
vo, 3 Ya

SEQUENCING AS A FACTOR ASSOCIATED

WITH STUDENTh' ABILITY TO

LEARN PROGRAMMING

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Hassanali Honarvar, B.S., M.S.

Denton, Texas

August, 1991

Honarvar, Hassanali, Sequencing as a Factor Associated with Students'

Ability to Learn Programming. Doctor of Philosophy (College Teaching),

August, 1991, 72 pp., 6 tables, bibliography, 62 titles.

This experimental study concerned the performance of students in

computer programming courses following'exposure to a sequencing computer-

aided instruction (CAI) drill and practice. The order of the procedures for the

experiment was pretext, treatment, andposttest.

The students from two sections of a BASIC programming course were

the subjects of the study. A pretest of BASIC programming language was

administered to all students at the beginning of the course. According to their

pretest results, students were divided into matched experimental and control

groups. The sequencing CAI treatment was administered to the experimental

group, and an alternate treatment was administered to the control group.

Then all of the students followed to complete the BASIC programming

language course. The posttest of BASIC programming language was

administered at the completion of the course.

The performance levels of the following groups were compared:

experimental and control groups, below average experimental and above

average experimental groups, below average experimental, and below average

control groups. Subjects' placement in the above average and below average

groups was based on their performance in the pretest. The following is a

summary of the major findings of this study.,

1. The experimental group did not have a significantly higher gain on

the posttest than the control group.

2. The below average experimntagrgoup did,not have a significantly

higher gain, on the. posttest than the above average experimental group.

3., The below average experimental group did not-have a significantly

higher gain on the posttest than tpebelow average cqtrol group.

TABLE OF CONTENTS

Page

LIST OFTABLES a 4....0.. v

Chapter

I I0 NTRODUCTIONf. 0......,....... 1

Statement of the Problem
Purposes of the Study
Hypotheses
Definition of Terms
Background and Significan ce of the Study
Experimental Procedures,
Statistical Analysis
Limitations of the .tudy
Summary

II. REVIEW OF THE RELATED LITERATURE. 10

Introduction
Factors Associated with Students' Success

Rate in Introductory Computer
Programming Courses

Summary.

III. RESEARCH METHODS............................27

Introduction
Population
Experimental Groups
Experimental Procedures
Experimental Treatment
Treatment of Data
Summary

000

Chapter

IV. PRESENTATION OF FINDINGS .37

Introduction
Experiment Review
Performance of Student Prior to Treatment
Performance of Students Following

Computer-Assisted Instruction
Summary of Major Findings

V. SUMMARY, DISCUSSION, CONCLUSIONS, AND
RECOMMENDATIONS 48

Summory-of Major Findipgs
Discussion of Findings
Conclusions
Recommendations

APPENDIX

A. Sequencing Computer-Aided Instruction
Drill Program.................................54

B. Computer BASIC Programming Language Test0..... 60

BIBLIOGRAPHY..67

iv

Page

LIST, OF TABLES

Table Page

1. Difference in Pretest Scores for
Expefirimelntal an Control Groups 39

2. Differee in Posttes Scores Ifor
Experimental and Control Groups 41

3. Difference in Pretest Scores for Above
Aver-age and BeloWAverage
Experimental Groups............................43

4. Difference in Posttest Scores for Above
Average and "Below Averdge
Experimental Groups............................44

5. Difference in Pretest Scores for Experimental
Below Average and Con trol BeloW Average
Groups......................................45

6. Difference in Posttest Scores for Experimental
Below AVerage %and Control Below Average
Groups-......................................46

v

CHAPTER I

Introduction

A substantial percentage of students in beginning computer science

courses find programming to be a more challenging task than they originally

expected. In order to find ways to better advise students before they take

computer science courses, researchers have developed several computer

science aptitude predictor tests (Alspaugh 1972; Bauer, Mehrens, and

Vinsonhaler 1968; Peterson and Howe 1979b; Fowler and Glorfeld 1981; Kurtz

1980; Kovalina, Wileman, and Stephens 1983; Sidbury 1986a). These tests are

an attempt to estimate the chance of student success in introductory computer

courses before students actually invest their time, money, and efforts in the

courses.

The Konvalina Aptitude Test, designed by Konvalina, Wileman, and

Stephens (1983), measures knowledge of sequencing, logic, algebraic word

problems, and calculation areas of mathematics. These mathematical areas

have been found to be effective predictors of students' success rate in

introductory computer science courses. According to results of the Konvalina,

Wileman, and Stephens study, students who performed better in these

1

2

mathematical areas also performed better in computer science programming

courses.

In theory, increases in students' knowledge of sequencing, logic,

algebraic word problems, and calculation should elevate their achievement in

programming. This study is an attempt to demonstrate the association of

students' success rate.in programming by improving mathematical skills in the

area of sequencing.

Statement of the Problem

The problem of this study concerns the performance of students in

computer programming following exposure to a computer-aided instruction

(CAI) drill in sequencing and practice exercises.

Purpose of the Study

The purpose of this study was to determine whether or not student

success rates improve in computer programming after completing CAI

sequencing drills and practice exercises.

Hypotheses

The following hypotheses were developed for this study:

1. College students who complete a CAI drill in sequencing and then

complete an introductory computer programming course will perform

3

significantly better in programming than students who complete only an

introductory computer programming course.

2. Treatment students who perform below average in the BASIC

programming language pretest will have a higher gain on the posttest than

treatment students who perform above average on the pretest.

3. Treatment students who perform below average on the BASIC

programming language pretest will perform higher on the posttest than control

students who perform below average on the pretest

Definition of Terms

Sequence is defined as "to put a set of symbols into an arbitrarily

defined order; an arbitrarily defined order of a set of symbols; (i.e., an orderly

progression of items of information or of operation in accordance with some

rule)" (Sippl 1986, 252). The set of symbols used in this study includes

numbers, letters, and a combination of both.

Background and Significance of the Study

Rapid development in computer-related fields has created a tremendous

demand for computer science graduates. This demand has left computer

science departments with two problems. The first is how to control excessive

growth in student enrollment in introductory programming courses. The

second is how to provide adequate faculty and computer resources for

computer science students.

4

In light of the limited resources available to computer science educators

and the increasing demand for computer education, researchers have

concentrated on developing more effective tools for advising students who are

interested in obtaining an education in computer science. Many studies have

been conducted for the purpose of developing reliable computer science

aptitude tests. Most of the resulting tests measure cognitive skill, personality

traits, past academic achievement, or mathematical background. The findings

of some of these studies are reviewed in the following paragraphs.

In the area of personality traits, Alspaugh (1972) used a personality

predicting aptitude test. She found that students who were successful at

programming had a low level of impulsiveness and a high level of

reflectiveness. Grade-point average (GPA) was used in some studies as a

representative of past academic achievement, and it has been correlated with

student programming performance. Bauer, Mehrens, Vinsonhaler (1968);

Peterson and Howe (1979b); and Fowler and Glorfeld (1981) all found college

GPA to be the best predictor of success in introductory computer

programming courses. Kurtz (1980) and Barker and Unger (1983) developed

aptitude tests to measure the area of abstract thinking. Barker and Unger

concluded that the test of abstract thinking in conjunction with other advising

information provides a useful predictor of students' course performance.

Other researchers have studied the effects of mathematical knowledge

on student performance in introductory computer science courses. Many areas

5

of mathematics have been studied in relation to computer programming

performance. The studies conducted in this area indicate a strong correlation

between performance in introductory computer science courses and

mathematical background (Sukhen and Mand 1986; Hancock 1988). Most

researchers concerned with prerequisites have studied the effect of different

areas of mathematics on computer programming.

Research shows that the area of discrete mathematics is related to

performance in introductory computer science courses (Sukhen and Mand

1986). In his study of the effect of mathematics on performance level in

introductory computer science courses, Sidbury (1986a, 45) concluded: "There

is a strong indication that students who take discrete mathematics make higher

grades in computer science than do the students who take the algebra-calculus

sequence of courses."

Konvalina, Wileman, and Stephens (1983) found sequencing ability to

be an effective predictor of performance level in introductory computer science

courses. Given that students' ability in sequencing is a valid predictor of

success in introductory computer science courses, it seems reasonable that

strengthening this area would improve students' success rates. As an attempt

to verify such improvement this study is significant in that it provides

suggestions for ways to improve student performance, thereby reducing the

number of students failing the courses. In turn, the findings of this study

6

provide recommendations for using computer science faculty and computer

facilities more efficiently.

Experimental Procedures

Introductory computer science students at Winona State University in

Minnesota made up the population for this study. The sample included 80

students from two sections of an Introductory BASIC Programming Language

course at Winona State University's Computer Science Department. The two

sections of the Introductory BASIC Computer Programming class were taught

by the same instructor. Students of both sections were divided into two

equivalent groups: control and experimental.

The tool used for measuring students' levels of mastery of programming

in BASIC computer language was a domain-referenced test in BASIC

programming. The content of the test was designed and validated by

professors who teach the BASIC programming language. Test reliability is

reported in terms of coefficient of stability.

A CAI drill, written to present exercises in sequencing, was given to the

experimental group during the first week of the semester. The exercises for

the sequencing CAI program were taken from a doctoral study by Cannara

(1976) at Stanford University which was designed for teaching children

computer programming and a pattern sequencing of a Test of Foreign English

Language Practice manual. The drill was written for the IBM PC/XT (TM),

7

AT or any model of the IBM PS/2 (TM) microcomputer under IBM DOS 3.3

and above.. A faculty member of Winona State University administered the

tests and monitored the CAI sequencing drill in the Computer Science

Department computer lab. Each student was allotted a two- to three-hour

session to complete the CAI sequencing drill and practice exercises.

After completing the CAI drill, students in both of the groups

proceeded through the introductory computer programming course. At the

end of the course, aposttest (sane as pretest) in the BASIC programming

language was given to all of the subjects in both groups.

Statistical Analysis

A one-factor experimental research design where the independent

variable is the treatment and the dependent variable is the performance level

of the students in the BASIC programming language test was used for this

study. Simple analysis of variance was used to compare the two groups

involved in each hypothesis in order to determine if a significant difference

existed among the groups for each hypothesis. The following comparisons

were performed for the three hypotheses:

1. Compare the posttest mean score of the first group (sequencing

treatment) with the second group (control group).

8

2. Compare the posttest mean score of treatment students who scored

below average on the pretest with the mean score of treatment students who

scored above average on the pretest.

3. Compare the mean score of treatment students who scored below

average on the pretest with control students who scored less than average on

the pretest.

Limitations of the Study

One limitation of this study was the sampling method used to establish

the experimental and control groups. The subjects for this experiment were

chosen from one university, therefore, the findings of the experiment are

limited to similar universities.

A second limitation was the amount of time the experimental groups

had to learn sequencing. Because of the students' limited time to contribute to

the study, the treatment was limited to two to three hours.

