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In this dissertation we present some separation and

selection theorems. We begin by presenting a detailed proof

of the Inductive Def inability Theorem of D. Cenzer and R.D.

Mauldin, including their boundedness principle for monotone

coanalytic operators.

By a faithful separation property we mean a property P

such that if A and E are disjoint analytic subsets of the

product XxY of two Polish spaces X and Y and for each x,

Ax={y: (x,y)EA} has property P, then there is a Borel subset

B of XxY such that ACB, BfE=O and for each x, Bx has

property P.

In Chapter III, using the boundedness principle for

monotone coanalytic operators, we reprove a portion of J.

Saint-Raymond's argument that o-- compactness is a faithful

separation property. Furthermore, we show in Chapter IV

that convexity is a faithful separation property in the case

Y=Rk

In Chapter V, we prove a selection theorem involving

compact- valued upper semi- continuous multifunctions with

values in the unit ball of the dual of a separable normed

linear space.
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CHAPTER I

INTRODUCTION

In this dissertation we present some separation and

selection theorems. In particular, we prove that convexity

is a faithful separation property, and we prove that under

certain conditions a multifunction with compact convex

values has a Borel class 1 selector which selects extreme

points. In addition, we give a detailed proof of the

Inductive Definability Theorem of Cenzer and Mauldin [3],

including their boundedness principle.

Before proceeding, we define some basic terms and set

some notation. A Polish space is a separable completely

metrizable topological space. Unless otherwise stated, we

assume that all spaces are Polish. By INN we mean the space

of all infinite sequences of positive integers with the

product topology. For a space X, we denote by B(X) the

family of all Borel subsets of X, that is the smallest

family including the open subsets of X and closed under

countable unions and complementation. By C ,F , and A' we

mean the collections of all countable intersections of open

subsets of X, all countable unions of closed subsets of X,

and all countable unions of compact subsets of X
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respectively. We say a set A is analytic if it is the

continuous image of N. We denote by A(X) the family of

analytic subsets of X.

By a faithful separation property we mean a property P

such that if A and E are disjoint analytic subsets of the

product XxY of two Polish spaces X and Y and for each x,

Ax={y: (x,y)EA} has property P, then there is a Borel subset

B of XxY such that ACB, BflE=O and for each x, B has

property P. Some examples of faithful separation properties

include compactness [8], a- compactness [10], first category

[2], countable [5,6,7] and measure zero [2]. In Chapter III

we reprove a portion of J. Saint-Raymond's argument that

u-compactness is a faithful separation property.

Furthermore, we show in Chapter IV that convexity is a

faithful separation property in the case Y=R Our argument

given is a parameterization of an argument of D. Preiss [9].

By a multifunction F:X-+Y we mean a function whose

domain is X and whose values are nonempty subsets of Y.

(Here, our spaces need not be Polish). By a selector for a

multifunction we mean a function f:X-+Y such that for, each

xEX, f(x)EF(x). By the Axiom of Choice, there exists a

selector for a given multifunction; however, one is usually

interested in a selector that possesses a certain property,

for example continuity, Borel measurability, etc. In the

literature, there are a good number of results concerning
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what sort of selector one can obtain under certain

assumptions on the multifunction F:X-4Y and on the spaces X

and Y. We refer the reader to the surveys of Wagner [11,12]

for a listing of many of these results.

In Chapter V, we prove a selection theorem involving

compact-valued upper semi-continuous multifunctions with

values in the unit ball of the dual of a separable normed

linear space. This result is closely related to a previous

theorem of Jayne and Rogers [4]. One difference is that our

theorem deals with the selection of extreme points. As a

corollary of our theorem, we give an alternative proof of a

selection theorem of L. Baggett [1].
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CHAPTER II

THE INDUCTIVE DEFINABILITY THEOREM

In this chapter we aim to give a detailed proof of the

Inductive Def inability Theorem of Cenzer and Mauldin [1].

In particular, we verify a boundedness principle for

analytic derivations. The approach here is the same as that

in [1]. We begin by recalling some definitions.

By an operator over X, we mean a map from the power set

P(X) to itself. An operator r is said to be monotone if for

any K C M C X, P(K) C [(m). An operator is said to be

inductive if for any KCX, KCL(K). The dual operator D of an

operator 1 over X is defined by

D(A) = X-L(X-A).

Let A C X and let r be an operator on X. We define

r0 (A) = A,

Pa+r(A) = P(Pa(A)) for all ordinals a,

IA(A) = U I a(A) for limit ordinals A.

The set Cl(P;A) = U 1 a(A) where the union is over the set
a

of all ordinals is called the closure of P on A. For some

ordinal a < card(X)+, Pa+l(A) = Pa(A) = Cl(P;A), and we

denote the least such ordinal by |L;Al. Also, we let IrI =

5
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jP;0, and we let Cl(P) = Cl(r;O).

An operator A over a Polish space X is said to be Borel

(or AI) if it is defined in one of the following ways:

(a) A(K) = B, where B is a fixed Borel subset of X;

(b) A(K) = f 1'(K), where f is a fixed Borel map from X

to X;

(c) A(K) = X-K;

(d) A(K) = Al(A2 (K)), where A, and A2 are previously

defined Borel operators;

(e) A(K) = U A(K), where the A. are previously
n=1

defined Borel operators.

An operator 1' over a Polish space X is analytic orEl

(respectively coanalytic or HI) if there is a Polish space Y

and a Borel operator A over XxY such that for all x and K:

x E [(K) iff (3y) (x,y) E A(KxY),

(respectively) (Vy) (x,y) E A(KxY).

Note that 1 is an analytic operator if and only if its dual

is coanalytic. By an analytic derivation, we mean an

operator whose dual operator is monotone and coanalytic.

The notion of analytic derivation is due to Dellacherie (see

[2]).

Example. Let X be a Polish space. Let r denote the
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closure operator over X; i.e., P(M)=M. Then P is an example

of an analytic operator which is not necessarily Borel.

Proof. Note that P(M)=R={x:(Vk)(3yEM)(d(x,y)<1/k}.

Let Y=X. Then Y is Polish. For each kEN, define a subset

Bk of XxY by Bk= {(x,(yn)): d(x,yk)<1/k}. Each Bk is open.

Also, for each kEN, define fk:XxY-+XxY by

f k fx(n))(Yk' (Yn)) . Note that each fk is continuous.

Next, define an operator A over XxY by

A(A)=fk (Bkfl fk'(A)).

Then A is a Borel operator, and xEP(M) iff (3(yn))

(x,(yn))EA(MxY). Therefore, P is analytic.

Next, we show that P need not be Borel. Let AC[0,1] be

an analytic nonBorel set. There is a Borel set

BC[0,1]x[0,1] such that Tr(B)=A. Now assume that P is a

Borel operator. Then the operator P* over [0,1]x[0,1] given

by P*(E) = U J A(EY)x{y} is also Borel (see Lemma 2.4). By

Theorem 2.1(a), P*(B) is a Borel set. Now the sections of

P*(B) are compact. Therefore, r(P*(B)) is a Borel subset

of [0,1] [3,p.392]. However, Tr(P*(B))=r(B)=A. This is a

contradiction. o

Theorem 2.1 Inductive Befinability [1,p. 58].

(a) If A is a Borel operator over X, then Aa is also a

Borel operator for each a<w1 and A(B) is a Borel subset of

X, if B is.
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(b) If the monotone operator r and the set A are both

analytic (resp. coanalytic), then for each countable ordinal

a, Pa(A) is analytic (resp. coanalytic).

(c) If the monotone operator r and the set A are both

coanalytic, then Cl(P;A) is coanalytic.

(d) For any coanalytic subset C of X, there is a

monotone Borel operator A over XxN and a real rEN such

that C={x:(x,r)ECl(A)}.

(e) If 1 is a coanalytic monotone operator with

closure C, on the coanalytic subset P of X, then for any

analytic subset A of X with A C C, there is some countable

ordinal a such that A C pa(p).

(f) If the inductive operator P is either (1) Borel or

(2) monotone and either analytic or coanalytic, then Ir|Iw1 .

Ve refer to part (e) of the theorem as the boundedness

principle for coanalytic monotone operators.

Preliminary Results

Before proving the Inductive Definability Theorem, we

first prove several preliminary results. The first

lemma,which is mentioned in [1] ,but not proved, allows us in

a natural way to associate an inductive operator with any

given operator.
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Lemma 2.2. Let P be a monotone (resp. A or E

operator over X. Define the operator # over X by

#(K)=KUP(K). Then * is a monotone inductive 1 (resp. A1 or

operator and for each ordinal a, Pa(O)=ga

Consequently, Cl(P)=C(I).

