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This work examines the use of higher order multiphoton
resonances in higher harmonic generation together with
judicious exploitation of coherent interaction properties to
achieve efficient harmounic generation. A detailed experimental
study on third harmonic generation in two photon resonant
coherent interaction and a theoretical study on four photon
resonant coherent interaction have been conducted.

Two photon resonant coheren" propagation in lithium
vapor (2S-4S and 2S~3D interaction) has been studied in detail
as a function of phase aund delay of the interacting pulse
sequence, Under coherent lossless propagation of 90 phase
shifted pulse pair, third harmonic generation is enhanced. A
maximum energy conversion efficlency of 17 was measured
experimentally. Thils experiment shows that phase correlated
pulse sequence caun be used to control multiphoton cohereunt
resonant effects,

A larger two photon resonant enhancement does not
result in more efficient harmonic generation, in agreement
with the theoretical prediction.

An accurate (to at least 0.5 A) measurement of
intensity dependent Stark shift has been done with the newly

developed “interferometric wavemeter.” Stark shifts as big as



several pulse bandwidths (of picosecond pulses) result in a
poor tuning of multiphoton resonance and become a limiting
factor of resonant harmonic generation.

A complete theory has been developed for harmonic
generation in a four photon resonant coherent interaction. A
numerical application of the theory to the Hg atom successfully
interprets the experimental observations in terms of the phase
dependent stimulated Raman scattering. With the intensity
required for four photon resonant transition, the calculation
predicts a dramatic Stark shift effect which completely
destroys the resonance condition. This model provides a basis
for the development of future schemes for efficient higher

order coherent upconversion.
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CHAPTER I
INTRODUCTION

With the development of the ultrashort light pulses of
picosecond (ps,lgzéec) and femtosecond (fs,}gssec) duratio&,za
new door has opened in the field of light matter interaction.
Such time scales are comparable to or even shorter than the
phase memory time of atomic and molecular system. As a
result, the polarisation induced in the medium by the short
optical pulses retains a definite phase relationship with the
inducing field. Under such circumstances the internal
dynamics of the atom such as absorption or emission process
can be controlled by controlling the phase of the incident
pulse, Such phase corfelated phenomena are called "coherent
interaction.” A simple minded picture of the coherent
interaction can be drawn from the "Bohr model”of atom shown in
Figl.la. The stationary orbits of an atom are like clocks of
different frequencies, The difference between the two clock
frequencies corresponds to the transition frequency between
the two statiomary orbits, Initially the atom is in the
ground state and the electron is following the clock of the
lowest orbit 1 (clock frequency is Wy¢ ), With an outward
force-ﬁ provided by the incident laser field in resonance with
I1>{~—>12> transition,the electron can be thrown to the

outer orbit 2 following an absorption of energy from the

]



Figl.1



incident light, The electron now follows the clock of the
outer orbit, Fig I.1b (of clock frequency W4 ). In the
absence of incoherent losses the two clocks come to the phase

at time interval of T= %%} . When the two clocks come to the

2
same phase the electron can be brought back to the old orbit
with a reverse force ;f provided by a properly phase shifted
input pulse (Fig I.lc),and the energy absorbed in the earlier
process will be emitted back to the field. The idea of
coherent interaction is to follow the atomic clocks with short
light pulses of frequency equal to the difference frequency of
two of the clocks. When the atomic clocks are followed, the
absorption and emission processes in atomic transitions cam be
controlled., The experiments of self-induced transparency and
photon—echo4 have revealed the striking features of coherent
interaction of light with matter, The "vector model” of
Feyanman et al5 has been successfuly applied to understand the
atomic phase correlated interaction with optical pulses. Soon
the study of such coherent interaction has been extended to
multiphoton processeseq}where in presence of higher order
nonlinearity many new effects such as multiphoton ionization,
dynamic Stark shift, harmonic generation were observed which
were absent in omne photon processes. Coherent resonant
multiphoton processes are extremely important for harmonic
generation. The nonlinear susceptibility responsible for