Summary

An overview of the problem, the purpose of the study, background and

significance of the study, the experimental procedures, statistical analysis, and

limitations of the study are presented in Chapter I. A review of related

literature is included in Chapter II. Chapter III contains the methods and

procedures used for data collection and data analysis. The findings of the

9

research are discussed in Chapter IV. Chapter V includes the summary,

conclusion, and recommendations for future research.

CHAPTER II

REVIEW OF THE RELATED LITERATURE

Introduction

As Knuth (1974, 517) points out, "computer programming is an art,

because it applies accumulated knowledge to the world, because it requires

skill and ingenuity, and especially because it produces objects of beauty."

Whether defined as an art (Knuth 1974) or as a science (Gathers 1986; Gries

1981), programming has been identified as a difficult activity to learn by many

researchers (Pea and Kurland 1984b; Soloway et al. 1982). Chris Hancock

(1988), a Project Associate at Harvard's Educational Technology Center,

affirms the view that teaching and learning computer programming at the

introductory level are both difficult.

On the other hand, the availability of opportunity in computer-related

fields has created an increasing enrollment of college students in the

introductory computer programming courses as observed by Denning (1980,

618), Gray (1974), and Rothman and Mosmann (1972). Increasing numbers of

interested students in introductory programming courses and the difficulty level

of computer programming have resulted in an obvious need for effective

10

11

methods for advising students who are enrolled in introductory programming

courses.

In an effort to better advise students and to potentially direct them into

successful educational experiences in computer programming, many researchers

have conducted studies related to students' success rate in programming

courses. Most of the previous research has been concentrated on the

identification of important factors which influence students' success rate in

introductory computer programming courses. These researchers have

evaluated factors such as student knowledge of mathematics, overall

performance in high school and college, personality traits, and psychological

elements in an effort to predict students' success rate in introductory

programming courses. Other researchers have attempted to identify skills that,

once improved, could aid students in learning computer programming. Still

other researchers have examined methods of improving the curriculum for

computer science programs and computer programming courses, and have

suggested methods for enhancing teaching styles in those courses.

The results of such research provide educational curriculum developers

with the information necessary to determine prerequisites for students who

plan to take introductory computer programming courses. Both students and

colleges can benefit from such information by effectively using their resources

to provide and obtain an education in the area of computer programming.

12

Factors Associated with Students' Success
Rate in Introductory Computer

Programming Courses

Identifying factors that affect student performance in programming is by

far the most frequently researched topic related to student performance in

introductory computer programming courses. The available literature reports

research on mathematics knowledge, past and. present performance, personality

traits, and psychological elements as they relate to the student performance in

introductory computer programming courses.. This reviewof related literature

is divided into the following sections: the sequencing of cognitive skills,

mathematics as a factor affecting students' programming ability, and

personality traits and psychological elements in programming.

Sequencing as a Factor Associated
with Students' Ability to

Learn Programming

Many cognitive skills are associated with computer programming, some

are identified-as more essential for programming than others. Konvalina,

Stephens, and Wileman (1981) determined that sequencing cognitive skill is

among the most important skills for predicting students' computer

programming success rate.

The cognitive skill of sequencing is important for problem solving,

particularly in computer programming. However, there appears to be little

formal research involving sequencing skills of introductory computer science

13

students before their exposure to introductory computer programming courses.

In most cases, the limited training students receive in sequencing is offered as

a part of other problem-solving classes, such as mathematics courses. The

importance of the cognitive skill of sequencing in computer programming and

the area of problem solving has been studied by several researchers.

In search of strategies for teaching computer programming, McEntyre

(1977), from the University of California at Berkeley, identified the following

skills as necessary in an introductory programming course,-,sequencing control,

precision, and manipulation of variables. McEntyre clearly identifies

sequencing as an essential skill in programming. Jansson, Williams, and

Collens (1987) define the task of programming as one requiring the

formulation of an algorithm by stating and analyzing a problem, defining a

sequence of operations to solve the problem, and obeying the rules of syntax

and semantics of a computer language in entering the program into a computer

to test the solution. Hostetler argues that, for identification of factors for

predicting student performance rate, diagramming is correlated with the

students' final numerical score in a computer programming course.

Diagramming is defined "a test of ability to analyze a problem and order the

steps for solution in a logical sequence" (Hostetler 1983, 41).

Researchers at the University of Nebraska discovered sequencing,

among other mathematical skills, to be an effective predictor of students'

success rate in introductory programming courses (Konvalina, Stephens, and

14

Wileman 1981; Konvalina, Wileman, and Stephens 1983; Stephens, Wileman,

and Konvalina 1981). In their 1983 study, Konvalina, Wileman, and Stephens

administered a computer science aptitude predictor to students enrolled in an

introductory computer course in order to determine potential for success. The

test consisted of problems in five areas of mathematics. Sequencing with the

P < .01, among other mathematical factors, proved to be an effective factor

for predicting achievement in the class.

Although many facts support the importance of sequencing as an

essential skill in computer programming, this study seems to be a first attempt

to investigate the association of a computer-aided instruction (CAI) sequencing

drill and practice on achievement in an introductory programming course.

Mathematics as a Factor Associated
with Students' Ability to

Learn Programming

Performance rate in mathematics has been correlated with achievement

rate in computer programming. The effect of such findings is reflected in the

mathematics prerequisite of many computer science programs. Students'

performance in secondary-school and college-level mathematics has been

evaluated as a prerequisite to computer science programs.

Peterson and Howe (1979a, 183) concluded that "an able high school

student successful in mathematics and science will probably be a successful

student in Computer Science." Alspaugh (1972) also found that mathematical

15

background is an important factor in the success rate of students in

introductory programming courses. Campbell and McCabe (1984, 109)

discovered that the Scholastic Aptitude Test (SAT) mathematics and verbal,

high school rank, and high school background in mathematics and science are

the most predictive variables for forecasting success in computer science,

engineering, and other science fields. Sukhen and Mand (1986) found

significant correlations between the average grades of students in college-level

mathematics courses and performance in computer science courses. Students

with higher levels of high school and college mathematics knowledge obtained

higher grades in computer science courses. Werth (1986) examined the

relationship between many predicting factors and students' grade in

introductory computer science courses at the University of Texas at Austin in

1986. She found significant correlation between the letter grade in the

computer science course, the number of hours worked, and the number of high

school mathematics classes taken. According to Gathers (1986), the two

significant factors in the successful placement of college freshman computer

science majors in their first computer course are the American College Test

(ACT) English and University of Tennessee at Martin (UTM) mathematics

placement test scores. Konvalina, Stephens, and Wileman (1983) studied eight

factors regarding performance in an introductory computer course and

concluded that a very critical relationship exists between students' performance

in high school and their success at the college level. Their research also

16

showed that a high school mathematics background is important to success in

computer science. As a result, they encouraged advisors to recommend

participation in high school mathematics to students at the earliest possible

point. In a more isolated field of mathematics, Barker and Unger (1983)

report that abstract reasoning development is an effective measure of success

rate in a programming course.

Personality Traits and Psychological Elements
Associated with Students' Success

Rate in Introductory Computer
Programming Courses

"Because of the complex nature of the programming task, the

programmer's personality--his individuality and identity--are far more

important factors in his success than usually recognized" (Weinberg 1971, 95).

In his book, The Psychology of Computer Programming Weinberg also states

that it is pure speculation to equate the programmer's personality traits to

engineers, mathematicians, or any other field. There is a genuine need for

analysis of personality traits and their association on students' programming

ability.

In an attempt to identify some of the personality traits associated with

students' success rates in programming tasks, Alspaugh (1972) found that the

more successful programming student might be expected to have a personality

associated with a low level of impulsiveness and sociability and a relatively high

level of reflectiveness. In a similar study, Van Merrienboer of the University

17

of Twente, The Netherlands, studied the relationship between the personality

traits (reflection-impulsivity) and achievement in an introductory programming

course in high school. He defines reflection-impulsivity as: "related to the

quality of problem solving, when several alternatives are available and the

current solution is not immediately obvious" (Van Merrienboer, 1988, 182).

Persons with impulsive traits are characterized as gathering their information

less systematically and carefully than individuals with reflective traits, as

spending less time considering possible solutions or planning in advance, and

as prone to make more errors. In a programming activity, Van Merrienboer

states, persons with impulsive traits are likely to code a program as soon as

they associate a certain detail in the problem description with a new language

feature. Their understanding of a program is at a single-line level rather than

the overall design level. However, he found that individuals with reflective

traits consider different alternative solutions to the problem before they

attempt to code a program. This planning technique of those with reflective

traits could be helpful in constructing schemes or templates of blocks of codes.

The use of schemes has proven to be an effective technique and is practiced by

expert programmers (Clements 1979; Messer 1981). Van Merrienboer

concluded that the program comprehension of persons with reflective traits is

superior to the comprehension of those with impulsive traits. In knowledge of

programming syntax, no significant difference was found between individuals

with impulsive traits and those with reflective traits. In a related study,

18

Clements and Gullo (1980) found that impulsivity is modifiable to a certain

degree. They noted a positive effect of computer programming on reflection-

impulsivity traits. Clements and Gullo also found that it is possible to force

persons who have a tendency to be impulsive into a reflective strategy through

exposure to appropriate instructional materials. According to Deimel and

Moffat (1982) and Pea (1986), instructional strategies that are based on

comprehension, modification, and amplification of written programs may force

persons with having impulsive traits into a reflective strategy, resulting in better

success in an introductory programming course.

Not all studies dealing with the identification of the personality traits

and the psychological elements of students have revealed factors for effectively

predicting student success rate. Hostetler (1983) studied sixteen different

personality categories and did not find any significant correlation with students'

success in computer science courses. Corman (1986), of the University of

North Texas, also found that psychological and personality variables make little

contribution to success rate of students in an introductory programming class.

Weinberg (1971) explains that failure of personality tests in identifying

programming success rates among college students may be partly the result of

inadequacies of the test. Another reason, Weinberg suggests, may be an

inadequate understanding of which personality traits play an important role,

and in what section of the programming process. For this reason, Weinberg

19

recommends that additional research be conducted in order to identify

personality traits that are related to computer programming success rates.

Improving Students' Ability
to Learn Programming

Much effort has been spent in an effort to improve students' learning

effectiveness in computer programming education. The following sections

describe current research in the secondary education computer science

curriculum, higher education computer science curriculum, and computer

programming teaching methodologies as they relate, to students' performance

in computer programming performance and students' ability to learn computer

programming.

Secondary Education Computer Science Curriculum
and Students' Performance in Programming

Computer science in the secondary schools is a vital part of computer

science education because it is where students are exposed to computer

programming for the first time. Lack of a carefully designed computer training

program at the secondary level can sometimes be harmful, and can have

irreversible consequences. In reporting on his 1980 study of the secondary

school computer science curriculum, Sedlmeyer, of Purdue University, notes:

we have encountered an increasingly large proportion of students in our
Introductory Programming classes who have had prior programming
experience. Unfortunately, this "experience" has proven more harmful
than helpful.