Proof. Suppose P is a monotone H operator over X (the

proof where P is A or E is similar). Let KCMCX. Since r1 ~1

is monotone, (K)=KUP(K)CMUP(M)=I(M). Therefore, f is

monotone. Note also that KCKUP(K)=#(K). Hence, f is

inductive.

Let A1 be a Borel operator over XxY where Y is Polish

such that xEP(K) iff (Vy)(x,y)EA(KxY). Define A2 over XxY

by A2 (L)=f~ 1 (L) where f:XxY-+XxY is the identity map

(f(x,y)=(x,y)). Then A2 is Borel. Set A=A1UA2 . Then A is

Borel. Now xET(K) iff (Vy)(x,y)EA(KxY). Thus, # is R .

Clearly, P(0)=#(O). Suppose that for some a,

Pa(0)#Pa(0). Let A be the smallest ordinal such that

PA( 0 )#iqA( 0 ). Either A is a successor ordinal or a limit

ordinal. Suppose A is a successor. Then A=fi+1 for some

ordinal 6. Since 6<A, P0(0)=V8(0). Also, since P is

monotone, for all 7, P7(0)CP7+1(0). Thus,

* A ()=*(*,6(o))=t(r,8(o))=r,'(O)ur(r6(0))=rfl(O)Ur,+1(0)=r,8+1(0)

=rA (0),a contradiction. Hence, A must be a limit ordinal.

Now, T1A(0) =U7<A V7'( 0 ) = U7<A PT( 0 ) = rA( 0 ), a
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contradiction. Therefore, for each ordinal a, ra(O)=fa

0

Recall from [1], the next lemma which says that if A is

a Borel operator and if xEX and KCX are fixed, then the

determination of A(K) at x depends on only a countable

amount of information.

Lemma 2.3 [1,p. 66].

(a) If A is a Borel operator over the Polish space X, then

for any xEX and KCX, there are countable sets UCK and VCX-K

such that, for any set M with UCM and VCX-M, xEA(K) iff

xEA(M).

(b) If 1 is a E monotone operator over X, then for any xEX

and KCX, xEP(K) iff (for some countable UCK) xEP(U).

(c) If P is alH monotone operator over X, then for any xEX

and KCX, xEP(K) iff (for all countable VCX-K) xEl(X-V).

Proof of (a). Let 0 denote the collection of all

operators over X such that for every xEX and KCX, there are

countable sets UCK and VCX-K such that, for any set M with

UCM and VCX-M, xEA(K) iff xEA(M). Ve assert that 0 contains

all Borel operators over X.

Suppose A(K)=B where B is a fixed Borel subset of X.

Fix xEX and KCX. Set U=V=O. Then for any M with UCMCX-V,
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xEA(K)=B iff xEA(M)=B. Thus, AEM.

Suppose A(L)=f~t (L) where f is Borel measurable. Fix

xEX and KCX. If f(x)EK, set U={f(x)} and V=O. Otherwise,

set U=0 and V={f(x)}. In either case, if UCMCX-V we have

xEA(K) iff xEA(M). Therefore, AEA.

Now suppose A(L)=X-L. Fix xEX and KCX. If xEK, set

U={x} and V=0. Otherwise, set U=0 and V={x}. Then for any

M with UCMCX-V we have xEA(K) iff xEA(M). Thus, AEO.

Next, assume A1 ,A2 Efl. We will show that AIoA2 E). Fix

xEX and KCX. There are countable sets U1 and V1 such U1 CK

and V1 CX-K and if U1CLCX-V1 then xEA( 2 (K)) iff xEA,(L).

Let {un }n= and {vn}=1 be enumerations of U1 and V1

respectively. For each n, there are countable An and Bn

such that if AnCJCX-B , then unEA2(K) iff unEA2(J). Also,

for each n, there are countable Cn and Dn where CnCKCX- Dn

such that if CnCJCX-D,, then vnEA2(K) iff vnEA2(J). Set U =

(UO= 1 An) U (U"= 1 Cn) and V = (U"=1 Bn) U (U 1 Dn).
Then U and V are countable and UCKCX-V. Suppose UCMCX-V.

Then UICA2 (M)CX- V1 . Consequently, xEA1(A2(K)) iff

xEA 2(M)). Thus A1 oA2 01.

Lastly, suppose that for each n, AnEfl. We assert that

U= 1 An Efl. Fix xEX and KCX. For each n, there are

countable Un and Vn where UnCKCX-Vn such that if UnCMCX- V

then xEA n(K) iff xEA1 (M) Set U = U '=1 , and V = Un*D
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Vn. Suppose UCMCX- V. Then xEU" 1 A1 (K) 1ff xEU a 1 A=(M).

Therefore, U%1 AO EO. This completes the proof of part

(a).

Proof of part (b). Suppose r is a E monotone operator

over X. Let xEX and KCX. Let A be a Borel operator on XxY

such that xEF(L) iff (3y)(x,y)EA(LxY). Suppose xEP(K).

Choose y so that (x,y)EA(KxY). By part (a), there are

countable sets UCKxY and VC(X-K)xY such that whenever UCM

and VC(XxY)-M, (x,y)EA(M). Let T=r1 (U). Then T is

countable and TCK. Also, UCTxY and VC(X-T)xY. Therefore,

(x,y)EA(TxY). Consequently, xEI(T).

Conversely, assume that for some countable TCK, xEP(T).

Since P is monotone, xEP(K). This completes the proof of

part (b).

Proof of part (c). Let D be the dual operator of P.

1Then D is a monotone operator. Fix xEX, KCX. xEP(K) 1ff

xD(X-K). By part (b), xoD(X-K) if f for all countable

VCX-K, xD(V). Equivalently, xD(X-K) iff for all countable

VCX-K, xEP(X-V). This completes the proof of part (c). o

Let A be an operator over X. Define the operator A* on

XxY by

A*(E) = U A(Ey)x{y}.
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By Ey, we mean {x:(x,y)EE}. An analysis of this

section-wise operator A* is useful in verifying some missing

details in [1].

Lemma 2.4. If A is a Borel operator then A* is a Borel

operator.

Proof. The proof is by induction on the class of Borel

operators on X. Set n = {A:2X-+2 X:A* is Borel}.

Suppose A(K)=B where B is a fixed Borel subset of X.

Let ECXxY. Then A*(E) = U y A(Ey)xjy} =Uy Bx{y} = BxY, a

fixed Borel set. Thus, AEf.

Suppose A(K) = f~t (K) where f:X-+X is a Borel measurable

map. Define g:XxY-+XxY by g(x,y)=(f(x),y). Then g is Borel

measurable. A*(E) = Uy f~1(Ey)x{y} = g1(E). Thus, AEM.

Now assume A(K)=X-K. Then A*(E)=U y (X-EY)x{y} =

(XxY)-E. Hence, AEf.

Next, suppose A1 and A2 belong to fl. Let A=AIoA2 . By

assumption, A1 *oA 2* = A*. For

Al* A2*(E) = A*((Uy A2(Ey)x{y})

=U', Ai((Uy A2(EY)x{y})z)xfz}
= U z A1(A2 (Ez))x{z} = A*(E).

Hence A* is Borel, and consequently AE.

Lastly, assume that AnEO for each nEN. Let A=Un An*
Then

A*(E) = Uy A(EY)x{y}
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=UY (Un An(Ey))x{y}

= U y U n(A(EY) x{y})

=UnUy (An(EY)x{y})

= Un An*(E).
Therefore, AEM.

Consequently, 0 is the class of all Borel operators

over X. This completes the proof of the lemma. o

Lemma 2.5. If A is a Borel operator over X, then BA =

{(x,(yn))EXxX: x EA({y1 ,y2 ,...}) }, where Y=X . Then BA
is a Borel subset of XxXN.

Proof. The proof is by induction on the family of

Borel operators. For each m, set Gm={(x,(yn)): x y.} and

F M={(x,'(y)): X=ym}. Note that Gm is open and Fm is closed

for each m.

Suppose A(K)=C, where C is a fixed Borel subset of

XxXN. Then BA=CXXIN, a Borel subset of XxXH.

Suppose A(K)=X-K. Then BA = lm Gm. Thus, BA is a G&
and hence, BA is Borel.

Next, assume A(K)=f~t (K) where f:X-+X is Borel

measurable. Define g:XxX[N-+XxXIN by g(x,(y ))=(f(x),(y )).
Then g is Borel measurable. Now BA=Um g~'1(Fm).

Consequently, BA is Borel.

