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In this dissertation we present some separation and
selection theorems. Ve begin by presenting a detailed proof
of the Inductive Definability Theorem of D. Cenzer and R.D.
Mauldin, including their boundedness principle for monotone
coanalytic operators.

By a faithful separation property we mean a property P
such that if A and E are disjoint analytic subsets of the
product XxY of two Polish spaces X and Y and for each x,
AX={y: (x,y)€A} has property P, then there is a Borel subset
B of XxY such that ACB, BNE=Q and for each x, B_ has
property P.

In Chapter III, using the boundedness principle for
monotone coanalytic operators, we reprove a portion of J.
Saint- Raymond’s argument that o¢- compactness is a faithful
separation property. Furthermore, we show in Chapter IV
that convexity is a faithful separation property in the case
Y=RE.

In Chapter V, we prove a selection theorem involving
compact- valued upper semi- continuous multifunctions with
values in the unit ball of the dual of a separable normed

linear space.
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CHAPTER I
INTRODUCTION

In this dissertation we present some separation and
selection theorems. In particular, we prove that convexity
is a faithful separation property, and we prove that under
certain conditions a multifunction with compact convex
values has a Borel class 1 selector which selects extreme
points. In addition, we give a detailed proof of the
Inductive Definability Theorem of Cenzer and Mauldin (3],
including their boundedness principle.

Before proceeding, we define some basic terms and set
some notation. A Polish space is a separable completely
metrizable topological space. Unless otherwise stated, we
assume that all spaces are Polish. By Nm we mean the space
of all infinite sequences of positive integers with the
product topology. For a space X, we denote by B(X) the
family of all Borel subsets of X, that is the smallest
family including the open subsets of X and closed under
countable unions and complementation. By 06’ i}, and I} we
mean the collections of all countable intersections of open
subsets of X, all countable unions of closed subsets of X,

and all countable unions of compact subsets of X



respectively. We say a set A is analytic if it is the
continuous image of N, Ve denote by 4(X) the family of
analytic subsets of X.

By a faithful separation property we mean a property P
such that if A and E are disjoint analytic subsets of the
product XxY of two Polish spaces X and Y and for each x,
sz{y: (x,y)€EA} has property P, then there is a Borel subset
B of XxY such that ACB, BME=) and for each x, B_ has
property P. Some examples of faithful separation properties
include compactness [8], o- compactness [10], first category
[2], countable [5,6,7] and measure zero [2]. In Chapter IIIL
we reprove a portion of J. Saint- Raymond’s argument that
o- compactness is a faithful separation property.
Furthermore, wé show in Chapter IV that convexity is a
faithful separation property in the case Y=Rk. Our argument
given is a parameterization of an argument of D. Preiss [9].

By a multifunction F:X-Y we mean a function whose
domain is X and whose values are nonempty subsets of Y.
(Here, our spaces need not be Polish). By a selector for a
multifunction we mean a function f:X-Y such that for, each
x€X, f(x)€EF(x). By the Axiom of Choice, there exists a
selector for a given multifunction; however, one is usually
interested in a selector that possesses a certain property,
for example continuity, Borel measurability, etc. In the

literature, there are a good number of results concerning



what sort of selector one can obtain under certain
assumptions on the multifunction F:X-Y and on the spaces X
and Y. Ve refer the reader to the surveys of Wagner [11,12]
for a listing of many of these results.

In Chapter V, we prove a selection theorem involving
compact- valued upper semi- continuous multifunctions with
values in the unit ball of the dual of a separable normed
linear space. This result is closely related to a previous
theorem of Jayne and Rogers [4]. One difference is that our
theorem deals with the selection of extreme points. As a
corollary of our theorem, we give an alternative proof of a

selection theorem of L. Baggett [1].
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CHAPTER II
THE INDUCTIVE DEFINABILITY THEOREM

In this chapter we aim to give a detailed proof of the
Inductive Definability Theorem of Cenzer and Mauldin [1].
In particular, we verify a boundedness principle for
analytic derivations. The approach here is the same as that
in [1]. Ve begin by recalling some definitions.
By an operator over X, we mean a map from the power set
P(X) to itself. An operator I' is said to be monotone if for
any K CM CX, I'(K) CT"(M). An operator is said to be
inductive if for any KCX, KCI'(K). The dual operator D of an
operator I' over X is defined by
D(A) = X-T'(X-A).
Let A C X and let ' be an operator on X. We define
rowa) = a,
r**l(a) = n(r%4)) for all ordinals e,
rta) U, r%(A) for limit ordinals A.
a

The set C1(I';A) = (J I'%(A) where the union is over the set

a
of all ordinals is called the closure of " on A. For some

ordinal a < card(X)", Pa+1(A) = I'*(A) = C1(T';A), and we

denote the least such ordinal by IT5A4]. Also, we let IT| =



|T';0|, and we let C1(T') = C1(I';0).
An operator A over a Polish space X is said to be Borel

(or A}) if it is defined in one of the following ways:

(a) A(K) = B, where B is a fixed Borel subset of X;

(b) A(K) = f'l(K), where f is a fixed Borel map from X
to X;

(c) A(K) = X-K;

(d) A(K) = A; (A2 (K)), where A; and A, are previously

defined Borel operators;

®
(e) A(K) = LJlAn(K), where the A, are previously
nNn=

defined Borel operators.

An operator I' over a Polish space X is analytic or ?}
(respectively coanalytic or II!) if there is a Polish space Y

and a Borel operator A over XxY such that for all x and K:
x € I'(K) iff (Jy) (x,y) € A(KxY),
(respectively) (Vy) (x,y) € A(KxY).
Note that I is an analytic operator if and only if its dual
is coanalytic. By an analytic derivation, we mean an
operator whose dual operator is monotone and coanalytic.

The notion of analytic derivation is due to Dellacherie (see

[2]).

Example. Let X be a Polish space. Let I' denote the



closure operator over X; i.e., I'(M)=M. Then I' is an example

of an analytic operator which is not necessarily Borel.
Proof. Note that I'(M)=M={x:(Vk)(Jy€eM) (d(x,y)<1/k}.

Let Y=xV.

B, of XxY by B, = {(x,(y,)): d(x,y,)<1/k}. Each B, is open.

Also, for each kEN, define fk:XXY4XXY by

Then Y is Polish. For each k€N, define a subset

£, (y,))=(vy>(y,)). Note that each f, is continuous.
Next, define an operator A over XxY by

A(R)=My (BN £,1(A)).
Then A is a Borel operator, and x€I'(M) iff (B(yn))
(x,(y,))€EA(MxY). Therefore, I' is analytic.

Next, we show that I' need not be Borel. Let AC[0,1] be
an analytic nonBorel set. There is a Borel set
BC[0,1]x[0,1] such that x,(B)=A. Now assume that I' is a
Borel operator. Then the operator I'* over [0,1]x[0,1] given
by T*(E) = Ljy A(EY)x{y} is also Borel (see Lemma 2.4). By
Theorem 2.1(a), I'*(B) is a Borel set. Now the sections of
I'*(B) are compact. Therefore, 7, (I'*(B)) is a Borel subset
of [0,1] [3,p.392]. However, 7, (F*(B))=7,(B)=A. This is a

contradiction. o

Theorem 2.1 Inductive Definability [1,p. 58].
(a) If A is a Borel operator over X, then A% is also a

Borel operator for each a<wy; and A(B) is a Borel subset of

X, if B is.



(b) If the monotone operator I' and the set A are both
analytic (resp. coanalytic), then for each countable ordinal
e, T%(A) is analytic (resp. coanalytic).

(c) If the monotone operator I' and the set A are both
coanalytic, then C1(I';A) is coanalytic.

(d) For any coanalytic subset C of X, there is a
monotone Borel operator A over Xxmm and a real rElNIN such
that C={x:(x,r)€C1(A)}.

(e) If T is a coanalytic monotone operator with
closure C, on the coanalytic subset P of X, then for any
analytic subset A of X with A C C, there is some countable
ordinal a such that A C I'*(P).

(f) If the inductive operator I' is either (1) Borel or

(2) monotone and either analytic or coanalytic, then |F|Sw1.

We refer to part (e) of the theorem as the boundedness

principle for coanalytic monotone operators.
Preliminary Results

Before proving the Inductive Definability Theorem, we
first prove several preliminary results. The first
lemma,which is mentioned in [1] ,but not proved, allows us in
a natural way to associate an inductive operator with any

given operator.



Lemma 2.2. Let I' be a monotone gi (resp. éi or ?i)

operator over X. Define the operator ¥ over X by

¥(K)=KUI'(K). Then ¥ is a monotone inductive gi (resp. éi or
gi) operator and for each ordinal a, I'*(0)=¥%(0)).

