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This work examines the use of higher order multiphoton 

resonances in higher harmonic generation together with 

judicious exploitation of coherent interaction properties to 

achieve efficient harmonic generation. A detailed experimental 

study on third harmonic generation in two photon resonant 

coherent interaction and a theoretical study on four photon 

resonant coherent interaction have been conducted. 

Two photon resonant coheren propagation in lithium 

vapor (2S-4S and 2S-3D interaction) has been studied in detail 

as a function of phase and delay of the interacting pulse 

sequence. Under coherent lossless propagation of 90 phase 

shifted pulse pair, third harmonic generation is enhanced. A 

maximum energy conversion efficiency of 1% was measured 

experimentally. This experiment shows that phase correlated 

pulse sequence can be used to control multiphoton coherent 

resonant effects. 

A larger two photon resonant enhancement does not 

result in more efficient harmonic generation, in agreement 

with the theoretical prediction. 

An accurate (to at least 0.5 A°) measurement of 

intensity dependent Stark shift has been done with the newly 

developed "interferometric wavemeter." Stark shifts as big as 



several pulse bandwidths (of picosecond pulses) result in a 

poor tuning of multiphoton resonance and become a limiting 

factor of resonant harmonic generation. 

A complete theory has been developed for harmonic 

generation in a four photon resonant coherent interaction. A 

numerical application of the theory to the Hg atom successfully 

interprets the experimental observations in terms of the phase 

dependent stimulated Raman scattering. With the intensity 

required for four photon resonant transition, the calculation 

predicts a dramatic Stark shift effect which completely 

destroys the resonance condition. This model provides a basis 

for the development of future schemes for efficient higher 

order coherent upconversion. 
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CHAPTER I 

INTRODUCTION 

With the development of the ultrashort light pulses of 

- 1 2 - . -15 \,Z 
picosecond (ps,10 sec) and femtosecond (fs,10 sec) duration a 

new door has opened in the field of light matter interaction. 

Such time scales are comparable to or even shorter than the 

phase memory time of atomic and molecular system. As a 

result, the polarisation induced in the medium by the short 

optical pulses retains a definite phase relationship with the 

inducing field. Under such circumstances the internal 

dynamics of the atom such as absorption or emission process 

can be controlled by controlling the phase of the incident 

pulse. Such phase correlated phenomena are called "coherent 

interaction." A simple minded picture of the coherent 

interaction can be drawn from the "Bohr model"of atom shown in 

Figl.la. The stationary orbits of an atom are like clocks of 

different frequencies. The difference between the two clock 

frequencies corresponds to the transition frequency between 

the two stationary orbits. Initially the atom is in the 

ground state and the electron is following the clock of the 

lowest orbit 1 (clock frequency is ). With an outward 

force F provided by the incident laser field in resonance with 

Xi>< >I2> transition,the electron can be thrown to the 

outer orbit 2 following an absorption of energy from the 



M 

(t) U) 
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incident light. The electron now follows the clock of the 

outer orbit, Fig I.lb (of clock frequency U)^). In the 

absence of incoherent losses the two clocks come to the phase 

at time interval of T= . When the two clocks come to the 
*>z\ 

same phase the electron can be brought back to the old orbit 

with a reverse force -F provided by a properly phase shifted 

input pulse (Fig I.lc),and the energy absorbed in the earlier 

process will be emitted back to the field. The idea of 

coherent interaction is to follow the atomic clocks with short 

light pulses of frequency equal to the difference frequency of 

two of the clocks. When the atomic clocks are followed, the 

absorption and emission processes in atomic transitions can be 
3 

controlled. The experiments of self-induced transparency and 

4 

photon-echo have revealed the striking features of coherent 

interaction of light with matter. The "vector model" of 

Feynman et al has been successfuly applied to understand the 

atomic phase correlated interaction with optical pulses. Soon 

the study of such coherent interaction has been extended to 
6 - 1 1 

multiphoton processes where in presence of higher order 

nonlinearity many new effects such as multiphoton ionization, 

dynamic Stark shift, harmonic generation were observed which 

were absent in one photon processes. Coherent resonant 

multiphoton processes are extremely important for harmonic 

generation. The nonlinear susceptibility responsible for 

harmonic generation is enhanced by resonance condition. For 

instance third harmonic susceptibility is enhanced if the 
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medium has single ,two or three photon resonance with the 

incident field. The depletion of the pump wave by absorption 

(single or multiphoton) associated with these resonances 

limits the conversion efficiency that can generaly be 

achieved. Resonant absorption changes the index of refaction 

of the medium by changing the population of the resonant 

levels and under this circumstances phase matching becomes 

impossible. Coherent propagation effect can be used to keep 

all the energy in the radiation field even in the condition of 

O 

resonance. For instance if a sequence of 90 phase shifted 

pulses is sent through a two photon resonant medium ,the 

energy absorbed from the first pulse can be returned back to 

the following pulse by two photon stimulated emission. Longer 

propagation length results in a stronger third harmonic 

generation. In crystals the absorption edge near 200nm limits 

the efficient harmonic generation. For this reason atomic 

vapors are very important sources of shorter wavelength VUV 

light. This work examines the use of higher order multiphoton 

resonances in higher harmonic generation together with 

judicious exploitation of coherent interaction properties to 

achieve efficient harmonic generation. The complexity of the 

interaction increases dramatically with the order of the 

multiphoton interaction. A four photon resonant interaction 

is not merely an extension of the two photon case. In view of 

the increasing phenomena of various order (single,two,three 

photon ionisation, quadratic and quartic Stark shift) a 



general study is 110 longer possible. Therefore we have chosen 

a specific model (Hg) to carry out the study of the four 

photon resonant interaction. In this thesis an effort has 

been made to investigate and understand both theoretically and 

experimentally the new phenomena in multiphoton resonance 

processes. 

The remainder of the thesis is composed in the 

following manner. Chapter II briefly discusses the basic idea 

of two photon resonant third harmonic generation (THG) under 

coherent excitation. Chapter III discusses an experiment of 

two photon resonant THG in Li vapor and analyses its 

interesting results. Chapter "V presents a theory of harmonic 

generation in a four photon resonant (FPR) coherent 

interaction. Chapter V shows an application of the FPR theory 

in Hg atom. The thesis concludes in Chapter VI with a brief 

summary of the work. 
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CHAPTER II 

TWO PHOTON RESONANT THIRD HARMONIC 

GENERATION 

A third harmonic susceptibility is enhanced in presence of 

intermediate two photon resonance (TPR). Two photon coherent 

as opposed to steady state excitation is required for 

efficient harmonic generation. Exact solution of Schroedinger 

and Maxwell's equations are needed for a complete description 

of resonant third harmonic generation (THG). Solution of 

Schroedinger equation gives the induced polarisation as 

a function of time and field strengths at a certain point in 

space. Using the induced polarisation Maxwell's equation 

determines the fields at the next point in space. 

Schroedinger's equation describes the local behavior while 

Maxwell's equation describes the propagation effect of the 

incident and the generated fields. Two photon coherent 

1 -4 

effects has been studied in detail by many people. 1 An 

extensive description of two photon resonance THG would be 

found in Ref 5. In this chapter a brief introduction of the 

subject will be given. 

8 



Third Harmonic Susceptibility of an 

Off Resonant System 

The third harmonic polarisation induced in a system under 

off resonant excitation condition, is given by: 

Pj = y 5 E? 
en.i) 

where 

E| - incident field at the fundamental frequency cj 

» third harmonic polarisation at 3C0 

X 3 " third harmonic susceptibility of the medium 

A , } Afie hki All 

( U)t, -uS) (cOte! -iu>) (uJ*i -3W) 
x J (II.2) 

Summation is implied over the repeated indices. 

Il> is the ground state of the atom . If>,Ik>,ll> are the 

intermediate states (see Fig II.1). j and £0|j are the 

dipole matrix elements and transition frequency o f Ii><—>Ij> 

transition. Third harmonic emission takes place from a 

virtual level. This virtual level is created through the 

couplings of intermediate levels. *^^is enhanced by 

approaching any one of the intermediate resonances. In 

presence of an intermediate resonance ̂ g o e s to infinity, in 
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f ; J n • 



1 1 

other words equation (II.1) will no longer be a valid 

expression for . In case of resonance, an exact solution 

of Schroedinger's equation is needed to find the correct 

expression for Pj . For THG one and three photon resonances 

are not particularly interesting as they will limit the 

efficiency of THG by introducing strong one photon absorption 

loss for the input first harmonic and generated fields. A two 

photon absorption on the other hand will have less loss. For 

higher intensities required to achieve the maximum conversion, 

depletion of the fundamental by two photon absorption limits 

the highest achievable conversion efficiency.^ 

Fig II.2 shows the two photon resonant system we are 

going to study. Il> is the ground state, I2> is the excited 

state, Il> and I2> states are connected by two photons from the 

incident first harmonic field. The third photon goes to the 

continuum. In this case the third harmonic level coincides 

with a real level in the ionisation continuum. As a result 

THG is accompanied by an inevitable two photon resonant three 

photon ionisation. 
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Maxwell-Bloch Equation in a Two 

Photon Resonant Medium 

An equivalent two level model has been developed for a 

1-5 

TPR system. A TPR system is then described by a 2X2 resonant 

density matrix P . 

In presence of an electric field £ given by 
* 

t C'-O t - K 2 ) i. 3 

E = £, e + e + C. c. 

(II.3) 

(where £^(z,t) and £^(z,t) are the slowly varying 

amplitudes of the first and third harmonic fields 

respectively) and with 

^ e 

(?, = < 

we have the two photon Bloch equation: 
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+ i (203-0)2, - Su)2l) ̂  + ( ^ + iL±i.2)< z 

0 b ^ 

= i ( « u - < f i . ) [ % r + 1 sU3i 
k2- (11.4) 

T T + + ^ < r " 

= - ^ r „ £ L £ . £ ) < & 

(II.5) 

V ( ^ + ^ 0 _ > 
__ — — 01 On —02. <sz2 

(II.6) 

^11 -zero-field resonance frequency of 2< — >1 transition. 

£u)2, -laser induced Stark-shift 

-intensity dependent ionization rate from level) 1> 

^2 "intensity dependent ionization rate from level 12^ 

Tj "population relaxation time of level I2> 

"̂ 2 "tranverse relaxation time ,accounts phenomenologicaly 

for the decay of coherence due to both radiation damping and 

phase interrupting elastic collision. 
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C") -o< 2 («) "] I* 

+ -L 3co) • \€3\
3L

 ( I I - 7 ) 

3u) 

S\ = i = i < o ) i ? 3 | l 

£ 

^ = £ + ̂ 3U 
(II.8) 

~ | j j ^ C ^ ) l^ ' l 2 + ^ ( 3 t 0 ) l ^ ) 2 " ] 

3U> 
(II.9) 

there Is 3 photon ionization 71 from level Il> and 1 and 3 
vU) >.3̂  

photon ionization ^ and from level I2>. The intensity 

dependent dynamic Stark shift as well as intensity dependent 

ionization are functions of space and time. Dynamic Stark 

shift is a special effect in multiphoton Interaction. There is 

no such Stark shift in single photon case. Due to the space time 

dependent Stark shift resonance condition changes both in 

time and space. In order to have two photon absorption over a 

certain distance a constant intensity of the pulse has to be 

maintained. Only under loss—less coherent propagation TPR 

condition will be maintained over longer distance. Ionization 

is an incohernt loss mechanism and is a limiting factor of 

harmonic generation. 
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o{j(mu))» the atomic polarisability of j level at frequency mCJ 

C<j (mui) - ô . (mui) _ i (nu)} 

= J_ \ f jl. 1 (11.10) 

where, t L L (^«j ' m u 0 (Wij + m u ) ) J 

A e j and 60ej are the matrix element and frequency of 

the transition lt>< >Ij>. 

- two photon transition matrix « ^"*3-

L (oou+ to) a * 1 1 } 

e 
"fz\ = t h i r d harmonic coupling coefficient 

K/^e Atl /̂ 2(. At) \ 

-3W W^a + 3W J 
^ (11.12) 

The summation over { implies summation over all 

levels bound or free. Eq(II.6)is the probability conservation 

Equation for the eqivalent two level atom. Eq(II.4) and Eq(II.5) 

describe the two photon resonant trnsition. is the two 

photon Rabi frequency. £ * £ i s a resonant raman scattering 

term. Eqs(II.4) to (II.6) are called "two photon Bloch 

equation",because of their analogy with the equations derived 

by Bloch for the precession of a spin in a resonant radio 

frequency field.-
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Dipole moment of the TPR atom Is calculated from 

P»Tr(PA). The dipole-moment oscilating at the first harmonic 
4 

frequency is given by : 

1 wfc -i k * 

l^(z,t)» +C.C 

" + °(z <6tZ ) £ | +" 

q I i'wt-ik2 
Y C + c. c 

k J 
(11.13) 

Dipole-moment at third harmonic frequency: 

;3(wfc-K2) 

(z, t) =• (*, t) e 4. £ £ 

~ ^ °^(.3u0 <£"2.2. ) £3 -f- ^21 

; 3(wt-ic2) 

(11.14) 
x e. * + C. C. 

These dipole moments will drive the Maxwell's Equation to 

generate fields at the next point in space. 

Following Ref2. Maxwell's Equation in "slowly 

varying envelope approximation" written in reduced time 

frame (tr»t-z/c): 
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^ • KU) , 
a 

zC£ 0 

(11.15) 

m= 1, 3 

where N=density of atoms 

c=velocity of light in vacuum 

£ 0 =vacuum permittivity. 

Equation 11.15 together with E.qs(II.4) to (II.6) are called 

Maxwell-Bloch equations . From coupled solution of Maxwell-

Bloch equation we get £, (z,t) and £^(z,t) for all space time 

points . 

For a TPR medium we have, 

(R ~ 1̂5. instead of (R. = "Xj 

To get larger (R we must look for larger £ and ^ „ . > is 
J 2 ! 1 - - i 

fixed for a given transition. Larger implies stonger TPR 

interaction . From Eq( 11.13) it follows that the term d i ; i s 

responsible for pump depletion due to TPR absorption. Larger 

implies stronger pump depletion. In presence of pump depletion 

the generation length is reduced. Resonance absorption reduces 

the efficiency. 

For efficient harmonic generation we need 

1. not only resonance enhancement of "X-3 

but also 
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2. A loss free propagation through the absorbing medium. 

Apparently contradicting conditions 1 and 2 can be satisfied 

simultaniously only in case of coherent interaction. 
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Two Photon Vector Model and Anomalous Pulse Propagation 

From the two photon Bloch equations a two photon vector model 

2.-5 
can be drawn. In absence of ionization ,Stark shift and harmonic 

generation ,we can define a "pseudo vector " R» 

R = W e, + ^ 3 e, (11.16) 

where W - (11.17) 

2-

In presence of an input square pulse of constant amplitude £(in 

resonance with the two photon transition) the vector R 

/V A 
rotates about a vector_0_,in the pseudo space spanned by ex ,e2 

A 
and (see fig II.3). 

S\- =angular velocity vector in the pseudo space. 

2 c x p 

~~ 4-2. ' 3 (11.18) 
h 

An illustrative description of this vector model can 

be found from Ref 5. 

Angle of rotation 0(t) = (-0-1^ ) 
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A 
^3 

si 

A 
"t> € 2 

/ 

A 
e.\ 

t"' J T1 • 3 tf ~~ 
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The net angle of rotation due to a pulse, is given by 

-4- *>0 

~ 2 — T (11.19) 
h — oQ 

0 ^ i s called two photon "area" of the pulse in analogy with 

single photon area defined for one photon resonant 

medium. Two photon area of the pulse is determined by 

the energy of the pulse. For instance for 0 ^ = 7 " ! the pulse 

is called a " T l pulse" and so on. 

Suppose the pulse is applied at time t=0 

at t ^ 0, =1 , <^; = 0 and = 0 

from Eq(II. 16) r < o ) — 1 / 2 e. 

With time as R rotates and grows and two photon 

absorption takes place. For a y\ -pulse ( Q f Tl ) we have <S^-1 

(atom is inverted) at the end of the pulse. Similarly for a 

-pulse the atom is first inverted and then returns back to 

the ground state at the end of the pulse. The energy absorbed 

from the front part of the 27T pulse is returned back by the 

atom which is added coherently to the trailing edge of the 

pulse. In absence of ionization ,Stark shift and harmonic 

generation a 2?T pulse propagates without absorption through 

a resonant medium. 

Replacing 0 by - 0 (or-TL by --TL) w e c a n change the 
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direction of rotation of the pseudo vector R. If C is 

r I T V* 

replaced by , Q becomes -Q and R rotates back reversing 

an absorption into an emission process. For example if a 

square pulse is followed by a II phase shifted second square 

Z 

pulse,the energy absorbed during the first pulse uill be 

emitted back during the second pulse. Due to this phase 
O 

dependent stimulated emission a pair of 90 phase shifted 

pulses can have absorption free propagation. Total energy of 

the pulse pair is conserved. Since two-photon emission (field 

at 2 ^ ) is dipole forbidden no energy is emitted between the 

pulses. Only requirement is that the total interaction time 

has to be less than the relaxation times Tt and . Since 

for efficient harmonic generation our idea is to get loss free 

propagation through the resonant medium ,we are left with two 
0 

choices: either to use a 27l-pulse or to use a pair of 90 phase 

shifted pulses. In a real two photon resonant system with 

ionization Stark shift etc. a pair of phase shifted pulses are 

more favorable than a 2 T\ pulse. It should be noted that in 

presence of phase modulation or with non negligible Stark 

shifts, the pulse energy is no longer proportional to the 

tipping angle of the "pseudopolarisation" vector. A 2 ^ pulse 

with higher energy will have more ionization ,more Stark-shift 

and will tend to be more unstable than a pair of low energy 

phase shifted pulses. The theoretical calculation of Diels et 

al shows that a 2A pulse suffers considerable phase modulation 
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L. vy 

and both the fundamental and third harmonic pulses are 

broadened in frequency. From the above simple minded picture 

of the TPR atom it follows that the transmission of a pair of 

phase shifted pulses would be a funtion of their relative 

phase. We would expect the transmission to be maximum at odd 

multiples of JI as shown in figll.4. The anomalous propagation 

of a pair of 0)0 phase shifted pulses will have longer 

4 

generation length. Theoretical analysis of Diels et al. 

predicts a maximum energy conversion efficiency up to 8% in an 

ideal phase matched condition, for a plane wave of infinite 

transverse dimension. 
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Transient Phase Matching 

Efficient harmonic generation demands efficint phase matching 

between the first and third harmonic field. Phases of the 

first and third harmonic field are determined by their 

respective single-photon susceptibilities. Single photon 

susceptibilities for the two fields follow from the expression 

of fj* and (Eqll. 13 and 11.14): 

(11.20) 

~)LS (3 w ) 2 ̂  M 

(11.21) 

Uhere, 

"single photon susceptibilty of the n^-

harmonic field. 