20

... It was evident that these students had been taught
programming language syntax--not programming skills... too often such
a student is unwilling to change even when confronted with the gross
inadequacies of his programming efforts. (Sedlmeyer 1980, 168)

It is justifiable to say that design and implementation of an appropriate

computer science curriculum for high school has become an urgent task for

educators. The goal of such a curriculum must be the preparation of

secondary school students for higher education in computer science.

Computer science programs at secondary schools are faced with a number of

inadequacies. The Poirot (1979) study identified the three major problems

associated with computer education at the secondary level as: (a) teacher

proficiency, (b) hardware access, and (c) curriculum development.

Many solutions have been suggested to alleviate the problems of

qualified secondary-level computer science teachers. Training for teachers to

receive certificates in data processing has been implemented as a means to

develop better qualified teachers. To improve teacher training, in its

Recommendations for School Mathematics of the 1980s, the National Council

of Teachers of Mathematics recommends that teacher education programs for

all levels of mathematics should include computer literacy, experience with

computer programming, and the study of ways to make the most effective use

of computers and calculators in instruction.

As a result of tremendous advancement in integrated circuit technology,

which has driven microcomputer prices down to an affordable range, hardware

21

access is not as much of a problem as it was a decade ago. Time-sharing

network systems are another feasible alternative for a more centralized

operation.

On the other hand, the development of a secondary school curriculum

which meets the demands of the ever-advancing computer industry continues

to be a challenging problem for computer science programs. Sedlmeyer

describes the goal for a programming course for high school students who are

considering the pursuit of a data processing or computer science degree:

1. The student should understand the basic logical, physical and
functional components of computer system and how they interact
(computer architecture and organization).

2. The student should acquire the problem solving skills
necessary to develop a computer program from a problem definition.

3. The student should be introduced to structured programming
techniques.

4. The student should write programs for representative
applications.

5. The student should develop an appreciation for the role of
program documentation in program design, debugging and maintenance.
(Sedlmeyer 1980, 169)

The Task Force on Computer Science of the Association of Computer

Machinery Elementary and Secondary School Subcommittee (1983)

recommends that a curriculum for a computer science course in high school

should be oriented primarily toward teaching problem-solving skills rather than

being vocationaly oriented. Enough information on data processing or

computer professional careers should be included to create awareness of this

possibility in the student. Therefore, such a course should consist of

22

applications-oriented, general interest topics, with emphasis on practical use of

the computer as a tool for problem solving for the individual and for society as

a whole. The sequence of this course should vary considerably, depending on

several factors (i.e., programming language or use of structured programming

techniques), but an important consideration is that hands-on experience with a

computer should start immediately at the beginning of the course. According

to the task force, students should be running library programs (usually

emulations or games) as a preliminary to writing their own programs. This

provides working models for student programming and maintains a high

interest level. The beginning of the course is also the time to eliminate

"computerphobia" in those who are afraid of computers. This problem is

generally not as common among secondary school students as in the general

population.

Higher Education Computer Science Curriculum
and Students' Performance in Programming

Although computer literacy at the secondary school level is recognized

as an important part of student education in computer science, the majority of

this training takes place at the college level. It is not surprising, therefore, to

find that a large portion of previous research in this areas has been

concentrated on computer science education at the college level. Research

literature on computer programming at the college level is found in the areas

of program curriculum, teaching methods, and curriculum.

23

The undergraduate curriculum in computer science has been greatly

influenced by the Association of Computer Machinery's Curriculum Committee

on Computer Science reports of 1968 and, 1979; Berztiss (1987) argues that

new curricula are needed to emphasize both the theory and implementation

aspects of computer science. He identifies the following five essential fields of

computer expertise: research, development, implementation, maintenance, and

application user. Each field has a different level of knowledge requirements.

For research and development, Berztiss recommends a Bachelor of Science

degree with forty-five credit hours in computer science. For implementation

expertise, he recommends a Bachelor of Arts degree with thirty credit hours in

computer science. Finally, for maintenance and users, Berztiss recommends a

minor in computer science. Berztiss supplements the recommended computer

science curriculum with additional emphasis on mathematics courses.

In a curriculum-related study, Sidbury (1986b, 140) compared the effect

of traditional mathematics and discrete mathematics and concluded that

"students who take discrete mathematics do better in their beginning computer

science course than do students who take traditional mathematics." Course

curriculum and teaching methodology have been focal points in computer-

programming-course-related studies,

Noonan (1979) suggests a two-semester course in BASIC or PASCAL

that emphasizes algorithm development. The first-semester course

concentrates on the programming language and the second-semester course

24

expands on advanced programming techniques such as structure programming,

modularity, and block programming for the development of large programs.

The curriculum for introductory programming courses has been

addressed in many contexts. Samurcay (1985) suggests that many concepts and

procedures, at various levels of complexity, are involved in programming.

Lower-level concepts must be taught before the concepts of higher complexity

can be introduced.

Dupras, Lemay, and Mili (1984) suggest that programming correctness is

the focal point of the beginning course. They explain that, "the view that the

art of programming can't be separated from the science of correct

programming ... program correctness must be omnipresent from the very first

contact of the student with programming" (Dupras, Lemay, and Mili 1984,

151). They recommend emphasis in programming methodology as well as

programming languages.

Soloway (1986) points out the techniques for programming

methodology versus teaching only programming language syntax and semantics.

He states that students should be given explicit instruction in vocabulary terms

such as mechanism, explanation, goal, plan, roles of programming discourse,

and plan composition methods. These techniques, he suggests, can also be

advantageous in other problem-solving situations. In another course

curriculum study, Bulgren and Wetzel (1982) recommend PASCAL as the

programming language choice, instead of FORTRAN, for an introductory

25

course in programming. The PASCAL programming language offers support

for structured programming.

Teaching Methodology and Students'
Performance in Programming

The outstanding technique in teaching methodology is the problem-

solving approach (Bulgren 1987; Campbell 1984; Cook 1980; Gabrin 1982;

Meinke 1981; Whipkey 1984). In her study, Campbell (1984) points out that

preliminary programming courses which emphasize problem-solving techniques

have a significantly positive effect on subsequent performance in traditional

PASCAL courses. Most of the problem-solving methods emphasize algorithm

development as a major step in programming development (Campbell 1984;

Culik and Rizki 1983; Whipkey 1984). Other important techniques are

structure programming, top-down design, and stepwise refinements (Campbell

1984; Cook 1980).

Other methodologies include the use of no machine-specific languages,

suggested by Bulgren (1987), for the purpose of problem solving. For the

workshop environment, the evolutionary method of try, test, and repeat is

recommended (Smith 1981). This method relies on the techniques of teaching-

by-example, intuition, and reasonableness.

CAI is also an effective method of teaching computer programming

concepts. Using this method, students interactively use computer software to

26

drill and practice computer programming concepts. In some cases, CAI can

speed up the students' learning process (Aikin 1981).

Summary

From the existing research it is clear that programming ability of

students is predictable. The success rate of students can be predicted by

using a combination of past and present performance at secondary school and

college level, performance in mathematics, and personality traits such as

impulsive-reflectivity. It seems apparent that little research has been done in

the area of sequencing, logic, and other problem-solving skills on the

performance of students in an introductory programming course.

Sequencing, although an essential skill in programming, has so far only

been correlated to the success rate of students in programming. The

association of sequencing has never been studied as an isolated factor in

assisting students to learn programming. Research concerning the

psychological and personality traits of programming students is limited, and the

exact role of personality traits on programming success rates of students is not

clear. Future research into the relationship of cognitive skills and personality

traits and learning programming is essential for the development of effective

instructional material for programming courses.

CHAPTER III

RESEARCH METHODS

Introduction

The population, experimental group, experimental procedure, and

experimental treatment are discussed in"this chapter. The research type and

steps involved in conducting the research are reviewed in the experimental

procedure section. The computer-aided instruction (CAI) treatment tool,

BASIC programming language test, and the method of applying the treatment

are fully discussed in the experimental treatment section. Discussion of the

treatment of data and a chapter summary are also included.

Population

The population for the experimental and control groups included

students from two sections of an Introductory BASIC Computer Programming

Language course. This course was conducted at Winona State University in

Minnesota during a fall quarter.

Experimental Groups

Seventy students from two sections of an Introductory Basic

Programming Language course at Winona State University were participants in

27

28

the study. Students were divided into equivalent experimental and control

groups. To achieve equivalent experimental and control groups, students'

scores on a pretest of the BASIC programming language were sorted from the

top score to the bottom score. Then, from the top of the list, each pair of

students was randomly assigned to an experimental or control group. A toss of

a coin was used for randomly dividing each pair of students. ;The sample

group of students was divided into twogroups of thirty-five each. The size of

the groups was large enough to allow for drop-outs without affecting the

statistical analysis. The first group was designated as the experimental group

and the second was designated as the control group.

Experimental Procedures

One-factor experimental research using pretest-posttest control group

design with a matching techniques used for this study. Experimental research

is typically used to explore the effect of a treatment (i.e. new curriculum, new

method of teaching, etc.) on a population. This study is most closely modeled

after the experimental research design because it investigates the association of

CAI drill in sequencing with the ability of students in introductory computer

science courses to learn programming. The pretest-posttest control group

design with matching technique was selected from among the variety of designs

in experimental research as the model. Pretest-posttest control group design is

commonly used in educational research.

29

Walter Borg (1983) notes that experimental design effectively controls

for the eight threats to internal validity: history, maturation, testing,

instrumentation, regression, selection, mortality, and interaction effects. In

order to obtain additional precision in the statistical analysis of the data, the

matching technique was added to the experimental design.

The purpose of the matching technique is to divide subjects into two

equivalent groups--control and experimental. Although many procedures can

be used to achieve matching groups, the ranking method was chosen for this

study. The ranking method sorts students' scores from the pretest. It

measures the dependent variable or variables correlated with the dependent

variable in ascending order and then it randomly divides each pair of two top

scores from the sorted list into two groups. The result is two matched groups

that are fairly equivalent in background. One of the groups is used as the

control group and the other is used as the experimental group. The steps in

pretest-posttest control group with matching-technique used for this study are

as follows:

1. Administer measures of the dependent variable or of a
variable closely correlated with the dependent variable to the research
subjects.

2. Assign subjects to matched pairs on the basis of their scores
on the measures described on step 1.

3. Randomly assign one member of each pair to the
experimental group and the other member to the control group.

4. Expose the experimental group to the experimental treatment
and, if appropriate, administer a placebo or alternative treatment to the
control group.

30

5. Administer measures of the dependent variables to the
experimental and control groups.

6. Compare the performance of the experimental and control
group on the posttest(s) using tests of statistical significance. (Borg
1983, 44)

A BASIC programming language test, described in the following

sections, was administered to all of the students in both sections of the class as

a pretest. Then, according to the procedure explained previously, students.

were paired and randomly divided into experimental.and control groups based

on their pretest scores. After students were divided into two groups, the

experimental group was exposed to CAI drill in sequencing treatment while the

control group was exposed to an alternative treatment. The experimental

treatment is discussed in detail in the experimental. treatment section., The

students of both classes then completed the normal activities of their

Introductory BASIC Programming class. At the end of the term, a test on the

BASIC programming language was administered as the posttest to both

sections of the class. The scores of the experimental students. were compared

with those of the control students' using analysis of variance as the tests for

statistical significance.