Consequently, C1(I')=C1(¥).

Proof. Suppose I' is a monotone g% operator over X (the
proof where T' is él or ?i is similar). Let KCMCX. Since I

is monotone, ¥(K)=KUI'(K)CMUI'(M)=¥(M). Therefore, V¥ is
monotone. Note also that KCKUI'(K)=¥(K). Hence, ¥ is
inductive.

Let A1 be a Borel operator over XxY where Y is Polish
such that x€l'(K) iff (Vy)(x,y)€A(KxY). Define A, over XxY
by Ay(L)=f 1(L) where £:XxY-XxY is the identity map
(f(x,y)=(x,y)). Then A, is Borel. Set A=A UA,. Then A is
Borel. Now x€¥(K) iff (Vy)(x,y)€A(KxY). Thus, ¥ is IL.

Clearly, I'(0)=¥(®). Suppose that for some a,
r%(#)#¥%(#). Let A be the smallest ordinal such that
FA(@)#WA(ﬁ). Either 1 is a successor ordinal or a limit
ordinal. Suppose A is a successor. Then A=f8+1 for some
ordinal B. Since f<], Fﬂ(¢)=wﬂ(@). Also, since T is
monotone, for all 7, P7(@)CP7+1(®). Thus,
¥ (0)=4(¥9(0))=8(rP(8)) =D B)ur (1 (9)) =P (8)urA+1 (9)=rB+1 (9)
=PA(@), a contradiction. Hence, ) must be a limit ordinal.

Now, ¥1(8) =U,, ¥7(9) = U, I"(8) =T(®), a
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contradiction. Therefore, for each ordinal e, I'*(0)=¢%(0).

o

Recall from [1], the next lemma which says that if A is
a Borel operator and if x€X and KCX are fixed, then the
determination of A(K) at x depends on only a countable

amount of information.

Lemma 2.3 [1,p. 66].
(a) If A is a Borel operator over the Polish space X, then
for any x€X and KCX, there are countable sets UCK and VCX-K
such that, for any set M with UCM and VCX-M, x€A(K) iff
x€A(M).

(b) If T is a ?i monotone operator over X, then for any x€X

and KCX, x€M(K) iff (for some countable UCK) x€L(U).

(c) If T is a Hi monotone operator over X, then for any x€X

and KCX, x€l'(K) iff (for all countable V(CX-K) x€l'(X-V).

Proof of (a). Let 0 denote the collection of all
operators over X such that for every x€X and KCX, there are
countable sets UCK and VCX-K such that, for any set M with
UCM and VCX-M, x€A(K) iff x€A(M). Ve assert that 0 contains
all Borel operators over X.

Suppose A(K)=B where B is a fixed Borel subset of X.
Fix x€X and KCX. Set U=V=Q. Then for any M with UCMCX-V,
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x€A(K)=B iff x€A(M)=B. Thus, A€.

Suppose A(L)=f'1(L) wvhere f is Borel measurable. Fix
x€X and KCX. If f(x)€K, set U={f(x)} and V=0. Otherwise,
set U=} and V={f(x)}. In either case, if UCMCX-V we have
x€A(K) iff x€A(M). Therefore, A€Q.

Now suppose A(L)=X-L. Fix x€X and KCX. If x€K, set
U={x} and V=@. Otherwise, set U=p and V={x}. Then for any
M with UCMCX-V we have x€A(K) iff x€A(M). Thus, A€Q.

Next, assume Al,A2Eﬂ. We will show that A10A26Q. Fix
x€X and KCX. There are countable sets U; and V; such U, CK
and V,CX-K and if U,CLCX-V, then x€A; (A, (K)) iff x€A, (L) .
Let {un}ﬁ=1 and {vn}‘;=1 be enumerations of U; and vy
respectively. For each n, there are countable An and Bn
such that if A CJCX-B_, then u €A, (K) iff u €A,(J). Also,
for each n, there are countable Cn and Dn where CnCKCX-Dn
such that if C CJCX-D_, then V€5 (K) iff v €A, (J). Set U =
(Upeg Ay) U (USLy ©) and V = (U2, B) U (U%, D).
Then U and V are countable and UCKCX-V. Suppose UCMCX-V.
Then U,CA,(M)CX-V,. Consequently, x€A, (8, (K)) iff
x€A; (8,(M)). Thus A oA EQ.

Lastly, suppose that for each n, Anéﬂ. Ve assert that
LJ2=1 A, €0. Fix x€X and KCX. For each n, there are
countable U and V_ where U,CKCX-V_ such that if U CMCX-V_

then x€A (K) iff x€A (). Set U= J2_ U and V= [JO_
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V. Suppose UCMCX-V. Then x€(J>_, A _(K) iff x€(J® . A _(M).

n n=1 "n n=1 "n
Therefore, LJ:=1 An €. This completes the proof of part
(a).

Proof of part (b). Suppose I is a ?i monotone operator

over X. Let x€X and KCX. Let A be a Borel operator on XxY
such that x€l'(L) iff (Jy)(x,y)€A(LxY). Suppose x€I(K).
Choose y so that (x,y)€A(KxY). By part (a), there are
countable sets UCKxY and VC(X-K)xY such that whenever UCM
and VC(XxY)-M, (x,y)€A(M). Let T=x;(U). Then T is
countable and TCK. Also, UCTxY and VC(X-T)xY. Therefore,
(x,y)€A(TxY). Consequently, x€I'(T).

Conversely, assume that for some countable TCK, x€I(T).
Since T' is monotone, x€I'(K). This completes the proof of
part (b).

Proof of part (c). Let D be the dual operator of T.
Then D is a ?1 monotone operator. Fix x€X, KCX. x€I'(K) iff

xfD(X-K). By part (b), xfD(X-K) iff for all countable
VCX-K, x¢D(V). Equivalently, xfD(X-K) iff for all countable
VCX-K, x€I'(X-V). This completes the proof of part (c). o

Let A be an operator over X. Define the operator A* on

XxY by
A*(E) = U, A(E)x{y}.
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By EY, we mean {x:(x,y)€E}. An analysis of this
section-wise operator A* is useful in verifying some missing

details in [1].

Lemma 2.4. If A is a Borel operator thenm A* is a Borel
operator.

Proof. The proof is by induction on the class of Borel
operators on X. Set 0 = {A:2X42X:A* is Borel}.

Suppose A(K)=B where B is a fixed Borel subset of X.
Let ECXxY. Then A*(E) = Uy A(EY)x{y} = Uy Bx{y} = BxY, a
fixed Borel set. Thus, A€N.

Suppose A(K) = f'l(K) wvhere f:X-X is a Borel measurable
map. Define g:XxY-XxY by g(x,y)=(f(x),y). Then g is Borel
measurable. A*(E) = Ljy f'l(Ey)X{y} = g'l(E). Thus, A€N.

Now assume A(K)=X-K. Then A*(E):Ljy (X-EY)x{y} =
(XxY)-E. Hence, A€N.

Next, suppose A1 and A2 belong to Q1. Let A=A10A2. By
assumption, A1*0A2* = A*. For

8% 85*(B) = A;*((Uy Ay(B)x{y})
=U, 8,((Uy 8,(B)x{y})*)x{z}
= U, 8, (8,(E%))x{z} = 8*(E).
Hence A* is Borel, and consequently A€fl.

Lastly, assume that AnEﬂ for each n€EN. Let A=[Jn An.

Then

A*(E) = U, A(EY)x{y}



14

Uy (Up 8,(E))x{y}
Uy Un (8,(E)x{y})
Un Uy (4,(E)x{y})
= U, 4,%(B).

Therefore, A€N.
Consequently, 1 is the class of all Borel operators

over X. This completes the proof of the lemma. o

Lemma 2.5. If A is a Borel operator over X, then BA =
{Gx, (rp))eXx": x €A({y,,v5,--.}) }, where Y=XM. Then B,
is a Borel subset of XXXN.

Proof. The proof is by induction on the family of
Borel operators. For each‘m, set Gm={(x,(yn)): x#ym} and
Fm={(x,(yn)): x=y_}. Note that G is open and F_ is closed
for each m.

Suppose A(K)=C, where C is a fixed Borel subset of
<X,  Then By=CxX", a Borel subset of XxxV.

Suppose A(K)=X-K. Then By = N 6,- Thus, By, is a Gy,
and hence, BA is Borel.

Next, assume A(K):f'l(K) where f:X-X is Borel
measurable. Define g:XXX[N—»XXXIN by g(x,(yn))=(f(x),(yn)).
Then g is Borel measurable. Now By=U, g'l(Fm).
Consequently, BA is Borel.