Phase matching requires ̂ £(w)to be equal to X, (.3"). This 

condition is achieved by adding an off-resonant vapor so that 

the total susceptibilities become equal for the two harmonics. 
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Suppose, 

»single-photon polarizability of the off-resonant 

vapor at the frequency u) . 

o{ =single~photon polarizabillty of the off-resonant 

vapor at 3cO . 

f • ratio of the off-resonant to on-resonant 

atoms in the vapor. 

single-photon susceptibility of the mixed vapors at (J : 

(11.22) 

single-photon susceptibilty of the mixture at ^U) : 

(11.23) 

Phase matching requires: 

"Xr I") = "X~r 
(11.24) 

For coherent interaction both and a r e functions of 

time, and Eq(II.24) can not be satisfied for all times. For weak 

interaction however we can find a time independent phase 

matching condition. For weak interaction we have - I , <^22-® 
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and Eq(II.24) becomes: 

N <(.«•) V N f cl^ (w) = N o(,i3u) + N f 0<M(.3U) 

(11.25) 

Condition expressed by equation (11.25) is called 

"linear phase matching". Linear phase matching is only good 

for off resonant interaction. For resonant coherent 

interaction the susceptibilities (given in Eqs.(II.22) and (11.23)) 

are functions of time and no time-independent phase matching 

condition exists. In this situation the best we can have is an 

approximate phase-matching for optimum third harmonic 

generation. For example we may phase match not over the whole 

pulse but for a certain region of the pulse where third 

harmonic generation is maximum. In this case Eq(II.24) is 

satisfied with certain values of <̂ 4 and ^^corresponding to 

maximum third harmonic generation. The value of the ratio f 

giving maximum third harmonic would be very different from 

the value satisfying Eq(II.25). Optimum value of the phase 

matching ratio has to be found dynamicaly either by a real 

experiment or by a numerical experiment. The optimum phase 

matching for resonant transient Interaction will be referred 

to as "transient phase matching". Due to windowing,the phase 

matching time, the third harmonic will be narrowed in time 

and broadened in frequency. Due to Stark shift the resonance 
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condition is a function of the pulse intensity. The "transient 

phase matching", true for certain values of a n d will be 

effective over a reasonable distance only if the pulse 

intensity is maintained constant over that distance. In 

otherwords "transient phase matching" requires that a certain 

condition of anomalous (enhanced) transmission be met. Although 

0 

a pair of 90 phase shifted pulses seems to be useful for this 

purpose ,only a real experiment can prove it's utility. In the 

next chapter we are going to discuss an experiment which puts 

the above idea into real tests. 
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CHAPTER III 

TWO PHOTON RESONANT THIRD HARMONIC GENERATION 

IN LITHIUM VAPOR 

In this chapter we study two photon resonant(TPR) 

third harmonic generation(THG) in lithium vapor. A level 

diagram of lithium atom^ is shown in fig III.l. We have 

studied two different resonances in lithium atom. In one case 

the incident light was in two photon resonance with the 2s-4s 

transition and in the other case the light was in two photon 

resonance with 2s-3d transition. In both cases the third 

harmonic levels coincide with a P-level ( (, = 1) in the 

continuum. In the first part of this chapter we will study 

the two resonant cases individually and after that we will 

discuss the significant differences between the two 

transit!ons . 

0 

In chapter II we have learned that a pair of 90 phase 

shifted pulses propagate through a two photon resonant medium 

without absorption loss when the pulse duration is much 

shorter than the relaxation times of the medium. This idea 

is exploited in all our experiments to get longer length for 

third harmonic generation and for phase matching. 

32 
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The experiment was done with a pair of delayed and 

phase shifted pump pulses, tuned to a two photon resonant 

transition in lithium atom. The delay and phase were varied 

smoothly. The third harmonic signal was found to be enhanced 

when delay and phase were ideal for coherent loss free 

propagation. Up to 1% efficiency was obtained when phase 

matching was optimized. Third harmonic signal was recorded as 

a funtion of phase and delay of the input pulse pair for each 

tuning. The second harmonic of the transmitted pulse pair was 

also recorded as a function of their relative phase and 

delay. Before we discuss the experimental data it is 

important to define some of the parameters of TPR medium. 

'12 ! 

Efficiency coefficient:1^ 

From Eq(II.4) & Eq(II.5) we find that ^ ̂  j Yj, 

determines the relative strength of third harmonic generatin 

and two photon absorption. We define the efficiency 

coeff icient 

$ 
JZ\ 

(III.1) 

is a measure of the largest possible third 

harmonic conversion. 
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. & 
Two Photon characteristic length : 

From Eq(II.13) the TPR first harmonic plarisation 

* 

(f? = £ , 
1 t 

h (III.2) 

(where we have just taken the TPR part of the 

polarisation) Using Eq(III.2) in the Maxwell's Eq(II.15) we 

get, 

^ £* 

(III.3) 

The two photon vector model of Chapter II shows that 

the largest possible value of | | is 1/2, corresponding to 
0 

the maximum absorption. Using eqn.III.3 we find 

an upper limit to the beam attenuation. 

OOM'Ca. C 
= - — y p — p ^ (III.A) 

A two photon characteristic length is defined as: 

I _ IdNY^ 

^ 2.Ctok 

(III.5) 

Using equation (III.5) in (III.4) we get 

6 , 0 0 = £,lp)e "* 
- M 
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ie. d.^defines the shortest length in which the field amplitude 

could drop by a factor of 1/e of its initial value, by two 

photon absorption. Given sufficient initial energy, most of 

the input pump pulse energy is depleted at this distance. Two 

photon absorption as well as THG become negligible after this 

distance. At 10 torr pressure this distance was 2 cm in case 

of Li 2S - 4S transition. For a pair of 90 phase shifted 

pulses, at the end of this distance most of the energy goes 

from the first pulse to the second and the second pulse can 

propagate over a longer distance. In this way the generation 

length is increased. 
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Lithium 2S - 4S Transition 

In this section, third harmonic generation (THG) under 

the two photon resonant (TPR) transition 2S - 4S in Li vapor 

will be summarised. A detailed description of the experiment 

will be found in Ref 2. The resonance wavelength for this 

trasition is X = 571.2 nm and the third harmonic is generated 

at ^ = 190.4 nm. In this experiment a pulse pair at \ = 571.2 

nm was used as the fundamental pump pulses. The delay and the 

phase of the pulses were smoothly scanned. The energy 

required for the two photon transition is 50 mJ/cm"". For this 

experiment 6 ps pulses with each an energy of 1 mJ were 

obtained from the oscillator-amplifier system described in 

o 

Ref.2 and Ref.3. At operating temperature of 1100 K, the 

vapor pressure of lithium was 10 torr, corresponding to a 

phase relaxation time T ^ of about 1 ns. The inverse Doppler 

broadening was 50 ps . 6 ps pulses were short enough for 

coherent excitation. Nonresonant Mg vapor was added for phase 

matching. For a given detuning and delay Mg pressure was 

continuously scanned to get optimum phase matching. We did 

not measure ionisation in these experiments. A theoretical 

estimate of ionisation was about 6%. A schematic of the 

experiment is shown in Fig.III.2. Pulses of energy about 1 mJ 

were sent through a delay line. The description of the delay 
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line can be found in Ref 2. There are two outputs of the delay 

line. Each output of the delay line consists of two pulses 

delayed and phase shifted with respect to each other. The 
tw 

delay and phase were determined with an accuracy of 1/20 of a 

wavelength. One of the outputs of the delay line was sent 

Z 

through a heat pipe containing a mixture of Li and Mg 

vapors,the other output was used to characterise the incident 

pulse pair. At the other end of the heat pipe third harmonic 

signal was detected with a 20 nm bandwidth interference 

filter. The third harmonic as well as the second harmonic of 

the incident & transmitted pulse pair were recorded as a 

function of delay and phase. The second harmonic signals of 

the incident and transmitted pulse pairs were generated in KDP 

crystals. Data acquisition was done by a microcomputer ("Smoke 

Signal Broadcasting"). A detailed description of the data 

acquisition will be found in Ref 2. Fig. III.3 shows a 

theoretical simulation of the experiment, done in a thin 

sample. In each of the graphs the second harmonic of the 

transmitted pulse pair is drawn as a function of delay (in 

ps). Each graph was drawn for a different detuning of the 

incident laser pulse from the zero field TPR frequency. For a 

different detuning a sharp resonance dip was observed at a 

different delay. This resonance dip is due to the ac Stark 

shift. 
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From equation (II.4) the net detuning of the TPR 

interaction is 

=• A,uJ - COii - S^2.1 

(III.6) 

where 

T h e z e E O field detuning -

and is the Stark shift given by equation (II.7). 

Su>u-_ ( 1 1 1 1 ) 

The Stark shift due to thft generated third harmonic field is 

neglected. This is a good approximation because the 

polarisabilities are smaller at 3 W . 

(^u)) 2 l r 4 U ) -

We have resonance when £^21 . A certain amount of zero 

field detuning " 4C0 " *-s required to be tuned to the Stark 

shifted resonance frequency " tOzt +• 

The Stark shift increases with intensity. With 

increasing detuning a larger Stark shift (induced by a larger 

intensity) Is needed to bring the atom into resonance. For 

this transition the Stark shift was negative. The intensity 

dependent Stark shift is clearly manifested in the second 

harmonic of the transmitted intensity. As the detuning is 

increased the resonance dip shifts towards zero delay. With 

larger detuning it requires larger intensity to bring the atom 
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u -i 

into resonance. For very large detuning (Au)as-i2 X 10 s ) 

there exists no intensity to bring the atom into resonance, 

resulting in an off resonant excitation. There are several 

interesting features of the generated third harmonic signal. 

Maximum third harmonic is not necessarily at the zero delay as 

we would expect in an incoherent or off resonant interaction. 
u -i 

In fact we can see in Fig III.3 (with - 4 U = 3 x 10 s ) that 

the third harmonic is maximised away from the zero delay. 

This is due to the two photon coherent effect. Details of the 

interpretation of experimental results appear in Ref 2. 

Fig (III.5) shows a real experimental data of enhanced 

phase matched third harmonic signal as a function of delay 

between the pulses. Each point in the upper envelope is a 

recording of the maximum third harmonic signal for a given 

delay as the phase between the pulses is scanned from zero to 2? 

Each point in the lower envelope represents the corresponding 

minimum. Third harmonic signal is maximised not at zero delay 

but at an inter-pulse delay of 1.5 ps. This shows the 

difference between coherent and incoherent (or off resonant) 

interaction. In incoherent interaction the third harmonic field 

6| where is the fundamental field amplitude. The 

third harmonic intensity 1 ^ . When I^ is generated in 

Tr 

an incoherent interaction (I3 o( ) by two delayed and phase 

shifted pump pulses, 1^ would be proportional to third order 

autocorrelation of the pulses with a 32:1 peak to background 
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ratio. The enhancement of the third harmonic signal shown in 

Fig III.5 away from zero delay is clearly a manifestation of 

two photon coherent effect. The ratio of Mg to Li vapor was 

1.5 as opposed to 2 required for linear phase matching. The 

maximum energy conversion efficiency was 1%. For the same 

experiment, the second harmonic signal of the incident and the 

transmitted pulse pair is shown in Fig III.4. Here the upper 

and lower envelope of the incident and transmitted signals 

have similar meaning as that for third harmonic. In this 

experiment a resonance dip appeared at zero delay. Fig III.6 

is another recording of the experiment for a different 

detuning. In this case the unphase-matched third harmonic 

signal had a similar behaviour as shown in the theoretical 

simulation (Fig III.3 with - 4U). 6 x ^ d o n e f Q r a t h i n 

sample. In Fig III.6 a very sharp dip has appeared both in 

the third harmonic as well as in the transmitted signals. 

Figs III.7 & III.8 are the recordings of the experimental data 

showing two photon coherent pulse propagation. The anomalous 

propagation effect is evident from the enhanced modulation of 

the transmitted signal (as seen from Fig III.7) over an 

interpulse delay of 3 - 6 ps. This anomalous propagation is 

due to two photon coherent interaction. The energy lost by 

the first pulse is coherently recovered by the second pulse. 

Fig III.§ shows the second harmonic of the transmitted signal 

as a function of phase at the interpulse delay of 3 ps. The 
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phase dependent transmitted signal has a periodicity of 71 

rather than 2 Tl . The maximum of the transmitted signal is 

not at zero phase, but at a relative phase of T>/2 or 3TI/2. 

As expected from theory we see that a 90° phase shifted pulse 

pair propagate through the resonant medium with less 

absorption. 

From this experiment we can draw the following 

conclus ion: 

1. Third harmonic generation is enhanced in 

presence of two photon resonance. 

2. Higher conversion efficiency requires two photon 

coherent interaction. 

3. Tuning in multiphoton resonant interaction is 

intensity dependent. 
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Third Harmonic Generation in Li 

2S - 3D Transition 

In this chapter we study the THG in Li vapor when 

2S - 3D transition is in two photon resonance with the 

incident laser pulse at = 639.3 nm. The THG occurs at 

213.1 nm. Essentially the same experiment (as in the 2S 

- 4S transition in Li) was carried out. The generated third 

harmonic signal and the second harmonic of the incident and 

the transmitted pulse pair were recorded in the same way as a 

function of phase and delay of the pump pulses. This time we 

could not phase match the third harmonic signal with Mg vapor. 

Fig III.9 shows the second harmonic of the incident pulse pair 

as a function of their relative delay. Figs III.10, III.11, 

III.12 and III.13 are the various recordings of the second 

harmonic signals of the tranmitted pulse pair at various 

detunings. In each case of the experimental results shown in 

the Figs III.10 to III.13 we measured the Stark shifts with a 

newly developed interferometric wavemeter (to be described 

later) with an accuracy better than 0.5 A°. A positive Stark 

shift was measured in each case. 
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The various atomic parameters (in MKS units) for 2S - 3D 

transition are listed below: 

Two photon resonance frequency for 2S - 3D transition: C0o 

\5 
^41 = <A> = 2. 948 X 10 s 

Z. 

/ z . -12 
J (U3d)- -2. 6 26 X 10 
^ 2 $ ' 

// 

c< C^o)= 0 
<*s 

/ _3g 
o<3 (.^0 = -4.203 X 10 

f t • ~4° 
3 b = 6.214 X 10 

^ -7<. 
= 2.692 X 10 

-(;(0-!SS) - ? 4 
<f„ - 0. 2 99 £ X \0 
"V i 

d . % were defined in Chapterll, in eqns . 
5 '5.3 -̂ 21 

11.10, 11.11, 11.12 respectively. The transition dipole matrix 

elements were obtained from oscillator strengths given in Ref 

4. The atomic transition frequencies were obtained from the 
5 

tables of Moore. 

From equation (III.7) and from the parameters given 
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above we find ^CO^j to be positive in agreement with the 

experiment. In Fig III.10 the Stark tuned resonance dip 

appeared at zero delay. The zero field detuning for this 

experiment as measured by the wavemeter was = 36 X 10 s. 

In this case the input light frequency U was tuned above the 

zero field two photon resonance frequency u)0 by an amount 18 X 

10 s. It took a very high intensity induced Stark shift to 

bring the atom into resonance. This very large Stark shift 

corresponds to a wavelength shift of 0.8 nm, which is four 

times the bandwidth of the pulse. In other words a completely 

off resonant interaction was brought into resonance. The 

third harmonic signal shown in Fig III. 14 shows a dip not at 

zero delay but shifted from it. Such strange nature of third 

harmonic signal can only be explained in terms of accompaning 

ionisation. The ionisation near zero delay was estimated to be 

60%, which explains the reduction in third harmonic,through 

the loss of resonant atoms as well as through the atomic 

coherence loss associated with the high ionisation rate. 

With decreasing detuning the resonance dip moved towards 

increasing delay, where the intensity is less. Figs III.11 and 

III.12 shows resonance dips towards longer delay. The third 

harmonic signals had similar nature for the two experiments 

described in Fig (III.11) and (III.12). The third harmonic 

signal shown in Fig (III.15) did not show any resonance dip. 

Fig III.13 shows an experimental recrding where the frequency 
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was tuned below the zero field resonance by 12 X 10 s. The 

net detuning from equation (III.6) is : 

'AUJ) - 2UJ -u) 

^ U) n 2 UJ - o V 

- £ u , , 

(4CO)21 - a . 0 - ^ 1 

With intensity induced positive Stark shift » w e 

need positive zero field detuning for resonance tuning. 

When < 0 (experiment described in Fig III.13) the net 

detuning , becomes a large negative detuning resulting 

in an off resonant interaction. No resonance dip was observed 

in this experiment. 

A summary of the experimental results are shown in 

Table I. 
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Summary of 2S-3D Experimental Results 

2S - 3D zero field two photon resonance wavelength 

wavelength ~ 639.3 nm 

frequency bJ0 - 2.9485 X 10 s 

pulse width ^ • 6.5 ps 

-l 

pulse bandwidth 0.2 nm 

>, of De tuning De tuning Stark Shift 

Fig No j Tuning Inpu t per Photon per Photon T -1 In s 

j 
i 1 

Region Light 

In nm 

In nm 

(4X.) 
In s"1 

(<a<Oo) j ( 
i 1 

III 
l 

mi j 

.10 10-Delay I I 638.9 
i 

! -0.4 it 
18 X 10 

1 " i | 36 x 10 ! 
! i 

i III 

| 

.11 1 1 ps . 

|Delay 

639.1 j -0.2 
i 
t 

a 
9X10 

; 18 x 10'1 ! 
1 i 

III .12 2 ps . 

Delay 

639.2 i -0.1 
| 
< 

i 

; 4 x 10 ' 
i 
• - - - - -

t ! ! 
8X10' ! 

! 

i 
; i 

j III .13 Off 
!Tuned : 

639.6 + 0.3 
in. • 

! - 12 x io" 
i i i 
i 

i 

Incident pulse energy density - 14 mJ/cm^-

Two photon area of the pulse • 13 

Single pulse absorption • 85% 



Fig III.16 shows the second harmonic of the incident and 

transmitted signal as a function of phase at zero delay 

corresponding to the experimental recording shown in Fig III.12. 

From now on, this phase dependent signal will be refered to 

as the fringe. Fig III.17 shows the third harmonic fringe at 

zero delay in the same experiment. Fig III.18 and Fig III.19 show 

similar fringes at a delay of 2.7 ps. There is a phase 

Q 

shift of about 10 between the incident and the third 

harmonic fringe. The same effect was observed in the case 

of Li (2S - AS) experiment. The transmitted fringe also 

shows a phase shift with respect to the incident one. This 

could be due to the anomalous propagation where the maximum 

transmission shifts towards Tl/2 rather than toward zero phase. 

Fig III.20 shows incident and transmitted fringes at 7.8 ps 

delay. The transmitted fringe shows a clear "double fringe" 

having an approximate periodicity of 71 . The maximum of the 
Q 

transmitted signal appeared at a relative phase of 110 

instead of 90°. This could be because of the self phase 

modulation of a large "AREA" pulse resulting in a phase 

change as a function of distance. As described in Chapter II 

(see equation 11.20), the one photon susceptibility is a 

function of population ( and ) which is determined by 

the intensity of the pulse. As a result the phase of the 

pulse is also a function of intensity. After propagation the 
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different intensities of the two pulses will have different 

phase modulation and their phase will shift in a different 

way. Due to this effect, the phase delay required for two 

photon coherent propagation becomes different from 90 . Fig 

III.21 shows the third harmonic double double fringe at the 

same delay as in Fig III.20. Similar fringes were observed for 

the experiments described in Fig III.11. The group of fringes 

shown in Figs III.22 to III.26 show incident, transmitted and 

third harmonic fringes at various delays for the experiment 

shown in Fig III.13. Due to the off resonant excitation in 

this experiment we did not observe any double fringe or phase 

shif t effec t. 