Let A1 and A2 be Borel operators such that BA and BA
1 2

are Borel subsets of XxX . Set A=A1 oA2 . Now (x,(y n))EBA
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iff xEA 1(A2 ({y1 ,y2 ,...})) iff xE{u:(u,(yn))EBA } iff

xEAl*(BA2). Thus, BA=Al*(BA2). By lemma 2.4, Al* is a

Borel operator. Therefore, by theorem 2.1(a) BA is Borel.

Lastly, assume that {An} is a sequence of Borel

operators such that for each n, B A is Borel. Suppose

A(K)=JnAn(K). Then BA= UnBAn. Hence BA is Borel. This

completes the proof. o

Corollary 2.6. Let A be a Borel operator over XxZ.

Then the set

CfA={ (xI(yn),z)EXxX[NxZ: (xz)EA({y1 ,y2 ,...}x{z}) } is Borel.

Proof. By lemma 2.5,

BA={ ( (X),((ynIzn)):(x,u) EA ({(y, z).(Y2,z2),..})}is a
WN NNBorel subset of (XxZ)x(XxZ) . Define f:XxX xZ-4(XxZ)x(XxZ)N

by f(x,z,(y1n))=((xz),((yz),(y2 ,z) ,....)). Then f is

continuous. Now CA =f-A (BA). Thus, CA is Borel. o

Lemma 2.7 [1,p.67]. The family of El (resp. It)

subsets of a Polish space is closed under El(resp. Hi)

monotone operators.

Proof. Let P be a E monotone operator. Suppose M =

{(x,(yn))EXxX 1xEP({y 2,.. .}) }. Let A be a Borel

operator over XxZ such that xEP(K) iff z(x,z)EA(KxZ). Then
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M = 7r1 2 (CA) where CA is defined in corollary 2.6. Since, CA

is Borel, M is El. Now, suppose ACX is . By lemma 2.3,

P(A)={x:3y[(x,y)EM and Vn y EA]}. Thus, 1(A) isEl

On the other hand, let P be a II1 monotone operator and1

let D be its dual. Suppose CCX is R1. Then P(C)=X-D(X- C).~1

Therefore, by the first part of the theorem r(C) is H1 .13~10

Lemma 2.8 [lp.67]. Cl(L)=l {K: K is a cocountable

fixed point of P}.

Proof. Let xEC=Cl(L). Suppose K is a fixed point of

P. There is an ordinal a such that Pa(0)=C. Since K is a

fixed point, Pa(K)=K. Also, since P is monotone,

C=Pa(O)CIa(K)=K. Hence, xEK. Therefore, xEfl{K: K is a

cocountable fixed point of P} = D. Consequently, CCD.

For the other inclusion, suppose xfC. By lemma 2.3(c),

there is some cocountable K1 such that CCK1 and x1(K1). if

Kl=r(K ), then we are done. Thus assume KY1#(Ky), and let

{yi } enumerate P(K1)-K1 . For each i, yiC. Hence, for

each i, there is a cocountable JiDC such that yif'(Ji). Set

K2=K if(f i Ji). Then K2 is cocountable and CCK2CK1 . Also,

for each i, yiEP(K2), i.e., (K2)CK 1. By induction, we get

a decreasing sequence {Kn}r=1 of cocountable sets such that

for each n, CCP(Kn+i)CKn and xKn. Let K = nn Kn. Then K

is cocountable, xK and P(K)C nP(Kn)CfnnKn=K. Hence, K is
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a cocountable fixed point. Consequently, xD=fl {K: K is a

cocountable fixed point of P}. Therefore, DCC. o

The following will be used in proving the boundedness

principle for monotone coanalytic operators.

For an inductive operator r over X, set

Ixir = (least a) xEra+1(0)=a+, if xEC1(0)

= OD, otherwise.

Suppose P and A are inductive operators over X. Define

R(x,y) iff xII<IyIA and xEC1(I)

and S(x,y) iff IxlrP<IyIA and xECl(A).

Lemma 2.9. (a) R(x,y) iff xEP({x':S(x',y)}) and

(b) S(x,y) iff yOA({y':,R(x,y)}).

Proof of (a). Fix yEY. Set K={x':S(x',y)}. First

note that K=U*a< 1 1 A+* Suppose R(x,y). Then Ixp<IyIA

and xECl(L). If IxIrcIyIA , then xEKCL(K). Thus, assume

|xlp=IyIA. We assert that Pr=K where #=|1yIA Clearly,

KCL'O. Suppose x'EPf. Either # is a limit ordinal or not.

Suppose 6 is a limit ordinal. In which case,

x'/EP/=U a</Pa=U a<J*a+1=K . Next, consider the case where 8

is a successor ordinal. In which case, x'EP~ )+1CK.

Therefore, Pr=K. Now, xEPr8 1=P(" 3 )=L(K).

Conversely, suppose that xEL(K)=P({x':S(x',y)}).

Either yECl(A) or yfCl(A). Assume that yEC1(A). Then
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xEP(K)(=r(J Uaf<a+1)=P(rp8)rpf+1. Consequently, xEC1(1) and

|xlprlyIA. Therefore R(x,y). Now suppose that yCl(A).

K=Cl(P). Thus, xECl(P), and hence, R(x,y). o

Proof of (b). First note that if xEC1(P), then

Ua<|IxIa+ = {y':,R(x,y)}. Assume S(xy). Then xIP<IyIA

and xECI(P). Thus, yOAfi+1=A(Ua<Oaa+1 )A({y/:nR(x'y)}

where 8=|xlp.

Conversely, suppose yfA({y':,R(x,y)}). Then

yf{y':,R(xy)} and hence R(x,y). Consequently, xECl(r). If

Ixlp<|yjA, then S(xy). Thus, suppose |xlp=IyJA. Then

yEAO+1=A({y':,R(x,y)}) where 8=lx|r, a contradiction. o

Denote by N the set of all finite sequences of

nonnegative integers. Consider the relation < on IN given

by

s=(s,...,sM) t=(tj,...,tn)
iff s extends t (sJt) or (3j)(Vi<j)(si=ti and s <t ).

(is called the Brouwer-Kleene ordering, and it defines a

linear ordering of N. Let us mention that (IN, ) is

isomorphic to the set of dyadic rationals in [0,1) with the

usual ordering reversed. Define V = {xE{0,l}N :x- 1 (1) is

well ordered by }. For xEW, let a(x) be the order type of

xt (1). Also, for xE{0,1}N and pEN*, define xj E{0,1}N
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by xIp(s)=1 iff x(s)=1 and s<p.

Lemma 2.10. There is a Borel operator A over {0,1}

such that for each ordinal a, Aa={x:v(x)<a}. Consequently,

V=Cl(A), jAj=W1 and V is coanalytic. Furthermore, V is not

a Borel set.

Proof. Define A over {0,1} by

xEA(K) iff xEK or (Vs)x(s)=0 or (Vp)(x(p)=1-xIpEK).

Then A is Borel.

To show that aG={x:o(x)<a} for each ordinal a, we use

transfinite induction. First, note that A ={xg}. Thus,

Al={x:o(x)<1}. Now let a be an ordinal greater than 1, and

assume that A,={x:c(x)<} for all 6<a. Now, Aa=A(UfU<aA).

Let xREAa. If xRE UO<aA#, then o(xl)<a. Thus, assume that

xYs U/8aA. Then there is pER such that x,IPEU<a U
Consequently, r(x,)=u(x Ip)+1<#+1<a. Therefore,

AaC{x:a(x)<a}. Suppose o(x1)<a. If there is an ordinal 8<a

such that a(xR)< <a, then xcEAa by assumption. Thus, we can

assume that o-(xR)+1=a. Suppose that for some p, xR(p)=1 and

X jPOU/<a. Now o(xR p )c(xR), thus x, pEUf#<aAa. This

is a contradiction. Hence, xREAa. Consequently,

Aa{lx. a(x) <a,.

By Theorem 1.2(c), V is coanalytic. Also, since there

exist analytic nonBorel sets, V is not Borel [1,p.64].
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Proof of the Inductive Definability Theorem

Ve now are ready to prove the Inductive Definability

Theorem.

(a) If A is a Borel operator over X, then Aa is also a

Borel operator for each a<w. and A(B) is a Borel subset of

X, if B is.

Proof. Suppose that for some a<w 1, Aa is not Borel.

Let A be the smallest such ordinal. Either A is a successor

ordinal or a limit ordinal. Suppose that A is a successor

ordinal. Then A=,8+1 for some ordinal P. Now AA=A6+1=AoAf

and A'3 is a Borel operator. Thus, AA is Borel, a

contradiction. Therefore, A must be a limit ordinal.

