you know that I value your child and their educational success very highly. I want to determine this information in an effort to help our schools know if this practice of looping is beneficial academically and emotionally for our students. Also, this will help me to complete my studies as a doctoral student at UNT, which is a personal goal that I set for myself many years ago. If you agree for your child to participate, please fill out the form attached to this letter and return it to me in the enclosed self-addressed, stamped envelope. Please know, that whatever your decision, I will always hold the time I spent with you and your children at Smith in my most treasured memories. If you have questions, please contact me at Fisher Elementary 469-633-2601 or contact your child’s principal.

Sincerely,

Jo Murphy
Frisco ISD
469-633-2600

Dr. Jim Laney
Department of Teacher Education and Administration
The University of North Texas
P.O. Box 311337
Denton, TX
940-565-2920
Parent Consent Form

PLEASE RETURN THIS FORM BY ________________.

Please check the appropriate line to indicate that you have read, understand, and have a copy of the letter attached to this form.

_________________ I give permission for my child to participate in the project.

_________________ I would like more information before giving consent. Please contact me by calling ______________________.

Students will be involved in testing for this study approximately 4 hours and 30 minutes on the Iowa Test of Basic Skills (ITBS) and 35 minutes to take the Culture Free Self-Esteem Inventory (CFS-EI). The ITBS is a normal part of their student life in Frisco ISD as a second grade student. The CFS-EI is a test that is specifically for the purpose of this research. This study has been reviewed and approved by the UNT Institutional Review Board. Members of this board may be contacted at 940-565-3940 for further questions about their review.

Signed: __

Parent Signature Date: __

(Parent is signing for minor child)

Child’s Name: __

Name of Parent Completing this Form: ______________________________

Mailing Address: __

Phone Number: _______________________
Researcher Contact Information: Jo Murphy
Fisher Elementary
2500 Old Orchard Dr.
Frisco, TX 75034
469-633-2600

University of North Texas Contact: Dr. Jim Laney
Department of Teacher Education and Administration
P.O. Box 311337
Denton, TX 76203-1337
940-565-2920

ASSENT OF CHILD

_________________________________ (name of child) has agreed to participate in research titled The Effects of a Kindergarten-First Grade Looping Program on Students Academic Achievement and Self Esteem. This study has been reviewed and approved by the UNT Institutional Review Board. Members of this board may be reached by calling 940-565-3940 for further questions.

Subject’s Signature. Parent or Guardian signature must be substituted if waiver of assent is required ____________________________ ____________________________ Date
APPENDIX C

UNIVERSITY IRB APPROVAL LETTER
Doris Jo Murphy
981 Garnet Cove
Oak Point, TX 75068

RE: Human Subjects Application No. 01-228

Dear Ms. Murphy
On November 16, 2001, the University of North Texas Institutional Review Board reviewed your project titled "The Effects of a Kindergarten-First Grade Looping Program on Student Academic Achievement and Self-Esteem." The Board agrees that with the requested changes submitted the risks inherent in this research are minimal, and the potential benefits to the subjects outweigh those risks. Your study is hereby approved for the use of human subjects on this project. Federal policy 21 CFR 56.109(e) stipulates that IRB approval is for one year only.

Enclosed are the consent documents with stamped IRB approval. Please copy and use these forms only for your study subjects.

U.s. Department of Health and Human Services regulations require that you submit annual and terminal progress reports to the UNT Institutional Review Board. Further, the UNT IRE must re-review this project annually and/or prior to any modifications you make in the approved project. Please contact me if you wish to make such changes or need additional information.

Sincerely,

Peter L. Shillingsburg
Chair
Institutional Review Board
REFERENCES

Academic Excellence Indicator System 1999-2000, Frisco ISD, District Number 043905 Division of Performance Reporting, Office of Policy Planning and Research, Texas Education Agency, Austin, TX.

Academic Excellence Indicator System 2000-2001, Frisco ISD, District Number 043905 Division of Performance Reporting, Office of Policy Planning and Research, Texas Education Agency, Austin, TX.