As mentioned earlier, phase matching was not possible 

by adding Mg vapor. By changing the pressure of the buffer 

gas in the inner tube of the concentric heat pipe it was 

possible to change the partial pressure of Mg vapor while the 

Li vapor pressure was kept constant by the constant 

temperature bath provided by the outer tube.^* The middle of 

the heat pipe contained saturated Li vapor mixed homogeneously 

with unsaturated Mg vapor. As the delay was kept nearly equal 

to two pulse widths the Mg pressure was scanned continuously 

to get optimum third harmonic signal. Fig III.27 shows the 

third harmonic signal versus the ratio of Mg to Li partial 

pressures. The starting ratio of Mg to Li vapor density was 

0.55. As the pressure of Mg was increased the third harmonic 
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signal decreased. This should be attributed to the increasing 

number of dephasing elastic collisions of lithium and 

magnesium atoms. Indeed at higher partial pressures of Mg, the 

interaction is no longer coherent. The pressure was scanned 

up to a ratio (Mg to Li) of 8.5. Third harmonic signal ^ 

continuously decreased. The maximum conversion was only 10 1. 

2s-4s versus 2s-3d 

Although third harmonic generation took place via two 

photon resonant intermediate step in the same atom there are 

some characteristic differences between the two transitions 

which are worth pointing out. In Table II several important 

atomic parameters for the two transitions are listed. The 

atomic parameters for 2S - 4S transition were taken from Ref 

(III.6). The atomic polarisability of the i resonance level 

has been defined in Chapter II equation (11.10). and tzy 

were defined in equations (11.11) and (11.12) respectively. 

Two photon Bloch equation of Chapter II shows that r1?_ 

determines the strength of the two photon transition. The two 

photon "Area" defined in equation (11.19) is given by 

+°o 

9 - ^ 2 ^ / ^ ) p'5" (III.8) 

-oO 
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TABLE II 

Atomic Parameters for 2S-4S and 2S-3D Transitions 

Reso- Two 3rd 

/ 

°(( *.) °<^( X.) r a § ->21 

nance Photon Harm-

Tran- Reso- onic (MKS) (MKS) (MKS) (MKS) * (MKS) 

sition 

In 

nance 

Wave-

Wave-

length 

X 

10 

X 

10 

X 

-ko 
10 

X 

-11 
10 

X 

10 

Li length 

\ (nm) X3(nm) 

2S-4S 571.2 190.4 -6-956 -2-74 1.015 1.458 1.47 

X 

-i o-4*i 

t 

2S-3D 639.3 213.1 -26-26 - 42.-03 6.214 26.92 0.299 

X 

-10*158 

e 
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From Table II we find that for a given input energy 

the "area" for 2S - 3D is much larger than 2S - 4S 

transition. We have, 

ft ( a s - : D ) 
° ^ - 18.464 (III.9) 

The 18 times larger "area" of 2S - 3D transition 

implies a larger angle of rotation of the two photon Bloch 

vector defined in Chapter II. A larger "area" results in a 

stronger interaction with larger ionisation, Stark shift etc. 

In presence of this intensity dependent Stark shift and 

ionisation, smooth rotation of a pseudo Bloch vector does not 

take place. The single photon polarisability of the incident 

pump pulse is given by, 

i i 

= ... (III. 10) 

Due to time dependent transfer of population the 

index of the medium changes sharply with time resulting in a 

strong self phase modulation of the pulse. A phase 

modulated pulse looses its self induced transparency effect 

and gets absorbed. The effect of strong self phase 

modulation was reflected in the experimental results when 
* 

the maximum transmission was found at a larger relative 

phase than 90°. From the above discussion it follows that 



it-

2S - 3D trasition with a larger "area" is far more complex 

than the 2S - 4S transition. 

The two photon characteristic length ^ defined in 

equation (III.5) for Li 2S - 4S transition at 1 torr vapor 

pressure was 13.5 cm. At the same pressure ^ was 0.75 cm 

for 2S - 3D transition. With stronger two photon absorption 

the generation length is already reduced. 

Using the third harmonic polarisation (equation 11.14) 

f) = i n £i ( h i . I D 

in Maxwell's equation (11.15) we get 

By linear integration we find^ 

u 3 r < 

From eqn III.12, we find that the third harmonic 

(III. 12) 

intensity is proportional to % and . Taking to be 
» 1 I 

equal to and using the parameter values from Table II 

we can write a ratio of third harmonic intensity produced in 

the two transitions as follows! 
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) S 3 l ' - ( 3 S - 4 S ) _ 

- 1 M 

| ^ , C S S " 3 D ) f V ^ ( 3 . S - 3 C ) J (III.13) 

Assuming to be the same in both cases and not 

considering the ionisation or the phase mismatch we can see 

that 2S-3D transition is less efficient by almost a factor of 

_h 

10 than 2S-4S transition. Experimentally the efficiency was 

found to be 1% for 2S-4S while in 2S-3D it was 10 %. 

To see further differences we have to consider the 

photoionisation probabilities in the two cases. For 2S - 4S 

transition, the excited 4S state could only be coupled to a P 

( t = D state by a single photon dipole allowed transition. In 

this case the third harmonic level coincides with the same P 

level in the continuum. The THG competes with the ionisation. 

From the Bloch equation of Chapter II, 

S,t * *<• j-5. t l
 J (III. 14) 

We can find that with stronger third harmonic field 

the two terms 

can compete with 

each other (see Fig III.28). In case of 2S - 3D transition 
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the 3D level could be connected either to a P level (L =1) or 

to a F level (i =3) in the continuum. Since only the P level 

can be connected to the 2S ground state by allowed dipole 

transition, the third harmonic level coincides with the P 

level. While the F level cannot contribute to the third 

harmonic generation it leads to an independent channel of 

ionisation. Ionisation takes place via two channels 3D—>F 

and 3D—>P, whereas third harmonic emission goes via the 

single channel 3D—>P — >2S. Obviously this results in a lower 

harmonic generation. Coherence is lost due to the enhanced 

ionisation rate and remains small. From the definition of 

ionisation rate, equation (II.9) and from Table II, for the 

same input pump intensity we get, 

-j, (III.15) 

^ ( 2 S - 4 S ) 

The ionisation rate for 2S ~ 3D transition is at least 

six times larger than 2S - 4S transition. 

In conclusion a two photon resonant S——>S transition is 

more efficient than an S — > D transition for THG. 
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WAVEMETER 

In this section we describe a new interferometric 

technique for measuring wavelength of picosecond pulses with 

an accuracy better than 0.5 A°. The interferometer is shown in 

Fig III.29. The incident beam is divided into two equal parts 

by a beam splitter at the input end of the interferometer. 

O 

One part goes through a delay arm generated by a 90 prism on 

a translation stage, while the other part goes through the 

fixed arm. The two parts are combined by another beam 

splitter at the output end. There are two outputs for the 

interferometer shown in Fig III.29. Each output consists of two 

interfering beams. As the optical path delay between the two 

beams is changed the output goes from a maxima to a minima at 

the interval of ^/2. The output is seen by a photodiode and 

the signal is stored in the computer as a function of phase 

and delay. Before we describe the method of measuring )\ we must 

define what we mean by ) of a short pulse of finite bandwidth. 

The electric field of an input pulse at a given position in 

space can be written as 

i w V + l < K n 

ECt) = £ ( t ) £ + C.C. 

(III.16) 



Instantaneous carrier frequency of the pulse 

6 6 

r u) + 
Vc 

The average frequency of the pulse 

(III. 17) 

LOav w + < | r / 

(III. 18) 

Angular brackets denote the time averaging. Following 

Ref III.7 

we have, 

b t 

J 
~eO 

r 
>̂t ; 

r 
r Cxi 

Z ' - i r . 

J 
- o < j 

f 

xl 
j 

' <y) 
-f oo 

j cm i 
5-c|yl 

•"c/J 

where 
-j- <*J 

(III.19) 

-at 

£ ( a ) = 

i &(t) 
dt 

-

(III.20) 

Fourier Transform of the complex amplitude of the pulse 
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The average frequency defined by the equation (III.18 and 

III.19) defines the average wavelength of the pulse, 

\ .. 2TIC (III.21) 
- _ — . — 

(̂ uJav) 

Relation between average wavelength and interferometric 

fringe periodicity: 

The total electric field of the interfering pulses (at the 

output of the interferometer) can be written as 

+ > w(t-T)+ 

E w - W + e i t - T ) « - ( 1 I I > 2 2 ) 

where T * time delay corresponding to the optical path 

delay x. 

T = ± 
J c 

(III.23) 

Assuming T << t h e pulse duration ^ a n d assuming slowly 

varying amplitude ( ~ ) w e c a n write 

El*} * £(V) e T i + € 1 J 
L- (III. 24) 

d = ^ 
T " "it 

[ we assume, << 9 / t i 

using equation (III.24) in equation (III*23) we get 
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ftt) ^ .f ̂  e L 1 + e -J 

(III.26) 

The signal measured by the photodlode Is proportional to a 

quantity S defined by 

s -- JlEWl^t 
-oO 

(III.27) 

from equation (III.26). ^ , 'ujO* o i S* 

, 5 -iu>T 5 + i £ W e 

( I H . 2 8 ) 

^ # 

Assuming ( $ r ) « <j?T , 

-j<fT , _ ; $ T 

6 (III.29) 

d t 

-j 

r J"? H O it [' ~ ' 

using definition (III.19) for 

fin?**" -
- o O 

to a first order approximation, 

. / t - s 
I - . -3- > - e 

(III.30) 

(III.31) 

[ CJ<<j>*> )X and higher order terms are neglected] 

using equation (III.31) in equation (III.30), 
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-Voo 

-00 
-oO 

(III.32) 

and similarly, , 
• p 

-*» (III.33) 
; % : * * ; T < 4 > f f 
f £*• e at e J 

KAt 
— cxi 

using equations (I I I .28),( I I I .31),( I I I .33) in equation 

(III.27) we get, + . - I wT-» <*f ̂  u>3* + *• <^3" \ 

J £zAt [e + e J 
(III.34) 

S : i%& t + J 
- oO 

let 4-*0 

-ex) 

S - p + eoS c ° ° + 

(III.35) 

using definition ( I I I . I?) 

S = 2 £ [ l + cos 1 

using 'J' =x/c , and 0̂LW • 2 7lc/tOq.v 

5 a 26 n f COS ̂  * n 
1- -Aav 

(III.36) 
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S is called "interference fringe". To a first order 

approximation the periodicity of the interference fringe 

determines the average frequency of a pulse. Note that (see 
* 

equation III.19) for a symmetric pulse spectrum < (j > = 0. and 

we have, 

^ or \OL\J = ^ 

Method of measuring 

A simple way to measure t 0 count fringes of two 

different laser beams going through the same path of the 

interferometer as shown in Fig III.5.9. One of the laser beams 

could be a single mode laser of well defined wavelength while the 

other is the picosecond laser pulse under investigation. Since 

the optical path delay x is the same for both of them we can 

write, 

X - N,>, = 

(Ill .37) 

(III.38) 

where N- is the number of fringes at wavelength . 

Knowing A, , N( ,N2 we can find )\^ . Counting a large number 

of fringes the counting error could be minimised. Counting 

has to be done by a computer. Suppose 

X j = wavelength of a standard single mode He—Ne laser 

= 6328 k 
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^ ^ 
Assuming an error in counting we can write 

O 

''16L-

Hd-Md 

\ , ^ ( \ - r ^ ^ n e - M d ) 
V \ ' J w? 

^ Hd-Md 

o 

Adoje. = the correct dye wavelength 

^ = Ad, e - ^d-je = error in measuring the dye wavelength. 

^ = ( * " " « " * \ Xj,._ 
V M u . Mi? J Mt j 

(III.39) 
th 

When the delay is determined with an accuracy of ^1/40J of a 

wavelength (Ref III.2) N is approximately 0.03. 

With Nwe„we = 1000 and Ad^e. = 6400 k > ^ A = 0 . 2 A (III.40) 

for 6 ps (FWHM) pulses, there are about 3000 fringes within 

the FWHM. Counting of 1000 fringes can be quite accurately done 

by a computer. 

In the above method the error increases with less number of 

periods ( for shorter pulses ) and cannot be applied when there 

is appreciable pulse to pulse intensity fluctuation. 

The following method (of finding Axv ) is based upon the 

construction of a single average fringe. Experimental setup 
tk 

is the same as before. The delay accurate to(l/40)of a 

wavelength is determined from the fringe of a single mode He-

Ne laser. A single period of dye fringe is divided into 

several phase channels and the data of dye fringe is stored in 

respective phase channels (see Ref III. 2.). 
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Phase delay 

<f =2Tlx/^ -2 Tt n (III.41) 

where n is an integer^ )s =: ̂ a.v » 

is determined from zero to 2 71 > x is the absolute 

distance determined from the He-Ne fringe. is the approximate 

dye laser wavelength measured for example by a fairly crude 

monochromator with 5 A resolution. Maximum distance xrnax— N A 

where N = number of periods for averaging. 

For example, if zero to 2 TT phase is divided into 25 phase 

intervals the data of N periods will be distributed in 25 phase 

channels and an average fringe can be constructed. The accuracy 

of averaging is determined by the accuracy of the determination 

of ^ . An average fringe calculated with a wrong wavelength 

will deviate from the pure cosine function shown in equation 

(III.36). From the deviation and "trial and error" fitting-, >> 
O 

can be determined with an accuracy up to 0.2 A. 

Error Estimate 

Following Fig IIl30an average fringe fringe can be written 

as M 

* ^ Cos (X -r j X ) Hi 

F00 - (n + ») L 
J 
= 0 (III. 42) 

where N+1 = the total periods for averaging 

A 0 = the correct wavelength 

A = the trial wavelength 
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jf ^ F(x) • cos( 2TLx/>0) 

I F F(X) will deviate from the cosine function and 

from the deviation ( > - * o ) can be measured. 

Suppose A • + 

V (2TLX I *\ &A. 2^ ) 

*- |ig+T) I ^ I X J
 ( I I I. 4 3 ) 

ir0 

Suppose x = 2Tlx/>0 and a » 2U £* 
/t O 

N 

FW = (?JTo (in.**) 

J = 0 

Deviation error ERR (x ,N,a) is given by, 

£ R R ( * \ N*0-) r - C o S ^ x ^ (III.45) 

ERR (x ,N,a) is a nonlinear function of x ,N and a. 

From equation (111.4^) and (111.^5), 

- S'™*' ( £ S O , j ° " ) ) (III.*6) 

J=' 

with Na << 1 , cos(ja) = 1 and sin(ja) = ja 

we have, 

ERR(x ,N,a) - -(aN/2) sin (x/) (III.47) 
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for SA-0.2 k, >\ = 6700 k and N = 501 

-4 
a = 1.87 X 10 and aN = O.O^with all these the 

above approximation ( Na <X 1 ) is valid. 

If is replaced by - , ERR(x ,N,a) shifts its phase 

by 7t . From the sign of the error we know whether we are above 

or below the correct wavelength. Fig III.31 shows a pure cosine 

function. Fig III.32 shows that the error function ERR(x ,N,a) 

is a sine function. In this case, we have assumed > =0.5 X 
_ h 0 

10 and N = 500. This corresponds to an error of about 0.35 A in 

yK = 6700 k. As we approach the correct wavelength ( £> -> 0) the 

error function becomes a straight line. The amplitude of the 

error function gives the magnitude of £ ^ and phase of the error 

fuction gives the sign of . 

Second harmonic fringe S2 is given by, 
T XI 

S, °< { \ 1*" ̂  

- oO 
(III.48) 

where E(t) is defined in equation (III.24). Near zero 

delay we have (Ref III.8) 

S2 = cos x + 0.25 cos(2 x ) (III.49) 

Fig III.33 shows a pure second harmonic fringe given by 
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equation I I I M. Fig III.34 shows the error function for 

G . = 0.5 X lO* and N = 500 periods. The error is more 

pronounced in the case of second harmonic fringe. This implies a 

better determination of £x. 

For a picosecond pulse Fabry-Perot interferometer would 

require mirror spacing as close as 1 to 2 mm which results in 

broad transmission peaks. A very high finesse ( mirrors with 
0 

high reflectivity — .99 ) is required for good resolution (1 A). 

For a weak intensity pulse this is not particularly suitable. 

On the other hand the interferometric method used here is 

based on averaging and it can be applied to moderately 

fluctuating pulse trains. 
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CHAPTER IV 

HARMONIC GENERATION IN FOUR-PHOTON 

RESONANT COHERENT INTERACTION 

In this chapter we present a theory of harmonic 

generation in a four photon resonant coherent interaction. We 

have already seen examples where third harmonic generation is 

enhanced due to an intermediate two photon resonance. Higher 

harmonics are generated through higher order processes. Higher 

order susceptibility can be enhanced whenever there is an 

intermediate resonance. We will be dicussing the nonlinear 

interaction in atomic vapor,where due to inversion symmetry 

only odd harmonics are generated. Two photon resonant fifth 

harmonic generation of dye laser radiation in Na vapor has 

been reported by Dinev et al.,1980.1 A ten fold enhancement of 

the fifth harmonic signal was observed as the laser was tuned 

through the 3s-3s5s two photon resonance in Na. Saturation of 

the conversion was observed for pump intensities higher than 

10 Watt/cm": For higher harmonic generation a higher order 

resonance should be preferred over the lower order one. A 

higher order resonance will have less multiphoton absorption 

loss for pump wave. The saturation can be avoided by coherent 

(as opposed to incoherent)interaction. Third harmonic 
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generation in four photon resonant Hg atom has been observed 

by Arlee V. Smith , 1 985 ; and by Normand et al., 1 983.^ Third 

harmonic signal was peaked as the input laser wavelength was 

tuned through 6 S-6 resonance of Hg vapor. Although there 

was not any real level at the third harmonic frequency of the 

incident laser,the genereated third harmonic wavelength was 

exactly one third the wavelength of the input pump wave. In 

this case the VUV emission is due to four photon resonant six 

wave mixing as shown in FigIV.1. A red shift of the singlet 
1 

6 level was observed in the experiment mentioned above. This 

red shift increased with intensity. This intensity dependent 

Stark shift is a very special effect in multiphoton 

interaction. Besides the dynamic Stark shift there will be 

resonant multiphoton ionisation - the most important limiting 

factor in higher harmonic generation. In the experiments of 

four photon resonant (FPR) third harmonic generation (THG) in 

Hg vapor the ionisation rate was found to be rather low. A 

steady state situation prevailed since nanosecond (ns) pulses 

were used in all the experiments mentioned above. 

Here we are interested in studying the resonant wave 

mixing processes with pulses much shorter than the atomic 

relaxation times. In presence of coherent interaction a 

definite phase relationship exists between the induced 

polarisation and the inducing field. This allows control over 

absorption, phase matching etc. for optimum harmonic 



generation as we have seen in the examples of Chapter III. 

The higher harmonic susceptibility diverges in the presence of 

intermediate resonance and accurate expression of third 

harmonic polarisation can only be found by a complete solution 

of Schroedinger equation. From the solution of Schroedinger 

equation space-time dependent expression of induced 

polarisations at various harmonics (of the incident field 

frequency) can be obtained. These polarisations will be the 

source terms in Maxwell's equation generating fields at 

various harmonics. Simultaneous solutions of Schroedinger and 

Maxwell's equations describe the harmonic generation 

processes. In this chapter a complete theory is developed to 

describe the harmonic generation process in a FPR medium using 

Schroedinger and Maxwell's equations. 
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Derivation of Four Photon Resonant 

Equations 

An incident laser pulse is assumed to be FPR between 

the ground state and an upper excited state of a multilevel 

atom. Transitions involving all other levels are assumed to 

be off- resonant with the incident light. In Fig.IV.2 all 

off-resonant levels including ionisation continuum are 

represented by {(,}. Il> is the ground state. I2> is the 

excited state coupled to the ground state with four photons 

from the incident laser pulse. For coherent interaction the 

pulse duration has to be much less than the population and 

phase relaxation times, as well as the inverse detunings. 