Hence, AA = UT( Ar. For each r<A, AT is Borel. Thus,

since A is countable, A A must be Borel. Again, we have a

contradiction. Therefore, for every a<w 1, Aa is Borel.

Next, we verify that if A is a Borel operator, then for

each Borel subset B of X, A(B) is a Borel subset of X. The

proof is by induction on the family of Borel operators.

Clearly, if A defined by A(K)=D where D is a fixed Borel

set, then A(B) is Borel if B is. If A(K)=f~t (K) where f is

a Borel map from X to X, then A(B) is Borel if A is. Also,

if A is given by A(K)=X-K, the A(B) is Borel if B is. Now

assume that A=A1 oA2 where for each Borel set C, A1(C) and
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A2(C) are Borel. Let B be Borel. Then A2(B) is Borel, and

consequently, A1(A2(B))=A(B) is Borel. Lastly, suppose that

A(K) = Un An (K), where for each n, An is a Borel operator

such that An(D) is Borel if D is. Then if B is Borel,

certainly, A(B) = Un An(B) is Borel. This completes the

proof. o

(b) If the monotone operator P and the set A are both

analytic (resp. coanalytic), then for each countable ordinal

a, Pa(A) is analytic (resp. coanalytic).

Proof. Let P be a monotone El operator.By lemma 2.7,

P(A) is analytic if A is analytic. Suppose there is some

countable ordinal a such that for some analytic subset A of

X, Pa(A) is not analytic. Let A be the smallest ordinal

such that for some analytic set A, PA(A) is not analytic.

Then A>1. Either A is a successor ordinal or a limit

ordinal. Suppose that A is a successor ordinal. Then A=8+1

for some ordinal 8. Now PA =ff+1=ppffi and P6(A) is a

analytic if A is. Thus, LA(A) = L'(P(A)) is analytic if A

is, a contradiction. Therefore, A must be a limit ordinal.

Hence, rA = UA r7. For each rA, AT(A) is analytic if A

is. Therefore, since A is countable, if A is analytic,

P (A) = U Trr(A) is analytic. Again, we have a

contradiction. Therefore, for every a<'w and every analytic

A, Pa(A) is analytic.
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The proof is the same if P isHi and the set A is

coanalytic. o

(c) If the monotone operator P and the set A are both

coanalytic, then Cl(P;A) is coanalytic.

Proof. We first consider the case where A=0. Consider

the operator 4 given by $(K)=KUP(K). Then by lemma 2.2, 4
is a monotone inductive Hi operator. Also, for each a,

#a( 0)=pa( 0 ). Consequently, Cl(#)=Cl(P). Therefore, we can

assume that r is inductive. Let D be the dual of P. Define

M = {(yn)EX: P(X-{yVy2 ,. . .})CX- {y1 ,y2 ,. -}--1

= {{(yn)EXK: (Vn)yng~(X-{y1,y2, ... M
Now, M=7r2(M) where M ={(x,(yn))EXxX : xED({yjy2 ,...}) and

(Vn)yn=x}. Since M is analytic (see the proof of lemma

2.7), M is analytic. Next, define P = {xEX (VyEXe)(yEM

(Vn)(ynfx)) }. Then P is . Also, by Lemma 2.8, Cl(P)=P.

Lastly, consider the case where A is an arbitrary

coanalytic set. Define the operator # by *(K)=P(KUA). Then

4 is a monotone I1 operator, and for each a, a(0 ) = ra(A).

Consequently, Cl(*)=Cl(P;A). Thus, Cl(P;A) is HI . o

(d) For any i subset C of X, there is a monotone Al

operator A over XxNN and rENN such that C={x:(x,r)ECl(A)}.

Proof. See [1,p.65].
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(e) If P is a coanalytic monotone operator with

closure C, on the coanalytic subset P of X, then for any

analytic subset A of X with A C C, there is some countable

ordinal a such that A C pa(p).

Proof. Let P be a monotone Hi operator over X and, let

A be a monotone A{ operator over Y. Considering Lemma 2.2,

we can assume that both P and A are inductive. Define an

operator A over {0,1}xXxY by

(O,x,y)EA(K) iff xEl'({x':(1,x',y)EK});

(1,x,y)EA(K) iff yA({y':(O,x,y')%K}).

Then A is a monotone i operator. We claim that R(x,y) iff

(O,x,y)ECl(A) and S(x,y) iff (1,x,y)EC1(A). Consequently,

by theorem 2.1(c) both R and S are coanalytic subsets of

XxY.

Claim 1. For each xEX and yEY, R(x,y) =4 (O,x,y)EC1(A)

and S(x,y) =4 (1,x,y)ECl(A).

Proof of claim. The proof is by induction. First

assume that |xlp=0. Then xEP(0). Suppose R(x,y). We have

xEP({x':(1,x',y)EO}). Thus, (O,x,y)EA(0), and consequently,

(O,x,y)OCl(A). Therefore, R(x,y) =4 (O,x,y)EC1(A). Now

suppose S(x,y). By the above, {y':(O,x,y')%Cl(A)} = 0.

Since S(X<Y) and Jxlr=O, |yIA>0 . Hence, yA({y':

(O,x,y')OC1(A)}). Therefore, (1,x,y)EA(Cl(A))=Cl(A).
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Hence, S(x,y) =4 (I,x,y)ECl(A).

Now assume that the claim holds for all x' and y such

that |x'|pj<jxlr. Suppose R(x,y). Now xEP({x':Ix'Ilp<ll}).

By assumption, {x' :Ix'I<Ixip}C{x':(I,x',y)ECl(A)}.

Therefore, xEP({x':(1,x',y)ECl(A)}). Hence,

(O,x,y)EA(Cl(A))=Cl(A). Therefore, R(x,y) = (O,x,y)ECl(A).

Next, assume S(x,y). Then {y':(O,x,y')OCl(A)}C{y':,R(x,y')}

by the above. Thus, yA({y': (O,x,y')OCl(A)}).

Consequently, S(x,y) =4 (1,x,y)ECl(A). This completes the

proof of claim 1.

Claim 2. For each xEX and yEY, (O,x,y)ECl(A) =4 R(x,y)

and (1,x,y)ECl(A) = S(x,y).

Proof of claim. First assume I(O,x,y)|A=O. Then

xEP({x':(1,x',y)E0}). Hence, xEP(O), and thus, |xp=O.

Therefore R(x,y). Thus, (O,x,y)ECl(A) =4 R(x,y). Now

suppose |(1,x,y)|A=O. Then yOA({y': (O,x,y')gO}). Since

YCA(Y), this is a contradiction. Thus, (1,x,y)ECl(A) =4

S(x,y).

Now assume that the claim holds for all (s,x',y'),

sE{0,1}, such that I(s,x',y')IA<a. Suppose I(O,x,y)IA=a.

Set K={(1,x',y):J(1,x',y)IA<a}. Now (O,x,y)EA(K). Hence,

xEF({x':(1,x',y)EK}). Thus, by assumption,

xEP({x':S(x',y)}). Therefore, R(x,y) by Lemma 2.9.

Therefore, (O,x,y)ECI(A) =4 R(x,y). Lastly, assume
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(1,x,y)IA=a. Set L={(O,x,y'):l(1,x,y')IA<a}. Now

(1,x,y)EA(L). Thus, yfA({y': (O,x,y')%L}). Therefore,

yOA({y':,R(x,y')}). Hence, by Lemma 2.9 S(x,y). Thus,

(1,x,y)ECl(A) = S(x,y). This completes the proof of the

claim.

Now assume that ACX is analytic and ACCl(L). Let

a=sup{|xir+1:xEA}. Then

yEAa iff (3x)(xEA and ,S(x,y)).

Therefore, Aa is analytic. Since W=Cl(A) is not analytic

and IAI=w1, a is countable. Since ACra, this completes the

proof when P=O.

To complete the proof, let P be an arbitrary coanalytic

subset of X. Define f by #(K)=L(PUK). Then f is Hi
~1

monotone, and Ta(0 )=La(p) for all a. Suppose A is analytic

and ACCl(P;P). Then ACCl(#). Hence, there is a countable a

such that AC4a(0). Thus, ACra(P). a

(e) If the inductive operator r is either (1) Borel or

(2) monotone and either analytic or coanalytic, then IP|<w1.
Proof. First assume that r is Al. Let K=P1 (0), and

suppose xEP(K). By lemma 2.3, there are countable sets U

and V where UCK and VCX-K such that for any set M with UCM

and VCX-M, xEP(K) iff xEI(M). Since U is countable, there

is a countable ordinal a such that UCra(0). Then UCra(0)



26

and VCX- 1a(0). Hence xEra+1(0). Thus IP|6wj.