Let A, and A, be Borel operators such that B, and B
1 2 A1 A2

are Borel subsets of XxXN. Set A=A 0A,. Now (x,(yn))EBA
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iff x€A; (Ay({y{,¥g,---})) iff xE{u:(u,(yn))EBA2} iff
xEAl*(BA2). Thus, BA=A1*(BA2). By lemma 2.4, A,* is a
Borel operator. Therefore, by theorem 2.1(a) B, is Borel.

Lastly, assume that {A } is a sequence of Borel

operators such that for each n, BA is Borel. Suppose
n
A(K)=U A,(K). Then By=U_,By - Hence B, is Borel. This
n

completes the proof. o

Corollary 2.6. Let A be a Borel operator over XxZ.
Then the set
Cy={ (%, (vy) »2) EXxX¥xZ: (x,2)€A({y;,¥y,--.}x{z}) } is Borel.
Proof. By lemma 2.5,
By={((x,0) , ((7%,)) : (oW EA({(v1 124) » (v25) - D)} s @
Borel subset of (XxZ)x(XxZ)N. Define f£:XxX¥xz-(XxZ)x(xx2)¥
by f(x,z,(yn))=((x,z),((yl,z),(y2,z),...)). Then f is
continuous. Now CA=f'1(BA). Thus, C, is Borel. o

Lemma 2.7 [1,p.67]. The family of ?i (resp. gi)

subsets of a Polish space is closed under ?} (resp. Hi)

monotone operators.

Proof. Let I"' be a ?1 monotone operator. Suppose M =

{(x, (v,) ) EXxX™: x€P({y;,¥5,---}) }. Let & be a Borel
operator over XxZ such that x€l'(K) iff 3Jz(x,z)€A(KxZ). Then
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M = r,(C,) vhere C, is defined in corollary 2.6. Since, C,
is Borel, M is gi. Now, suppose ACX is gl. By lemma 2.3,

I'(A)={x:3y[(x,y)EM and Vn y,€Al}. Thus, T'(A) is ?i.
On the other hand, let I be a gl monotone operator and
let D be its dual. Suppose C(CX is gi. Then I'(C)=X-D(X- C).

Therefore, by the first part of the theorem I'(C) is gi. o

Lemma 2.8 [1,p.67]. C1(I')=[] {K: K is a cocountable
fixed point of T'}.

Proof. Let x€C=C1(I'). Suppose K is a fixed point of
I'. There is an ordinal e such that I'*(§)=C. Since K is a
fixed point, I'*(K)=K. Also, since I' is monotone,
C=r*(§)Cr*(K)=K. Hence, x€K. Therefore, x€[1{K: K is a
cocountable fixed point of I'} = D. Consequently, CCD.

For the other inclusion, suppose xfC. By lemma 2.3(c),
there is some cocountable K; such that CCK; and xfr(K;). If
K,=I'(K;), then we are dome. Thus assume Kl#F(Kl), and let
{yi}g’=1 enumerate I'(K;)-K,. For each i, yiﬁC. Hence, for
each i, there is a cocountable J,3C such that y,¢I'(J;). Set
Ko=K;N(M; J;). Then K, is cocountable and CCK,CK,. Also,
for each i, y,€r'(K,), i.e., I'(Ky)C(K,. By induction, we get
a decreasing sequence {Kn}§=1 of cocountable sets such that
for each n, CCT'(K  ,)CK and xfK_ . Let K = N, K,- Then K
is cocountable, xf¢K and rx)cnr&,)cn K =K. Hence, K is
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a cocountable fixed point. Consequently, xfD=[] {K: K is a
cocountable fixed point of I'}. Therefore, DCC. o

The following will be used in proving the boundedness
principle for monotone coanalytic operators.

For an inductive operator I' over X, set

(least a) x€r®*1(9)=r**1, it xec1(9)

| x|
= , otherwise.
Suppose I' and A are inductive operatofs over X. Define
R(x,y) iff |x|p<|y|, and x€CL(T)
and S(x,y) iff |x|p<|y|, and x€C1(4).

Lemma 2.9. (a) R(x,y) iff x€l'({x’:S(x’,y)}) and
(b) S(x,y) iff yfA({y’:"R(x,y)}).
Proof of (a). Fix y€Y. Set K={x’:S(x’,y)}. First

note that K:LJa<IYlAFa+1. Suppose R(x,y). Then |x|P$|y|A

and x€C1(I"). If |x|F<|y|A , then x€KCI'(K). Thus, assume
|x|p=|y|p- Ve assert that MP=K where B=|y|,- Clearly,
kcrb. Suppose x'€rB. Either B is a limit ordinal or not.
Suppose B is a limit ordinal. In which case,
x’EFﬂ=LJa<ﬂFa=Lja<ﬂFa+1=K. Next, consider the case where S
is a successor ordinal. In which case, x’EF(ﬁ'1)+1CK.
Therefore, IP=K. Now, x€M#*1-p(rP)=r(k).

Conversely, suppose that x€I'(K)=I'({x’:S(x’,y)}).
Either y€C1(A) or yfCl(A). Assume that y€CL(A). Then
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xEP(K)=F(LJa<ﬂPa+1)=F(Pﬂ)=Fﬂ41. Consequently, x€C1(I') and
|x|p<ly|y- Therefore R(x,y). Now suppose that y£C1(A).
K=C1(T'). Thus, x€C1(T), and hence, R(x,y). o

Proof of (b). First note that if x€C1(T'), then
Ua<lXIpAa+1 = {y":"R(x,y)}. Assume S(x,y). Then |x|<|y|,
and x€CL(). Thus, ygaP*l=a(| A=y R (x,)})
where B=x|p.

Conversely, suppose yfA({y’:7R(x,y)}). Then
y#{y’:7R(x,y)} and hence R(x,y). Consequently, x€C1L('). If
|x|F<|y|A, then S(x,y). Thus, suppose |x|P=|y|A. Then
yEAﬂ+1=A({y’:ﬂR(x,y)}) where f=|x|p, a contradiction. o

Denote by N* the set of all finite sequences of
nonnegative integers. Consider the relation < on N* given
by |

s=(s1,...,sm)5t=(t1,...,tn)
iff s extends t (sJt) or (3j)(Vi<j)(si=ti and sj<tj).
< is called the Brouwer- Kleene ordering, and it defines a
linear ordering of N*. Let us mention that (N*,S) is

isomorphic to the set of dyadic rationals in [0,1) with the

*
usual ordering reversed. Define VW = {xE{O,l}IN :x'l(l) is

well ordered by <}. For x€W, let o(x) be the order type of
* %

x'l(l). Also, for xE{O,l}IN and pEN*, define x|p E{O,l}m
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by xlp(s)=1 iff x(s)=1 and s<p.

*
Lemma 2.10. There is a Borel operator A over {0,1}IN

such that for each ordinal a, A%={x:0(x)<e}. Consequently,
W=C1(A), |A|=w; and V is coanalytic. Furthermore, ¥V is not

a Borel set.

Proof. Define A over {0,1}m* by
x€A(K) iff x€K or (Vs)x(s)=0 or (Vb)(x(p)=14x|pEK).
Then A is Borel.

To show that A%={x:0(x)<e} for each ordinal a, we use
transfinite induction. First, note that A1={xw}. Thus,
A1={x:a(x)<1}. Now let a be an ordinal greater than 1, and
assume that Aﬂ={x:a(x)<ﬂ} for all f<a. Now, Aa=A(LJﬂ<aAﬂ).
Let xREAa. If xRE[Jﬂ<aAﬁ, then o(xp)<a. Thus, assume that
xnfLJﬂ<aAﬂ. Then there is p€R such that anpELJﬂ<aAa-
Consequently, a(xR)=a(xR|p)+1<ﬂ+1<a. Therefore,
A%C{x:0(x)<a}. Suppose o(xg)<e. If there is an ordinal f<a
such that a(xn)<ﬂ<a, then xREAa by assumption. Thus, we can
assume that o(xp)+l=a. Suppose that for some p, xR(p)=1 and
xn|p¢LJﬂ<aAa. Now ”(XRIp)<”(xR)’ thus xnlpELJﬂ<aAa. This
is a contradiction. Hence, xREAa. Consequently,
A%={x:0(x)<a}.

By Theorem 1.2(c), W is coanalytic. Also, since there

exist analytic nonBorel sets, V is not Borel [1,p.64].
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Proof of the Inductive Definability Theorem

Ve now are ready to prove the Inductive Definability

Theorem.

(a) If A is a Borel operator over X, then A? is also a
Borel operator for each a<w; and A(B) is a Borel subset of
X, if B is.

Proof. Suppose that for some acwy , A% is not Borel.
Let A be the smallest such ordinal. Either A is a successor
ordinal or a limit ordinal. Suppose that 1 is a successor
ordinal. Then A=g+1 for some ordinal 8. Now AA=Aﬂ+1=A0Aﬂ
and Aﬂ is a Borel operator. Thus, AA is Borel, a
contradiction. Therefore, A must be a limit ordinal.