Doppler broadening can be neglected in most cases when we deal 

with pulses of few picosecond (or less) duration. Doppler 

broadening can be handled by proper doppler averaging whenever 

it is needed. 

Suppose: 

^ = input pulse width 

IT = population relaxation time 



~r 
2 Pressure induced phase relaxation time 

!^ = Inverse doppler width 

we assume, 

* 

T ? < T , T ^ , !, -(IV.1) 

The linewidth of a resonant coherent excitation 

is determined only by the pulse bandwidth. The detuning and the 

pulse bandwidth determines the resonance condition. 

Suppose: 

level. 

AtOp = input pulse bandwidth 

^ ~ - n-photon detuning of the L 

where, 

+K 

Cx)tl is the resonance frequency of the ^ excited 

state from the ground state. 
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W ? ass 'x m £ j 

I ̂ 60 >>a, -i/ujjj ^ 4 ( ^ c 0 p ) _ ( i v > 2 ) 

3 n d K ^ - ^ l » 1 for ^ 1,2 -(IV.3) 

T! n-1,2,3, 

When equation (IV.3) is satisfied we can apply the 

"Adiabatic Following" approximation to all off-resonant levels 

to convert the problem of many level atom into a problem of an 

equivalent two level atom. In this way we derive the four 

photon "Bloch Equation"? For the "free" levels in the 

continuum there seems to be a problem with the condition of 

equation (IV.3). But as explained by Georges A.T. in his 

Ph.D. thesis,5 the effect of the coupling with the 

continuum can be treated as a weak perturbation since bound-

free dipole matrix elements are much smaller than bound-bound 

matrix elements. In this derivation the electromagnetic field 

of the laser is treated classically by the Maxweel's equation 

while the atom is treated quantum mechanically by the density 

matrix equations. The density matrix operator f> describes 

the state of the atom. The relaxation terms involving T, and 

can be incorporated phenomenologically into the density 

matrix equations. When equation (IV.1) is satisfied, the 

Phase-coherent density matrix operator f> ( of a single atom) 

satisfies the following equation: 
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atom. 

atom. 

"b t R 
f, H | 

-(IV.4) 

Where 

H is the total Hamiltonian of a single atom. 

Under dipole approximation we have 

H = H„ - A • E 
-(IV.5) 

Where 

Hq i s the Hami1 tonian of a single unperturbed 

A - er - The dipole moment operator of the 

-19 
e = Electronic charge (e = -1.6 X 10 Coul.) 

Due to FPR between levels Il> and I2> we have: 

= 0 -(IV.6) 
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E(z,t) is the total electric field of the incident 

and generated wave. 

i U)t-ikz i 3 ( OJ t-kz) 

E = E(z,t) = £ ( z , t ) e + C ( z , t ) e 

3 

+ f ( z » t) 

i 5 (CO t-kz) 

e + C.C. -(IV.7) 

E(z,t) is assumed to be a plane wave propagating 

along z. 

i ^.(z , t) 

£.(z,t) = |£.(z,t)| e -(IV.8) 

i-1,3,5. 

Where 

(z,t) - space-time dependent phase function 

* U ^ 

of the i harmonic field. 

i - 1 corresponds to the first harmonic 
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field and so on. 

From equation (IV.4) we get the equation of motion 

for the elements of the density matrix: 

y * - 1U),, (?,. - [ 1 ( A - A j (j*) ] 
0 t * I 

-(IV.9) 

^ - - i f ( A t ^ 0 1 s i -(IV.10) 

J 

• - i j [ ^ C A i ' • " ^ 1 -(IV.11) 

and in general, 

- i u i t w P M - ^ a ^ - a ^ O ] 
-(IV.12) 
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I signifies the summation over the discrete states and 

integration over the continuum. 
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Adlabatlc Approximation for the off-resonant 

density matrix elements 

For the off-resonant density matrix we may write 

+ °o lYUOt 

^ (muJ,t) e-
l H - Z. te t -(IV.13) 

"nr-oo 

is the slowly varying Fourier amplitude of , 

To demonstrate the idea of adlabatlc approximation 

we consider the contribution only from the first harmonic 

field. A generalisation to include the effect of all the 

harmonic fields is straightforward. 

The electric field at the position of the atom 

(neglecting the higher harmonic fields) is given by, 
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,(«, - £ ( t ) *C.C. -(".14) 

Using equation (IV.13) and (IV.14) in equation (IV.12) 

we get , 

^ ^ L uo -

* • 

r 5 / A ^ i <<: W 
L \ - R ,J' " R 

J 

- ( i v - < s ) 

where 

fe(_ *•(. 
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We define 

_fl 
Ajt I 

-(iv•16 ) 

•>t + 

tui 
- ( I V ' 1 7 } 

where Einstein's summation convention is implied over the repeated 

indices. 

i(nW -

Multiplying both sides of Eqn(IV.17) by e we get, 

e 
•st 

I - ) j o v 1 -
e x 

Unuj - (-OiK)fc 
e 
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intregating both sides and using the initial conditions 

^ ( t = 0) = 1. 

and »°)"° f o r k ' ^ ^ 1 

we get, 

<K ^ t , 

iC«-»<r, I A t < 

* d x £ 

~ - u ) ^ - ( i v . 1 8 ) 

Integration by parts gives -

\ i / |o = n-» ,^ + i 

I i 

. / - i ^ " ) k \ y { ^ C V > ) « 4 l k At' 

e + " T S I ^ / 

- U v -
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i n e q u a t i o n ( I V . 1 9 ) 

S 0 0 = r W - - A * j e 

C O - C 
S ( p ) g o e s l i k e q f o r p « n - l , n + l 

i v*. w h e r e ' T ' - p u l s e d u r a t i o n 

* 5 1 T P
 P 

o r 

-n £ , 
" S t - i t 

--(lv-zo) 

I f A u . < " > » T - ( , 1 V - 2 " ) 
Co 

U ^ o j t , 

t h e n e i n I — ; £ <A.t' w i l l o s c i l l a t e many t i m e s 

J ^ 

b e f o r e c h a n g e s s i g n i f i c a n t l y . Under t h i s s i t u a t i o n t h e 

S t 



1 2 C 

integral will average to zero 

Using from eqns (IV.21) we get, 
Cp 

(n) >> n 

(n) 
or >> i -(IV.22) 

Y~> p 

Eqn(IV.22) says that the n-photon detuning of the transition 

between k is much larger than the line-width of n-

photon resonance between the levels. Under this off—resonant 

condition expressed by eqn(IV.22) ,the integral in the left 

hand side of Eqn(IV.19) can be neglected ,and we get, 

(-1) 

(viW-COtO 
p- r\-1 j y\ +\ 

J l 3 l <«• ^ e 

- ( IV • <,3 j 

Eqn (IV.23) gives the adiabetically approximated 

Ik 

n fourier component of the off resonant density matrix 

element ^ . 
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Under similar off-resonant approximation with the 

third and fifth harmonic field a straightforward 

generalisation of Eqn(IV.23) will give, 

)p n + l 

- </ CO L<j(
p0 (jt 

r3 

T"-^l ' 

- v 1 X [ ̂ u ) ^ 

. Cn-*fc) fr5 
L |-n-Psi 

|»5 = r»-5 ,n*5 

(rv- * 4 ) 



tiy-~ 

< s ® 

H>-
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(*-) 

I F 

-IP 
\p— 

<P 

i i » 

= w o v 

•i—^ i-bs-p.iJJi 

(») 

^ + <£W 

lt> 

lk>- & •ii> / 
r W , W 

l>- ^ 3 ? 

|lt> * = 2'1< 

(c) 

R ^ . 0 - 3 
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-H> 

+ 
-\fe> 

"i 

H> 

: 4 e 3 

— i * - > 

(*) 

*}>-

c « ) 

n> 

U> 

£ 

i s i f t 

P.j 

k-.o,3 

Fi's iV *3 (coNTb.) 



12*-

ic 

13>-

lk> 

A 

+ 

. . ^ S -

)°c.= -2>9 

) > " f 

c 
'-5 

4 ^ 
j L K> 

f 

\fc> -\K> 

•* 

Ez 

f 3 -P5 Nun 
1 lil-FM J J 

S 

k - - - ; ' 

0> 

CO 

Fi<j C M Ct ONTD. j 



where, 

XL 
A j t i£.l 

Aif 
(3 - J i — 

j<- " fc 

^ • Afr \ Hsj 

^ C k . ^ ~ ( n w " w t O 
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-(IV.25) 

-(IV.26) 

Fig(IV.3) shows the various terms of Eqn(IV.24) for 

n»3 . Fig(IV.3a) shows the density matrix element for the 

transition between levels £ and k. . Fig (IV.3b) to Fig(IV.3g) 

show the generation of through second order scaterring 

proecesses assisted by the 1st fthird and fifth harmonic 
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fields. Each of the generated terms can be further expanded in 

the same ways either through similar diagrams or analytically 

using Eqn(IV.24). A demonstration of analytical expansion is 

given in appendix A. It will be shown in later sections that 

in order to generate equations containing fourth power of E (in 

a FPR system an expansion up to third power of the electric 

field will be needed for all off-resonant matrix elements. 

This expansion is equivalent to a perturbation expansion of the 

off-resonant density matrix elements. In the derivation of 

the atomic Eqns and polarisations shown in later sections both 

the analytical and diagramatical methods were used. 
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Derivation of Four-photon resonant Bloch-Eqn using 

Adlabatlc Approximation 

Under four—photon resonance between levels Il> and I2>, 

the resonant density matrix can be written as: 

L 4 tO t 
p - e 

-(IV.27) 

Using Eqn(IV.13) in Eqn(IV.9) we get: 

^ I (_4 ̂  

•at ;<*-*)$?, 

, \ ~\ I 

" n . , < , o ? ) - J e 
= 4-0 

+ (-0 

ft = 3=5 . Pj) 

. -1 1 1 4 ^ 1 

£ [ e 

s 
\ 4 - M 

.-0 £ [ ^ 4 ^ ' ^ 6 

^ _ (IV .2.9) 

^ ^ Z>. u 
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where Jlfl,, are defined in Eqn(IV.25). 
le* 

^ and in Eqn(IV.28) can be eliminated by using adiabatic 

approxition Eqn(IV.24). Expansion of and up to 

third power of the field will generate an equation of <<^ 

containing fourth power in the field. At the final step of the 

expansion all off-resonant scattering has been expressed 

through " the FPR interaction. The final form of Equation of 

motion of • 

i [ ~ ^ 

*2>t 

— ^ ^ ) ^ ^ -f-
L fcH 

? 
J0.I 

t,'-

+ 
* - i*. ~ -* 

c % c s i E , r u , e 5 + 
" r - T r " 4 

t 

I 
*• 

i 

-(IV.29) 
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Definition of various terms In equation of motion 

tO2.1 ^zero-field resonance frequency of Il>*-»12> transition, 

S<0 » laser induced Stark shift of Il>4-»12> transition. 

The Stark shift is determined by the the real part of 

polarizability of the resonant levels and intensity of the 

incident and generated fields. 

Su . J- l€.V 

+ * 

-t- \ 
-(IV.30) 

t v^ 
where, o{,(ntJ) — Polarisability of j level at 

J 
frequency n w is, 
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/ ii 

o/- (n Gj ) • o(. ( n U ) - io^.(nU)) 

J i J 

-(IV.31) 

0») 0) 

o(. ( CO) • °0(U>) + o^*(U3) 

J J J 
j-1,2 

-(IV.32) 

c<,,> • y r vA«l15 f 
^ (00) - -TT 

* L L K j - w ) ' ( W t j + , 0 ) 

i 

] -(IV.33) 

\ = 1 > 2. 

«<• ( ^ ) 
O 

i}) 

x 
* 

+ 

A i i A m A « j 

. (<»ij - - i « ) (."tl-") 

4 ; f A i » A l j _ -I I M ' 

(Ulj + *>) ( W * j + i u») ( W ' j J 

-(IV.34) 

j-1,2 
l' ) 

<K' (<o ) H Intensity dependent polarisability of level 
i 

Il> and I2> at the first harmonic frequency CJ . From 

equations (IV. 30 ) , ( IV. 3 2) , ( IV. 3 3 ) , ( IV. 34 ) it follows that<*. (Co) 
d 

(?) 
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gives the intensity dependent quadratic Stark shift where as 

, c u 

( ^ ) gives the intensity square dependent quartic Stark 

shift. 

, i \ - J- v r +- 1 
j 1110 ^ 2-J L (oJtj + ^ w ) 

-(IV.35) 

n-3,5 3-1.2 

We have neglected the intensity dependent polarisability for 

the third and fifth harmonic field, because, to a good 

approximation the peak field intensity of the higher harmonic 

fields are much smaller. The intensity dependent Stark shift 

changes as the intensity of the interacting field changes 

across the pulse. As a result, the detuning of the four 

photon interaction changes dynamically across the pulse. 

^ to - 10 2,1 - £ g 0 2 i - The net time dependent detuning. 

^ U) - cO^i 5 The zero field detuning. 

For a given zero field detuning, an atom will come in 

and out of resonance as the pulse passes by. As we have seen 

in the two-photon resonance case, Stark shift could be as big 

as several pulse bandwidth. In this way laser induced Stark 

shift broadens the width of multiphoton resonance. 
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V 

"9, = M a Single photon ionisation rate from the 

ground state by the fifth harmonic field. 

- I * 0 = 2X<-5U> 
t -(IV.36) 

Total ionisation rate from level I2> 

•2.10 N3U) N 5 ^ •2.WJ \ J 

-(IV.37) 

Y*" 

« Single photon ionisation rate from level I2>, by 

the first harmonic field. 

"V - — l M -(IV.38) 
k 

" Two photon ionisation rate from level I2> by the 

first harmonic field. 

iu3 [\) n 
0°) 12.1 -(IV.39) 
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3<A> 

tz. m Single photon ionization rate from level I2> by 

third harmonic field. 

3U> ii « 

^ 2 . 3 - C3l°) 1^3 I -(IV.40) 

510 

^2. » Single photon ionization rate from level I2> by the 

fifth harmonic field. 

^ " K Ii 
i*. . 3 - ^ 5 <°) -(IV.41) 

Ionization is an incoherent loss mechanism, leading to a 

shrinkage of the -pseudo polarisation vector" through a 

reduction of . 

The four photon transition matrix element is given by 

_ Aij- A f h A**- _ 

-(IV.42) 



where Einstein's summation convention is implied, 
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A 

Ml) ' s the Rabi rate for FPR transition, 

-A-jf /̂ -ti 
/<zt All 

V + PETS) -(IV.43) 

is the coefficient of the resonant Raman pumping term 
z.\ 

in presence of the third harmonic field. Later on we will see 

that £ is the coefficient of FPR third harmonic generation. 
ni 

a * = x 

(3ui-tot,) ( 2UJ-IO^)C 3 u 3 " ^ 0 

-v 
(IT- u)f t) 

^ (5uj (lW-U)Ri] ( w ^ 0 ^ 

- (iv . 44 j 
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( j Is the coefficient of a higher order Raman 

scattering produced by the first and third harmonic fields. 

= 
A u A t i 

(wt, - 5 " ) 
+ 

yAiA A tl 

t ^ u + swj 

-(IV.45) 

C* = - Aaj- A f v c A H t A n x 

- C 5 u j - ^ ) 

S 2 1 • The coefficient of Raman scattering with the first 

and fifth harmonic field. Later on we will see that is the 

coupling coefficient of the FPR fifth harmonic generation. 

G The coefficient of a higher order scattering for 

first and fifth harmonic fields* 
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.s - - Aij. A f K Ak.i. Ae» 

(w ) ( 7 W - ^ , ) ( 4 W - ujm) (w-we0(7w-w^,)(iu)-wh») 

l. I + 

(sco.Wo)C7«o-u)f,) (6 W-U3 W) (Su- u)tl) (3* -
w$-v) C4u>-«0^ 

+ 
(_u)-u)o^ (_3u) - ( ^ w w*l) _ _ 

d-5 * Coefficient of the multiwave scattering term. 

Note that in the equation of we have kept the 

term up to fourth power in E(, where as only up to first power 

of E 3 and Eg are kept. This is a good approximation when Ej 

and Eg are the generated fields having intensities much weaker 

than the fundamental field Ej. The meaning of the various 

terms becomes clear when we draw pictures for each processes. 

Fig.(IV.4) shows the various terms. From Fig.(IV.4) we can 

see that drawing pictures for each scattering process and 

using the resonant denominators we can generate each of the 

terms of equation of In a similar way equation of motion 
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ij>-
•\L> 

•\*> - * 6 
• I f > 

w-

lt> 

+ 
U> 

w 

*>- *0-

l*> -h ii>. 
* 

6 

-1*> 

n>- f." 

+ 
lt> 

l*> 

t 
g U> 

>7-

= a3 »s, \ ̂  / e. f3
1 

fc*- I t c 
(«) 

Fi^lS 



I €? 

= 4 v : 

u > -

<i) 

•» t t> 

1 3 8 

i.> 

Ce) 

l ^ l i ' e 

|t> [ y ft) . v r 
sfc_ J _ _ _ _ £ _ ) c-

e . 

5 
^ s i * - & 

t * - *<• 

n>-

Fiq W ' 1 O N T 0 ' ) 
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X . 

•lO 
+ 

• \Z> 

X*. 
4-

1 

5 £ 
•i*> 

4-

£ 
*>/ )—y ^ 

1 i 

+ 

J ] > 

& T 3 T 
• 12> 

.n> 

C f l 

Fifl 0 ( , C o N " r I > ) 
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of and f?, were found. With, 

- flz and <^» » ft -(IV.48) 

where and are the probabilities of population of 

level I2> and Il> respectively. We have, 

•a t 

= - 2. I- * ( $ ) ' • ( i . • 

+ + c 5 ^ * ) g, gs , <̂ 5 l^u. 
v ^ y t * j J 

+ ^ 0 - - ^2. <a. " Jx ̂  

- (iv- 4 9 ) 

- (iV.5o) 

equation (IV.50) is the conservation equation for 

population. 

Four Photon Bloch Equation 

By eliminating all the off resonant density matrix 

elements using the adiabatic following approximation we have 

already converted the many level atom into a two level atom 

represented by a 2 X 2 density matrix containing only the 

resonant terms. 



141 

The 2 X 2 density matrix is given by, 

H o o t 

p = 
<*1 

- (r v • 5 1 ) 

P «P" implies /?t - f» 
_ {^iv • 5 2 ) 

or * ^Z\ 

Introducing the relaxation terms T, , 

phenomenologically, in the equation for » <̂ [x > we get 

+ i. ( 4 w - w i , - S " ) ^ f + Vj. ) ^ 

= i ( ^ , ) K ( T ] * + { ? - + ^ j ^ 

+ 4 c ; u a M gt, >z\ -\-

K2-
fc3-

+• 

*• 2 * — 

<^s_ £1 S 5 £3 

0 

- ( I V - S 3 ) 
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l i k + •?< + c 
— 

- - * I rr\ 

JL fs2\ + ^ £» ̂ 5 -f 4§. ^ ?3 fs \ <£*. 
V fc2- ' ^ J 

_ (iv. 5 4 ) 

b (^« + < ^ 0 0 /T ^ 
r t = - v ^ - v , * , _ ( I V 5 S ) 

The system of equations (IV.53) to (IV.55) are the four 

photon Bloch Equations (in analogy with the Bloch Equations in 

magnetic spin resonance). The two states of the equivalent 

two level system are connected resonantly by four photons of 

the incident pulse. The effect of all other levels come 

through the generation of higher harmonics, through various 

scattering processes, ionisation and level shifts. Solution 

of the above four photon Bloch equations will give the density 

matrix ^ as a function of the electric fields. 
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Calculation of Polarisation in the 

Four Photon Resonant Medium 

The calculation of the induced polarisations at 

various harmonics, up to third power in the applied 

(fundamental) electric field will be given below. 