Experimental Treatment

This section includes a discussion of the sequencing CAI treatment

instrument, the sequencing CAI treatment procedure, and the BASIC

programming language test. The instrument used for the experimental

31

treatment was a CAI drill which was designed and developed for practicing

sequencing cognitive skills.

The CAI treatment on sequencing was based on a drill-and-practice

strategy which was designed to improve students' sequencing abilities. The

sequencing CAI drill program is presented in Appendix A. Many researchers

have indicated that CAI can be at least as effective as traditional instruction

and that using CAI typically reduces the required time for students to master

the material (Aikin 1981). Another reason why the CAI .method was used for

this study was that no specific lecture time for sequencing was required. This

approach provided the students freedom to practice the sequencing lessons at

their convenience. The CAI drill on sequencing was carefully designed to

allow all students to complete the sequencing problems at their own pace.

The CAI drill on sequencing is made up of forty multiple-choice

questions in sequencing patterns. These questions were taken from a pattern

sequencing section of a Test of Foreign English Language practice manual and

a sequencing instruction tool by Alexander B. Cannara (1976) at Stanford

University. The drill was designed for the IBM PC or compatible machine

using IBM DOS 3.3 and higher. The CAI drill lesson on sequencing includes

all of the necessary instructions for students. At the beginning of the drill, the

student's name is requested and verified for correctness. Names are requested

to facilitate personal interaction with the students and for recording student

performance. Two pages of instructions and examples are presented at the

32

beginning of the CAI lesson. An explanation of how to answer the multiple-

choice questions of the sequencing drill and practice exercises is also included.

The practice exercises and forty sequencing drill questions are presented, one

at a time.

Students are provided with two opportunities to choose the correct

choice before the computer presents the correct answer. The correct answer

presented by the computer is accompanied with an explanation. For every

question that is answered correctly on the first try, two points are gained; on

the second try, only one point is gained. Once the computer presents the

correct answer, students do not gain any points for that question. However,

the questions that are answered incorrectly in the first round are recorded and

are presented later for review. At the end of the lesson, the computer

presents the questions that were answered incorrectly by the student. This

allows the student a second chance to answer the questions. This technique

helps to motivate students to pay attention to every question. Each student's

name and final score were recorded along with the student's response to every

question.

A frequent difficulty encountered with experimental research is a lack of

subjects for study. It is often difficult to obtain enough student volunteers to

establish acceptable control and experimental groups, particularly if the study

requires a considerable amount of time. In this study, two sections of an

introductory BASIC computer programming course at Winona State University

33

were selected as participants. The research procedure wasconducted by a

computer science professor in two sections of an Introductory Computer

Science course. The Introductory Computer Science course primarily teaches

BASIC programming language. Research activities were presented to the

students as part of course activities; and therefore, all of the students were

involved in the research. No differences existed in the teaching styles for the

sessions of the BASIC programming language course (both were taught by the

same instructor).

A week after students completedthe pretest in BASIC programming

language, they were asked to participate in a laboratory exercise using

educational software. Computer diskettes containing the sequencing CAI drills

were given to the experimental student group. Members of the control group

were provided with randomly selected software such as games and puzzles.

The lab provided each student with a PC XT or a PC AT personal computer.

Under a supervised laboratory environment, subjects in the experimental group

were asked to complete sequencing exercises while subjects in the control

group were asked to complete its software games. All of the diskettes were

collected at the completion of the student session. Sequencing CAI drills were

separated and examined for completion scores by the lab supervisor. All of

the subjects in the experimental group completed the sequencing CAI

exercises. The CAI drill and practice exercises on sequencing took students

34

two to three hours to complete.. The control students spent about the same

amount of time using the randomly-selected software.

The BASIC computer programming language test which was used as the

pretest (at the beginning of the quarter) and as the posttest (at the end of the

quarter) was designed by the computer science department at Winona State

University for evaluating students in BASIC programming language courses. A

sample of the test is presented in Appendix B. Students were required to take

the tests as part of the course. The BASIC programming language test was

administered by the instructor in the class session during the first week of the

term as the pretest and during the last week of the term as the posttest. All of

the tests were scored by the same instructor, with 155 as the highest possible

score.

Content validity of the test was previously verified by the Computer

Science Faculty at Winona State University. The test had been in use by the

BASIC Computer Programming Language course faculty for the evaluation of

students for several years. The test was originally modified by the designer to

obtain the optimum reliability as well. Consistency in test results over a period

of several years was proof of its reliability. A coefficient of stability measure

was calculated in a test-retest situation for the purpose of estimating the

reliability of this test by Winona State University. The test was administered

twice in a one-month period. A correlation coefficient of .76 was reported for

the test; thus, the reliability of the test was confirmed.

35

Treatment of Data

Scores on the pretest in the BASIC programming language were used to

construct two matching groups--experimental and control. However, posttest

scores were statistically analyzed for the validation of the three stated

hypotheses.

Hypothesis 1 predicted that students in the experimental group would

score higher on the posttest than students in the control group. Therefore, the

posttest scores of students in the experimental group were expected to be

significantly higher than the posttest scores of students in the control group.

Analysis of variance was used to verify this hypothesis.

Hypothesis 2 predicted that students in the treatment group who

performed below average on the pretest would have a higher gain on the

posttest than students in the treatment group who performed above average on

the pretest. Because the students' gain on the posttest was being questioned,

the appropriate statistical procedure to verify this- hypothesis was analysis of

variance.

Hypothesis 3 predicted that students in the treatment group who scored

lower than average on the pretest would score higher on the posttest than

students in the control group who scored lower than average on the pretest.

Analysis of the variance was also used to verify this hypothesis.

36

Summary

In summary, the population of the study was made up of students in two

sections of an Introductory BASIC Programming course at Winona State

University. Students were divided into experimental and control groups based

on their pretest performance on a BASIC programming language test.

Students in the experimental group were exposed to a CAI drill on sequencing,

while students in the control group was exposed to alternative software. Both

groups of students completed the requirements of their Introductory BASIC

Programming classes. At the end of the term, a posttest, of the BASIC

programming language was administered to all of the students. Analysis of

variance was used to compare the difference of the experimental group and

the control group posttest scores for all three hypotheses.

CHAPTER IV

PRESENTATION OF FINDINGS

Introduction

The findings of the study are presented in this chapter. A review of the

experiment is also presented in this section. Pretest findings are presented and

discussed; the three hypotheses are presented ad discussed individually; and

tables of statistical data for the hypotheses are presented and discussed. A

summary of the findings is presented at the end of the chapter.

Experiment Review

The data obtained through procedures described in Chapters I and III

are from a single-factor experimental research design where the independent

variable was the teaching method and the dependent variable was the

performance of the students on a BASIC programming language test. Three

hypotheses were investigated in this study. The statistical procedure used to

evaluate the three hypotheses was analysis of variance. A test of the BASIC

programming language was administered in both the pretest and posttest. Test

scores ranged from 0 to 155 points. The pretest was given to students in two

sections of an Introductory Computer Science course. The total number of

37

38

students in the two sections of the course was 70, 10 students dropped by the

end of the quarter.

Because only two groups were used for comparison, both t-test and

ANOVA worked well for the statistical analysis. As stated by Slakter (1972),

ANOVA is appropriate for I = 2, as well as for ij> 2. A person may well

wonder whether a two-sample case should be handled by using the t

distribution or methods of using the F distribution. Actually, for the test of

HO: ul = u2, the two methods are equivalent. However, in this study,

ANOVA was chosen for the statistical procedure because it compares the

groups' overall distribution and not just their means.

The statistical software package that was used for this study was ySTAT

(1987). An important point to remember in comparing groups for the test of

significant difference is the validation of the underlying assumptions for such

tests. These basic assumptions are normality of population distribution, equal

variance, and independence. Slakter (1972, 652) states the fragility of the

assumption: "While the assumptions of a model can be satisfied in only one

way, they can be violated in infinite number of ways." The three assumptions

are examined briefly in this section.

The first assumption is the normality of the population distribution.

This assumption is considered safe with the populations encountered in

educational research (Slakter 1972, 652). Equal variance is achieved by

dividing the sample into the same size as closely as possible. Independence is

39

accomplished by careful supervision. This ensures that one subject's responses

do not affect the responses of other subjects. In the following sections, the

result of the pretest is examined. A statistical analysis and discussion of each

of the three hypotheses is then presented.

Performance of Students Prior to Treatment

A pretest was administered to students in both classes. The mean,

standard deviation, F value and the variance between the pretest scores of the

experimental and control groups are presented in Table L

Table 1.--Difference in Pretest Scores for Experimental and Control Groups

Group N Mean SD F P

Experimental 35 7.1 12.99
0.001 0.977

Control 35 7.2 12.42

There was a total of 70 students in the two sections of the course. The scores

of students in the pretest were used to divide students into two matched

groups--experimental and a control group. There were 35 students in each

group. From the possible 155 points, the students' average was around 7. As

shown in Table 1, students' scores were on the low side of the scale. The

40

results show that although some students were knowledgeable in the BASIC

programming language, the majority of the students were not familiar with the

BASIC programming language before taking the Introductory Computer

Science course. The mean scoreon the pretest for the students in the

experimental group was 7.1, and. the students' mean score for the control group

was 7.2. These scores indicate the similarity of the two groups.

Simple analysis of variance with the two groups' scores was conducted.

ANOVA with the P valueeof .97 indeed supported the null hypothesis that

both groups were very similar.

Performance of Students Following
Computer-Assisted Instruction

Hypothesis 1 was designed to determine whether college students who

completed a computer-aided instruction (CAI) drill in sequencing and then

completed an introductory BASIC programming course would perform

significantly better in programming than the students who completed only the

introductory BASIC programming course. As described in Chapter III, the

experimental group participated in the CAI drill in sequencing and practice

exercises before attending the BASIC programming language course. A

posttest in the BASIC programming language was administered to both groups

at the end of the quarter. The mean, standard deviation, F value, and

variance between the posttest scores of the experimental and control groups

are presented in Table 2.

41

Table 2.--Difference in Posttest Scores for Experimental and Control Groups

Group N Mean SD F P

Experimental 30 125.30 14.53
0.896 0.344

Group 30 121.87 13.55

The experimental group's mean on the posttest was 125.30, which was

3.43 points-higher than the control group's mean of 121.87. The control

group's mean was slightly lower than the experimental group's mean. To

compare the experimental group's performance in the posttest with the control

group's performance, an analysis of variance was conducted with two samples

of the experimental group's and the control group's posttest scores.

The F value is significant at P = .34, and is beyond the expected alpha

value of .050. Therefore, the null hypothesis is accepted and the difference

between the experimental and the control groups' performance in the posttest

is not significant.