Hence, AA = LJT(A A7. For each 7<A, A7 is Borel. Thus,
since ) is countable, % must be Borel. Again, we have a
contradiction. Therefore, for every acwy , A% is Borel.

Next, we verify that if A is a Borel operator, then for
each Borel subset B of X, A(B) is a Borel subset of X. The
proof is by induction on the family of Borel operators.
Clearly, if A defined by A(K)=D where D is a fixed Borel
set, then A(B) is Borel if B is. If A(K):f'l(K) where f is
a Borel map from X to X, then A(B) is Borel if A is. Also,
if A is given by A(K)=X-K, the A(B) is Borel if B is. Now
assume that A=A oA, where for each Borel set C, A,(C) and
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A,(C) are Borel. Let B be Borel. Then A,(B) is Borel, and
consequently, Al(Az(B))=A(B) is Borel. Lastly, suppose that
A(K) = Uy A (K), where for each n, A, is a Borel operator
such that A (D) is Borel if D is. Then if B is Borel,
certainly, A(B) = Ljn A (B) is Borel. This completes the

proof. o

(b) If the monotone operator I' and the set A are both
analytic (resp. coanalytic), then for each countable ordinal
@, T%(A) is analytic (resp. coanalytic).

Proof. Let I' be a monotone ?i operator. By lemma 2.7,

I'(A) is analytic if A is analytic. Suppose there is some
countable ordinal a such that for some analytic subset A of
X, T%(A) is not analytic. Let A be the smallest ordinal
such that for some analytic set A, PA(A) is not analytic.
Then A>1. Either A is a successor ordinal or a limit
ordinal. Suppose that A is a successor ordinal. Then A=8+1
for some ordinal B. Now PA=Fﬂ41=FOFﬂ and Fﬂ(A) is a
analytic if A is. Thus, PA(A) = F(Fﬂ(A)) is analytic if A
is, a contradiction. Therefore, A must be a limit ordinal.
Hence, r - U< I'". For each <4, AT(A) is analytic if A
is. Therefore, since ) is countable, if A is analytic,
FA(A) = U,cx I'"(A) is analytic. Again, we have a
contradiction. Therefore, for every a<w; and every analytic

A, T%) is analytic.
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The proof is the same if TI' is gl and the set A is

coanalytic. o

(c) If the monotone operator I' and the set A are both
coanalytic, then C1(I';A) is coanalytic.

Proof. We first consider the case where A=f). Consider
the operator ¢ given by ¢(K)=KUI'(K). Then by lemma 2.2, ¢

is a monotone inductive Hi operator. Also, for each a,

¢%(0)=r%(@). Consequently, C1(¢$)=C1(I'). Therefore, we can
assume that I' is inductive. Let D be the dual of I'. Define
M= {(v) €™ (X {779, - DX {y;,¥55--- D}
= e (n)y (X {y1,7,,--.1)}

Now, M=ry(M) where M ={(x, (y_))€Xxx¥: x€D({y;,¥5,---}) and
(Vn)ynzx}. Since M is analytic (see the proof of lemma
2.7), M is analytic. Next, define P = {x€X : (V&EX")(yEM -
(Vo) (yy#x)) }. Then P is . Also, by Lemma 2.8, C1(I')=P.

Lastly, consider the case where A is an arbitrary
coanalytic set. Define the operator ¥ by ¥(K)=I'(KUA). Then

¥ is a monotone gi operator, and for each e, ¥*(0) = I'*(A).

Consequently, C1(¥)=Cl(T;A). Thus, C1(T;A) is Il. o

(d) For any gi subset C of X, there is a monotone Ai

operator A over XxNN and r€NN such that C={x:(x,r)€C1(A)}.
Proof. See [1,p.65].



23

(e) If I is a coanalytic monotone operator with
closure C, on the coanalytic subset P of X, then for any
analytic subset A of X with A C C, there is some countable
ordinal a such that A C T%(P).

Proof. Let I' be a monotone H} operator over X and, let
A be a monotone Ai operator over Y. Considering Lemma 2.2,

we can assume that both I' and A are inductive. Define an
operator A over {0,1}xXxY by
(0,x,y)€A(K) iff x€r({x’:(1,x’,y)€K});
(1,x,y)€A(K) iff yfA({y’:(0,x,y")¢K}).
Then A is a monotone gi operator. We claim that R(x,y) iff

(0,x,y)€C1(A) and S(x,y) iff (1,x,y)€C1(A). Consequently,
by theorem 2.1(c) both R and S are coanalytic subsets of
XxY.

Claim 1. For each x€X and y€Y, R(x,y) = (0,x,y)€ECL(A)
and S(x,y) = (1,x,y)€C1(A). |

Proof of claim. The proof is by induction. First
assume that |x|p=0. Then x€l(P). Suppose R(x,y). Ve have
x€l({x’:(1,x",y)€0}). Thus, (0,x,y)€EA(D), and consequently,
(0,x,y)¢C1(A). Therefore, R(x,y) = (0,x,y)€ECL(A). Now
suppose S(x,y). By the above, {y":(0,x,y")§C1(A)} = 0.
Since S(X<Y) and |%|p=0, |y[4>0. Hence, yfA({y’:
(0,x,y")¢C1(A)}). Therefore, (1,x,y)€A(CL(A))=C1(A).
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Hence, S(x,y) = (1,x,y)€ECL(A).

Now assume that the claim holds for all x’ and y such
that |x’|p<|x|p. Suppose R(x,y). Now x€0 ({x": |x" | p<|x|p}) -
By assumption, {x’:|x’|p<|x|p}C{x":(1,x",y)€CI(A)}.
Therefore, x€I'({x’:(1,x",y)€CL1(A)}). Hence,
(0,x,y)€A(C1(A))=C1(A). Therefore, R(x,y) =2 (0,x,y)€C1(A).
Next, assume S(x,y). Then {y’:(0,x,y”)fC1(A)}C{y’:"R(x,y’)}
~ by the above. Thus, yfA({y’: (0,x,y’)¢C1(A)}).
Consequently, S(x,y) = (1,x,y)€C1(A). This completes the

proof of claim 1.

Claim 2. For each x€X and y€Y, (0,x,y)€C1(A) = R(x,y)
and (1,x,y)€C1(A) = S(x,y).

Proof of claim. First assume |(0,x,y)|4=0. Then
x€({x":(1,x",y)€0}). Hence, x€I'(#), and thus, |x|p=0.
Therefore R(x,y). Thus, (0,x,y)€EC1(A) = R(x,y). Now
suppose |(1,x,y)|A=0. Then yfA({y’: (0,x,y’)¢0}). Since
YCA(Y), this is a contradiction. Thus, (1,x,y)€C1(A) =
S(x,y)-

Now assume that the claim holds for all (s,x’,y’),
s€{0,1}, such that |(s,x",y") | <e. Suppose [(0,x,y)|,=e.
Set K={(1,x’,y):|(1,x',y)|A<a}. Now (0,x,y)€EA(K). Hence,
x€l({x":(1,x",y)€K}). Thus, by assumption,
x€l'({x":S(x",y)}). Therefore, R(x,y) by Lemma 2.9.
Therefore, (0,x,y)€C1(A) = R(x,y). Lastly, assume
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(1,x,y)[,=a. Set L={(O,x,y’):|(1,x,y’)|A<a}. Now
(1,x,y)€A(L). Thus, yfA({y’: (0,x,y’)¢L}). Therefore,
yEA({y’:"R(x,y’)}). Hence, by Lemma 2.9 S(x,y). Thus,
(1,x,y)€C1(A) = S(x,y). This completes the proof of the

claim.

Now assume that ACX is analytic and ACC1(I'). Let
e=sup{|x|p+1:x€A}. Then
yEA? iff (3x) (x€A and S(x,y)).
Therefore, A% is analytic. Since V=C1(A) is not analytic
and |A|=wl, a is countable. Since ACT'?, this completes the
proof when P=0.
To complete the proof, let P be an arbitrary coanalytic

subset of X. Define ¥ by #(K)=I(PUK). Then ¥ is I}

monotone, and ¥*()=l'*(P) for all a. Suppose A is analytic
and ACC1(T';P). Then ACC1(¥). Hence, there is a countable a
such that AC¥*(#). Thus, ACT*(P). o

(e) If the inductive operator I' is either (1) Borel or
(2) monotone and either analytic or coanalytic, then |F|Sw1.