harmonic generation is enhanced by resonance condition., For

instance third harmonic susceptibility is enhanced if the



medium has single ,two or three photon resonance with the
incident field. The depletion of the pump wave by absorption
(single or multiphoton) associated with these resonances
limits the conversion efficlency that can generaly be
achieved. Resonant absorption changes the index of refactionm
of the medium by changing the population of the resonant
levels and under this circumstances phase matching becomes
impossible, Coherent propagation effect can be used to keep
all the energy im the radiation field even in the condition of
resonance, For instance if a sequence of 96 phase shifted
pulses is sent through a two photon resonant medium ,the
energy absorbed from the first pulse can be returned back teo
the following pulse by two photon stimulated emission. Longer
propagation length results in a strounger third harmonic
generation. In crystals the absorption edge near 200nm limits
the efficient harmonic generation. For this reason atomic
vapors are very important sources of shorter wavelength VUV
light. This work examines the use of higher order multiphoton
resonances in higher harmonic generation together with
judicious exploitation of coherent Interaction properties to
achieve efficient harmonic generation. The complexity of the
Interaction increases dramatically with the order of the
multiphoton interaction. A four photon resonant interaction
is not merely an extension of the two photon case. In view of
the increasing phenomena of various order (single,two,three

photon ionisation, quadratic and quartic Stark shift) a



general study is no longer possible. Therefore we have chosen
a specific model (Hg) to carry out the study of the four
photon resonant interaction. In this thesis an effort has
been made to investigate and understand both theoretically and
experimentally the new phenomena in multiphoton resonance
processes.

The remainder of the thesis is composed in the
following manner., Chapter II briefly discusses the basic idea
of two photon resonant third harmonic generation (THG) under
coherent excitation. <Chapter III discusses an experiment of
two photon resonant THG in Li vapor and analyses its
interesting results. <Chapter 'V presents a theory of harmonic
generation in a four photon resonant {(FPR) coherent
interaction. Chapter V shows an application of the FPR theory
in Hg atom. The thesis concludes in Chapter VI with a brief

summary of the work.

8
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CHAPTER II

TWO PHOTON RESONANT THIRD HARMONIC

GENERATION

A third harmonic susceptibility is enhanced in presence of
intermediate two photon resonance (TPR), Two photon coherent
as opposed to steady state excitation is required for
efficient harmonic generation. Exact solution of Schroedinger
and Maxwell”s equations are needed for a complete description
of resonant third harmonic generation (THG)., Solution of
Schroedinger equation gives the induced polarisation as
a function of time and field strengths at a certain point in
space. Using the induced polarisation Maxwell”s equation
determines the fields at the next point in space.
Schroedinger”s equation describes the local behavior while
Maxwell”s equation describes the propagation effect of the
incident and the generated fields. Two photon coherent
effects has been studied in detail by many paople.h‘-:L An
extensive description of two photon resounance THG would be
found in Ref 5. 1In this chapter a brief introduction of the

subject will be given.



Third Harmonic Susceptibility of an

Off Resonant System

The third harmonic polarisation induced in a system under
off resonant excitation condition, is given by:
3
‘g ::’)C3 E,
(11.1)
where

E, = incident field at the fundamental frequency o)

i
E% = third harmonic polarisation at 3L

7<3= third harmonic susceptibility of the medium

/qﬂg,/t§k }(kz /Lil

(W ) (Wi ~2w) (Wer -3w)

X

(I1.2)

Summation is implied over the repeated indices.
I1> is the ground state of the atom . If>,Ik>,I{D> are the
intermediate states (see Fig II.l). /LU and Cdj are the
dipole matrix elements and transition frequency of Iid<—D>Ij>
transition. Third harmonic emission takes place from a
virtual level. This virtual level 18 created through the
couplings of intermediate levels. 36313 enhanced by
approaching any one of the intermediate resonances. In

presence of an intermediate resonauce'}fsgoes to infinity, in



Fig O



other words equaticn (II.l) will no longer be a valid
expression for E% . In case of resonance, an exact solution
of Schroedinger”s equation is needed to find the correct
expression forE% . For THG one and three photon resomnances
are not particularly interesting as they will limit the
efficiency of THG by introducing strong ome photon absorption
loss for the input first harmonic and generated fields. A two
photon absorption on the other hand will have less loss. For
higher intensities required to achieve the maximum conversion,
depletion of the fundamental by two photon absorption limits
the highest achievable converstion efficiency.6

Fig I1.2 shows the two photon resonrant system we are
going to study. 1I1> is the ground state, I2> is the excited
state, Il> and I2> states are connected by two photons from the
incident first harmonic field. The third photon goes to the
continuum. In this case the third harmonic level coincides
with a real level in the ionisation continuum. As a result
THG is accompanied by an inevitable two photon resonant three

photon ionisation.
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Maxwell-Bloch Equation in a Two

Photon Resonant Medium

1-5

An equivalent two level model has been developed for a
TPR system.