The dipole moment induced in the atom is given by, 

f r "TV ( / A ) 

-(IV.56) 

or 
0 

Y = 7 fi*. ^ 

_ (_iv. 5 ? ) 

using ^ 

i-niot 

r\ 

*> =+°0 -A »txu)t 

f - - ( i v - 5 8 ) 

(.>fe-3ir> = -00 

- r + 7 

(.<> k, Y1 " -00 
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or 5 

r* V"" i t —1 » "rtUJC 
^ ^ 2 _ ^ c " , ) ^ " k i + / < K c " ) a « e 

€.> Vs., ** * I 

-(IV-59) 

using, 
.+ 

+ 
P - P and /<- - A 

we have, 

TT" 

^ t n ( r n Y " -(IV.60) 

and A ^ " ^ K t -(IV.61) 

0 0 x- -» * — v v\ 101 t-nu)b 

7 [ < * ( B ) A f c t e + < J v > > A n e 

I , fc, * = i 

The dummy summation index ^ and k are interchanged in 
the f i r s t term. 
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<*> _1 i riuJb 

\> - ^ ^"*>1 ^ + C. C. J -(IV.62) 

we can also write, 

inuit —i 
& + C C J -(IV.63) 

r\ 

from equations (IV.62) and (IV.63) we can write, 

fc --

e,K -(IV.64) 

using » 0 we arrive at the following 

expression 

(p . Y [ 4 W A n + 

Lt»*-

-(IV.65) 
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with n»l,3,5 we get the amplitude of the first, third 

and fifth harmonic dipole moment amplitude. etc. are to 

be expanded by adiabatic approximation up to the third power 

of the fundamental field 6, • Using repeated adiabatic 

approximation (equation (IV.24)), we get expressions for 

f ? . P 3 . Q . The procedure is the same as that used to 

derive the equations of motion for and 

The polarisation (ĵ  is, 

(f> = -t- * ) < +- 1 ^ ^ ^ j 

+ (s* + ^ + a 

•%iv. 

The intensity dependent polarisabilities °\ (<0 ) and 

o(^(uJ) will give rise to a strong phase modulation in the 

pulse. 

is the first harmonic dipole moment 

created by the FPR transition. The four terms are generated 
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!2>-71 
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by proper permutations of the emission process as 

illustratraed in Fig(IV.5). 

)2. * 

are terms showing flow of energy from the 

fundamental to the third harmonic frequency. 

(^21 JL- ' J _5 ^ are terms showing flow of energy from the 

fundamental to the fifth harmonic frequency. 

__ Aif Afk. A * ' 

^ ( _ ~;2-U3) 

- (IV- 6?) 

l3 

susceptibility 

* -

o{- gives the off resonant third harmonic 

is a term representing the FPR wave-mixing 

process. 

Similarly we write the amplitude of the third harmonic 

polarisation, 
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<P3 = r<(3u)<r„ + V ) <S»x "3 S s 

+ r ?„ + ^ ± j i i i z ] ^ ^ < 
L s s J fc T 5 

t < i l _ L J i <£i 
ti3 -(IV.68) 

The third harmonic generation takes places 

through the FPR harmonic generation, stimulated Raman 

process, wave mixing and the off-resonant processes. 

term 

zi £t ̂ \x. t^ie dominant FPR third harmonic generation 

"k e,'<, 
fc3 

is the off resonant third harmonic generation 

term. These two competing processes are illustrated in Fig(IV.6) 

Ue will see later how the off resonant and on resonant 

terms compete with each other and add to with different 

phases. One important difference between the two terms lie 

in different absorption losses. The off resonant generation 

process does not have any multiphoton absorption loss. 

Fig(IV.7) describes the higher order resonant mixing 

term given by A J£|*- \ 

V k2- } * 
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l i> -n ? 
<2. 

1 

(2> 

c. x t, c< 
T 

W 

T 

0) 

= 3 < 3 
T * 

Fi 
1 ^ ^ 
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U>-

U 
£ I" 

T " 

f ' \ i y - 7 
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The last term in describes the resonant mixing 

process with fifth harmonic field. 

Similarly the amplitude of the fifth harmonic 

polarisation is given by, 

(P - (-5^) 

4- 4- C 5 £. I c U £, 

+ L^« — J — + —5 

-(IV.69) 

Finally the polarisation at the first, third and fifth harmonic 

fields are given by, 

^ [lut-lK* 

= N £ + c . C 

i3Cwt-K2r) 

j | . N ( g u . o e + c.c 

- I 5 ^ t - K 2 ) 

p 5 ^ N £ + C ' C ' 

- (iV-T-o) 
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where I P . 6 . ft are given in equations (IV.63),(IV.65) and 

(IV.66). 

Maxwell-Bloch Equation for Four Photon 

Resonant System 

From equation (11.15) in Chapter II we have Maxwell's 

equation in SVEA and written in reduced time frame, 

- -i U) w N » -(IV.71) 

m«l, 3,5 

From the solution of four photon Bloch equations 

(described by equations (IV.53) to (IV.55)) with given 

incident fields, we get the density matrix at a certain point 

in space as a function of time. From the density matrix we 

calculate the induced polarisations using equations (IV.65) to 

(IV.69). These polarisations become the source term in the 

Maxwell's equation given by equation (IV.71). The solution of 

Maxwell's equation will give the fields at the next point in 

space. Simultaneous solution of Maxwell-Bloch equation will 

generate fields at all space time points. 

The above formalism described in this chapter gives the 

complete picture of a FPR system under coherent excitation. 
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The multilevel FPR system is converted Into an equivalent two 

level system. This gives an unique opportunity to understand 

the complicated multiphoton process by a simple two level 

system. The dynamic Stark shift and ionisation have appeared 

automatically in the formalism. Finaly the explicit 

expression of the polarisation will provide all important and 

interesting harmonic generation processes that could occur in 

such complicated system. 

From the self consistent Maxwell-Bloch equation we can 

derive an energy conservation equation. As the light pulses at 

ajndt 5<0 propagate through the medium, their energies 

are distributed in various processes. Due to multiphoton 

absorption and ionisation part of the electromagnetic energy 

will be left in the atom. 

The electromagnetic energy density, 

U = 0(1) + U(3) + U(5) -(IV.72) 

tK. 
U(i) » energy density in the i harmonic field 

+«o 

-©o 

U(i) » 2c <£ \ IEi\ it -(IV.73) 



4-00 

u - 2 c + ^ 3 1 4- l£&| J 
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-(IV.74) 

- oo 

-V oO 

d u 

cU 
- ZC G, u * 

•> i£.I2- \ \ W 2 ^ -b U s l S a t 

+ T t J + ~h* 
- <50 

-(IV.75) 

From Maxwell's equation (IV.71), 

i™ j ? l ft j 

I Z " C € ° 

-(IV.76) 

m«l, 3,5 

From equations (IV.75) and (IV.76), using expressions (equations 

(IV.66) to (IV.70)) for the polarisations, and four photon 

Bloch equations (equations (IV.53) to (IV.55)) we get the 

following energy conservation equations. 

+ oO 

4 u = 

J 17 
- °o 

4-

+ «* V*) 

( V s ^ , <£, + 5 ^ ^ ^ 

+ T 

5u) 

C ^ ^ ^ ) d t 

-(IV.77) 
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Equation (IV.77) states that the energy lost by the 

field is partly stored by the atom due to resonant absorption, 

partly lost to an intermediate level due to relaxation, or has 

been used to ionise the atom. 

^ CJ " Energy left in the upper level of the FPR 

atom. 

•v°° 

^1^10 | d.t « Energy lost due to relaxation to an 
— 1 

intermediate level. 

^ to 

fcu> f ( 5 V W , , + 4 ^ s < o 

" » + 7 >>1 ^ + ^ < ^ 1 ) 

• The energy used to ionise the atom. The 

coefficients 5,6,7,9 reflect the number of photons needed to 

reach the final state in the ionisation continuum. In a 

coherent excitation the major loss will be due to FPR 

absorption and ionisation. 
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Four Photon Vector Model 

To demonstrate the four photon analogue of single photon 

6 

vector model first developed by Feynmann et al. we make the 

following simplifying assumptions: 

1. No ionisation 

2. No harmonic generation 

3. No Stark shift 

4. Square pulse excitation 

Under the above four assumptions the four photon 

Bloch equations become: 

<1 

^Z. - 'L j 

I 
> 

= r . ^ ^ j 
2) t L h 

^ ( ^ , r- ĉ u ) = O - ( IV • S O ) 

f t 
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We have also assumed that the pulse duration Is 

shorter than the T| and . Let us assume that the square 

pulse has a real amplitude £ . The four phaton Bloch equation 

becomes: 

rt 1 1 1 ^ -(IV.81) 

b 
U z z - ^ I - t <£; 'l 

"H ^ ' j 
-(IV.82) 

From equation (IV.81) with a real amplitude £ , 1s 

imaginary. 

T . f ̂  f 
-(IV.83) 

we define, q 

i -(IV.84) 

4-4 
h 



~S> ( \ r - t~L ( ^ ' 
v L / 

W<2. defies, j 

9 = ^ -(IV.88) 
L 

y\ 

159 

-(IV.85) 

-(IV.86) 

K1 = dilZ-^L' -(IV. 87) 
2, 

-A >V ^ 

R - W + w -(IV.89) 

_fL - XL -(IV.90) 

<* /* A 

e, ,e^ ,e3 span a three dimensional orthogonal pseudo space. 

With the above definition, equations (IV.85,IV.86) can be 

described by the equation of motion of a rotating vector R 

under the influence of a torqueXL. 

i f - _fL x k 
cl t 



leo 

/A 
-)>E 

A G F; iMll 
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R is called the "four photon Bloch vector". The 
- A y\ A* s** 

rotation of R in the pseudospace spanned by £, > £z > ff. 

describes four photon equation of motion of the density matrix 

elements (eqn. IV.81, IV.82). 

Fig.(IV.9) shows the motion of the vector R in the 

pseudo space. At time t=0 , =0, = 0, <k^=l,and R=- et . 

With time as the atom interacts with the incident pulse^ R 
rotates, <5^ and grows with time. 

t 

The angle of rotation 0(t) = ^ ^ 

C 

QCt'i = f it 

J - (.iv.9i) 

we can define the four photon area of the pulse 

8 , 

- (_ i v • 9 

where has been defined in equation IV.42. 
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when Q ^ - 7 T , » e get the complete population Inversion 

corresponding to W- 1 / 2 . F r o m t h . f o u r p h o t o n v e c t o r ^ 

can see that the absorption Is determined by the four photon 

area of the pulse. The four photon area depends on the exact 

Intensity profile of the pulse. For the same energy we »111 

have more four photon absorption .1th shorter pu l se duration. 

When - e x c l u d e lonlsatlon, the length of four photon Bloch 

vector R "111 shrink In time. The lonlsatlon will l e ad 

to a dephasing effect. Due to the dephaslng, the vector 

component along e t will average to zero leaving a 

P dovector along . Coherent effects are inhibited 

because of the lonlsatlon rate making <£. 
1 15. ^ 0 • 
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Summary of Four Photon Theory 

To conclude this chapter we make the following comments 

about the FPR system. A FPR many level system can be reduced 

to an equivalent two level system described by a 2 X 2 

resonant density matrix p . The four photon Bloch equations 

(IV.53) to (IV.55) describe P as a function of time and 

field strengths. These equations result from an expansion up 

to fourth power in the electric field. With intensity and 

intensity square dependent ionisation, quadratic and quartic 

Stark shifts, harmonic generation, the interaction becomes 

extremely complex. A simple minded vector model drawn in 

analogy with two photon vector model in absence of 

ionisation, harmonic generation and Stark shift is no longer 

a true picture of a real atom. The entire four photon 

process is strongly intensity dependent. The four photon 

area of the pulse is defined as the integral of the square 

of the power density. From equation (IV.93) the four photon 

"area" is given by: 

^ JLi 

j -(iv-94) 

The four photon area" should be compared with the two 
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The four photon area" should be compared with the two 

photon "area" described in Chapter II: 

4-

9 s. °< l'" 

J*, -(IV.96) 

Two photon "area" is determined by the total energy 

of the pulse. Since the pulse energy is proportional to the 

net absorption for the same pulse energy two photon 

absorption is independent of the pulse duration while four 

photon absorption increases with decreasing pulse duration. 

As the four photon absorption demands larger power density 

the intensity dependent level shift and ionisation become 

overwhelming and four photon coherent condition ceases. Due 

to the intensity dependent Stark shift the resonance 

condition will change as a function of intensity and the 

pulse will not remain tuned to resonance over the complete 

pulse duration. For most practical cases a relatively low 

intensity required for two photon absorption keeps both 

ionisation and the Stark shift low. A two photon coherence 

is maintained more easily. Besides ionisation and Stark shift 

all kinds of higher order Raman processes tend to enhance the 

complexity in a FPR system. A situation like coherent 

lossless propagation can hardly be expected. The multiphoton 

ionisation will inhibit the four photon Bloch oscillation 

(the oscillation of <^z) and ^ — > 0 . The intensity 

dependent susceptibility will introduce strong phase 
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modulation of the pulse. The medium index is also changed by 

the transfer of population ( <5^ and <£, ). The intensity 

dependent tuning changes the phase by modulating the 

population ( by absorption ). Strong ionisation can cause 

a very big index change by depleting the ground state 

population. These intensity dependent index changes will 

eventually cause self focussing or defocussing effect in a 

beam with an initial gaussian intensity profile. With all 

these complex processes in a FPR system "self induced 

transparency" will not be possible. 
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CHAPTER V 

APPLICATION OF THE FOUR PHOTON THEORY 

TO MERCURY ATOM 

In this chapter we discuss an application of the 

theory developed in Chapter IV. We apply the theory to the 

(6S0- 6DZ) transition in mercury (Hg) atom. The energy level 

diagram of the Hg atom is shown in Fig.(V.l). The ionisation 

threshhold for Hg is at X = 118.78 nm, which shows a 

possibility of very short wavelength harmonic generation by 

coupling to a continuum state through multiphoton excitation. 

We study the harmonic generation in the four photon resonant 

(FPR) transition (6S0 - 6 ) in Hg vapor. Third harmonic 

generation, ionisation and dynamic Stark shifts are 

particularly interesting. Fig.(V.2) shows the various 6S - 6D 
0 2 

resonance processes. 

The fifth harmonic level lies in the continuum. The 

autoionising levels are far above in the continuum, so their 

effect is negligible. The four photon resonant wavelength 

for the 6S0 - ^transition is X • 560. 75 nm, and the third 

harmonic wavelength is X = 186.92 nm. All wavelengths are 

taken from Ref.(V.5). The atom can be ionised from the upper 

excited state by absorbing one photon. The final state for 

the ionisation could be either a "p" state or a "f" state. 

167 
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1 7 0 

The fifth harmonic level on the other hand will coincide with 

a p' state. Due to this reason ionisation will be more and 

fifth harmonic will be much weaker as we have seen in the 

case of two photon resonant transition 2S - 3D in Li vapor. 

The wavefunctions and oscillator strengths were not 

available for Hg. In order to calculate the atomic parameters 

we had to make some reasonable estimates for the dipole matrix 

elements. 
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Estimate of the Dipole matrix Elements 

Line intensities of different transitions in Hg were 

compared with the line intensity of the line of hydrogen 

atom. When both the line intensities are normalised 

(Ref.V.1) we can write, 

1^1 - ( v , i ) 

T w W k 

IH<| = line intensity of a transition in Hg. 

= lifts intensity of H^line in hydrogen. 

= transition rate for the same line corresponding 
0 

to 1 ^ in Hg. 

= transition rate of line in hydrogen. 

<v-2> 

H, line in hydrogen corresponds to the transition 3 - > 2 2 p 

corresponding to ^\H = 656 . 285 nm 

S - i 

WH = 0.64 X 10 s Ref . (V. 2) 

IH =1995 . 26 Ref.(V.l) 

W ^ = 32076. 02 I (V. 3 ) 

Some of the transition rates calculated from equation (V.3) 

were compared with the experimental value found by Faisal et 
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4 

al. The comparison is shown in Table X I I . Since a 

cosiderable discrepancy was found we took an average estimate 

for WHcj . 

The transition rate n J — > n j',where n J and n J 

are the initial and final principal and total angular momentum 

quantum numbers, is given in Ref.(V.3) 

W J; ?') = ( « 7 i ) k « 3 l l D H r' ?'>l* 

U) = angular frequency of transition 

D = dipole moment operator 

Equation (V.4) can be rewritten in the following form? 

(V. 4) 

0liPvv> 
(J V 4-* 

H 

( V. 5 ) 
T , i 

= The smallest one between J and J . 

where the bar denotes averaging over M. 

<n J M | D2 1 n' J M> in the calculation will be replaced by 
• — — — y 

£ |<n J M D n J M>)^J . The error of this approximation 

may be equal to or even less than the error coming from the 

poor knowledge of the wavefunctions or oscillator strengths. 
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Comparison of Transition Rates 
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Wua 
3-

1 W 
j n 

j 
i 

W 
From Eqn(V.3) From Ref3 

1 : 

1 

Transitions ( sl ) ( i ' > \ 
X x ! 

. 1 j 

00
 o 

r—
1 10 

! 

| | 
1 1 1 i 
| 6 D -> 6 P i 0.317 

3. 1 •; 
\ 

0.17 

| 
1 » 

6 P~> 6 S 
1 0 

\ 

32 

! 

7.63 

3 i ; 
6 P -> 6 S 

i 0 0.638 0.085 
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This is a fast way of obtaining an estimate of the various 

coupling constants that are needed in the calculation. A true 

evaluation of these coefficients should come from experiments. 

With the above approximation we can write^ 

_E£3 I \ M ^ i yi'j') 

Vi 

^ 3 ^ + ' 

using equation (V.3) we get, 

( V. 6 ) 

JI - r H i * 3^074-Dj^. I -| 

^ CO3 '(*• + 9 ^ 

(V. 7) 

An average estimate of Wu„ was used for the transitions 

^ , 1 

mentioned in Table m . Table ]y shows <n J | | n J> for 

the various transitions. It is important to point out that 

here we are merely interested in obtaining some meaningful 

physical parameters for the computation which will provide a 

deeper meaning to the physical phenomena in a real FPR 
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TABLE IV 

Dipole Matrix Elements 

In 13 S > 

„ 2S+I I 
" f t 

i r w o j 

v 

: ̂ V\13S| A*|m' US> 
(MKS'j 

X ,0- i 0 

£ 3 F ; 6 ' S 0 £ 5 3 1 * i 3 \ 4 

4 ' R k 1 S 0 l 3 4 V £ IS 

• ? ' s . 6 ' P, &g i ' 5 

A * C 
w ! 

6 ' FT 4 i o°), • i i 5 
! " 1 
1 - - -i 

° - i-
1 

—1 * —T j 
\ Q\[j2 | (, ' Pj | 5 7 ^ - ^ 4 1 0 

• ' " i " 

i v t > , j 4 ' p , I j 3 - 5 . j 
1 I ' - -J 

: 6 ? d . I 6 ' R i 5 " I ^ 5 
' i 1 

| 6 3 P , ! 3 l 2.C ' SC^ > z 

7 ' s . 6 ' P , \0 \ l{0 

,s % C ' D i 14 91 9 10 

& 5 d , 4 - P , 5132. 1 ^ S ^ 

£ ^ 3 4 5 5 • 9 X. 
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system. 