Proof. First assume that I' is éi. Let K=I'“1 (), and

suppose x€I'(K). By lemma 2.3, there are countable sets U
and V where UCK and VCX-K such that for any set M with UCM
and VCX-M, x€I'(K) iff x€['(M). Since U is countable, there
is a countable ordinal a such that UCT%(@#). Then ucre(9)
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and VCX-T%(0). Hence xer®1(9). Thus |T|<u,.
Next, assume that I is gi. Let K=I'“1 (§), and suppose

x€['(K). By lemma 2.3, there is a countable set UCK such
that x€['(U). Since U is countable, there is a countable
ordinal ¢ such that UCT'?(§). Hence, xEP(Fa(@))=Fa+1(@).
Thus, |P|Sw1.

Lastly, assume that T is gi. Let x€C1(T'). Then {x} is

an analytic subset of C1(#). By theorem 2.1(e), there is
some countable e such that {x}(I'*(#). Thus, IT|<wy. o

This completes the proof of the Inductive Definability
Theorem. Next, we give as a corollary to theorem 2.1(e) a
boundedness principle for analytic derivations. Recall that
by an analytic derivation we mean an operator whose dual
operator is monotone and coanalytic. If D is an analytic

derivation, the set [) D*(A) is called the kernel of D on
1

akw

A.

Corollary 2.10. Boundedness Principle for Analytic
Derivations. If D is an analytic derivation on the analytic
set A with kernel K, then for any coanalytic subset C of X
with KCC there is some countable ordinal B such that
Dﬂ(A)CC. In particular, if D is an analytic derivation on X

with f]a<w1Da(X)=@, then there exists a countable ordinal 8
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such that Dﬂ(X)=@.

Proof. Suppose D is an analytic derivation on the
analytic set A with kernel K, and assume that C is a
coanalytic subset of X with KCC. Let I' be the dual of D,
i.e., I'(M)=X-D(X-M). Then T is gl monotone. Also, for each

a, I'%(X-A)=X-D*(A). Since KCC, X-CCCL(T';X-A). Therefore,
by theorem 2.1(f) there is a countable ordinal a such that
X-CCI'*(X-A). Consequently, DY(A)CC. n
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CHAPTER III

THE BOUNDEDNESS PRINCIPLE
AND AN ARGUMENT OF SAINT RAYMOND

In this chapter we give an application of the
boundedness principle for analytic derivations. Namely, we
reprove a portion of a faithful separation theorem of J.
Saint- Raymond [4]. By a faithful separation property we
mean a property P such that if A and E are disjoint analytic
subsets of the product XxY of two Polish spaces X and Y and
for each x, Ax={y:(x,y)EA} has property P, then there is a
Borel subset B of XxY such that ACB, BNE=0 and for each X,
B_ has property P. In 1939, Novikov [3] proved that
compactness is faithful separation property. Some
thirty- seven years later, Saint- Raymond proved that

o- compactness is a faithful separation theorem.

Theorem 3.1. (Saint- Raymond, 1976 [4]) Define C to
be the collection of all Borel subsets of XxY with compact
sections. Let A, E € 4(XxY) and assume that Vx there is a
o- compact subset Kx of Y such that Ax C,Kx and Kxﬂ Ex= 0.
Then there are Borel sets B, € C such that A C B = U Bn
and BN E = 0.

29
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Corollary 3.2. If B is a Borel subset of XxY whose

sections are Ka’ then B € Cv’

Proof of theorem. In demonstrating this, Saint- Raymond
uses a derivation operator which we define below. Let A and
E be two disjoint analytic subsets of XxY. Let ¢ be a
continuous surjection of some Polish space P onto A.

For each subset Z of P define D(Z) to be the set of

points z of Z such that for each neighborhood V of z,

p(VNZ)N({x}xY) N E # @, where x = 1y (v(2)).

Saint- Raymond then gives the following recursion:

2°=p, 2%l - p(z%), and 7’ - r]Az“ if A is a limit
a<

ordinal and then proves the following lemma and corollary.

Lemma 3.3. [4,p. 393] If B is a Borel subset of P
which contains Z%, @ < w, , then there is H € Ca containing

¢(P-B) and disjoint from E.

Corollary 3.4. [4,p. 394] If 3 a < w; such that Z% =
@, then there is H € C, such that A C Hand HNE = 0.

Consequently to prove the above theorem, it suffices to
show that for some a < w;, Z% = § given that for each x€X,

the section Ay is contained in a KU disjoint from E. In
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order to prove this, Saint- Raymond gives an indirect
argument by showing that if the Z? are nonempty then there
is a compact set K contained in a section of AUE and such
that no Ka can contain KNA without meeting KNE. Below we
give a different argument which involves the boundedness
principle for monotone coanalytic operators and the Baire
category theorem.

Claim 1. D is an analytic operator. Consequently, if

Z is analytic, then Z? is analytic for a < w; .

P P

Proof. For each m€N, define the operator Am: 279 2

as follows:
x€A_(Z) IFF
x€ 7 {(z,(zn),y)EZXZNXE Vn[d(z,za)<1/m A
71 (9(za))=7; (9(2))] A p(za)-7},

where d is a metric for the topology on P.

Ve then have
z€D(Z) IFF Vm z€A_ (Z).
Consequently, it suffices to show that each Am is analytic.
Let ¢ be a continuous surjection of some Polish space Q
onto E. Fix m€N. For each kEN, set
B, = {(z,(zn),w)ermeQ d(zk,z)<1/m},
C = {(z, (za) ,W)EPxB| 7, (p(20)) =7 (4(2))} and
Dy = {(z: () W) ERxPMx p(p(2n) , () ) <1 /K]

For each k, Bk is open, Ck is closed and Dk is open. Next

define for each k,



£: PxPMxQupxPlxq by

f,(z,(zn),w) = (2x,(2z0),w).
Note that for each k, fk is continuous. Now define A:

2P 2P by

®
-1
k=1
Since for each k, Bk’Ck and Dk are Borel and since for each

k, fk is Borel measurable, it follows that A is a Borel
operator. Finally,

2€A_(Z) IFF (3((za),¥)) (2, (za),w)€A(ZxPNxQ).
Therefore, Am is a gl operator. Q.E.D.

Now let T' be the dual operator of D, i.e., I'(B) =
P-D(P-B). Note that Va < w , I'%(0) = P-Z°.

1
Claim 2. T is an inductive, monotone II; operator.

Proof. Suppose B C P. Then D(P-B) C P-B. Thus,
B = P-(P-B) C P-D(P-B) = I'(B).
Therefore, I' is inductive.
To show I' is monotone, suppose that B C C. Then P-C C
P-B. Hence D(P-C) C D(P-B). Thus, I'(B) = B-D(P-B) C
C-D(P-C) = I'(C).
Lastly, since D is 5, I is I . Q.E.D.

Next, we make use of the Baire category theorem.

Claim 3. If for each x€X, A is contained in a Ka
disjoint from Ex, then for each nonempty Z C P, D(Z) g Z.

Proof. Fix x€X such that ¢(Z)x # #. There is a

32
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)
sequence of compact sets {K,}® such that A, C K, and

n=1 n=1
(U Ka) N Ex = 0. Thus,
; - -1
¢ 1(he) €y (U Kn) = U ¢ L (En)
Since ¢'1(Ax) = ¢'1({x}XY) , ¢'1(Ax) is a closed subset of
P. Also note that for each n, p’l(Kn) is closed. Now set

C=20n ¢
Since ¢(Z)x # 0, C# 0. Furthermore, C is Polish and C C
U ¢'1(Kn). Therefore by the Baire category theorem, there
is n€N such that int ¢'1(Kn) $0. Consequently, there is
an open subset V of P such that CNV # @ and
cny C ¢_1(Kn). Choose z€ ZﬂVﬂp'l(Ax). Since

(ZIW)N({x}Y) C Ka, zfD(Z). Thus D(Z) G Z. Q.E.D.

Claim 4. If for each x€X, Ax is contained in a Ka
disjoint from Ey, then there is a < w; such that Fa(@) = P.

Proof. Since I' is an inductive, monotone, coanalytic

operator, |I'|<w;. Thus (Y TI%®)) = U r%9).
alwy a<lw
Consequently by the claim, |J T'*(#) = P. By the

a<wy
boundedness principle, there is e<w; such that P C Pa(@).

Hence I'*(#) = P. Q.E.D.

An immediate consequence of claim 4 is: If for each
x€X, Ay is contained in a Ka disjoint from Ey, then there is
@ < w; such that Z% = §. This completes the proof of

Saint- Raymond’s theorem.
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CHAPTER IV

A FAITHFUL SEPARATION THEOREM FOR ANALYTIC
SETS WITH CONVEX SECTIONS

Once again, by a faithful separation property, we mean
a property P such that if A and E are disjoint analytic
subsets of‘the product XxY of two Polish spaces X and Y and
for each x, A_={y:(x,y)€A} has property P, then there is a
Borel subset B of XxY such that ACB, BNE=0 and for each X,
Bx has property P. In this chapter we show that convexity
is a faithful separation property in the case Y=Rk. Our
proof resembles the method of the proof of Theorem 2 in [7].
Let us mention that in [11], Sarbadhikari and Srivastava
prove that convexity is a faithful separation property in
the case Y=R. However, their technique heavily uses the
order structure of R and does not seem to generalize.