The experimental group averaged slightly higher than the control group

on the posttest of the BASIC programming language. This difference is not

significant for the alpha level of .05. Obviously, the effect of participating in a

CAI sequencing drill on the ability of students to learn programming is not a

significant one. There is a 34 percent chance that the difference between both

42

groups' mean scores is due to random errors. The difference indicates that

participating in the CAI drill on sequencing had a positive effect on the

learning behavior of students, but not a statistically significant effect. Some of

the reasons for the lack of a significant difference between the experimental

and the control groups' performance on the posttest could be isolation of the

sequencing factor, the limitation of the sample size, and the short treatment

period dictated by the study.

Hypothesis 2 predicted that treatment students who performed below

average on the BASIC programming language pretest would have higher gains

on the posttest than treatment students who performed above average on the

pretest.

The pretest of the BASIC programming language scores of 35 students

in the experimental group were 7.1. As the results of the pretest revealed,

most of the students scored zero points; thus, the grading distribution was

heavily skewed to the low side of the grade range. Twelve of the experimental

students scored above average and, thus, made up the above average group.

Eighteen experimental students scored below average and, thus, made up the

below average group. Five students in the experimental group dropped out of

the study during the quarter. The results of the analysis of variance for the

pretest scores of above average and below average experimental groups are

presented in Table 3.

43

Table 3.--Difference in pretest scores for Above Average and Below Average
Experimental Groups

Group N Mean SD F P

Above average 12 19.75 16.46
27.207 0.00

Below average 23 1.70 2.75

Analysis of variance revealed a P value of zero for the pretest scores of

the two groups. This testifies to the significant difference between the above

average group and the below average group performance on the pretest. As

mentioned earlier, 5 students in the below average group dropped out of the

study, which left the below average group with 18 students against the 12

students in the above average group. The mean, standard deviation, F value

and variance between the posttest scores of the above average and below

average experimental groups are presented in Table 4. The above average

experimental group's mean on the posttest was 6.03 higher than the below

average experimental group's mean.

Hypothesis 2 predicted that experimental students who performed below

average on the pretest would have a higher gain on the posttest than

experimental students who performed below average. A simple analysis of the

variance was performed between the experimental below average group's

44

Table 4.--Difference in Posttest Scores for above Average and Below Average
Experimental Groups

Group N Mean SD F P

Above average 12 128.92 12.80
1.251 .263

Below average 18 122.89 15.45

posttest scores and the experimental above average group's posttest scores.

The results of the study indicate that the difference between the two groups'

performance on the posttest of the BASIC programming language is not

significant. Therefore, this hypothesis is rejected.

Analysis of the variance failed to provide a significant F ratio between

the posttest results of the experimental below average group and the

experimental above average group. The fact that both the experimental below

average group and the experimental above average group performed

noticeably well, was due to the effectiveness of the Basic Programming Course.

The reason that the experimental above average group scores were slightly

higher than the experimental below average group may be attributable to

higher prior knowledge of the above average group versus the below average

group. Participation in the CAI drill on sequencing did not cause a

45

significantly higher gain in scores of the experimental below average group

than that in scores of the experimental above average group.

Hypothesis 3 predicted that experimental students who performed below

average on the BASIC programming language pretest would perform better on

the posttest than control students who performed below average on the

pretest.

The experimental and the control group pretest scores were each

divided into above average and below average groups. The scores of both

groups in the pretest were compared using analysis of variance. Data for this

comparison are presented in Table 5. The mean of the experimental below

average group and the control below average group pretest was 1.70, which

Table 5.--Difference in Pretest Scores for Experimental Below Average and
Control Below Average Groups

Group N Mean SD F P

Experimental
below average 23 1.70 2.75

0.00 1.00
Control below

average 23 1.70 2.75

46

indicate the similarities of the two groups. The P value of 1.00 also indicates

that the two groups are very similar.

After the BASIC programming language course was completed, 18

students in each of the experimental and control below average groups

participated in the posttest. The mean, standard deviation, F value, and

variance between the posttest scores of the below average experimental and

below average control groups are presented in Table 6.

Table 6.--Difference in Posttest Scores for Experimental Below Average and
Control Below Average Groups

Group N Mean SD F P

Experimental
below average 18 122.89 15.45

0.50 0.479
Control below

average 18 119.56 12.70

The experimental below average group mean is higher than the control

below average group mean. To substantiate the significance of this difference,

a simple analysis of variance was calculated with the two samples of

experimental and control below average groups' scores. The result of analysis

of variance indicates a P value of .479 which (Table 1) is beyond the alpha

47

toleration level of 0.05. Therefore, the null hypothesis is accepted. Thus,

there is no significant difference between the experimental and control below

average groups' posttest performance.

Students in the below average group who participated in the experiment

by completing a CAI drill on sequencing did not performed better than the

below average students who did not participate in the CAI drill on sequencing.

The short treatment period may have contributed to the lack of a significant

improvement in the experimental group.

Summary of Major Findings

The major findings of this study were the following:

1. The experimental group did not have a significantly higher gain in

the posttest than the control group.

2. The below average experimental group did not have a significantly

higher gain on the posttest than the above average experimental group.

3. The below average experimental group did not have a significantly

higher gain on the posttest than the below average control group.

CHAPTER V

SUMMARY, DISCUSSION, CONCLUSIONS,

AND RECOMMENDATIONS

Computer Science programs continue to be a demanded field of study

as computers are applied in new industries. The pressure of high demand for

computer programming courses and inadequate information about computer

programming prerequisite skills contribute to the current lack of effective

computer science advisement programs. The fact that a number of students do

not benefit from their computer science courses because they are not

adequately prepared has resulted in the low utilization of already limited

resources.

An increased understanding of the skills needed to learn computer

programming would be a valuable aid to computer science departments in

advising students and could improve the success rates in computer science

courses. Based on Konvalina, Wileman, and Stephens's (1983) discovery that

sequencing, among other factors, is related to students' success rates in

introductory programming courses, the purpose of this research was to

determine whether or not student success rate would improve in computer

programming after completing a computer-aided instruction (CAI) sequencing

drill and practice exercises.

48

49

For this study, a CAI program was developed to teach pattern

recognition sequencing. Two groups of students were used, one as an

experimental group and one as the control group. A BASIC programming

language test was used to measure the students' knowledge of BASIC

programming language.

After students' scores were obtained in a pretest, they were ranked from

highest possible score (155) to lowest possible score (0). The ascending list of

students' pretest scores was divided into two approximately equivalent groups.

These matched groups were assigned as experimental and control groups.

Sequencing CAI software were given to the experimental group and games and

puzzle software were given to the control group as a computer laboratory

assignment. After students had completed the laboratory assignment, both

groups attended the BASIC programming course. At the completion of the

course, a BASIC programming test, which was used as the pretest, was

administered to both groups as the posttest. The data collected from the

posttest were statistically studied for each of the three hypotheses. Analysis of

variance was used to compare the posttest scores of the experimental group

with scores of the control group for the three hypotheses. Analysis of variance

with two samples was calculated for the experimental and control groups for

each hypothesis.

50

Summary of Major Findings

Although the findings for this research are limited, they are important as

they relate to the performance of students in introductory computer

programming courses.

1. No significant difference was found between experimental students'

posttest scores and control students' posttest scores for the alpha level of 0.05

in an analysis of variance study.

2. Experimental students who scored below average on the pretest did

not show a significant gain on the posttest when compared to the experimental

students who scored above average on the pretest.

3. Students in the experimental below average group did not have a

significantly higher mean than students in the control below average group on

the posttest of BASIC programming language.

Discussion of Findings

1. The most important finding of this research may be that sequencing

CAI as a complementary educational tool for the introductory computer

programming students did not have a statistically significant impact on

students' performance in the course. This finding resulted in the rejection of

the hypothesis that sequencing exercises would have a positive significant effect

on the ability of students to learn programming. This may be due to the fact

that there are many cognitive skills involved in programming. Sequencing,

51

which is one of them, did not provide enough impact by itself to significantly

improve experimental students' scores which compared to control students'

scores. However, the comparison of the means for both groups reveals that

participation in a CAI drill on sequencing did have some positive effect on

experimental students' scores. It is possible that participation in a CAI drill on

sequencing combined with other cognitive programming skill treatments such

as logic, could result in significant improvement.

2. It was hypothesized that students in the experimental group who

scored below average on the pretest would have a higher gain on the posttest

than experimental students who scored above average on the pretest. It was

found that neither group scored significantly higher on the posttest of BASIC

programming language. Therefore, participation in the CAI drill on

sequencing did not cause a statistically significant gain in the posttest scores of

below average experimental students when compared with the scores of above

average experimental students who used the same CAI drill. This seems to

indicate that the BASIC programming course was effective in raising the

experimental below average students' knowledge of BASIC programming to a

level comparable to the experimental above average students. Therefore,

participation in the CAI drill on sequencing did not noticeably improve the

experimental below average students' performance in BASIC programming

versus the experimental above average students' performance.

52

3. The experimental below average group had a nonsignificant but

higher mean on the posttest than did the control below average group. The

hypothesis predicted that the experimental below average group would have a

significantly higher performance on the posttest than the control below average

group. This hypothesis was rejected. Participation in a CAI drill on

sequencing did not significantly improve the ability of the experimental below

average group to learn programming when compared with the control below

average group. The higher performance by the experimental below average

group (3.33 points) is an indication that participation in a CAI drill on

sequencing had a nonsignificant positive effect on students' performance. The

combination of the CAI drill with other computer programming cognitive skills,

such as logic, might have a significant effect on the ability of students to learn

programming.

Conclusions

1. Participation in CAI drills on sequencing alone does not appear to

have enough impact to cause a significant improvement in students' ability to

learn programming.

2. Participation in CAI drills on sequencing alone did not have a

significant impact on the performance of the experimental below average

group on the test of BASIC programming language versus the control below

average group.

53

3. Participation in CAI drills on sequencing alone did not improve the

performance of experimental below average students significantly over the

experimental above average students on the test of the BASIC programming

language.

4. Participation in CAI drills on sequencing did not negatively effect

students' ability to learn programming.

Recommendations

Based on the findings of the study, the following recommendations are

made:

1. A complementary study is recommended which uses the same tools

but applies the CAI treatment more than one time during the term of the

BASIC programming language course. The use of a larger group of students is

also advised.

2. A study on the combination and interactions of multiple computer

programming cognitive skills such as sequencing, logic, and algebraic

manipulation is recommended.

3. A comprehensive study of other prerequisite areas for computer

programming courses is recommended.