From the estimated values of we calculated the 

atomic parameters at the resonant wavelength =560.75 nm. 

From now on the resonant levels 6' S0 & 6'^will be denoted by 

ll> & (2> respectively. The estimated parameters (in MKS 

Units )for the 6S - 6D FPR transition in Hg vapor are as follows, 

14 
FPR wavelength \ = 560. 75 nm. ( U) = 33.615 X lo' s* ) 

Third harmonic AT, » 186.92 nm. 

Population relaxation time T( = 10.5 ns 

The pressure dependent phase relaxation time T £ 1 ns at 

about 10 torr pressure. 

The various polarisabilities and other coupling 

constants were estimated using the dipole matrix elements 

given in Table IV 

The Polarisabilities in MKS units are: 

<K t 0-°) = 3.7 X 10^° 

0 * 0 - o 

( w ) - 5 X 1 0 ^ 

0 J ]) - 7 X 10 



177 

o{x{}-w) = 5 X 1 0 ^ 

^ ( 3 « ) - 0 

^ ( 3 w ) = 10 V 

^ ( 3 w ) = io ̂  

- 143 
FPR transition matrix element r = 3 X 10 (M-K-S) 

~~lZ 
On resonant third harmonic generation ^ = 10 k-S) 

-It 3 
Off resonant third harmonic generation o( = 3 X 10 (m K £j 

y ) ^ 
Note that we have neglected <\ (uj ) and o(. ( 10 ) and 

1 '<!. 
assumed, 

( w ) = < (u) ) 

io) 
0^ ( w > = <\ ( ^ ) 

[ see e q u a t i o n s ( I V . 3 2 ) , ( I V . 3 3 ) , ( I V . 3 4 ) ] 
»> M 

Calculation of ô „ ( uJ ) or o{ (3£*3) involves integration 

over the continuum states. 
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J (J) - - T w -- - I , 
k / ( ^ - w ) 

o(̂  (.Id) - l T 
fc 

K H M g)2>l
<- ^ t 6 ) i E 

( | J U " w ) 

where, 

I q > = I l> = 

C 

i_ , 

-li-r 
t the free electron wavefunction, 

2^ 

^ - £ qvV _ the free electron energy as shown in Fig.(V.3), and 
9 m 

h = E + I 
S. 

(V. 8) 

g(£) dE = number of free electron states between E & 

E + dE 

J (io) - - t 

J 

K < I 

Instead of calculating (<0 ) explicitly we made an estimate 

^ 3?"? 
of o(^(W) from the ionisation crossection. The crude estimate 

of the parameters will help us getting closer to a far more 

complex system. 
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Power density estimate for FPR excitation 

Estimate of the energy density and pulse duration 

required to excite the FPR transition, is found from the four 

photon "area" given by equation (IV. 0)3). 

4 cO 

-

For a square pulse of amplitute £ and duration £ we 

can write, 

04 = 2 - ^ £ V p 
i i- L 

K 1 

The energy density of the pulse is given by 

U = 2c £0 T ; 

0 U l 
© . 

^ j r l * ' p 1 " T i T p 

Using the estimated value of r for 6S - 6D 

transition, 
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— 2 2-

0 4 = I ' 7 5 x I ° (v.9) 

' 7~ 
6 p 

n " 5 

For 100 mJ/cm^and 5 ps pulse we have, 5 ^ - 3.5 X 10 

this represents the absorption one atom in 10 ! 

For 10 J/cmaand 5 ps pulse we have, 0^ = 0.35 which 

corresponds to almost a 20° rotation of the Bloch vector, and 
about 10% absorinq. oJcoYttS. 

n 
For 2 J/cia and 200 fs pulse we have, = 0.35 . 

This shows that with shorter pulse length we can 

have stronger absorption. While we need intense pulse for 

appreciable FPR absorption, the intensity induced Stark shift 

in a real atom tends to destroy the resonance condition 

resulting in a very weak or no absorption at all. Our 

calculation shows that no absorption occurs even with "area" 

as big as 1.4. For shorter pulses with the same "area" the 

Stark shift goes from positive to negative values as a 

function of pulse time and tuning becomes impossible. 

Redimensioning Maxwell - Bloch"s equations 

A complete picture of FPR absorption and 

harmonic generation demands solution of Maxwell-Bloch's 

equations. This requires considerable computer calculation 

which will be discussed in the following sections. To carry 

out the computer calculation we need to redimension the 
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equations. For clarity we rewrite the equations (IV.53) to 

(IV.55). We neglect the fifth harmonic field and higher order 

effects. 

V t 

<w, , - <^\\ 

.*1 

^ ( 1 ) ' + % ̂  ̂ 
(V.10) 

TT 
T 

2 I 

- I i yr\ A " 
(v.ii) 

6t (V . 1 2 ) 

in equations (V.10) to (V.12) all times are in s and all 

frequencies are in scale. Since the interaction takes 

place in ps or subpicoseconds time scale we would like to 

have all times in ps and all frequencies in ps' scale. 

I*, 

We divide the equation (V.10) bij 10 to get the 

rates in ps' scale. 



+ v y io,x-

=•«-•<•>[&(!)'• & SM 

£. 
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(V.13) 

ir \ *1 *1 
We define |c(, \ _ f, 

" S H * J -

-* i £: is in ps scale. 

i-1,3 

( V. 14 ) 

i - L V 
io'iL L 

From now on we write as the ionisation rate in ps. 

i -- * A a - ) ! £ ' i S 

( V. 1 5 ) 

where 

Ail1"10) - — 
i° r e (V.16) 

I » -Vo 
where (mw) is the reduced polarisability in ps ^ scale , 
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A1 so , 

£ w ( « ) -- o( (uj) - (w) I f J I 

^X3UJ) ~ °(zSBL^ 
i <-

of, 
S u K « ' ) -- [A ' .M - A; '1 0)] ^ + 

where, 

A, 1*0 - A ^ s u ) 

(V. 17 ) 

A - l w ^ ) r A- (w u ) ) - i- A; lWUJ) 

a - M = 
^ j r 5s. 

( V. 18 ) 

(V.19) 

-I 
where A ̂  (mU3) is in ps scale. 

Using all the above reduced quantities we can 

rewrite equation (V.13) as, 
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4" i (4<o - (O3.1 - 5 (o) ̂  f ^ + 

(V.20) 

where 

!* - JL 
'o'-fnT 

( V . 2 1 ) 

In the same way we redimension all the Maxwell-

Bloch's equations. We express all fields in terms of the 

redimensioned field amplitude given by equation (V.14). 

Maxwell's equation (IV.'76) together with the expressions of 

polarisation given by equations (IV. ££>) - (IV.6*3) are 

redimensioned in terms of the newly defined parameters. 

For 6S - 6D trasition we have r) 

+ 1. t ^ ^ 

u. 

" [ • £ * + ^ itj] (V.22) 
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*b b 
i. ^ -t- "̂ 2 ̂  

T. 
~ - 2. Tyt> 

I~ r* r* X / ~] 

H + ^ r ( t j ( v * 2 3 ) 

^ L l^.- + <^«) - - ^ 
(V.24) 

U - - ; c P 
v̂\ 

is: 

(V. 2 5 ) 

^ & = - L 3C1 6? 
7>x 

(V. 2 6 ) 

A . H ^ r . + a5>J) <£*- £ 

f 3 X 3 

4 i f (V.27 ) ^ 4 - Z •2.1 

§ - r A , M <ST. + *0 f, f "Ha, £ 

+ X <^ f; 

(V.28) 

ps 

Where all frequencies are in ps , all times are in 

- l / ( , 

, all fields amplitudes are in ps 1 and distances are in 
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cms • 

are defined in equations (V.15) and (V.17) 

Z Zl is defined in equation (V.21) 

C , 
= (ONlSjt-L ( V. 29 ) 

2-CCok 

*1 -1 
C is in ps cm, 

"V = (V. 30) 
^ 1 ^ 1 

The newly dimensioned atomic parameters are: 

A H " 7 1 19 

A,((o)= 0 A*^10)- 2 

= 958 "Zii = 1-8 X 10 

A ^ M - 134 ^ 3 = 1 

A,'te")« 958 

A i (3 to) _ o 

The redimensioning of the equations is essential for numerical 

calculations. All the redimensioned numbers are finite and 

can be handled by the computer. Before we present the results 

of the computer calculation, we need to point out some of the 

subtle features of this FPR system. 
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Four Photon Rabi Oscillation versus Raman Process 

From equations (V.22) & (V.23) we see that there are two driving 

terms for the FPR transition namely, 

rh 
C| = The four photon Rabi rate 

"7 f f = Raman transition rate 
2.1 M L} 

These two terms can compete with each other and can 

appear in opposite phases to completely stop the FPR 

interaction. The two competing processes are shown in 

Fig.(V.4) . 

The four photon absorption pumped by , decays via 

ionisation and stimulated Raman emission. In presence of third 

harmonic field, Raman scattering can be stronger than 

ionisation. As soon as the atom is pumped into the excited 

state, it decays via Stimulated Raman Scattering, before it 

has a chance to be ionised. This vanishing of ionisation in 

presence of a third harmonic signal was experimentally 
o, 

observed both by Arlee V. Smith and by Normand et al. The 

vanishing of ionisation could either be due to the stopping of 

FPR interaction or due to the enhanced Raman emission. 
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Off-resonant versus on-resonant third harmonic 

generation: 

From equation (V.28) 

= The FPR third harmonic polarisation 

£t = The off-resonant third harmonic polarisation 

7 S •> involves the FPR interaction with four photon 
^-<t\ c' 

absorption. Whereas X 3 <*u £i involves no multiphoton 

absorption where the field energy flows between the 

fundamental and the third harmonic fields, sharing nothing 

with the atom. 

For an example^let us consider the four photon 

vector model. From equation (IV.%%) 

S<"*£H0 

^ -L Qi.t) for 0 (t) << 1 

using equation (IV.92.) 

/ _ /- L \ "̂ 2. 7~ 
V i ) -p; c> cp 

•L ^2. Zp 
( V. 31) 

Using the redimensioned field equation (V.14) and 
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<3^ = "l ~i 7p (V. 32) 

The on resonant part of (jj is given by 

X 0n " ~*zx 

= (,-1) 2ii |£.l Cp t (V. 33) 

The off resonant part of (jj is given by 

(assuming <̂ , ̂  1) 

x „ H - X j i 3 <»•"> 

From equations (V.33) & (V.34) it follows that the on 

resonant part is enhanced by the energy of the pulse. Using 

the four photon "area" = 0.005 and pulse duration = 5 ps 

(ie. a case of very weak interaction, 5 out of 1000 atoms are 

J) we have 
u 

2 £, rr 0.005 
rv~ N- P 

? D - 0.118 - P 
3 -N/ 

using the value of Z i (= 1.8 X10 and 

/ * r 3 

X a N =(-i) 1.8 X 10 X 0.118 X £, 
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This shows that the on resonant part is at least two 

orders of magnitude larger than the off resonant part even in 

the case of very low absorption (a factor of 100 was 

estimated, only with lJ/cm"~and 5 ps pulse width). This shows 

a very pronounced resonance enhancement. There is no 

intermediate two photon resonance here (like in the Li 

experiment) and the third harmonic is enhanced due to the 

four photon resonance. Being so weak the off resonant part 

hardly shifts the phase of the third harmonic polarisation. 

Computer Integration of Maxwell - Bloch Equation 

The computer solution provides a complete picture of 

the third harmonic generation of the FPR atom in presence of 

the dynamic Stark shift and ionisation. Atomic equations 

(V.22) to (V.24) were solved for each z-position ie. at each 

step of propagation, with a given incident fundamental field. 

Then the polarisations ( p t and ( B were calculated using 

equations (V.27) & (V.28). With the calculated polarisations (j? 

and (R Maxwell's equations (V.25) & (V.26) were integrated to 

generate fields at Z +<6z. For integration of the two sets of 

partial differential equations (the atomic & Maxwell's 

<? 

equations), Butcher's approach was used with order =5. The 

computer program is given in Appendix B. Because of high non-
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linearity ( £ - type) both in Bloch equation & Maxwell's 

equation while many methods (like Adams-Bashforth) failed to 

converge, Butcher's method converged though the step size had 

to be made as small as 0.001 cm while the total distance of 

propagation was 0.05 cm. The 5ps time scale was broken into 

2000 small steps for the integration of Bloch's equation. The 

space time propagation of atomic and Maxwell's equations give 

a clear picture of the harmonic generation, saturation and 

ionisation as a function of distance. 
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Results of Computer Calculation 

The results of computer integration of Maxwell - Bloch 

equations will be described here. The incident pulse has a 

gaussion profile and has no chirp. Mercury vapor pressure 

was assumed to be about 10 torr. The incident laser pulse at 

A =560.7 nm was tuned to four photon resonance with the 

6 1S - 6*D transition in mercury atom. With the intensity 
o 2. 

level giving appreciable four photon "area", a very big Stark 

shift of the four photon transition line was observed. The 

Stark shift was big enough to throw the interaction 

completely out of resonance. From equation IV.30 Stark shift 

fco of the resonance transition is 

S " - - (V. 3 5 ) 

[ the third and fifth harmonic fields are neglected ] 

Stark shift of level Il> is 

= _ <(">} tJ,!3-
( V. 3 6) 

Stark shift of level I2> is 
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&(a^ - - (JJ5-

(V. 3 7 ) 

tu 

repeating equation IV.33 for the polarisability of the i 

level, 

- _L 
1 /<-<.; | ̂  |A(il^ 

- w ) C^ei + W ) 
(V.38) 

From equation (V.38) it follows that °vt (^) increases if there 

is a nearby one - photon ( CO ) level t • Due to the absence of 

any nearby one - photon level the polarisability of the 6 ' S0 

level is one order of magnitude smaller than that of 6 1D . 

The presence of 6'P and 5 ' l e v e l s enhances the 

polarisability of the 6 1 l e v e l . From equation (V.36) and 

(V.37) Stark shift of the 6 1S level being proportional to the 
0 

polarisability is at least one order of magnitude smaller than 

the Stark shift of D level. From now on we will write 6S 

for 6*S and 6p for r . The net Stark shift of the four 
o x. 

photon resonant transition is mainly due to the shift of 6D 

level. In order to follow the Stark shifted resonance we had 

to detune the wavelength of the incident light so much that the 

polarisability of the 6D level changed ( due to the change of 

wavelength ) giving rise to an entirely different Stark shift. 

The closer we want to tune to the resonance the wavelength 
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dependent polarisability moves it further away. Fig V.5 shows 

i 
ol ( the real part of the polarisability of 6D level ) as a 

l 

function of wavelength . o( jumps from a very big positive 

value to a very big negative value about the 6D - 6 P( resonance 

at )\ = 579 nm. Fig V.6 shows the Stark shift of the four 

photon resonance wavelength as a function of the incident light 

wavelength. Stark shift shows similar jump about = 579 nm. 
a 

This Stark shift was calculated for the intensity 3.8 X 10 

Watts/cm1", which is close to the peak intensity of a 5 ps 
nm (FWHM) pulse with 20 J/cm*energy density. At about A = 560.7 

the Stark shift is about 10 nm, ie. the four photon resonance 

shifts from zero field resonance at X = 560.7 nm to the field 

induced resonance at X =570.7nm. When the laser is tuned to 

A=570.7nm,the induced Stark-shift changes (due to change in 

the polarisability) and moves the resonance even further away. 

While the resonance tuning is difficult with a fixed intensity 

it gets even worse in presence of a short pulse having all 

kinds of intensity levels. Fig V.7 shows the shift of 6D level 
i 

and as a function of time in presence of a 5 ps pulse with 

20 J/cm^energy density. As the 6D level is shifting down with 

increasing pulse intensity it sees a different polarisability 

I 1 

and c/, changes. The changed t u r n changes the level shift. 

Such self induced time dependent shift of the resonant levels 

destroys the resonance condition. In this case the incident 

laser pulse was tuned to zero - field resonance at ,X = 560. 7 nm. 
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i 

FIG V.5 Real part of the polarizability 

of 6'D^ level in (MKS) unit versus wavelength ^0°™! 
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FIG V.6 Stark Shift in nm of the Four Photon Resonant 

wavelength versus the wavelength ^(^^jof the incident 

' ̂  

Light of Intensity 3.3 X 10 W/cm. 
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FIG V . 6 
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FIG V. 7 Stark Shift ^ ) of 6 1 l e v e l 

/ 

and polarizability o( (MKS) ( — • — ) versus time in 

picosecond in presence of an 5ps (FWHM) pulse of 

20 J/cm energy density. The incident pulse has the form 

-(fc/rP: 
£Ct) = c 

P ) 

'T'r. = half-width at 1/e max = 3 ps . 
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f . 

FIG V - 7 
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FIG V. 8 Stark Shift of 6'D^level versus 

time in picosecond in presence of an input pulse 

of 200 femtosecond (FWHM) duration having AJ/cm^-

energy density. 
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FIG v . * 8 
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FIG V. 9 Polarizability o(^ (r^KSj versus time (ps) 

in presence of a 200 fs(FWHM) Gaussian pulse with 4 J / c m ^ 

energy density. 
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FIG V - 3 
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A shift of 1.6 tim of the 6D level near the peak of the pulse 

corresponds to about 6 nm shift of the FPR wavelength. With 

shorter pulse ( having even higher peak intensity ) the time 

dependent level shift is even more dramatic. Fig V.8 shows the 

Stark shift of 6D level in nm in presence of a 200 fs (FWHM) 

pulse of A J/cm^energy density at "X = 560. 7 nm. At about 120 fs 

(near the peak of the pulse) the Stark shift goes fast from a 

positive value to a large negative value. Fig V.9 shows a 
\ 

similar behaviour of in presence of the fs pulse. The 6D 

level first goes down in frequency and then near the peak 

intensity it moves up fast and goes far beyond its zero - field 

value, stays there for a short time (10 fs) and then again 

moves down back to its zero - field value at the end of the 

pulse. Evidently no resonance condition could exist in this 

self induced detuning process. Laser induced Stark shift 

broadens the multiphoton resonance linewidth. 

Five ps pulse with 20 J/cm^energy density was propagated 

through the medium. The shift of the FPR transition was about 
i 

6 nm. Both o( and Stark shift were dynamically corrected in 

the four photon Bloch equation in the following way. First the 

shift of the level was calculated using the zero field °(x 
/ 

(corresponding to the detuned wavelength) and then ^ was 

recalculated (for the next step of the integration) using the 

new shifted levels. Such dynamic correction of the level 

provided a real picture of the interaction. The computer 
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program for the numerical analysis is given in APPENDIX B. The 

incident pulse is in the form 

-(t / Zp ) * -

£,<*> - f > 

T = half width at 1/e maximum = 3 ps 
J P 

Four photon "area" of the pulse is approximately 1.4. 

The zero field FPR wavelength of the 6S - 6D transition = 560.7 nm. 

The incident light wavelength = 566.7 nm. 

The incident wavelength was adjusted for maximum absorption. 