Given a collection I' of sets, the monotone family
generated by I' is the smallest family of sets containing I'
and closed under countable monotone limits. Let ¥ be the
monotone family generated by the sets BEB(XXRk) such that

for each x, Bx is compact and convex.
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Theorem 4.1. Suppose A,E€ A(XXRk) and ANE=0.
Furthermore, suppose that for each x€X, Ax is convex. Then

there exists a set BEN such that ACB and BNE=0.

First, let us give a consequence of this theorem.
Also, let us note that if X is a singleton, then this is the

result of Preiss [7].

Corollary 4.2. ¥ = {BEB(Xka): Yx B_ is convex}

Proof. Let ( = {BEB(XXRk): Vx B_ is convex}. Then (¢
is a monotone class and € contains all Borel sets with
compact, convex sections. Thus, ¥ C ¢ . To verify the
opposite inclusion, suppose CEC . By the above theorem,
there is BEX such that CCB and Bﬂ[(XXRk)\C]=¢. Ve must have
B=C, and consequently, ¥=C. o

Before giving the proof we first verify a few

preliminary lemmas.

Lemma 4.3. The family ¥ is closed under finite
intersections.

Proof. Let £ = {BEB(XXRk): Vx B_is compact and
convex}. Let § = {BEN: V A€R , ANBEN} . Then SCH and ACS.
Furthermore, § is a monotone family. Hence S=4¥. Next,

consider the collection T = {BEN: V A€N , ANBEN}. T is a
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monotone family containing 2. Thus, ¥ = T. Therefore, if
B,CEH¥ then BNCEHN. By induction, ¥ is closed under finite

intersections. 0O

Lemma 4.4. ¥ is closed under countable intersections.
Proof. Suppose {B } 1CI Then by lemma 1, for each
m , r]n—l B €¥. Since f]n -1 B, = f]:_ [(]n-l Bn] and ¥ is

a monotone family, n—1 B EI o

Definition. An ordered pair A,E of subsets of XXRk is
called separated if there exists a set BEN such that ACB and
ENB=0.

Lemma 4.5. Let A and E be subsets of XxRX and let A=|]
An, AnCAn+1 and E=|]J E . If the pair A,E is not separated
then there exist n and m such that the pair An,Em is not
separated.

Proof. Suppose not. Then for each (n,m)ENxN there is
Con€¥ such that A CC  and ENC =0. Set C_=

o o -

[]._n[(] =1 }. Then each C €¥. Also, C = LJn_1 CEX.
Since for each n, AnCAn+1, AnCCn. Hence ACC. Furthermore,

for each pair (m,m), EmnCn=¢. Hence CNE=0. Therefore, we

have a contradiction. 0o

Definition. Let DCXxRK. sconv(D)E{(x,y)EXXRk:
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y€conv D _} where conv(S) denotes the convex hull of S.

Lemma 4.6. If KCXXRk is compact, then sconv(K) is
compact.

Proof. Since K is compact, wz(K) is compact. Hence,
there is n€N such that =,(K)CB_ where Bn={yERk: llyll<n}. Wwe
assert that sconv(K) is contained in the compact set
wl(K)XBn. To this end, suppose (x,y)€ sconv(K), i.e., y€

conv(Kx). Then yEwl(K). In addition, by Carthéodory’s

k+1

Theorem [8,p.155], y = 2 s;¥; where for each 1<ik+1,

i=1
+1 .

s;€[0,1] and y,€K_, and i=1si = 1. For each i, y.€B .

Since B is convex, y€B . Therefore, sconv(K) C wl(K)xBn.

Consequently, it suffices to show that sconv(K) is closed.

Suppose {(xn,yn)}z=1 C sconv(K) and iim (x,5¥,) =

—’m
(x,y). For each n, Y€ conv(Kx ). Thus, we can write Yo =
n
k1 53 : i i
21=1snyn where for each 1<i<k+1, snE[O,l] and ynEKtn’ and
k+1

2 s; = 1. For 1{i<k+1, consider the sequences {y:l}m_1 and
i=1 -

{si}zzl. Using the compactness of B and of [0,1], we may

assume without loss of generality by taking subsequences

that each of these sequences converges. For 1<i<k+1, let

lim y; = yi and lim s; = s'. We have for each 1<i<k+1,
m-o m-o

lim (xm,yi) = (x,yi). For each 1<i<k+1, since for each m,
J-o
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(xm,y;)EK, (x,y*)€K. Since ii: Y, =Y, we have y =

k+1 . . . . +1 .
Z s'y'. Also, since for each 1<i<k+1, lim s; = s?, Ek st
i=1 j-o i=1

= 1. Therefore, y€ conv(K ), i.e., (x,y)€sconv(K). This

completes the proof. o

Proof of theorem 4.1. Assume that the pair A,E cannot
be separated. Let f:mmaaA and g:quﬂE be continuous maps of
the space Nm ( the space of sequences of positive integers
with the product topology) onto A and E respectively. Given
a finite sequence of integers Ny, ,ny let

<ag,...,n>={cel: o(j) <y, 1€3¢i})
(n,,...,n)={oENN; o(3)=n;, 18i<i}.

Also for each finite sequence Ny,...,0y let
A(nl,...,ni)=f(<n1,...,ni>)
E(nl,...,ni)=g((n1,...,ni)).

Now A={J  A(n),and for each n, A(n)CA(n+1). Also,

E={J E(m). Therefore, by Lemma 4.5, there are positive

integers n; and m; such that A(n) and E(m;) cannot be

separated. A(n1)=LJnA(n1,n) ,and for each n,

A(ny,n)CA(ny,n+1). Also, E(m;)={ E(m,;,m). Therefore, by

Lemma 4, there are positive integers n, and m, such that

A(nl,n2) and E(m;,m,) cannot be separated. Continuing,

repeated use of Lemma 4.5 gives us two sequences {ni}g’=1 and

{mi};’=1 of positive integers such that for each i,
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A(nl,...,ni) and E(nl,...,ni) cannot be separated.
Set
A=(; A(ny,..,ny) and
E = N E(ng,...5ny).
Then A is compact and E is a singleton. Let E = {(xg,¥9)}>
and A* = sconv(x). Then by Lemma 4.6, A* is compact. Also,
since the sections of A are convex, A*CA. Consequently,
A*ﬂﬁ=@. For >0, let
U, = {(x,y)EXxR*: d((x,y),4")<e},
V. = {(x,y)€XxR: d((x,y),E)<e} and
V. = sconv(U,).
Claim 1. For each >0, v €EB (XXRk) and each section of
W, is compact and convex.
Proof of claim. Fix x€X. Consider (U, = {y:
d((x,y),A*)Se}. This set is closed and bounded and

therefore compact. Hence (Ve) is compact and convex. It
x

remains to show that VE is Borel. Now

Ve = ”12{(X,y,y1,...,yk+1,sl,...,sk+1)exx(mk)k+2x[0’1]k+1:

k+1 . . +1 .
2 slyd = y, s) = 1 and for each j, (x,yJ)EUe}.
j=1 j=1

Hence, We is the projection of a Borel set whose sections
are o- compact (See [10]). Therefore, W, is Borel. o
Claim 2. There is n€EN such that VI/nﬂ vl/n =0.

Proof of claim. Assume not. Then for each n, let

(xn,yn)Ewl/n n Vl/n. For each n, since (xn,yn)EWI/n, ¥,€
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k+1
conv ((Ul/n)xn)‘ Thus, for each n, y = 2

., sgyj , where
J:

n
. . +1 ioj
for each j, 3%6[0,1] and y%E(Ul/n)xn, and 2:=1 s'yd = 1.

3 . *
Now for each n and j, 1£{j<k+1, there is (ug,zg)EA such that
. . . *
d((xn,y%),(u%,z%))<1/n. By the compactness of A and [0,1]
let us assume without loss of generality that for each j,
the sequences {(ug,zg)}z=1 and {si}z=1.conv?rge. For each

j, let lim (u%,z%) = (uJ,zJ) and lim s% = sJ. Note that
n-o n—
+1 . . ..
sJ = 1. Then lim (xn,y%) = (u,z)). However,
N~

. _ Jj_ . *
iiﬁ (xn,yn)-(xo,yo). Thus, u'=x, for 1$j<k+1. (xo,yO)EA ,

j=1
which is a contradiction. O

Choose 6>0 such that V& n V6 = 0. By compactness there
is i€N such that A(n;,...,n;) C Us and‘E(ml,...,mi)Cva.
Thus, V& separates A(nl,...,ni), E(ml,...,mi). This is a

contradiction. This completes the proof of the theorem. O

P. Holicky has shown in [3] that every infinite
dimensional locally convex space, X, contains a convex Borel
set which is not in the monotone family generated by the
compact convex subsets of X. Therefore, Theorem 4.1 does
not hold if Rk is replaced by any infinite dimensional
locally convex space. However, we do pose the following

question.