4. A similar study with an earlier posttest is also suggested.

APPENDIX A

SEQUENCING COMPUTER-AIDED INSTRUCTION

DRILL PROGRAM

54

100 NQ:= 40
200 DIM W(40)
300 D$:= CHR$ (4)
400 FOR I = 1 TO 40:W(I) = 0: NEXT I

500 PRINT D$;"OPEN SEQUENCE.DAT"
600 PRINT D$;"CLOSE SEQUENCE.DAT"
700 PRINT D$;"PR#3"
800 HOME
900 INPUT "PLEASE ENTER YOUR LAST NAME AND FIRST NAME:

";N$
1000 HOME : PRINT "HI ";N$
1100 PRINT "THE FOLLOWING IS A DRILL AND PRACTICE

PROGRAM IN SEQUENCING. THE PROGRAM WILL"

1200 PRINT "PRESENT YOU WITH TOTAL OF 40 MULTIPLE CHOICE

QUESTIONS. FOR EACH QUESTION FOUR"

1300 PRINT "ANSWERS ARE GIVEN FROM WHICH YOU HAVE TO
CHOOSE THE CORRECT ONE."

1400 PRINT "EXAMINE THE SEQUENCE OF THE LETTERS OR
NUMBERS AND FIND THE PATTERN THEY FOLLOW. BASED ONi

THE PATTERN CHOOSE THE ANSWER TO FILL UP THE BLANK
SPACES."

1500 PRINT "IF YOU"
1600 PRINT "CHOOSE THE WRONG ANSWER ON THE SECOND

CHANCE, COMPUTER WILL DISPLAY THE"

1700 PRINT "CORRECT ANSWER AND SOME EXPLANATION."
1800 PRINT "USE OF PAPER, PENCIL AND CALCULATOR IS

RECOMMENDED."
1900 PRINT
2000 PRINT "GOOD LUCK"
2100 VTAB 24: INVERSE : PRINT "PRESS ANY KEY TO

CONTINUE";: NORMAL : GET C$: PRINT
2200 NC = 0
2300 FOR II = 1 TO 2
2400 RESTORE
2500 FOR I = 1 TO NQ
2600 FOR J = 1 TO 6
2700 READ A$(J): NEXT J
2800 READ CA$
2900 IF W(I) = 1 THEN GOTO 5000
3000 NT = 1
3100 HOME : FOR J = 1 TO 5: PRINT A$(J): PRINT : NEXT J

3200 PRINT : PRINT "ENTER THE CORRECT CHOICE: ";: GET
UA$

3300 IF UA$ < > CA$ THEN GOTO 4100
3400 IF W(I) = 1 THEN GOTO 3800
3500 W(I) = 1
3600 NC = NC + 1

55

56

3700 IF NT = 1 THEN NC=NC + 1
3800 PRINT
3900 VTAB 23: INVERSE : PRINT "CORRECT ANSWER,

CONGRATULATIONS!": NORMAL
4000 INVERSE : PRINT "PRESS ANY KEY TO CONTINUE";:

NORMAL : GET C$: GOTO 5000
4100 IF NT = 2 THEN GOTO 4700
4200 NT = NT + 1
4300 PRINT
4400 VTAB 23: INVERSE : PRINT "WRONG ANSWER, TRY

AGAIN!": NORMAL 4500 INVERSE : PRINT "PRESS ANY
KEY TO CONTINUE";: NORMAL : GET C$

4600 GO TO 3100
4700 PRINT : PRINT "CORRECT ANSWER IS: ";CA$: PRINT

"EXPLANATION: "; A$(6)
4800 PRINT
4900 VTAB 24: INVERSE : PRINT "PRESS ANY KEY TO

CONTINUE";: NORMAL : GET C$: GOTO 5000
5000 NEXT I
5100 NEXT II
5200 PRINT "NC = ";NC
5300 FOR I = 1 TO NQ: PRINT W(I): NEXT I
5400 PRINT D$; "APPEND SEQUENCE. DAT"
5500 PRINT D$; "WRITE SEQUENCE .DAT"
5600 PRINT N$; ", ",NC
5700 PRINT D$; "CLOSE SEQUENCE.DAT "
5800 HOME : SPEED= -20: VTAB 12: HTAB 20: PRINT "THANK

YOU FOR YOUR TIME"
5900 VTAB 14: HTAB 25: PRINT "GOOD LUCK"
6000 SPEED= 255: PR# 0
6100 DATA 1. 2 7 10 15 18 23 26 31 34 39 _ _ _,A. 44 46

51,B. 42 47 50,C. 34 23 14,D. 23 34 45,"ALTERNATE
THE ADDITION OF 3 AND 5 TO A NUMBER TO GET THE NEXT
ONE ", B

6200 DATA 2. ABABBABABBAB_ _ _,A. A B BB. B B A,C. B
A B,D. B B B, "ABABB IS BEING REPEATED, SO AFTER THE
LAST AB THERE COMES A B B",A

6300 DATA 3. 9 A 8 C 7 E 6 _,A. 5,B. A,C. 3,D. G,"AS
NUMBERS ARE DROPPING BY ONE THE LETTERS ARE
ADVANCING BY TWO. TWO LETTER AFTER E IS LETTER G", D

6400 DATA 4. 9 12 11 14 13 16 15 18 _ ,A. 18 20
19,B. 17 20 19,C. 12 13 20,D 20 18 17,1"THE NUMBERS
ARE GOING UP BY 3 AND DROPPING BY 1, SINCE 15 WAS
INCREASED BY 3 TO 18 THEN THE NEXT NUMBER IS
18-1=17, 17+3=20 AND 20-1=19",B

6500 DATA 5. B A D C C F E H G _ ,A. H I LB. J I
L,C. J L ID. NONE OF THE ABOVE IN ALPHABETICAL
ORDER, SO 3 LETTERS AFTER G IS J AND THE LETTER
BEFORE J IS I AND NEXT IS L",B

57

6600 DATA 6. QQLQQQQLLLQQLQQQQLLLQ_ _ _,A. QQQB.
QLQC. LQQD. LQQ,"QQLQQQQLLL IS BEING REPEATED, SO
THE NEXT THREE LETTERS ARE QLQ",B

6700 DATA 7. 27 24 22 19 17 14 12 9 _ _ _,A. 7 4 1,B. 4
2 3,C. 7 4 2,D. NONE OF THE ABOVE, "SUBTRACT 2 AND 3
ALTERNATIVELY, 9-2=7,, 7-3=4 AND 4-2=2",C

6800 DATA 8. A Z B Y C X D _ _ _,A. W A D,B. W E VC.
B S E,D. NONE OF THE ABOVE,"THE LETTERS ARE
ALTERNATING FROM THE BEGINNING AND THE END OF THE
ALPHABET", B

6900 DATA 9. 32 27 29- 24 26 21 23 _ _ _,A. 18 20
15,B. 20 23 21,C. 17 20 22,D. 18 20 16, "THE PATTERN
IS SUBTRACTING 5 AND ADDING 2, SO THE NEXT NUMBERS
ARE 18 20 AND 15",A

7000 DATA 10. 1 12 121 1212 12121 _ _,A. 121211
21112,B. 121211 1212121,C. 121212 1212121,D. NONE
OF THE ABOVE, "PAD THE PREVIOUS NUMBER ALTERNATELY
WITH 1 AND 2",C

7100 DATA 11. 8 10 13 17 22 28 35 _ _ _,A. 43 50 60,B.
40 42 45,C. 43 52 62,D. 43 52 63, "THE NUMBERS ARE
INCREMENTING BY THE PREVIOUS INCREMENT PLUS 1 WITH
2 AS THE FIRST INCREMENT. THE CORRECT ANSWER IS 43
52 AND 62",C

7200 DATA 12. 147 144 137 141 138 131 135 132 125
_,A. 129 126 119,B. 130 131 132,C. 129 17 119,D.
129 126 120, "THE NUMBERS ARE DECREASING BY 3 AND BY
7 AND INCREASING BY 4",A

7300 DATA 13. A Z C X E V G _ _ _,A. H I T,B. T I RC.
I T RD. T I S,"THE LETTERS ARE ALTERNATING FROM
THE BEGINNING AND END OF THE ALPHABET ",B

7400 DATA 14. J 1 P 3 M 5 J 8 P 1 M 3 J 5 P 8 M 1 J 3
,A. M 3 J,B. P 3 JC. P 3 MD. P 5 M,"LETTERS

JP AND M ARE BEING REPEATED WHILE THE NUMBERS 1 3 5
AND 8 ARE BEING REPEATED",D

7500 DATA 15. 1 2 6 24 120 _ 5040 _,A. 640 320320,B.
700 42320,C. 720 40320,D. NONE OF THE ABOVE,1"120 IS
MULTIPLIED BY 6 TO GET 720, 720 IS MULTIPLIED BY 7
TO GET 5040 WHICH IS MULTIPLIED BY 8 TO GET
40320",C

7600 DATA 16. 1 3 4 7 11 18 2 30 32 5 8 13 5 12 _

3 18 _,A. 17 19,B. 17 21,C. 19 20,D. 21 17,"THE
ADDITION OF THE FIRST TWO NUMBERS IN EACH GROUP
RESULTS IN TO THE THIRD NUMBER FROM THE SAME
GROUP", B

7700 DATA 17. 15 4 19 5 80 85 11 2 13 6 3 _ 4 _ 14
- 8 29,A. 9 10 21,B. 10 12 2,C. 9 12 20,D. 9 10
20,"THE ADDITION OF THE FIRST TWO NUMBER IN EACH
GROUP RESULTS IN TO THE THIRD NUMBER FROM THE SAME
GROUP" ,A

58

7800 DATA 18. 2 3 5 8 13 21 _ _ _,A.. 34 54 80,B. 23 34

55,C. 18 23 34,D. 34 55 89,"THE ADDITION OF TWO
CONSECUTIVE NUMBERS GIVES THE NEXT NUMBER",D

7900 DATA 19. 1 2 3 6 11 20 37 _-_ _,A. 57 94 165,B.
68 125 230,C. 63 123 228,D. NONE OF THE ABOVE,"THE
ADDITION OF THREE CONSECUTIVE NUMBERS RESULTS IN
THE FOURTH", B

8000 DATA 20. 5000 6000 5900 6900 6800 7800 7700

,A. 8000 7000 6000,B. 8700 7600 9600,C. 8700
8600 9600,D. 9600 8700 7000, "ADDING A 1000 AND*
SUBTRACTING 100 IS THE ALTERNATE PATTERN", C

8100 DATA 21. 13 18 20 19 24 26 25 30 32 _ _ _,A. 31

35 37,B. 31 36 38,C. 32 35 37,D. 40 43 45,"DEDUCT
1, ADD 5 AND ADD 2 ALTERNATIVELY IS THE GENERAL
PATTERN",B

8200 DATA 22. 4 14 21 26 36 43 48 58 65 _ _ ,A. 70
80 87,B. 70 72 75,C. 75 80 82,D. 70 80 83,"THE
PATTERN IS TO ADD 10, 7 AND 5 ALTERNATELY",A

8300 DATA 23. 7 3 4 8 4 5 10 6 7 14 10 11 22 _ _ _,A.
20 21 20,B. 23 21 22,C. 18 19 30,D. 18 19 38,"THE
PATTERN IS TO DEDUCT 4 ADD 1 AND MULTIPLY BY 2
ALTERNATELY", D