- 2 

Maximum third harmonic energy conversion = 4.5 X 10 

Maximum peak field conversion = 2.7 X 10 

Maximum ionisation (% of ionised atoms) = 0.15 % 

The third harmonic saturation distance is about 200 microns, 

Fig V.10 shows third harmonic peak field conversion 

and ionisation versus the distance. Ionisation of 0.15 % near z =0 

dropped to 0.1 X 10* % at about z = 200 micron. Such sharp fall 

of ionisation with the rise of the third harmonic field 

confirms the experimental observation of Ref IV.2 & IV.3. Fig V.ll 

shows the fundamental and the third harmonic amplitude and 

phase at two distances as a function of time. At z = 0, it 

shows the incident pulse of 5 ps (FWHM) duration as a function 

of time. At z =300 micron the third harmonic amplitude and 

phase as well as the incident fundamental amplitude are shown 

as a function of time in ps. The third harmonic pulse has a 

duration of 3 ps (FWHM). The third harmonic phase stays at -ft 
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FIG V.10 Percentage Ionization (-©-©-) and 

Third Harmonic Peak Field Conversion Y|̂  ( — A — ) 

versus distance ( i n . 
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FIG V.11 Propagation of a 5ps (FWHM) Gaussian pulse 

with 20J/ci^ energy density through Hg vapor at 10 Torr. 

At z=0 redimensioned field amplitude £ at fundamental 

frequency is shown as a function of time (ps) (-• ). 

At z = 300 /̂ •rri fundamental and 3rd harmonic field 

amplitudes ( £., — • — and — * — ) as well as the 

third harmonic phase ( ) is shown as a function 

of time (ps). 
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over the FWHM of the incident 5 ps pulse. The phase of the 

fundamental pulse stays at zero. The peak field amplitude of 

the fundamental = 0.7. The peak field amplitude of the third 

- 3 * 
harmonic — 0.19 X 10 , using = 1.8 X 10 we have, 

-in 

f = 0.2 4 and z X] £, = 0.24 X e 
I 'V. 

A r 

c. + z2| £> ̂ 3 = 0 

(V*. ^ ^ 

From equation (V.22) 

= o 

1 

In the situation mentioned above all interaction stops, 

and ionisation goes to zero. A large ionisation was observed 

at the input end of the medium, where third harmonic was weak. 

L 
'jjjg FPR pumping term ^ and stimulated resonant Raman scattering 

term £, £3 work together in opposite phases to prevent a 

population of level I2>. For the third harmonic it is a self 

induced saturation effect. With increasing pressure, there 

will be more THG in a shorter distance, and Rabi oscillation 

will be stopped instantly, resulting in a saturation of THG. 

In the above results the off resonant part of third 
/ r-3 

harmonic polarisation Ct i-n equation (V.28) was neglected. 

When we added the off resonant part no significant difference 

was observed. The THG is enhanced by the FPR (a higher order 
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resonance) condition. 

This calculation gives a clear physical interpretation of 

the experimantal observation in Ref 9 & in Ref 10. It predicted 

a dramatic Stark shift in presence of short pulses which are 

subject to experimental tests. People have measured a red 

shift of 6S - 6D transition, but the Stark shift was negligible 

for the nanosecond pulses that they have used for the 

exc i ta tion. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

A detailed experimental study on third harmonic 

generation (THG) in two photon resonant (TPR) coherent 

interaction and a theoretical study on four photon resonant 

(FPR) coherent interaction has been conducted. The experiment 

has verified the following ideas. 

0 

1. Anomalous transmission of 90 phase shifted pulses 

through TPR medium (lithium 2S — 4S and 2S ~ 3D transitions). 

2. Enhancement of THG in presence of TPR coherent 

excitation with a pair of 90 phase shifted pulses. 
3. A TPR S - S transition is more efficient than a TPR 

S - D transition. 

4. Tuning in multiphoton resonance is determined by 

the intensity of the input pulse. 

Two photon coherence has been studied in detail as a 

function of phase and delay of the interacting pulse sequence. 

This experiment shows that phase correlated pulse sequence can 

1 

be used to control multiphoton coherent resonant effects. The 

coherent interaction has been found to be the key point for 

efficient harmonic generation. 
O 

An accurate ( to at least 0.5 A ) measurement of 

intensity dependent Stark shift has been done with the newly 

developed Minterferometric wavemeter". Stark shifts as big as 
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several pulse bandwidths ( of picosecond pulses) result in a 

poor tuning of multiphoton resonance and becomes a limiting 

factor of resonant harmonic generation. 

A complete theory has been developed for harmonic 

generation in a FPR coherent interaction. A numerical 

application of the theory to Hg atom successfully interprets 

a.,* 

the experimental observations in terms of the stimulated 

Raman scattering. The FPR excitation and phase dependent 

stimulated Raman scattering ( in presence of third harmonic 

field ) work together in opposite phases to stop the 

multiphoton interaction. The accurate modeling of such 

complex systems is important. Accurate control of the pulse 

shape is becoming possible in the femtosecond domain. It may 

be possible to find a particular shape of excitation 

(amplitude and phase versus time) which would defeat the 

"depopulation" effect (stopping of resonant interaction) 

mentioned above. With the intensity required for FPR 

transition, the calculation predicts a dramatic Stark shift 

effect which completely destroys the resonance condition. 

Because of the Stark shift, an intense pulse suffers a "self 

detuning" effect. With an intense pulse the FPR medium 

behaves like an off resonant medium and no absorption takes 

place. Such time dependent Stark shifts are the most important 

limitting factors in resonant multiphoton processes. 

The theory can be applied to many different FPR 
I I 

systems. For example in Zn vapor 4 S - 6 S transition can be 
O 0 
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tuned to four photon resonance at \ w = 605.7 nm and third 

harmonic at AS(jJ=201.9 nm and fifth harmonic at_XmJj = 121.1 nm 

can be generated. In Neon atom the 3 P^l V j l) J = 2 level can 

be tuned to FPR ( =265. 15 nm) and third harmonic at A 2 w=88.4 

nm and fifth harmonic as low as A 5 w - 5 3 nm can be generated. 

As we have just begun to understand coherent resonant 

multiphoton processes there lies many difficult questions to 

be answered. We have treated the FPR system by assuming a FPR 

condition. In a real FPR system under the influence of short 

pulses the resonance condition changes in time. Questions 

like, how to handle such time dependent resonance condition, 

are yet to be answered. 
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APPENDIX A 

ADIABATIC EXPANSION OF THE OFF RESONANT 

DESITY MATRIX ELEMENT 

To give an example let us consider (3) appearing in 

equation of . From equation (IV.24) for £ f 1,2 

. \Q> 
ft 

p 

K 
)*. 

v : 2 v-i * 

/ " 

vo 

, - - P_ V 
d 

*5 = 0 ^ 

• villiJ Ss 

(A . 1) 

For simplicity let us ignore the third and fifth 

harmonic fields. 

- - ^ 2 - J l j < , ( h ) ^ ] e J' 

~ 2 ) Lf 

(A.2) 
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t _ (i) Sljit 

+ c^(|(3)-/!,; y ^ i ^ O c 
( 5 " K ) * 

( A . 3 ) 

Note that <3^j^T^)for j = 2 and p = 4 has generated 

the resonant element, which must not be expanded by adiabatic 

approximation. Expanding <^j(2}by adiabatic approximation 

U ) - - ^ < • C t) 

In equation (A.3) we can see contribution from the first 

two terms and ignore the contribution from the third term. 

Later on we can add its contribution. 

j = 
A , t e 

+ JLji U) i 51 , Jl„• - & ) e 

%=bl 
(A. 4) 

by further expanding 

< < d ) -- - ?fc- < k w l r-



and similar expansion for 

q - 1,3 r = 0,2,2,4 

-;c? 

Cp 

^ (*) -TL\i
 t

 ' \ 
J J J 

(p 4 
I 

- L * j 

or. 
j 

r ~ °t{\ ^ ^ ^ ^ ^ 

-5. •-,? 
" J t 

- ^ e i ( 5 ) c ^ t c - ) ^ / 0 j i , K / l K r J ^ e ^ 

< b i ? ) ^ j . ^ J < t ( 2 ) ^ >/lkj v l ' t e r-- • • 

( A . 5 ) 

In equation (A.5)<^(2)is expanded in powers of_Tl_or f 
^ I 

In order to generate equation for ^ till the fourth power of 

£( and expansion of <^(j)till the third power of £ is 

sufficient. Since equation (A.5) contains terms upto third 

power of £ j , no further expansion of C O will be needed. Note 

that in the last expansion we have neglected all off resonant 

terms. The above procedure shows a very little portion of an 

elaborate expansion procedure. The various terras of the 

expansion are due to verious scattering processes. We rewrite 
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10-

•lt> 

l<> 

A 

u> 

lj>- <£; 

-!n> 
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equation (A.5) as 

v - _ £, ^ _ A'k- k*-\ S 3 <siT 
1 ^(3W-UJ 4 I) ^ w - (atu-U3j,j(to-uJifci) 

+ 

(A.6) 

Fig (A•1) & (A.2) shows two of the scattering processes 

generating ^ 3 J . Drawing pictures in the intermediate steps 

helps to understand the expansion procedure and to neglect the 

unphysical terms. In this example we did not show the effect 

of third and fifth harmonic fields which were included in the 

actual derivation to generate the various mixing terms. 
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APPENDIX B 

COMPUTER INTEGRATION OF MAXWELL-BLOCH EQUATION 

'^!S L E X A L F A 2 -ALFA12 .ALFA23 ,TQ ,E1 ,E3 ALF\1 AK1 ato 
-OMFLEX PRE! ,PE1 .PRDE1 .PDE1 .DEI .DEl^ PPE? 4 - ppr,^ 
COMPLEX PDE3 ,DE3 ,DE32 ,F1 ,P3 ^ K h ^ ^ E j ,PRDE.s 

COMMON/JC/ALFA1,ALFA2,'a£fA13,ALF^ "I W nreo 
1 -DOMO .HI ,H2 ,H3 .H4.TlIMV.T2lr7.XHl' W r - D I S E : 

? -;<H7 -XHB.3H9.HL0. H5 H6'S? '.SSTH? 
j , aS , JJS ,MS , AION,DIST,PI,DX,NST 
u O M M O N / A R Y S / E 1 ( 2 0 2 4 ) , E 3 < 2 0 2 4 ) , T O ( 2 0 ° 0 ? d 
1. TW; 2024 ).TU!2024>. PI ( 2024 ;,P3<2024! 
^^!? 0 N / ! ̂ P , CENTER, M, DT, MT, WIDTH WD 0 P1 
COMMON/APIAY/EN 1 ( 2000 ) ,EN3 ( 2000 ) '5k, ̂ o r • 

1 ^ 2 ° 0 0 ) -C0NVER(2000) ,ARION(2000) ^ "°°°; 

5 X9 N P R E 1' : 2°24) ,PRE3( 2024) ,PE1( 2024 > P E ^ ' ^ d i 
Dit^ENbl'jN PP.DE1 ( 2024 ) ,PRDE3 ( 2024) PDE1 ('7^4 ' ~ ~r> i • 
DIMENSION DEI i 2024 ) ,Dr> f •><)•>* > ' ' ' 
LOGICAL LI 
LOGICAL L2 

IS = 1 

CALL DEFINE 
CALL PULSE 
ECON{13)=0.0 

ECON 13 the energy conversion 
IS is the distance index 
CONVERT IS>=0.0 

CONVER stores the peak-field conversion 
•3.3 a £untion of distant*3 

AI ON-0.0 
CALL OUTPUT 

"eVno'Si&?!?S^nt f u n t i o n s a n d derivatives: 

PRE1cI)=E1(I< 
PEI •: I) =Ei (I) 
PRE3 iI)=E2 fI) 
PE3 •' T ) ,• j ) 
PRDEi(lT= i 0 i n,n > 
FRDE3(I? = , 0.0,0.' > 

t-RE S^PE are the previous and present r 

p rSr?
 a r e t h e p r e v i o u s a n d present"derivatives 

v. ~xuj_J w L ri ~ 

C'O : IS = 2 ,NS 
DO 3 I -1, M 

.Iculation of present derivatives 
FDEl I) = -AK1 ̂  r i . i 
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PDE3(I)=-AK3*P3(I) 
rediction of funtion at half point 
El(I)=PRE1(I)+XH1*PDE1(I)+XH2*PRDE1(I) 
E3(I)=PRE3(I)+XH1*PDE3(I)+XH2*PRDE3(I) 
IF(CABS(E1(I)).LT..1E-10) E1(I)=(0.0 0 ) 

E3(i,=!o.'o:o0:! 

derivatives at half point 
LAliLi BLOCH 
DO 4 1=1,M 
DE1(I)=-AK1AP1(I) 
DE3(I)=-AK3*P3(I) 

rediction of funtion at next point 

1-fflsipRDEi (IM '1'""" *PEE1'1' » '5 •+ (X"3*DEa (I) -XH4*PDE1 (I) 

1-XH5*PRDE3̂m'1'"23'*PRE311' U5•+'XH3*DE3(I)-XH4*PDE3(I) 

IF(CABS(E1(I)).LT..1E-10, E1(I,=,0.0,0 , 

S ™ E 3 ( 1 ) ) - L T - - 1 E - 1 0 ) E 3 ( i ) = ' 0 : o : o : ! 

ilculation of derivatves at next points 
CALL BLOCH 
SEN1=0.0 
SEN3=0.0 
E1MAX=0.0 
E3MAX=0.0 
DO 5 1=1,M 
DE12=-AK1*P1(I) 
DE32=-AK3*P3(I) 

erecting funtion at next point 

l-KH9*PRDEi*1?)(1*~PRE1(1)}731 * +(XH&*DE1(I)+XH7*DE12+XH8*PDE1(I> 

1JpSDK m ?11' "PRE3 (1» " 31 •+' ®6*DE3 (I) +XH7*DE32+XH8*PDE3 (I) 

IF(CABS(E1(I)).LT..1E-10) E1(I)=(0 0 0 ) 
IF(CABS(E3(I)).LT..1E-10) E3(I - 0 0 0 
SES1=E1{I)*C0NJG(E1(I)) tu.0.0.) 

SES3=E3(I)*C0NJG(E3(I)) 
E1M=SQRT(SES1) 
E3M=SQRT(SES3) 
L1=E1M.GT.E1MAX 
L3 =E3M.GT.E3MAX 
IF(L1) E1MAX=E1M 
IF(L3) E3MAX=E3M 
SEN1=SEN1+SES1 
SEN3=SEN3+SES3 
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l i fpREl(I^=PEl?I?nt P ° i n t t 0 t h S n e X t P ° i n t 

PE1(I)=E1(I) 
PRE3(I)=PE3(I) 
PE3(I)=E3(I) 
PRDE1(I)=PDE1(I) 
PRDE3(I)=PDE3(I) 
EN1(IS)=SEN1*DT 
EN3(IS)=SEN3*DT 
EN1 & EN3 store the 1st & 3rd harmonic energy 
as a funtion of distance 
E1P(IS)=E1MAX * 
E3P(IS)=E3MAX 

store the 1st & 3rd harmonic 
PEAK f ie ld as funtion of distance 
ECON(IS)=EN3(IS)/EN1(1) 
CONVER(IS)=E3MAX/E1P(1) 
CALL BLOCH 
ARION(IS)=AI0N 

istance propagated 
DIST=(IS-1)*DX 
IOUT=(IS-1)/MS 
A0UT=FL0AT(IOUT) 
E0UT=FL0AT(IS-1)/FLOAT(MS) 
IF(AOUT.NE.EOUT)GO TO 2 
CALL OUTPUT 
CONTINUE 
WRITE(6,10) 

FORMAT ( / , ̂ 4HDIST, 15X, 3HEN1,2OX, 3HEN3,15X, 3HION) 
DIST=(K-l)*DX 
WRITE(6,12)DIST,EN1(K),EN3(K),ARION(K) 
C o S i l 1 2 • 5 ' 3X-E15 • 5 • 2 X 'E 1 5 • 5. 2X.E15.5) 

STOP 
END 
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AAA*A*AAA*A* 
A A A A A A A A A A A A A A A A A 

COMPLEX ALFA2 ,ALFA13 ,ALFA23 ,T0 ,E1 ,E3 ALFA1 ATH Atf-3 
COMMON/JC/ALFAl .ALFA2.ALFA13,A£FA23,ZI7AK1 '^3 'mlp 
2 '2£°i£ ' ^ H 3 - m 'nnw.nnv.ffli i r a T a S 1 ' ' D I S P 

3 ' i s S S S ® -XH9, WLO ,HS ,H6 ,H7 ,H8 ,H9 
3 , IS ,NS rMS rAION,DIST,PI ,DX,NST 
COHMON/ARYS/EK2024) ,E3 ( 2024) ,TQ (2024) ,TL ( 2024) 
'24),TU(2024),P1(2024),P3(2024) 
COMMON/OTHER/AMP,CENTER,M,DT,MT,WIDTH WD2 R12 
C0M0N/ARAY/EN1(2000),EN3(2060) E1P(2^00) E3P(2000) 
1,EC0N(2000),CONVER(2000),ARI0N(2000 
PI=3.14159205359 
DOMO=-100. 
DOMO is the 0-field detunincr 

WIDTH =5. 
WIDTHO =WIDTH 
WIDTH IS THE FWHM OF THE PULSE IN PS. 
A L L JJJJ23 A R E I N ps» AND ALL FREQUENCIES IN PS E-l 

PSE-1 STANDS FOR RADIANS/PSEC. 
T2 = 1000. 

PHASE RELAXATION TIME IN PS 
T1 = 10000. 

ENERGY RELAXATION TIME IN PS 
T2INV = 1./T2 
T1INV = 1./T1 
ALFA1=(71.,0.0) 
ALFA2=(958.,-134.) 
ALFA13=(958.,0.0) 
ALFA23=(19.,-2.0) 
AK1=(0.,.006) 

S = ; ° 2 L n r r e s p o n d s t o 1 0 T 0 R R Pressure AK3=3.*AK1 
ABS1=AIMAG(AK1) 

ZI=1.8E03 
DISP=0. 

D I S P 0 ^ 3 3 a 6 " " S S M j / « 0 P T r S i O n " e e d e d t 0 P h a S S ™ a t C h 

R12=.3 

ati-MI' //(?!fE?n~32'543) ) + (115-/(ll-137-0MEGA) ) 
a r ^ - I r f M E G A ) ) + ( 1 6 9 ' 1 ( 1 0 1 . 9 2 - O M E G A ) ) 
AL» 1 — AL 1/1.05 
AL1=AL1*10.5/SQRT(R12) 
AL2=AL2*10.5/SQRT(R12) 
ALI2 =AIMAG(ALFA2) 
ALFA1=CMPLX(AL1,0.) 
ALFA2=CMPLX(AL 2,AL12) 
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T2INV = 0. 
T1INV = 0. 

FOR TESTING T1INV & T2INV ARE SET = 0 
333333333333333333333333333333333333333333333333333 

NS=40 
N1S=NS 
NS=NS+1 
MS = 1 

DX=!"000ie W l n t h S S P a C S i n t e r v a l f o r taking output 

NS=n0'NST=2teP l 6 n g t h & ° X 1 3 t h e S t S P l e n g t h i n c m 

NST IS THE GAP IN DISTANCE for the final output 
WIDTH = WIDTH/2*SQRT(AL0G(2.)) P 

TW0=AL0G(2.) 
TW0=2*SQRT(TW0) 
WIDTH=WIDTH/TWO 

write(6,300)WIDTH 
3 format(10X,'width=',E15.5) 

ENGY=20000. 
ENGY IS THE PULSE ENERGY IN MJ/CM2 

C0N=2.23E-10 
WRITE(6,90) CON 

3 FORMATdOX, 'C0N=' ,E15.6) 
S0ME2=(ENGY*3770.)/2. 
SQ=(S0ME2*l.E12)/(WIDTH*S0RT(PI/2 )) 
AMP = SQRT(SQ) 

SO FAR AMP IS IN MKS 
AMP=(AMP*C0N) 

IS THE AMP OF THE ELECTRIC FIELD 

" w T m S IreS PSLIi"1/4 ™ C 0 R R E S P 0 ,® S TO 
WD2 = WIDTH**2 

M=2000 

CENTS* ( I N T I M E ) T H A T CONSTITUTES A PULSE. 