Next, assume that P isE1. Let K=oi (), and suppose

xEP(K). By lemma 2.3, there is a countable set UCK such

that xEP(U). Since U is countable, there is a countable

ordinal a such that UCLa(0). Hence, xEP(ia(O))=Pa+1(O).

Thus, IPIew1 .

Lastly, assume that P is I 1. Let xECl(P). Then {x} is

an analytic subset of Cl(0). By theorem 2.1(e), there is

some countable a such that {x}Cra(O). Thus, iri6oi. Q

This completes the proof of the Inductive Definability

Theorem. Next, we give as a corollary to theorem 2.1(e) a

boundedness principle for analytic derivations. Recall that

by an analytic derivation we mean an operator whose dual

operator is monotone and coanalytic. If D is an analytic

derivation, the set na<w1Da(A) is called the kernel of D on

A.

Corollary 2.10. Boundedness Principle for Analytic

Berivations. If D is an analytic derivation on the analytic

set A with kernel K, then for any coanalytic subset C of X

with KCC there is some countable ordinal 6 such that

D8(A)CC. In particular, if D is an analytic derivation on X

with n a<w Da(X)=0, then there exists a countable ordinal 0
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such that D(X)-.

Proof. Suppose D is an analytic derivation on the

analytic set A with kernel K, and assume that C is a

coanalytic subset of X with KCC. Let r be the dual of D,

i.e., P(M)=X-D(X-M). Then r is In monotone. Also, for each

a, Pa(X- A)=X- Da(A). Since KCC, X- CCCl(P;X-A). Therefore,

by theorem 2.1(f) there is a countable ordinal a such that

X- CCPa(X- A). Consequently, Da(A)CC. o
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CHAPTER III

THE BOUNDEDNESS PRINCIPLE

AND AN ARGUMENT OF SAINT RAYMOND

In this chapter we give an application of the

boundedness principle for analytic derivations. Namely, we

reprove a portion of a faithful separation theorem of J.

Saint- Raymond [4]. By a faithful separation property we

mean a property P such that if A and E are disjoint analytic

subsets of the product XxY of two Polish spaces X and Y and

for each x, Ax={y:(x,y)EA} has property P, then there is a

Borel subset B of XxY such that ACB, BRE=O and for each x,

Bx has property P. In 1939, Novikov [3] proved that

compactness is faithful separation property. Some

thirty-seven years later, Saint-Raymond proved that

a- compactness is a faithful separation theorem.

Theorem 3.1. (Saint-Raymond, 1976 [4]) Define C to

be the collection of all Borel subsets of XxY with compact

sections. Let A, E E J(XxY) and assume that Vx there is a

a- compact subset K of Y such that A C K and K l E= 0.x x x x x
Then there are Borel sets Bn E C such that A C B = U BU

and B f E = 0.

29
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Corollary 3.2. If B is a Borel subset of XxY whose

sections are K0,,then B E Co.

Proof of theorem. In demonstrating this, Saint-Raymond

uses a derivation operator which we define below. Let A and

E be two disjoint analytic subsets of XxY. Let 9 be a

continuous surjection of some Polish space P onto A.

For each subset Z of P define D(Z) to be the set of

points z of Z such that for each neighborhood V of z,

9(VfZ)n({x}xY) f E #0, where x = rX(g(z)).

Saint-Raymond then gives the following recursion:

Z0 = P Za+I = D(Za), and ZA= fl Za if A is a limit
a<tA

ordinal and then proves the following lemma and corollary.

Lemma 3.3. [4,p. 393] If B is a Borel subset of P

which contains Za, a < w1 , then there is H E Ca containing

9(P-B) and disjoint from E.

Corollary 3.4. [4,p. 394] If 3 a < w such that Z=

0, then there is H E C. such that A C H andHf E = 0.

Consequently to prove the above theorem, it suffices to

show that for some a< w, Za = 0 given that for each xEX,

the section A. is contained in a K, disjoint from E. In
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order to prove this, Saint-Raymond gives an indirect

argument by showing that if the Za are nonempty then there

is a compact set K contained in a section of AUE and such

that no IK can contain KOA without meeting KfE. Below we

give a different argument which involves the boundedness

principle for monotone coanalytic operators and the Baire

category theorem.

Claim 1. D is an analytic operator. Consequently, if

Z is analytic, then Za is analytic for a < w 1 .

Proof. For each mEH, define the operator Am: 2P-+ 2P

as follows:

xEA,(Z) IFF

xE 7r, {(z,(zn),y)EZxZIxEVn[d(z,z)<1/m A

1r(V(zn))=?rj(9(z))] A v(zn)-+y ,

where d is a metric for the topology on P.

We then have

zED(Z) IFF Vm zEAm(Z)-

Consequently, it suffices to show that each AM is analytic.

Let 0 be a continuous surjection of some Polish space Q

onto E. Fix mEN. For each kEN, set

Bk = {(z,(zn),w)EPxP xQId(zk,z)<1/m},

Ck = (z,(zn),w)EPxP xQIr,(V(zk))=r, (V(z))Iand

Dk = {(z,(zn),w)EPxP xQjP((zk) ,(w))<1/k}.
For each k, Bk is open, Ck is closed and Dk is open. Next

define for each k,
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fk: Px PN XQpxpH xQ by

fk(z,(zn),w) = (zk,(zn),w).

Note that for each k, fk is continuous. Now define A:

2 -+2 by

A(K) = fl (BkfC k Dkfkjk))
k-i

Since for each k, BkCk and Dk are Borel and since for each

k, fk is Borel measurable, it follows that A is a Borel

operator. Finally,

zEAm(Z) IFF (3((z.),w))(z,(zn),w)EA(ZxP xQ).

Therefore, A is a Z operator. Q.E.D.

Now let P be the dual operator of D, i.e., P(B) =

P- D(P- B) . Note that Va < w 1 , ra(0) = P-Za.

Claim 2. P is an inductive, monotone R, operator.

Proof. Suppose B C P. Then D(P-B) C P-B. Thus,

B = P-(P-B) C P-D(P-B) = P(B).

Therefore, P is inductive.

To show P is monotone, suppose that B C C. Then P-C C

P-B. Hence D(P-C) C D(P-B). Thus, P(B) = B-D(P-B) C

C-D(P-C) = P(C).

Lastly, since D is F , P is 11. Q.E.D.

Next, we make use of the Baire category theorem.

Claim 3. If for each xEX, A. is contained in a K

disjoint from E. , then for each nonempty Z C P, D(Z) Z.

Proof. Fix xEX such that 9(Z). # 0. There is a



33

sequence of compact sets {K}W such that A C K and
n- i.i1

(U Kn) n0Ex = 0. Thus,

~ (Ax) C 9 1( K) = U (Kn)

Since ~ (A.) = i({xxy) , 0'1(Ax) is a closed subset of

P. Also note that for each n, 0~ 1 (K) is closed. Now set

C = Z 0 V 1 (Ax)

Since (Z)x #J0, C # 0. Furthermore, C is Polish and C C

U 0 1 (Kn). Therefore by the Baire category theorem, there

is nEN such that intC P 1 (Kn) f0. Consequently, there is

an open subset V of P such that CV # 0 and
COv C ~ 1(Kn). Choose zE ZOVnp~f'(A.). Since

P(ZfV)({x}xY) C K , zD(Z). Thus D(Z) J Z. Q.E.D.

Claim 4. If for each xEX, Ax is contained in a K

disjoint from Ex, then there is a < w such that ra(0)

Proof. Since P is an inductive, monotone, coanalytic

operator, II<wi . Thus r(U ra(0)) = U ra(0).
a<w1  a<wc

Consequently by the claim, U ra(0) = P. By the
a<w1

boundedness principle, there is a<w such that P C ra(0 )

Hence pa(0 ) = P. Q.E.D.

An immediate consequence of claim 4 is: If for each

xEX, Ax is contained in a K, disjoint from Ex, then there is

a < w1 such that Za = 0. This completes the proof of

Saint- Raymond's theorem.
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CHAPTER IV

A FAITHFUL SEPARATION THEOREM FOR ANALYTIC

SETS WITH CONVEX SECTIONS

Once again, by a faithful separation property, we mean

a property P such that if A and E are disjoint analytic

subsets of the product XxY of two Polish spaces X and Y and

for each x, Ax={y:(x,y)EA} has property P, then there is a

Borel subset B of XxY such that ACB, BOE=O and for each x,

Bx has property P. In this chapter we show that convexity
xk

is a faithful separation property in the case Y=R Our

proof resembles the method of the proof of Theorem 2 in [7].