8400 DATA 24. 64 32 16 8 4 _ _ _,A. 2 1 1,B. 2 1/4

1/2,C. 2 1 1/2,D. 1 2 4,"DIVIDE EACH NUMBER BY TWO
TO GET THE NEXT ONE",C

8500 DATA 25. 1 11 20 _ 1 A _ TKA 1 _ 20 11 _ _ KTK

_,A. 1 K 1 1 K K,B. 11 K 11 1 A A,C. A K 11 1 K
A, D. NONE OF THE ABOVE, "FIRST TEN CHARACTERS ARE
BEING REPEATED TWO TIMES",B

8600 DATA 26. ACEG GACE EGAC CEGA ,A. ACGA
GACEB. CEAG ACEG,C. ACEG GACED. AGEC GAEC,1"THE
LAST LETTER OF EACH SET IS ROTATED TO THE BEGINNING
OF THE NEXT SET OF LETTERS",C

8700 DATA 27. XOXOOOO OXOXOOO OOXOXOO
, A. XOXOXOO XXOOXXO, B. XOOXXX OOOXXXO, C.

OOOXOXO OOOOXOX, D. NONE OF THE ABOVE, "THE LAST
LETTER OF A GROUP IS MOVED TO THE BEGINNING OF THAT
GROUP TO MAKE THE NEXT GROUP" , C

8800 DATA 28. 2 4 3 6 5 10 9 18 17 _ _ _,A. 34 33.

66,B. 34 32 35,C. 32 30 35,D.34 33 65,"MULTIPLY BY
TWO AND SUBTRACT ONE ALTERNATELY TO GET THE NEXT
NUMBER", A

8900 DATA 29. 49 48 46 43 39 34 _ _ _,A. 28 21 11,B. 21

13 28,C. 23 21 13,D. 28 21 13,1"SUBTRACT THE NUMBER
FROM THE PREVIEW PREVIOUS SUBTRACTOR PLUS ONE,
SINCE 5 WAS SUBTRACTED FROM 39 TO GET 34 THEN
34-6=28,28-7=21 AND 21-8=131",D

9000 DATA 30. 8 9 7 10 6 11 5 12 _ _ _,A. 4 11 3,B. 12

13 11,C. 4 13 2,D. 4 13 3, "ALTERNATE THE ADDITION

59

AND THE SUBTRACTION OF THE PREVIOUS INCREMENTER OR
SUBTRACTOR PLUS ONE, 12-8=4, 4+9=13 AND 13-10=3",D

9100 DATA 31. 1 3 6 8 16 18 36 _ _ ,A. 38 76 78,B. 30
.40 50,C. 36 18 1,D. 38 76 71, "ALTERNATE THE
ADDITION OF TWO AND MULTIPLICATION OF TWO",A

9200 DATA 32. 5AA 1OBB 12CD 17DG 19EK _ _,A. 21GH
25LM,B. 24FP 26GV,C. 20CD 22 EF,D. 23EH 25JK

9300 DATA "THE NUMBERS ARE INCREMENTED BY 5 AND 2, THE
FIRST LETTER IS MOVED UP ONE AND THE SECOND IS
INCREMENTED TO THE ALPHABETICAL POSITION OF THE
FIRST AND SECOND LETTERS",B

9400 DATA 33. D G F H K J L 0 N P S R _ _ ,A. T W UB.
W V T,C. T W V,D. W V T, "THE SEQUENCE IS TO COUNT
UP 3 LETTERS, BACK UP ONE LETTER AND COUNT UP TWO
MORE LETTERS", C

9500 DATA 34. Al B2 D4 Z26 J10 C3 Al G7 N14 M13 E_ A_
B_ 3 _16,A. 3 4 2 D F,B. 5 1 2 C P,C. 3 4 1 C P
C, D. 5 2 1 E D F,1" EACH LETTER POSITION IN THE
ALPHABET FOLLOWS THE LETTER", B

9600 DATA 35. 5 10 20 40 80 160 _ _ _,A. 320 640
1100,B. 200 300 1200,C. 320 600 1200,D. 320 640
1280, "EACH NUMBER IS MULTIPLIED BY TWO TO GET THE
NEXT NUMBER", D

9700 DATA 36. 120 115 109 102 94 __ __ __,A. 85 75
64,13. 81 76 98,C. 99 106 111,D. 85 75 63,1"SUBTRACT
ONE PLUS THE PREVIOUS SUBTRACTOR FROM A NUMBER TO
GET THE NEXT ONE",A

9800 DATA 37. A B C _ A 1 2 3 2 1 A B C B A 1 _ 3 2 1
_ C B A,A. C A 1 2,B. B 2 A BC. C 2 A B,D. C 1 A

B,"THERE IS A SYMETRIC POINT AT THE SECOND C
LETTER", B

9900 DATA 38. B M N B 2 13 14 13 2 B_ N M B 2 14
13 2 _ _ N M B,A.~N M 14 M B,B. N M 12 B 2,C. 2 M
13 13 M,D. M M 13 B M, "THERE IS A SYMERTIC POINT AT
SECOND N LETTER",D

10000 DATA 39. 2 6 18 54 162 _ _,A. 324 648,B. 486
1458,C. 100 50,D. 81 40,"MULTIPLY EACH NUMBER BY
TWO TO GET THE NEXT ONE",B

10100 DATA 40. A C E C E G E G I G _ _ ,A. I K I,B. J K
J,C.K I K,D. I J I, "UP TWO, UP TWO, DOWN TWO IS
REPEATED AS THE PATTERN" ,A

APPENDIX B

COMPUTER BASIC PROGRAMMING

LANGUAGE TEST

60

COMPUTER SCIENCE BASIC PROGRAMMING TEST

NAME

TRUE or FALSE Questions: (two point each)

1. If X$ = "ABCDEFGH", then LEN(LEFT$(X$, 4)) is
equal to 8.

2. The statement MID$(A$, 1, 4) and LEFT$(A$, 4) are
the same in string values.

3. If X$ has the value MADAM, then MID$(X$, 3, 3) has
the value D.

4. If A is any number, then LEN(A) gives the number
of digits in A.

5. When string fields or constants are compared, they
must always contain the same number of characters.

6. In the ASCII code, the letter T has a higher value

than the letter Z in the collating sequence.
7. The following example is a valid statement that

contains the VAL function: 400 ON VAL(R) GOSUB

2000,3000,4000
8. The statement 100 PRINT CHAR$(66) prints a B.

9. A BASIC programming line may contain more than one

BASIC command.
10. String constants appearing in relational

expressions must be quoted.
11. The statement 100 PRINT ASC (CHR$ (67)) will

print C.
12. It is possible to assign both string variables and

numeric variables using the same READ statement.

13. Show the output for the program below. Be sure to
use exact columns.
10 LET A$ = "MARY HAD A LITTLE LAMB"
20 FOR I = LEN(A$) TO 1 STEP -3
30 LET B$ = MID$ (A$, I,1)
40 PRINT B$;
50 NEXT I
60 PRINT
70 PRINT "MILLER"; MID$(A$,9,9)
80 END

61

62

14. Rewrite the following FOR NEXT loop code using a
WHILE loop.

100 FOR I = 1 to 50 STEP 5
120 PRINT I, I * I
130 LET M = I + 4
140 NEXT I
150 END

15. Write a BASIC program that will count the numbers
of "E"s in a string that is input at run time.

16. Show the output of the following program given
below.

100 REM PRINT USING STATEMENTS
110 REM
120 LET A$ = "MARY LOU RETTON"
130 LET A = 1234.567 : LET B = 105 : LET C = 195.3
140 LET D = 422.39
150 LET B$ = "### ###.##"
160 REM THE PRINT USING STATEMENTS
170 PRINT USING "!"; A$
180 PRINT USING "\ \"; A$: REM 2 spaces between

slashes
190 PRINT USING "&": A$
200 PRINT USING "#"; A
210 PRINT USING "####.## "; A, B
220 PRINT USING "$$####.##"; .C
230 PRINT USING B$; C, B
240 PRINT USING "**#########"; A, B
250 PRINT USING "B + C IS ####.##"; B + C
260 PRINT USING "####,.##" A
300 END

-------------------------- ------------
------------------- -------- ------------

---------------- -------------------------
- ------------ --------------- -----------------
--

--

63

17. The command erases the screen and
moves the cursor to the upper left hand corner.

18. The statement allows- you to position
the cursor on the screen at a certain row and
column.

19. What do each of the following commands do?
(a) KILL
(b) SHELL

20. Complete the program which will create a file
MONTHS with the given data (month (M$)) and (days
(D) for each records.

1100 DATA JAN,31,FEB,28,MAR,3lAPR,3OMAY,31
105 DATA JUN,30,JUL,31,AUG,31,SEP,30,OCT,31
110 DATA NOV,30,DEC, 31
115 REM STATEMENT TO OPEN THE FILE FOR OUTPUT
120 OPEN
130 FOR i 1 TO 12
140 READ m$, d
150 WRITE
160 NEXT I
170 CLOSE
200 END

21. Write a program which will read the MONTHS file
and print out the month and days of each month in
the file. (Use file created in question 20.) Use
a WHILE loop.-

64

22. Consider the following program:

100 PRINT "TYPE IN THREE NUMBERS"
105 INPUT A, B, C
110 IF B = 0 THEN 500
120 IF C > 25 THEN 180
130 IF A <= 10 THEN 160
140 GOSUB 300
150 GOSUB 100
160 GOSUB 200
170 GOTO 100
180 GOSUB 100
190 GOTO 100
200 LET B = A + C
210 LET A = 2*A
220 LET*C= 0
230 GOSUB 400
240 RETURN
300 LET.B=-A,- C
310 PRINT B
320 RETURN
400 PRINT A; B; C
410 RETURN
500 PRINT A; C; "STOP"
999 END

What output will be printed for each of the
following sets of inputted data.

(a) Type in three numbers
? 5, 20, 10

(b) Type in three numbers
? 20, 5, 12

(c) Type in three numbers
? 10, 20, 30

(d) Type in three numbers
? 0, 0, o0

65

23. Show the output for the program below. Be sure to
be exact on the rows and columns.

10 PRINT "7777777"
20 LET N = 1
30 LET S = 6
40 PRINT TAB(S)I; N + S
50 LET N = N + 1
60 LET S = S - 1
70 IF S >=l1 THEN GOTO 40
80 END

24. Complete the BASIC statements needed to sort the'
month names in array MONTH in ascending alphabetic
order.

1C)0 DIM MONTH (12)
110 DATA JANUARY, FEBRUARY, MARCH, APRIL, MAY,

JUNE,
115 DATA JULY, AUGUST
120 DATA SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
130 FOR I = 1 TO 12 : READ M$(I) : NEXT I
140 REM SORT ROUTINE SELECTION SORT

25. Given:

A= "MARY HAD A LITTLE LAMB" ASCII FOR "A" IS 65
B= "ABCDEFGHI"
C$= "1988"
D$= "1970"
E = 20
F = 70

(a) C$ + D$ = __________

(b) LEFT$(A$,8) =-- - -- - - -- - - -- - -- -

(c) HID$(B$,2,1) + MID$(B$,9,1) + MID$(B$,7,1)

66

(d) RIGHT$(A$,11) =
(e) VAL(D$) + E =
(f) STR$(F) =
(g) CHAR$(F) =
(h) LEN(A$) =

26. The statement below will print a random integer in
the range of through____

100 PRINT INT(21 * RND(4) + 5)

27. Consider the following program.
100 DIM B$(12)
110 INPUT ANS$
120 FOR J 1= TO 12
130 READ B$(J)
140 NEXT J
150 IF ANS$ = "YES" THEN 200
160 PRINT B$(2), B$(7) + B$(9), B$(8)
170 GOTO 300-
200 PRINT

B$(10),B$(12),B$(2),B$(l),B$(11),B$(5),B$(3)
250 DATA

"JACK", "SEVEN", "EAT", "AGO", "COULD", "SCORE"
260 DATA "NO", "YERAS", "FAT", "FOUR", "SPRAT",

"AND"
300 END

(a) What is assigned to B$(10) when the program
is executed?