Question. Is convexity a faithful separation property
in the case where Y is an infinite dimensional locally

convex space?

Finally, we would like to add that while typing this
dissertation it was discovered that the main result of this
chapter, namely Theorem 4.1, has already been proven by J.

Saint- Pierre [9].
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CHAPTER V

EXTREME POINT SELECTIONS

In [4], Jayne and Rogers studied upper semi- continuous
multifunctions from a metric space to a Banach space with
its weak topology. Among other things, the authors prove
that an upper semi- continuous map from a metric space to the
unit ball of a Banach space with compact values has a Borel
class 1 selector. In this chapter we deal with upper
semi- continuous multifunctions with values in a dual Banach

space with the weak* topology.

Theorem 5.1. Let T be a metric space, X a separable
normed linear space. Let B={x*EX*:”x*"$1} vhere X denotes
the dual of X and give B the relative weak* topology.
Suppose F:T-B is an upper semi- continuous multifunction with
compact values. Then F has a Borel class 1 selector f with
respect to the weak* topology on X* such that for each t,
f(t)€ext(cl conv F(t)).

Recall that X is reflexive if and only if the weak and

E3
weak™ topologies on X coincide. Thus, by our main result,

44
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an upper semi- continuous map of a metric space to the unit

ball of a separable, reflexive Banach space with c
values has a Borel class 1 selector. This is the
Jayne- Rogers theorem. In addition, our selection
extreme points. Let us mention that the selection
Jayne and Rogers does not necessarily involve extr
points.

We apply our theorem to improve the Borel cla

selection lemma of L. Baggett [1].

A multifunction F:T-Y is a function whose dom
and whose values are nonempty subsets of Y. If EC

= {t€T:F(t)NE#0}.
(1sc) if F'I(V) is open for all open V, and F is s

F is said to be lower semi- cont

upper semi- continuous (usc) if F'l(K) is closed fo
closed K. The graph of a multifunction, denoted b
is the set {(t,x)€TxX:x€F(t)}.
selector for the multifunction F:T-X if for all t,
f(t)€EF(t).
class 1 if f'l(V) is an F_for all open V.

A function £:T-X i

Also, a function f:T-X is said to be o

By ext(K), conv(K) and cl conv(K), we mean the set

extreme points of K, the convex hull of K and the

ompact

picks

given by

eme

ss of a

ain is T
Y, F 1(E)
inuous
aid to be
r all

y Gr(F),

S a

f Borel

of

closed

convex hull of K respectively.

Let Y be a topological space, and let F(Y) an

d X(Y)

denote the collection of all nonempty closed subsets of Y
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and all nonempty compact subsets of Y respectively. For
each open UCY, define
C(U) = {FEF(Y):FCU}, and
I(U) = {FEF(Y):FNU#D}.

The collection {C(U):U open in Y} U {I(U):U open in Y} forms
a subbase for a topology on F(Y). This topology is called
the exponential or Vietoris topology on F(Y). For a
detailed discussion of this topology, see [6]. Now suppose
the topology on Y is given by a bounded metric d. We can
then define a metric py (called the Hausdorff metric) on
F(Y) as follows:

py(A;B) = max {D,(B),Dy(A)}
where D, (B)=sup{d(A,b):b€B} and d(A,b)=inf{d(a,b):a€A}. An
important fact is that the Hausdorff metric topology on K(Y)
coincides with the relative exponential topology on K(Y)

[7,p.47].

Proof of Theorem 5.1

Assume the hypotheses of the theorem are satisfied.
Define the multifunction H:T-B by H(t)=ext cl conv(F(t)).
Ve note that if KCB is compact then ext cl conv(K) C K
[6,p.132]. Thus, it suffices to show that H has a Borel

class 1 selector. The proof of this will follow from a

theorem of G. Debs.
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Theorem 5.2 [2]. Let T be a metric space, Y be a
Polish space, and G:T-Y be a multifunction. Suppose Gr(G)
is a 65 , @>0 is an ordinal, and G'1(U) is of additive class
a for open UCY. Then G has a selection which is of additive
class a. In particular, if G'1(U) is an F_for each open U,

then G has a class 1 selector.

We check that the multifunction H satisfies the

conditions of Theorem 5.2 via a sequence of lemmas.

Let €(B) denote the collection of all nonempty, convex,
weak*- compact subsets of B. We give ((B) the relative
Vietoris topology. Since B is a compact metric space, this

topology agrees with the Hausdorff metric topology.

Lemma 5.3. Let E: ((B)-B be the multifunction given by
E(K)=ext(K). Then E is 1sc.

Proof. It suffices to show that E'l(N) is open for
each basic open set N. Let

N = {y€B:|x(x;)-y(x;)]|<e, 1<ilm}
be a basic open set in B. Let C be the complement of
E'l(N). It suffices to show that C is closed. Let us
define G:[G(B)]2maéTB) by
G(Ay,Ay,...,A5) = conv (A;UAU...UA

2m)‘
Then G is continuous. We claim that KEC if and only if
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KEG([U(B)-I(N)]2m). Ve prove this as follows:
Suppose KEC. Then set for 1<ifm,

K = {keK| k(x;)2e+y(x;)} and

K, = {keK| k(xi)S-e+y(xi)}.

Let Ly,...,L, be a listing of the K and K; vhich are
nonempty. Then LjEU(B)-I(N) for 1{j<p. Also, ext(K)C{ Lj'
By the Krein-Milman theorem [8,p. 242], K= cl conv(ext K).
Consequently, K = conv(L1U...ULp). Therefore,
KEG([¢(B)- I(M)]°™).

Conversely, suppose KEG([U(B)-I(N)]zm). Then K =
conv(Ay,...,A, ) where for each 1<$j<2m, AjEC(B)-I(N).
Hence, if k€ext K, kEAq for some q. Thus, KEC. Therefore,
the claim holds.

Since [C(B)-I(N)]2m is compact, C is compact. O

Lemma 5.4. ((B) is a compact subset of £(B).

Proof. Suppose LnﬂL in the Hausdorff metric where for
every n, L €C(B). To show that LE C(B), it suffices to show
that L is convex. To this end, let h,k€L and let t€[0,1].
Since L -L, there are sequences {hn}$=1 and {kn};’=1 such
that for every n, hn and kn€Ln, and hnqh and kna k. Since
each L_ is convex, s =th +(1-t)k €L for all n. We have
that s -th+(1-t)k. Since L oL, we must have {sn}$=1
converging to a point in L. Thus, th+(1-t)k€ L. Therefore,

L is convex. 0O
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Lemma 5.5. The map J:K(B)-(C(B) given by
J(K)=cl conv(K) is continuous.
, Proof. Suppose {Kn};’=1 C £(B) and K -K. Ve show that
J(K,)-J(K). Since C(B) is compact, there is a subsequence

{Knp}g=1 of {K }>_, and LEC(B) such that J(Knp)aL. Ve
assert that L = c1 conv(K). Suppose x € ext cl conv(K).

Then x€K. Since K_ -K , there is a sequence {k_ }® . with
np np p=1

kn EKn for each p such that k ox. For each p, kn EJ(Kn ).

P P p P P
Thus, x€L. Consequently, ext cl conv(K) C L. Hence,
cl conv(K) C L. Next, suppose y€L-J(K). There is a

continuous linear functional f on B such that f(y)(in§(§§k)
€

[8,p.241]. Choose a€R such that f(y)<a<inf f(k).

’ k€J (X)
f'l([a,m)) is closed and convex. Furthermore, KCf'l((a,m)).
Thus, there is P such that if P<p then
Kanf'1((a,m))Cf'1([a,m)). Therefore, for P<p,

J(Knp)Cf‘l([a,m)). Since J(Knp)aL, LCf 1((a,0)). This
contradicts the fact that y€L. Hence, LCcl conv(K).

Consequently, L=cl conv(K). Now assume {J(Kn)}z=1 does not
converge to J(K). Then there is some €>0 and some

subsequence {an}g=1 of {Kn};’=1 such that for each q,
py(I(K, ),J(K)) > e. However, {J(I(n )}:=1 has a convergent
q q

subsequence. By the above argument, this subsequence must

converge to J(K)=cl conv(K). This is a contradiction.