Let us mention that in [11], Sarbadhikari and Srivastava

prove that convexity is a faithful separation property in

the case Y=R. However, their technique heavily uses the

order structure of R and does not seem to generalize.

Given a collection r of sets, the monotone f family

generated by 1 is the smallest family of sets containing r

and closed under countable monotone limits. Let Ibe the

monotone family generated by the sets BEB(XxRk) such that

for each x, Bx is compact and convex.

35



36

Theorem 4.1. Suppose A,EE A(XxRk ) and AfE=O.

Furthermore, suppose that for each xEX, Ax is convex. Then

there exists a set BEI such that ACB and BfE=0.

First, let us give a consequence of this theorem.

Also, let us note that if X is a singleton, then this is the

result of Preiss [7].

Corollary 4.2. 1 = {BEB(XxRk): Vx Bx is convex}

Proof. Let C = {BEI(XxRk): Vx Bx is convex}. Then C

is a monotone class and C contains all Borel sets with

compact, convex sections. Thus, I C C . To verify the

opposite inclusion, suppose CEC. By the above theorem,

there is BEI such that CCB and Bf[(xxRk)\C]=0. We must have

B=C, and consequently, I=C. o

Before giving the proof we first verify a few

preliminary lemmas.

Lemma 4.3. The family I is closed under finite

intersections.

Proof. Let I = {BEB(XxRk): Vx Bx is compact and

convex}. Let S = {BEI: V AEI , AOBER} . Then SCI and ICS.

Furthermore, S is a monotone family. Hence S=I. Next,

consider the collection T = {BEI: V AEI , AOBE}. 1T is a
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monotone family containing 1. Thus, I = T. Therefore, if

B,CEI then BOCEi. By induction, I is closed under finite

intersections. o

Lemma 4.4. I is closed under countable intersections.

Proof. Suppose {Bn} =CI . Then by lemma 1, for each

S m, BnEf. Since n=1 Bn =1 [ =1 Bn and I is

a monotone family, n BnEI. 0

Definition. An ordered pair A,E of subsets of XxRk is

called separated if there exists a set BE! such that ACB and

ERB=O.

Lemma 4.5. Let A and E be subsets of XxRk and let A=U

An, AnCAn+1 and E= U En. If the pair A,E is not separated

then there exist n and m such that the pair AnEm is not

separated.

Proof. Suppose not. Then for each (n,m)ENxN there is

CnmE! such that AnCCIUm and Emfnm =0. Set Cn =

=n =Ciml. Then each CnEI. Also, C = Ua=1 Cnl.

Since for each n, AnCAn+1, AnCCn Hence ACC. Furthermore,

for each pair (nm), EmlC n=O. Hence CfE=O. Therefore, we

have a contradiction. o

Definition. Let DCXxRk. sconv(D)-{(x,y)EXxRk.
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yEconv Dx} where conv(S) denotes the convex hull of S.

Lemma 4.6. If KCXxRk is compact, then sconv(K) is

compact.

Proof. Since K is compact, r2 (K) is compact. Hence,

there is nEN such that r2 (K)CBn where Bn={yEIRk: ||y||$n}. We

assert that sconv(K) is contained in the compact set

1i(K)xBn. To this end, suppose (x,y)E sconv(K), i.e., yE

conv(KK). Then yEir(K). In addition, by Carthe odory's

+1
Theorem [8,p.155], y = 1_siyi where for each 1(iik+1,

k+1
siE[0,1] and yiEKx, and Y+si = 1. For each i, yiEBno

Since Bnis convex, yEBn. Therefore, sconv(K) C r(K)xBno

Consequently, it suffices to show that sconv(K) is closed.

Suppose {(x11 )I1 1)}D C sconv(K) and lim (xn1,y)nnn-+w

(x,y). For each n, ynE conv(K ). Thus, we can write ynn
k+1

s y where for each 1 iik+1, s'E[0,1] and y 1EK , and
= n nnn

k+1
_=1si = 1. For 1 iik+1, consider the sequences {yl}= 1 and

s Using the compactness of Bnand of [0,1], we may

assume without loss of generality by taking subsequences

that each of these sequences converges. For 1<i<k+I, let

ilim ym = y and lim sm = s . We have for each 1 iik+1,
m-+o M-+O

lim (x ,y) = (x,y1 ). For each 1 iik+1, since for each m,
j -4CD



39

(xM,yM)EK, (xy1)EK. Since lim yn = y, we have y =

+ 1 - - n - + m +

sl y. Also, since for each 1<iik+1, lim s, = s +s
i=1 j-+m '1=1

= 1. Therefore, yE conv(Kx), i.e., (x,y)Esconv(K). This

completes the proof. o

Proof of theorem 4.1. Assume that the pair A,E cannot

be separated. Let f:Wt+-+A and g:N-++E be continuous maps of

the space NN ( the space of sequences of positive integers

with the product topology) onto A and E respectively. Given

a finite sequence of integers ni,...,ni let

<n, , ... .,ni>={oENN: o(j)<ng , 1<jsi}

(nj,...,n1 )={oEIN: c(j)=n., 1 jii}.

Also for each finite sequence ni,...,ni let

A(n ... ,*ni)=f(<nj,...,ni>)

E(nj,,...,ni)=g((njj,...,)nj)).

Now A=Un A(n),and for each n, A(n)CA(n+1). Also,

E=UmE(m). Therefore, by Lemma 4.5, there are positive

integers n. and m1 such that A(n,) and E(ml) cannot be

separated. A(ni)=UnA(ni,n) ,and for each n,

A(nl,n)CA(nl,n+1). Also, E(mi)=UmE(mi,m). Therefore, by

Lemma 4, there are positive integers n2 and m2 such that

A(nl,n2 ) and E(mjm2 ) cannot be separated. Continuing,

repeated use of Lemma 4.5 gives us two sequences {n} 1 and

{milT=, of positive integers such that for each i,
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A(ni,...,ni) and E(nl,... ,n) cannot be separated.

Set

A =ni A(nl,..,ni) and

E = fli E(n1 ,...,ni).

Then A is compact and E is a singleton. Let E = {(xO'70) )

and A = sconv(A). Then by Lemma 4.6, A is compact. Also,

since the sections of A are convex, A CA. Consequently,

A fE=0. For E>0, let

UE = {(x,y)EXxRk: d((x,y),A*)M },

VE= {(x,y)EXxRk: d((x,y),E)Ge} and

V = sconv(U).

Claim 1. For each E>O, VEB (XxRk) and each section of

V is compact and convex.

Proof of claim. Fix xEX. Consider (UE)x = {y:

d((x,y),A ) E}. This set is closed and bounded and

therefore compact. Hence (VE is compact and convex. It

remains to show that V is Borel. Now

V f = ir 12{(xlyly 110* ' 'k+1,)s ,. . . pk+1 )EXx (R k )k+2 x[0,1] k+1.

k+1 {. (sk+1 .
k+s.Y Y1 s = 1 and for each j, (x,yJ)EU,}.

j=1 j=1
Hence, V is the projection of a Borel set whose sections

are u-compact (See [10]). Therefore, V is Borel. o

Claim 2. There is nEN such that Wi/nfl V/n 0.

Proof of claim. Assume not. Then for each n, let

(xnyn')EW1/nn V1/n. For each n, since (x nyn)EW1/n YnE
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k+1..
cony ((U1/n)x ) Thus, for each n, yn k. si where

xn ny=

for each j, s E[0,1] and yE(U+n)x, and Y sy = 1
jn =1

Now for each n and j, 1 jik+1, there is (u,z )EA such that

d((xn,yI),(u ,z ))<1/n. By the compactness of A and [0,1]

let us assume without loss of generality that for each j,

the sequences {(u ,z )}= and {s } converge. For each

j, let lim (u ,zi) = (u3 ,z3) and lim si = si. Note that
n-w n n-4

s= 1. Then lim (xn1 ,y) = (u3 ,zi). However,
3=11n*

lim (xnyn)=(xoy0). Thus, u =x0 for 1 jik+1. (x0,y0)EA ,

which is a contradiction. o

Choose 6>0 such that V6 f v6 = 0. By compactness there

is iEN such that A(n,. .. ,n) C U6 and E(m1 ,... ,mi)CV6 .
Thus, V6 separates A(nl,... ,ni), E(m1 ,...,mi). This is a

contradiction. This completes the proof of the theorem. o

P. Holicky has shown in [3] that every infinite

dimensional locally convex space, X, contains a convex Borel

set which is not in the monotone family generated by the

compact convex subsets of X. Therefore, Theorem 4.1 does

not hold if Rk is replaced by any infinite dimensional

locally convex space. However, we do pose the following

question.
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Question. Is convexity a faithful separation property

in the case where Y is an infinite dimensional locally

convex space?