(b) What string is assigned--to B$(3) when the
program is executed?

(c) What message would be printed if the string
"YES" were typed after the RUN for input?

(d) What message would be printed as a result of
typing the word "OK" after RUN for input?
? "OK"

BIBLIOGRAPHY

Aikin, John 0.. 1981. A self-paced first course in computer science. SIGCSE
Bulletin 1 (February): 78-85.

Alspaugh, Carol Ann. 1972. Identification-of some components of computer
programming aptitude. Journal for. Research in Mathematics Education
3 (March): 89-98.

Association of Computer Machinery's Curriculum Committee on Computer
Science. 1968. Curriculum 68: Recommendations for academic progress
in computer science. Communication of ACM 11, 3 (March): 151-97.

. 1979. Curriculum 78: Recommendations for the undergraduate
program in computer science. Communication of ACM 22, 3 (March):
147-66.

Barker, Ricky J., and E. A. Unger. 1983. A predictor for success in an
introductory programming class based upon abstract reasoning
development. ACM SIGCSE Bulletin 15, 1 (February): 85-90.

Bauer, Roger, William A. Mehrens, and John F. Vinsonhaler. 1968.
Predicting performance in a computer programming course.
Educational and Psychological Measurement 28 (March): 1159-64.

Berztiss, Alfs. 1987. A mathematically focused curriculum for computer
science. Communication of the ACM 30, 5 (May): 356-65.

Borg, Walter R. 1983. Educational research an introduction. 4th ed. New
York: Longman.

Bulgren, William G. 1987. An introductory algorithm teacher. ACM SIGCSE
Bulletin 19, 1 (February): 292-99.

Bulgren, William G., and Gregory F. Wetzel. 1982. Introductory computer
science courses. ACM SIGCSE Bulletin 14, 1 (February): 133-39.

67

68

Campbell, Patricia F. 1984. The effect of the preliminary programming and
problem solving course on performance in a traditional programming
course for computer science majors. ACM SIGCSE Bulletin 16, 1
(February): 56-62.

Campbell, Patricia F., and G. P. McCabe. 1984. Predicting the success of
freshman in computer science major. Communication of the ACM 27,
11 (November): 108-13.

Cannara, Alexander Bellows*. 1976. Experinients in teaching children
computer programming. Ph.D. diss., Stanford University.

Clements, D. H. 1979. Effects of logo and CAI environments on cognition
and creativity. Journal of Educational Psychology 78, 4 (June): 309-318.

Clements, D. H., and D. F. Gullo. 1980. Effects of computer programming on
young children's cognition. Journal of Educational Psychology 76, 6
(July): 1051-58.

Cook, Robert N. 1980. Structured programming using BASIC. ACM
SIGCSE Bulletin 12, 1 (February): 40-49.

Corman, Larry S. 1986. Cognitive style, personality type, and learning ability
as factors in predicting the success of the beginning programming
student. SIGCSE Bulletin 18, 4 (December): 80-83.

Culik K., and M. M. Rizki. 1983. Logic versus mathematics in computer
science education. ACM SIGCSE Bulletin 15, 1 (February): 14-20.

Deimel, L. E., and DE V. Moffat. 1982. A more analytical approach to
teaching the introductory programming course. In Proceedings of the

E ed. Howard Johnson, 114-18. Columbia: The University of
Missouri.

Denning, P. J. 1980. U.S. productivity in crisis. Communication of the
Association for Computer Machinery 23 (March): 617-19.

Dupras, Marcel, Fernand Lemay, and Ali Mili. 1984. Some thoughts on
teaching first-year programming. SIGCSE Bulletin 16, 1 (February):
148-53.

69

Fowler, George C., and Louis W. Glorfeld. 1981. Predicting aptitude in
introductory computing: A classification model. AEDS Journal 2
(Winter): 96-109.

Gabrin, Philippe. 1982. Integration of design and programming methodology
into beginning computer science courses. ACM SIGCSE Bulletin 14, 1
(February): 85-87.

Gathers, Emery. 1986. Screening freshman computer science majors.
SIGCSE Bulletin 18, 3 (September): 44-48.

Gray, J. D. 1974. Predictability of success and achievement level of data
processing technology students at the two-year post-secondary level.
Ph.D. diss., Georgia State University.

Gries, D. 1981. The science of programming. New York: Springer.

Hancock, Chris. 1988. Context and creation in the learning of computer

programming. For the Learning of Mathematics 8, 1 (February): 18-30.

Hostetler, Terry. R. 1983. Predicting students' success in an introductory

programming course. ACM SIGCSE Bulletin 15, 3 (September): 41-5.

Jansson, Lars C., Harvey D. Williams, and Robert J. Collens. 1987. Computer
programming and logical reasoning. School Science and Mathematics
87, 5 (May): 371-79.

Knuth, Donald E. 1974. Computer programming as an art. Communications
of the ACM 17 (December): 517-30.

Konvalina, John, Larry Stephens, and Stanley Wileman. 1981. Identifying
factors influencing computer science aptitude and achievement.
Programmed Learning and Educational Technology 20, 2 (Winter): 84-
95.

Konvalina, John, Stanley A. Wileman, and Larry J. Stephens. 1983. Math
proficiency: A key to success for computer science students.
Communication of the ACM. 26, 5 (May): 377-82.

Kurtz, B. L. 1980. Investigating the relationship between the development of
abstract reasoning and performance in an introductory programming
class. ACM SIGCSE Bulletin 12, 2 (February): 110-17.

70

McEntyre, Diane S. 1977. Structures and strategies for teaching computer
programming in an introductory course. Ph.D. diss., University of
California, Berkeley.

Meinke, John G. 1981. Alternatives to the traditional first course in

computing. ACM SIGCSE Bulletin 13, 1 (February): 57-60.

Messer, S. B. 1981. Reflection-impulsivity: A review. Psychological Bulletin
83, 6 (January): 1026-1052.

National Council of Teachers of Mathematics. 1980. Recommendation for
school mathematics of the 1980s. Communication of ACM 12, 1
(February): 105-20.

Noonan, Robert E. 1979. The second course -in computer programming:
Some principles and consequences. SIGCSE Bulletin 11, 1 (February):
187-91.

Pea, R. D. 1986. Language-independent conceptual "bugs" in novice
programming. Journal of Educational Computing Research, 2, 1
(February): 25-36.

Pea, R. D., and D. M. Kurland. 1984a. On the cognitive effects of learning
computer programming: A critical look. Technical Report No. 9. New
York: Center for Children and Technology, Bank Street College.

. 1984b. On the cognitive prerequisites of learning computer
programming. Technical Report No. 18. New York: Center for
Children and Technology, Bank Street College.

Peterson, Charles G., and Treavor G. Howe. 1979a. Predicting academic
success in introduction to computers. AEDS Journal 12, 4 (Summer):
182-91.

'. 1979b. Predicting academic success in introduction to computers.
AEDS Journal 2 (Fall): 34-42.

Poirot, J. L. 1979. Computer education in the secondary school: Problems
and solutions. In Proceedings of the 10th SIGCSE Technical
Symposium, by SIGCSE. St. Louis: SIGCSE, 166-70.

Rothman, S., and C. Mosmann. 1972. Computer and society. Chicago:
Science Research Associated, Inc.

71

Samurcay, Renan. 1985. Learning programming: An analysis of looping
strategies used by beginning students. For the Learning of Mathematics
an International Journal of Mathematics Education 5, 1 (February): 37-
43.

Sedlmeyer, Robert L. 1980. A college preparatory course in computer
programming. SIGCSE Bulletin 12, 1 (February): 166-70.

Sidbury, James R. 1986a. A statistical analysis of the effect of discrete
mathematics on performance of computer science majors in beginning
computing classes. ACM SIGCSE Bulletin 1 (February): 42-48.

. 1986b. A statistical analysis of the effect of discrete mathematics
on the performance of computer science majors in beginning computer
classes. Communication of the ACM 12, 6 (April): 134-40.

Sippl, Charles J. 1986 Computer dictionary. New York: Howard W. Sams and
Company, Inc.

Slakter, Malcolm J. 1972. Statistical inference for education research. New
York: Addison-Wesley Publishing Company.

Smith, Jeffrey W. 1981. A method for teaching programming. ACM SIGCSE
Bulletin 13, 1 (February): 252-55.

Soloway, Elliot. 1986. Learning to program = learning to construct
mechanisms and explanations. Communication of the ACM 29, 9
(September): 850-58.

Soloway, Elliot, K. Ehrlich, J. Bonar, and J. Greenspan. 1982. What do
novices know about programming. In Directions in human computer
interactions, ed. B. Shneiderman and A. Badre, 318-22. New Jersey:
Ablex Publishing Company.

Stephens, Larry J., Stanley Wileman, and John Konvalina. 1981. Group
differences in computer science aptitude. AEDS Journal 14, 2 (Winter):
84-95.

Sukhen, Dey, and Lawrence R. Mand. 1986. Effects of mathematics
preparation and prior language exposure on perceived performance in
introductory computer science courses. ACM SIGCSE Bulletin 18, 1
(February): 144-48.

72

Task force on computer science of the association of computer machinery
elementary and secondary school subcommittee report. 1983.
Communication of ACM 12, 3 (March): 58-65.

Van Merrienboer, Jeroen J. G. 1988. Relationship between cognitive learning
style and achievement in an introductory computer programming course.
Journal of Research on Computing Education 3 (Winter): 181-86.

Weinberg, Gerald M. 1971. The psychology of computer programming. New
York: Van Nostrand Reinhold Company.

Werth, Laurie H. 1986. Predicting student performance in a beginning
computer science class. SIGCSE Bulletin 18, 1 (February): 95-105.

Whipkey, Kenneth L. 1984. Identifyingpredictors of programming skill.
ACM SIGCSE Bulletin 16, 4 (December): 36-42.

ySTAT, Spreadsheet Statistical Package for IBM PC. 1987. Rochester, N.Y.:
MING TELECOMP, Inc.