Therefore J(K )-J(K). o

Lemma 5.6. Gr(H) is a 6.

Proof. For each ntlN, set
A = {(t,x)l 3 s€[1/n,1-1/n] and Ju,veJ(F(t)) [d(u,v)>1/n

and x=su+(1-s)v]}

where d is a metric for the topology on B and J is the map
J(K)=cl conv(K). (Ve remind the reader that since X is
separable, B is a compact metric space). Ve assert that
each A is closed. Fix n. Suppose (t ,x )€EA and
(tpsxp)~(t,x). For each m, x =s u +(1-s )v where
sp€(1/n,1-1/n], u ,v €J(F(t )) and d(uy,v )21/n. By the
compactness of [1/n,1-1/n] and of B, the sequences {sp o
{um}$=1 and {vm}z=1 all have convergent subsequences.
WVithout loss of generality, assume sSp™ S, U - u and vyt V-
Then clearly, s€[1/n,1-1/n]. Also, since J is continuous
(lemma 4), JoF is usc. Thus, Gr(JoF) is closed [6,p.175].
Hence, u,v€J(F(t)). Furthermore, d(u,v)21/n and
x=su+(1-s)v. Therefore, (t,x)EAn. Consequently, A is
closed. Now Gr(H) = Gr(JoF)\UJ A , and since Gr(JoF) is
closed, Gr(JoF) is a Fg. Thus, Gr(H) is a s . O

Lemma 5.7. For each weak* open set U in B, H’l(U) is

an F .
o

Proof. Let U be a weak* open set in B. By lemma 3,

50

m=1 °’
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E'I(U) is open in C(B). Ve can write E'l(U) = U, U, vhere
each Uh is a basic open set. Ve have
H1(U) = {t|H(t)NU#0}

= {t|ext J(F(t))NU#0}

= {t] J(E(£))€EE 1 (V)}

= {t]| J(F(£))eU, U}

= Uy {t] J(F())ET}.
Next consider a basic open set C(UO)ﬂI(Ul)ﬂ...ﬂI(Uk) in
((B). Let

A={t| J(F(t))EC(UO)ﬂI(Ul)n...ﬂI(Uk) }.

Then
A={t|J(F(t))CUuIN{t|I(F(t))NU,#0}N...0{t| J(F(t))NU#D}.
Since JoF is usc. Thus, the set {t| J(F(t))CUy} is open in
T (and hence an Fa)' Also, the sets {t| J(F(t))ﬂUi#@},
1<i<k, are i}’s. Therefore, the set A is an Fa‘

Consequently, H'I(U) is an F . O
This completes the proof of the theorem.

One corollary of the above theorem is a selection lemma
due to L. Baggett [1]. Baggett uses this lemma to prove a
selection theorem which he asserts that "together with its

immediate consequences, should suffice for most needs within
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functional analysis" [1,p.2].

Corollary 5.7. [1] Let X be a separable normed linear
space, let Y be a closed subspace of X and let R denote the
restriction map of X* onto Y*. Let K be a compact subset of
(X*,w*), and let L=R(K). Then there exists a Borel map (in
fact a Borel class 1 map) s:L-K such that

(1) R(s(y)) =y for all y€L.

(2) s(y) is an extreme point of R'l(y).

(3) If y€ext(L),then s(y)€ext(K).

Proof. Consider the multifunction F: L-K given by
F(y):R'l(y). Then F is usc with compact, convex values. By
theorem 5.1, there is a Borel class 1 selector, s:L-K for
H(y)=ext(F(y)). Clearly, R(s(y))=y, and s(y) is an extreme
point of R'l(y). Now suppose that y€ext(L). Assume that
s(y) = tk+(1-t)h where k,h€K and O<t<1l. Consider R(s(y)).
R(s(y))=y=tR(k)+(1-t)R(h). Since y€ext(L), we have
h,kER'l(y). Therefore, since s(y)€ext R'l(y), we must have
k=h. Thus, s(y)€ext(K). o

Corollary 5.8. The multifunction E:((B)-B given by
E(K)=ext(K) has a Borel class 1 selector.

Proof. Define F:((B)-B by F(K)=K. Then F is usc, and
E(K)=ext(cl convF(K)). Therefore, by our main theorem, E

has a class 1 selector. o
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Let U(X*) denote the collection of all nonempty,
convex, weak*- compact subsets of X*. Ve give C(X*) the
relative Vietoris topology. Let us mention that if X is
infinite dimensional then X is not metrizable [3,p.10].
Consequently, U(X*) would not be metrizable. However, X* is

*
a Lusin space, i.e., X is a continuous one- to- one image of

N,

Hence, C(X*) is an analytic space.
Corollary 5.9. The multifunction E:G(X*)AX* given by
E(K)=ext(K) has a Borel class 1 selector. Moreover, E has a
continuous selector if and only if X=R
Proof. For each n€N, set B =n'B where B={ xEX*:"x”SI}.
Let C(B,) denote the collection of all nonempty, convex,
compact subsets of B,. We give ((By) the relative
exponential topology. Define for each n, E;:((B,)-B, by
E,(K) = ext K. It follows from corollary 5.8 that for each
n there is a Borel class 1 selector fn for E . Define
£:0(X )=X as follows:
f(K) = f,(K) where n=least{m:K(CB,}.

Then VKEU(X*), f(K)EE(K). Furthermore, f is of Borel class
1, since

1) = ;1) U [ £ (A)N(E(B:-1))°]

N 122
for any ACX and since each f, is of Borel class 1. Hence,
f is a Borel class 1 selector for E.

For the second assertion, suppose X=R. Define f:C(R)-R
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by f([a,b]) = b. Then f is continuous. For the converse,
consider R2 and suppose f is a continuous selector for
E:C(Rz) + R? where E(K) = ext(K). For 0{ér, let 10 denote
the closed interval with endpoints (cos #,sin #) and (- cos
@, -sin @). Without loss of generality, assume f(Io) =
(1,0). Since €(B) is compact, flC(B) is uniformly
continuous. Therefore, 3 6>0 such that if py(Ig,I,)<6 then
d(£(I,),£(I,))<1. Now choose k>2, such that pH(IO’Iw/k)<6‘
Then we have d(f(IO)’f(Iw/k))<1' Consequently, f(Iw/k) =
(cos 7/k,sin x/k). Since pH(IO’Ix/k)<6’ pH(Ix/k’I2w/k)<6'
Hence, d(f(Iw/k)’f(Izr/k))<1' Therefore, f(I2x/k) =

(cos 2x/k,sin 2x/k). Continuing, we get that f(Imx/k) =
(cos mr/k,sin mr/k) for 1<m<k. Thus, in particular, £(I )
= (-1,0). However, Io=1I, and f(IO) = (0,1). Therefore,

we have a contradiction. Hence, f cannot be continuous. 0o

Remarks. An alternative proof to Baggett’s lemma is
given by considering the map s(y)=f(R’1(y)) where f is the
selector above. Also, the above shows that Debs’s theorem

does not hold in the case a=0.

Next, we give an example of a class 1 selector for

E:C'([O,l])—»[o,l]2 given by E(K)=ext(K).

Example. Define f:€([0,1]2) - [0,1]2 by letting f(K)
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be the smallest element of (K,<’) where (a,b)<’(c,d) if and
only if a<c, or a=c and b<d. Note that f is a selector for
E(K) = ext(K). We assert that f is of Borel class 1.
Consider the basic open set U = (a,b)x(c,d) where a,b,c, and
d are rational. It suffices to show that f'l(U) is an F .
For r€QN[0,1], define V_ = [0,r)x[0,1] and H_ =
[0,1]x[0,r). We have that K € f'l(U) if and only if K€ I(U)
n ¢((a,1]x[0,1]) N A N B , where

L= [ TOL0) U I(@0)x(0,0(d,11)) 1 V)° | and

B = UrquQ [ I(RV,0([a,b]x[0,¢]))® N T(UNKSAY,) ].
qzcC

Since I(U), C((a,1]x[0,1]), and B are all open, and A is

closed, f'l(U) is an F . Therefore, f is of class 1.
Another application of our theorem is

Corollary 5.10. There is a Borel class 1 selector for
F:K(X*)AX* given by F(K) = ext cl conv (K) .

Proof. Define G:f(B)-B by G(K) = ext cl conv (K). It
suffices to show that G has a class 1 Borel selector.
Define the multifunction F:X(B)-B by F(K)=K. Then F is usc.

Therefore, by our main theorem G has a class 1 selector. o

To conclude, we wish to communicate that while typing

this dissertation it was pointed out by a referee that
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Theorem 5.1 is essentially an application of a theorem of G.
Debs which is stated in [9] and proven in his thesis at the

University of Paris VI.
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