Finally, we would like to add that while typing this

dissertation it was discovered that the main result of this

chapter, namely Theorem 4.1, has already been proven by J.

Saint-Pierre [9].
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CHAPTER V

EXTREME POINT SELECTIONS

In [4], Jayne and Rogers studied upper semi-continuous

multifunctions from a metric space to a Banach space with

its weak topology. Among other things, the authors prove

that an upper semi-continuous map from a metric space to the

unit ball of a Banach space with compact values has a Borel

class 1 selector. In this chapter we deal with upper

semi-continuous multifunctions with values in a dual Banach

space with the weak* topology.

Theorem 5.1. Let T be a metric space, X a separable

normed linear space. Let B={x*EX :I|x*I<1} where X denotes

the dual of X and give B the relative weak* topology.

Suppose F:T-.B is an upper semi-continuous multifunction with

compact values. Then F has a Borel class 1 selector f with

respect to the weak* topology on X such that for each t,

f(t)Eext(cl conv F(t)).

Recall that X is reflexive if and only if the weak and

weak* topologies on X coincide. Thus, by our main result,

44
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an upper semi-continuous map of a metric space to the unit

ball of a separable, reflexive Banach space with compact

values has a Borel class 1 selector. This is the

Jayne-Rogers theorem. In addition, our selection picks

extreme points. Let us mention that the selection given by

Jayne and Rogers does not necessarily involve extreme

points.

We apply our theorem to improve the Borel class of a

selection lemma of L. Baggett [1].

A multifunction F:T-.Y is a function whose domain is T

and whose values are nonempty subsets of Y. If ECY, F 1 (E)

{tET:F(t)fE#0}. F is said to be lower semi-continuous

(lsc) if F1'(V) is open for all open V, and F is said to be

upper semi-continuous (usc) if F_1(K) is closed for all

closed K. The graph of a multifunction, denoted by Gr(F),

is the set {(t,x)ETxX:xEF(t)}. A function f:T-*X is a

selector for the multifunction F:T-4X if for all t,

f(t)EF(t). Also, a function f:T-4X is said to be of Borel

class 1 if f- (V) is an F for all open V.
0*

By ext(K), conv(K) and cl conv(K), we mean the set of

extreme points of K, the convex hull of K and the closed

convex hull of K respectively.

Let Y be a topological space, and let F(Y) and I(Y)

denote the collection of all nonempty closed subsets of Y
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and all nonempty compact subsets of Y respectively. For

each open UCY, define

C(U) = {FEF(Y):FCU}, and

I(U) = {FEF(Y):FfU#O}.

The collection {C(U):U open in Y} U {I(U):U open in Y} forms

a subbase for a topology on F(Y). This topology is called

the exponential or Vietoris topology on P(Y). For a

detailed discussion of this topology, see [6]. Now suppose

the topology on Y is given by a bounded metric d. We can

then define a metric pH (called the Hausdorff metric) on

F(Y) as follows:

pH (A,B) = max {DA(B),DB(A)}

where DA(B)=sup{d(A,b):bEB} and d(A,b)=inf{d(a,b):aEA}. An

important fact is that the Hausdorff metric topology on I(Y)

coincides with the relative exponential topology on I(Y)

[7 ,p.47].

Proof of Theorem 5.1

Assume the hypotheses of the theorem are satisfied.

Define the multifunction H:T-4B by H(t)=ext cl conv(F(t)).

We note that if KCB is compact then ext cl conv(K) C K

[5,p.132]. Thus, it suffices to show that H has a Borel

class 1 selector. The proof of this will follow from a

theorem of G. Debs.
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Theorem 5.2 [2]. Let T be a metric space, Y be a

Polish space, and G:T-+Y be a multifunction. Suppose Gr(G)

is a 06 , a>O is an ordinal, and G~1(U) is of additive class

a for open UCY. Then G has a selection which is of additive

class a. In particular, if G~ (U) is an F for each open U,

then G has a class 1 selector.

We check that the multifunction H satisfies the

conditions of Theorem 5.2 via a sequence of lemmas.

Let C(B) denote the collection of all nonempty, convex,

weak*- compact subsets of B. We give C(B) the relative

Vietoris topology. Since B is a compact metric space, this

topology agrees with the Hausdorff metric topology.

Lemma 5.3. Let E: C(B)-+B be the multifunction given by

E(K)=ext(K). Then E is lsc.

Proof. It suffices to show that E 1 (N) is open for

each basic open set N. Let

N = {yEB:Ix(xi)-y(xi)<CE, 1 i<m}

be a basic open set in B. Let C be the complement of

E 1 (N). It suffices to show that C is closed. Let us

define G: [C(B)]2 m-+C(B) by

G(A1 ,A2 ,...,A 2 m) = conv (A UA2U... UA 2m)-

Then G is continuous. We claim that KEC if and only if
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KEG([C(B)-I(N)]2m). We prove this as follows:

Suppose KEC. Then set for 1 iim,

K = {kEKI k(xi)>E+y(xi)} and

Ki ={kEKj k(xi) -e+y(xi)}.

Let L,...,L be a listing of the ic and K which are
1 p 1 1

nonempty. Then L. EC(B)-I(N) for 1<jip. Also, ext(K)CU L .

By the Krein-Milman theorem [8,p. 242], K= cl conv(ext K).

Consequently, K = conv(L1 U. ...ULp). Therefore,

KEG( [C(B)- I(N)]2m)

Conversely, suppose KEG([C(B)-I(N)] 2 m). Then K =

conv(A1 ,...,A 2m) where for each 1<j 2m, A EC(B)-I(N).

Hence, if kEext K, kEAq for some q. Thus, KEC. Therefore,

the claim holds.

Since [C(B)-I(N)]2m is compact, C is compact. o

Lemma 5.4. C(B) is a compact subset of I(B).

Proof. Suppose Ln-4L in the Hausdorff metric where for

every n, LnEC(B). To show that LE C(B), it suffices to show

that L is convex. To this end, let h,kEL and let tE[0,1].

Since Ln-4L, there are sequences {hn}w= and {kn}=1 such

that for every n, hn and knELIn, and hn-+h and kn-+ k. Since

each Ln is convex, sn=thn+(I-t)knELn for all n. We have

that s-th+(1-t)k. Since LnL, we must have {snO=

converging to a point in L. Thus, th+(1-t)kE L. Therefore,

L is convex. [
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Lemma 5.5. The map J:I(B)-+C(B) given by

J(K)=cl conv(K) is continuous.

Proof. Suppose {K n=1 C I(B) and Kn-+K. We show that

J(Kn)-4J(K). Since C(B) is compact, there is a subsequence

{Kn } of {Knwn=1 and LEC(B) such that J(Kn )-+L. We
Pp p

assert that L = cl conv(K). Suppose x E ext cl conv(K).

Then xEK. Since Kn -+K , there is a sequence {kn =1 with
p p

kn EKn for each p such that kn -+x. For each p, kn EJ(Kn )
p p p p p

Thus, xEL. Consequently, ext cl conv(K) C L. Hence,

cl conv(K) C L. Next, suppose yEL-J(K). There is a

continuous linear functional f on B such that f(y)<inf f(k)
kEJ(K)

[8,p.241]. Choose aER such that f(y)<a<inf f(k).
kEJ(K)

f~([a,w)) is closed and convex. Furthermore, KCf~'((a,)).

Thus, there is P such that if Pip then

Kn Cf'((a,))Cf~ ([a,w)). Therefore, for Pip,

J(Kn )Cf ([a,w)). Since J(Kn )-+L, LCf~ 1 ((a,w)). This
p p

contradicts the fact that yEL. Hence, LCdl conv(K).

Consequently, L=cl conv(K). Now assume {J(Kn )'=1 does not

converge to J(K). Then there is some c>O and some

subsequence {Kn = of {Kn}$=1 such that for each q,
q

PH(J(Kn ),J(K)) > c. However, {J(Kn )1= has a convergent
q q

subsequence. By the above argument, this subsequence must

converge to J(K)=cl conv(K). This is a contradiction.
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Therefore J(Kn)-+J(K). o

Lemma 5.6. Gr(H) is a C6.