IS THE PULSE CENTER. 

* S - ^ C m l t " S i ' I N H E l a R D E D T I M E OF REFERENCE) 
H2=(3.*DT)/8 
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H1=3*H2 
H3 = ( 32./15.)*DT 

H4=4.*DT 
H5=(26./15.)*DT 
H9=DT/93. 
H6=64*H9 
H7=15*H9 
H8=12*H9 
XH2 = (3.*DX)/8 

XH1=3*XH2 
XH3=(32./15.)*DX 
XH4=4.*DX 
XH5=(26./15.)*DX 
XH9=DX/93. 
XH6=64*XH9 
XH7=15*XH9 
XH8=12*XH9 
MT=M/20 

MT is the gap in time interval 
WL0=1. 

WLO is the initial population of the initial lpuai 
WRITE(6,6)ENGY,WIDTHO,DOMO initial level 

JORMATr INPUT^PULSE PARAMETER(1ST HARMONIC FIELD)', 

23X,'INPUT ENERGY DENSITY(MJ/CM2) = ' FT? ?"/~i"nv~~"7 ~\l! ' 

WRITE(6,7)N1S,DX,ABS1 

FORMATC/,5X,'NO. OF PROPAGATION STEPS=' 15 / 5X ' <?nrp 

2E10 G™ I N C M ='' E 1 0- 4' /' 5 X' , R E D I MENSIONED FIELD ABSORPTION C0EF=', 

WRITE(6,8) 

r ^ ' REDIMENSIONED FIELD PARAMETERS') 
WRITE(6,9)AMP,CENTER,WIDTH } 

FORMAT^/ ' PEAK FIELD AMPLITUDE3',E10.4,/,' CENTERS 

5^RITE(6'lO) ' P U L S E W I D T H ( H W a t 1/e maximum) = ' ,E10. 3) 

^FORMAT(/,10X,'MEDIUM PARAMETERS',/, 

WRITE(6,4) ALFA1,ALFA2,ZI M 

16X^21' =^E15?9 '/ )E1°* 3 ' 1 X ) ' 2 X r A L F A 2 = ' ' 2 (E10 . 3 , 2X) , / , 
WRITE(6,20)ALFA13,ALFA23 

m S ! M ® A 1 3 s ' ' 2 ' E 1 # ' 3 ' f f i , ' , i L F 4 2 3 = , ' 2 < E 1 0 ' 3 ' 2 , ! 1 1 

J|ORMAT(/,2X.'ADDITIONAL DISPERSION ADDED TO 3RD-HARMONIC=' , 
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WRITE(6,5) T2INV,T1INV 
FORMAT(' RELAXATIONS: 1/T2 = ',F8 7 / 13X ' 1/TI P Q WRITE(6,56) >ea././,l3X, 1/T1 = RF8.7) 

FORMAT(///,' 

1 — , / ,19X, 'PROPAGATION STARTS ' , / , ' 

RETURN 
END 

************AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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SUBROUTINE BLOCH ************************** 

COMPLEX E14rElC4,Q,PQ,Q1,QD,QD1,E20,DQ2,OM CO FE1 DO Pin inn 
COMPLEX ALFA2,ALFA13,ALFA23 TQ,E1 ,E3 ,ALFA1 S 3 ° Q' ° 
COMPLEX PI,P3,FE3,FE13,CFE13,PL1,PL3 CFEO 
COMMON/JC/ALFA1,ALFA2,ALFA13'ALFA23,ZlVAKl AK3 DISP 
1fDOMO,H1,H2,H3,H4,T1INV,T2INV,XH1,XA2,£H3 
I ' H 4 : ^ 5 , X H 6 , X H 7 r X H B ' m s 'WLO 'H5 ,H6 ,H7 ,H8 ,H9 
3,IS,NS,MS,AION,DIST,PI,DX,NST 
COMMON/ARYS/El(2024),E3(2024),TQ(2024),TL(2024) 
1,TW(2024>,TU(2024),PI(2024),P3<2024) ' i M 2 0 2 4 ) 

COMMON / OTHER / AMP, CENTER, M, DT, MT, WIDTH, WD2, R12 
, C°MM°N/ARAY/EN1( 2 0 0 0) ,EN3( 2 0 0 0) ,E1P( 2000) ,E3P(2000) 
1,ECON(2000),C0NVER(2000),ARION(2000) 
THE INPUT TO THIS SUBROUTINE IS A COMPLEX ELECTRTf FTFrn 

B L ™ E El ( 2024) , (DXMTCliS OT™C F I E L D 

R E S O H A M r ^ n n S ^ S ^ ^ 7 ® ^ Q U E U C Y MISMATCH FROM 
RESONANCE DOMO = OMEGAO - 2*OMEGALIGHT, AND ALL THE MFTiTTTM 
PARAMETERS SPECIFIED IN SUBROUTINE DEFINE 

CCL =0. 
CCU = 0. 

VARIABLES WILL BE USED TO MEASURE THE ENERGY ABSORPTION. 

WL=WL0 
WU=0. 

Ql=(0. ,0 
WL1=WL0 
WU1=0. 

QD=(0. ,0. ) 
WLD=0. 
WUD=0. 

QD1=(0.,0.) 
WLD1=0. 
WUD1=0. 

K21 = l 
OMEGA=33.615+(DOMO/400.) 

RAL2 =REAL(ALFA2) 
RAL1=REAL(ALFA1) 
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R1=10.5/SQRT(R12) 
DO 1 1=1,M 
FE1=E1(I) 
E1M2=(REAL(FE1))**2+(AIMAG(FEl))**2 
E14=FE1**4 
E1C4=(C0NJG(FE1))**4 
IF (ABS(E1M2).LT..IE-20) E1M2=0. 
IF(CABS(E14).LT..1E-20) E14=(0.,0.) 
IF(CABS(E1C4).LT..1E-20) E1C4=(0.,0.) 
FE3 =E3(I) 
E3M2 =(REAL(FE3))**2+(AIMAG(FE3))**2 
IF(ABS(E3M2).LT..1E-20) E3M2=0.0 

PQ=Q1+H1*QD+H2*QD1 
PU=WU1+H1AWUD+H2*WUD1 

PL=WL1+H1*WLD+H2*WLD1 
PW=PU-PL 

IF(CABS(PQ).LT..1E-20) PQ=(0.,0.) 
IF(ABS(PU).LT..IE-20) PU=0. 
E1Q=E1C4*PQ 

GAM2=-AIMAG(ALFA2)*E1M2-AIMAG(ALFA2 3)*E3M2 
FE13=FE1*FE3 
IF(CABS(FE13).LT..1E-20) FE13=(0.0,0.) 
CFE13=C0NJG(FE13) 

1) *E3M2 * *E1M2+(REAL( ALFA13) -REAL(ALFA23) 

STKS=stark-shift in ps-1 
CFEQ=CFE13*PQ*ZI 

DWU2=-(2*GAM2)*PU-2*AIMAG(E1Q)-2*AIMAG(CFEQ) 
DWL 2 = 2 *AIMAG(E1Q)+2*AIMAG(CFEQ) ^ ^ 

12I*FE13)"pw1''*'D0M°"STKS»"T2INV-GAM2)*PQ+(0.,1.)*(E14+ 

rim* / ™ = ( 2 8 * A Q - 2 3 • AQI) /5. + (H3*DQ2-H4*QD-H5*QD1) 
WUM= ( 28. *WU-23. *WU1) / 5. + (H3*DWU2-H4*WUD-H5*WUD1) 

2 8 * A W L~23. *WL1) / 5. + (H3*DWL2-H4*WLD-H5*WLD1) 
IF(CABS(QM).LT..1E-20) QM=(0.,0.) 
IF(ABS(WUM) .LT. . 1E-20) WUM=0. 

E2Q=E1C4*QM 
CFEQ=CFE13*QMAZI 

DWU=-(2*GAM2)*WUM-2*AIMAG(E2Q)-2*AIMAG(CFEO) 
DWL=2*AIMAG(E2Q)+2*AIMAG(CFEQ) 

32.*WU-WU1)/31.+(H6*D1W2+H7*DWU+H8*WUD-H9*WUD1) 
tH *WL-WL1) /31. +(H6*D!^2+H7*DWL+H8*WLD-H9*WLD1) 
IF(ABS(CU).LT..IE-2 0) CU=0. 
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CW=CU-CL 

1+ZI*FE13)*CW* rl*)A(D0M°-STKS)-T2INV-GAM2)AQM+(0.,1.>*(E14 

CQ=(32.*Q-Q1)/31.+(H6*DQ2+H7*DQ+H8*0D-H9*QD1) 
E3Q=E1C4*CQ 
CFEQ=CFE13*CQ*ZI 

DWU=-(2*GAM2)*CU-2*AIMAG(E3Q)-2*AIMAG(CFE0) 
DWL=2*AIMAG(E3Q)+2*AIMAG(CFEQ) 

l+2I*FE13?*Cw'°''1''*'DOMO"STKS1-T2INV-GAM2)*CQ+(0..1.)*(E14 

QAB=CABS(CQ) 
IF(QAB.LE.1.) GO TO 800 
IF(K21.NE.l) GO TO 801 
WRITE(6,802) 

2 FORMAT(3HREQ, 12X,3HIMQ, 15X,4HE1M2,15X,4HE3H2) 
K21 = 2 

0 1 WRITE(6,803) CQ,E1M2,E3M2 
3 FORMAT(2(E12.5,3X),5X,E12.5,5X,E12.5) 
0 IF(CABS(CQ).LT..1E-20) CQ=(0.,0.) 

0MEGA0=32.543-(RAL2*E1M2/100.) 
OMEGA1=11.137+(RAL2*E1M2/100.) 
RAL2=(57./(OMEGA-OMEGAO))+(]15./(0MEGA1-OMEGA)) 
RAL2=RAL2*R1 

Q1=Q 
WL1=WL 
WU1=WU 

QD1=QD 
WLD1=WLD 
WUD1=WUD 

QD=DQ 
WLD=DWL 
WUD=DWU 

Q=CQ 
WL=CL 
WU=CU 

TQ(I)=CQ 
TL(I)=WL 
TU( I) =WU 
TW(I)=CW 
PL1 =(ALFA1*(TL(I)-1.))+ALFA2*TU(I) 
PL3=(ALFA13*(TL(I)-1.))+ALFA23*TU(I)+DISP 
Pl(I)=PLl*FEl+4.*((CONJG(FEl))**3)*TQ(I)+ 
1ZI*(CONJG(FE3))*TQ(I)+3.*TL(I)*FE3* <<CONJG(FE1)**2)) 
P3(I)=PL3*FE3+ZI*(CONJG(FE1))*TQ(I)+TL(I)*(FE1**3) 
Pl(I)=PLl*FEl+4.*((CONJG(FEl))**3)*TQ(I)+ 
1ZI*(CONJG(FE3))*TO(I) 
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P3(I)=PL3*FE3+ZI*(CONJG(FE1))*TQ <I) 
P i „ 5 n * f 3 a r e t h e l s t a n d harmonic polarizations 
CCL=CCL+DWL 

CCU=CCU+DWU 

CCL=CCL*DT 
CCU=CCU*DT 

AION=1.-(TU(M)+TL(M)) 
AION=-(CCU+CCL) 

RETURN 
END 
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m E ^ T ^ i , A L F A 1 3 'ALFA23 ,TQ ,E1 ,E3 ,ALFA1 ,AK1 ,AK3 
1 n!^S u? Lo^ F A 1 ' A L F A 2 -ALFA13 ,ALFA23,ZI ,AK1 ,AK3 ,DISP 
1,DOMO,H1,H2,H3,H4,T1INV,T2INV,XH1,XH2,XH3 
2 rXH4,XH5,XH6,XH7,XH8,XH9,WLO,H5,H6,H7,H8,H9 
3,IS,NS,MS,AION,DIST,PI,DX,NST 
COMMON/ARYS/El(2024),E3(2024),TQ(2024),TL(2024) 
1,TW(2024),TU(2024),P1(2024),P3(2024) 
COMMON/OTHER/AMP,CENTER,M,DT,MT,WIDTH,WD2,R12 
C0MM0N/ARAY/EN1(2000),EN3(2000),E1P(2000),E3P(2000) 
1,EC0N(2000),CONVER(2000),ARION(2000) 
LOGICAL L2 

ESG1 = 0. 
E1MAX=0. 

DO 1 1=1,M 
EF1 = EXP( - ( (I*DT-CENTER) **2) /WD2 ) 

IF(EF1.LT..1E-6) EF1=0. 
El(I)=AMP*EF1 

ESGM=E1(I)*CONJG(El(J)) 
E1M=SQRT(ESGM) 

ESG1=ESG1+ESGM 
L2=E1M.GT.E1MAX 
IF(L2) E1MAX=E1M 

E3(I)=(0.0,0. ) 
TU(I)=0. 
TL(I)=1. 

CONTINUE 
ESG1 = TOTAL ENERGY OF SUPERPOSITION PULSE GOING TO THE 
HEAT PIPE; 

EN1(IS)= ESG1*DT 
E1P(IS)=E1MAX 
EN3(IS)=0.0 
E3P(IS)=0.0 

RETURN 
END 

************AAAAAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAAAAAAA 
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***************** 

COMPLEX ALFA2,ALFA13,ALFA23,TQ,E1,E3,ALFA1,AK1 AK3 
COMMON/JC/ALFA1,ALFA2,ALFA13,ALFA23,ZI,AK1 S 3 DISP 
1,DOMO,H1,H2,H3,H4,T1INV,T2INV,XH1,XH2,XH3 
2,XH4,XH5,XH6,XH7,XH8,XH9,WL0,H5,H6,H7,H8,H9 
3,IS,NS,MS,AION,DIST,PI,DX,NST 
COMMON/ARYS/El(2024),E3(2024),TQ(2024),TL(2024) 
1,TW(2024),TU(2024),P1<2024),P3(2024) 
COMMON/OTHER/AMP,CENTER,M,DT,MT,WIDTH,WD2,R12 
COMMON/ARAY/EN1(2000),EN3(2000),E1P(2000),E3P(2000) 
1,ECON(2000),CONVER(2000),ARI0N(2000) 
DIMENSION PH(2024),PH3(2024) 
STEP=FLOAT(IS-1) 
WRITE(6,20)STEP 
FORMAT(2X,'CURRENT STEP IN PROPAGATION',F10.2) 
WRITE(6,1)DIST 

FORMAT(2X,'DISTANCE OF PROPAGATION IN CM=',F6 3) 
WRITE(6,2)EN1(IS) 
FORMAT(/,2X,'1ST HARMONIC ENERGY=',E10.5) 
WRITE(6,3)EN3(IS) 
FORMAT(/,2X,'3RD HARMONIC ENERGY=',E10 5) 
WRITE(6,19)ECON(IS) 
FORMAT(/,5X,'ENERGY CONVERSION*',E15.10) 
WRITE(6,4) 
FORMAT ( 2^4HTIME, 1IX, 6HRE (El) , 9X, 6HIM (El) , 9X, 7HABS (El) ) 

E1R=REAL(E1(I)) 
ElI=AIMAG(El(I)) 
ABE1=E1R**2+E1I**2 
ABE1=S QRT(ABE1) 
TIME=I*DT 
WRITE(6,6)TIME,E1R,E1I,ABE1 
FORMAT(2X,E10.5,3(2X,E13.5)) 
CONTINUE 
phase calculation 

DO 7 1=1,M 
PH(I)= 0. 
CONTINUE 
E12 = 0. 
DET=0. 
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DO 8 1=1,M 
E11=E12 
E12=REAL(E1(I)) 
E1I=AIMAG(E1(I)) 

^ ^ *SIGN (1. ,E12) -1. ) . LT- . 1 ̂  GO TO 9 
DET=DET+PI*SIGN(1.,E11)*SIGN(1.,E1I) 
^!^!IS5 )- G T-. 1 E-9) P H ( I ) =ATAN (ELL /E12) +DET 
IF(ABS(E12).LT..1E-9)PH(I)=PH(1-1) 
CONTINUE 
WRITE(6, 10) 
FORMAT(/,8X,4HTIME,16X,5HPHASE) 
DO 11 1=1,M,MT 
TIME=I*DT 
WRITE(6,12)TIME,PH(I) 
FORMAT(2X,E10.5,3X,E15.5) 
CONTINUE 
third harmonic field 
WRITE(6,15) 

F0R^T£/,2X,4HTIME,11X,6HRE(E:3) ,9X,6HIM(E:3) ,9X,7HABS(E3) ) 

E3R=REAL(E3(I)) 
E3I=AIM\G(E3(I)) 

ABE3 =E3R * * 2 +E31**2 
ABE3=SQRT(ABE3) 
TIME=I*DT 
WRITE(6,14)TIME,E3R,E3I,ABE3 

FORMAT(2X,E10.5,3(2X,E13.5)) 
CONTINUE 
5RD harmonic phase calculation 

DO 50 1=1,M 
PH3(I)=0. 
CONTINUE 

E32=0. 
DET3=0. 
DO 52 1 = 1,M 

E31=E32 
E3 2 =REAL(E3(I) ) 
E3I=AIMAG(E3(I) ) 
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IF(ABS(E32).LT..1E-20) E32=0. 
IF(ABS(E3I).LT..IE-20) E3I=0. 
IF(ABS(SIGN(1.,E31)*SIGN(1.,E32)-1.).LT..1) GO TO 51 
DET3=DET3+PI*SIGN(1.,E31)*SIGN(1.,E3I) 
IF(ABS(E32).GT..1E-9)PH3(I)=ATAN(E3I/E32)+DET3 

IF(ABS(E32).LT..1E-9)PH3(I)=PH3(1-1) 
CONTINUE 

WRITE(6,53) 
FORMAT(/,4X,4HTIME,5X,18H3RD HARMONIC PHASE) 
MTM=MT 
IF(IS.LT.16)G0 TO 58 
MTM=MT/5 

DO 54 1=1,M,MTM 
TIME=I*DT 
WRITE(6,55)TIME,PH3(I) 
FORMAT(2X,E10.5,3X,E15.5) 
CONTINUE 
population vs. time 
WRITE(6,29) 
FORMAT(/,2X,'POPULATION VS. TIME'/) 
WRITE(6,26) 
FORMAT(2X,4HTIME,1IX,5HTL(I),1OX,5HTU(I),7X,1OHLOST ATOMS) 
DO 27 I = 1, M,MT 
TL0S=1.-(TU(I)+TL(I)) 
TIME=I*DT 
WRITE(6,28)TIME,TL(I),TU(I),TL0S 
FORMAT(2X,E10.5,3(2X,E13.5)) 
CONTINUE 
WRITE(6,16)AI0N 
FORMAT(/,5X,'ION PRODUCED=',E15.5) 

peak field of 1st and 3rd harmonic field 
WRITE(6,17)E1P(IS),E3P(IS) 
FORMAT(/,2X,'FUDAMENTAL PEAK FIELD=',E15.5 
1,/,2X,'3RD HARMONIC PEAK FIELD=',E15.5) 
peak field conversion 
WRITE(6,18)CONVER(IS) 
FORMAT(/,5X,'PEAK FIELD CONVERSION',E15.10,//) 
WRITE(6,25) 
FORMAT ( ' , , 

RETURN 
END 
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