Proof. For each nEN, set

An = (tx)I 3 sE[1/n,1-1/n] and 3u,vEJ(F(t)) [d(u,v) 1/n

and x=su+(1-s)v]}

where d is a metric for the topology on B and J is the map

J(K)=cl conv(K). (We remind the reader that since X is

separable, B is a compact metric space). We assert that

each An is closed. Fix n. Suppose (tmaxm)EAn and

(tm'xm)-+(tx). For each m, Xm=SmUm+(1-sm)vm where

smE[1/n,1-1/n], umIvmEJ(F(tm)) and d(um'vm) 1/n. By the

compactness of [1/n,1-1/n] and of B, the sequences {sMi=D

{Umlm=1 and {vm}==1 all have convergent subsequences.

Without loss of generality, assume s M- s, um - u and vm4 V.

Then clearly, sE[1/n,1-1/n]. Also, since J is continuous

(lemma 4), JoF is usc. Thus, Gr(JoF) is closed [6,p.175].

Hence, u,vEJ(F(t)). Furthermore, d(u,v) 1/n and

x=su+(1-s)v. Therefore, (t,x)EA. Consequently, A isn* n

closed. Now Gr(H) = Gr(JOF)\ Un An, and since Gr(JoF) is

closed, Gr(JoF) is a F6 . Thus, Gr(H) is a C6 .- o

Lemma 5.7. For each weak* open set U in B, H 1 (U) is

an F.

Proof. Let U be a weak* open set in B. By lemma 3,



51

E~ (U) is open in C(B). We can write E~ 1 (U) = U1 'n where

each In is a basic open set. We have

Hf 1 (U) = {tIH(t)flU#O}

= textt J(F(t))fU#O}

= {t| J(F(t))EEf1 (U)}

= {t| J(F(t))E Un a}

= Un {tl J(F(t))EUn}*

Next consider a basic open set C(U0o)I(U1)fl. ..fI(Uk) in

C(B). Let

A={tI J(F(t))EC(U0)I(Uj)l...fI(Uk) I

Then

A={t IJ (F (t) )CU0}n{t|J(F(t))nUjo#9} ... nit| J(F(t))nUkf '

Since JoF is usc. Thus, the set {tj J(F(t))CUO} is open in

T (and hence an F). Also, the sets {tj J(F(t))fUio},

1<iik, are F0's. Therefore, the set A is an F.

Consequently, H (U) is an F. o

This completes the proof of the theorem.

One corollary of the above theorem is a selection lemma

due to L. Baggett [1]. Baggett uses this lemma to prove a

selection theorem which he asserts that "together with its

immediate consequences, should suffice for most needs within
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functional analysis" [1,p.2].

Corollary 5.7. [1] Let X be a separable normed linear

space, let Y be a closed subspace of X and let R denote the

* *
restriction map of X onto Y . Let K be a compact subset of

(X ,w*), and let L=R(K). Then there exists a Borel map (in

fact a Borel class 1 map) s:L-4K such that

(1) R(s(y)) = y for all yEL.

(2) s(y) is an extreme point of R7 1 (y).

(3) If yEext(L),then s(y)Eext(K).

Proof. Consider the multifunction F: L-AK given by

F(y)=R1(y). Then F is usc with compact, convex values. By

theorem 5.1, there is a Borel class 1 selector, s:LAK for

H(y)=ext(F(y)). Clearly, R(s(y))=y, and s(y) is an extreme

point of R~1(y). Now suppose that yEext(L). Assume that

s(y) = tk+(1-t)h where k,hEK and O<t<1. Consider R(s(y)).

R(s(y))=y=tR(k)+(1-t)R(h). Since yEext(L), we have

h,kER1(y). Therefore, since s(y)Eext 1~1(y), we must have

k=h. Thus, s(y)Eext(K). 0

Corollary 5.8. The multifunction E:C(B)-*B given by

E(K)=ext(K) has a Borel class 1 selector.

Proof. Define F:C(B)-4B by F(K)=K. Then F is usc, and

E(K)=ext(cl convF(K)). Therefore, by our main theorem, E

has a class 1 selector. o
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Let C(X) denote the collection of all nonempty,

convex, weak*- compact subsets of X*. We give C(X ) the

relative Vietoris topology. Let us mention that if X is

infinite dimensional then X is not metrizable [3,p.10].

Consequently, C(X) would not be metrizable. However, X is

a Lusin space, i.e., X is a continuous one- to- one image of
N*

NN. Hence, C(X ) is an analytic space.

Corollary 5.9. The multifunction E:C(X )-4X given by

E(K)=ext(K) has a Borel class I selector. Moreover, E has a

continuous selector if and only if X=R

Proof. For each nEN, set Bn=n-B where B={ xEX:|x|<11}.

Let C(Bn) denote the collection of all nonempty, convex,

compact subsets of Bn. We give C(B) the relative

exponential topology. Def ine f or each n, En: C(Bn)-.Bn by

En(K) = ext K. It follows from corollary 5.8 that for each

n there is a Borel class 1 selector fn for En. Define

f:C(X )-4X as follows:

f(K) = fn(K) where n=least{m:KCB.}.

Then VKEC(X*), f(K)EE(K). Furthermore, f is of Borel class

1, since

f~I (A) = f~ 1 (A) U [2 f i(A)(C(Bi.1))c]

for any ACX and since each fn is of Borel class 1. Hence,

f is a Borel class 1 selector for E.

For the second assertion, suppose X=R. Define f:C(R)-*R
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by f([ab]) = b. Then f is continuous. For the converse,

consider R2 and suppose f is a continuous selector for

E:C(R2 ) -42 where E(K) = ext(K). For O0 r, let 10 denote

the closed interval with endpoints (cos O,sin 0) and (-cos

0, -sin 0). Without loss of generality, assume f(IO) =

(1,0). Since C(B) is compact, fIC(B) is uniformly

continuous. Therefore, 3 6>0 such that if pH(I0,a)<6 then

d(f(IO),f(Ia))<1. Now choose k>2, such that PH90'/k *

Then we have d(f(IO),f(Ir/k))<. Consequently, f(I/k) =

(cos r/k,sin r/k). Since PH(O'Ir/k)<6 ' PH(,7r/k' 12r/k)< 6 '

Hence, d(f(Ir/k)Vf(122-/k))<1. Therefore, f(I2,/k) =

(cos 2r/k,sin 2r/k). Continuing, we get that f(I mr/k)

(cos mr/k, sin mr/k) for 1 mik. Thus, in particular, f(I,)

= (-1,0). However, 10 = 1 and f(IO) = (0,1). Therefore,

we have a contradiction. Hence, f cannot be continuous. o

Remarks. An alternative proof to Baggett's lemma is

given by considering the map s(y)=f(~1 (y)) where f is the

selector above. Also, the above shows that Debs's theorem

does not hold in the case a=0.

Next, we give an example of a class 1 selector for

E: C([0,1])-+[0,1]2 given by E(K)=ext(K).

Example. Define f:C([0,1] 2 ) -4+10112 by letting f(K)
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be the smallest element of (K,<') where (a,b)<'(c,d) if and

only if a<c, or a=c and b<d. Note that f is a selector for

E(K) = ext(K). We assert that f is of Borel class 1.

Consider the basic open set U = (a,b)x(c,d) where a,b,c, and

d are rational. It suffices to show that f~1 (U) is an F,.

For rEQf[0,1], define Vr = [0,r)x[0,1] and Hr =

[0,1]x[0,r). We have that K E f~ 1 (U) if and only if KE I(U)

f C((al]x[0,1]) f A f B , where

A =fl rEQ[ r(VfU) U I(((a,b)x([0,c)U(d,1])) fl Vr)c ]and
B = UrI(ifVr([a,b]x[0,c]))c f i(UnHnvr) I

r,qEQ[(qnqr

q~c

Since I(U), C((a,1]x[0,1]), and B are all open, and A is

closed, f~ (U) is an F.. Therefore, f is of class 1.

Another application of our theorem is

Corollary 5.10. There is a Borel class 1 selector for

F:I(X )-+X given by F(K) = ext cl conv (K)

Proof. Define G:I(B)-+B by G(K) = ext cl conv (K). It

suffices to show that G has a class 1 Borel selector.

Define the multifunction F:I(B)-+B by F(K)=K. Then F is usc.

Therefore, by our main theorem G has a class 1 selector. o

To conclude, we wish to communicate that while typing

this dissertation it was pointed out by a referee that
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Theorem 5.1 is essentially an application of a theorem of G.

Debs which is stated in [9] and proven in his thesis at the

University of Paris VI.
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