A TPR system is then described by a 2X2 resonant
density matrix P .

e

In presence of an electric field £ given by

. C{mk-KZ) .

E = ElQZ:t} e + EB(th} €

3wa~KE)

L occ

(I1.3)
(where E](z,t) and Es(z,t) are the slowly varying

amplitudes of the first and third harmounic fields

respectively) and with

L2 (we-KE)

£ o= & €
&=«

fa =

we have the two photon Bloch equation:

(M



14

%g?‘+l(2w-w2|—&ﬂm)6l'+(%i+ i%?&)ﬁa

¢ 2 *
= L ((2,2 - &\) [ %ﬁ.€| + % ET- 63 (
z 11.4)

:)611 )
ST + (;{+ 92)631
v, % *
= -2 [nm {(%&E' + %Eres )(iz}
(II.5)
Saz + S0
'?_E( - ) ="9f°/“"?2<3/22.
(I1.6)

(Jy|=zero-field resonance frequency of 2{—>1 transition,
g&J2|=1aser induced Stark-shift

Ql =intensity dependent ionization rate from levelll)

ﬂz =intensity dependent ionization rate from ievellZ)_

T =population relaxation time of level (2>

Ti =tranverse relaxation time ,accounts phenomenologicaly

for the decay of coherence due to both radiation damping and

phase interrupting elastic collision.
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Swa = & [« ) oy () J1EI

+ Jf.;' [o(:(l%w) —o{z' (3‘0)] \63\?_ (11.7)

3w 1y 9
91 = 91 = 2 A (2w) lssl
R (11.8)
W 30
V2 = Y2 t Y2
= 2 [ @) 181 + <o) 16]* ]
R (I1.9)

IR
there 18 3 photon ionization ?, from level Il> and 1 and 3

w
photon ionization 'Q: and ii from levei I2>. The intensity
dependent dynamic Stark shift as well as intensity dependent
ionization are functions of space and time. Dynamic Stark
shift 1s a special effect in multiphoton interaction. There is
no such Stark shift in single photon case. Due to the space time
dependent Stark shift resonance condition changes both in
time and space. In order to have two photon absorption over a
certain distance a constant intensity of the pulse has to be
maintained. Only under loss-less coherent propagation TPR
condition will be maintained over longer distance. Ionizatiocn
is an incohernt loss mechanism and is a limiting factor of

harmonic genmeration.
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th
djOnuﬁ- the atomic polarisability of j level at frequency m()

O(J (Thu.)) o(; (muu) -t o-(j“ (muJ)
M| | A 1® (11.10)
t’}_[(zgﬁﬁg'*(wg+m®]
L

/ig and qu are the matrix element and frequency of

1

where,

the transition IE)(——-)Ij).

}‘(-le_ }'Lel

Yia = two photon transition matrix = Ei- — (II.11)
* (Weg + W)
'%E = third harmonic coupling coefficient
i
/{2g}{g| N }iz(}*ti )
) Z( W -3w Wea + 300
¢ (I1.12)

The summation over Q implies summation over all
levels bound or free. Eq(II.6)is the probability conservation
Equation for the eqivalent two level atom. Eq(II.4) and Eq(II.5)
U
describe the two photon resonant trasition, Yo g, is the two
* % K2
photon Rabi frequency. ?ilg‘ég is a resonant raman scattering
term. Eqs{(II.4) to (I1.6) are called “"two photon Bloch
equation”,because of their analogy with the equations derived

by Bloch for the precession of a spin in a resonant radio

frequency field.,-
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Dipole moment of the TPR atom is calculated from

P=Tr{PM). The dipole-moment oscilating at the first harmonic

frequency 18 given by :

Lwk-ik2
R(z,0)= RGtb)e te.c

= {(m»m. b ol ()i )€, +2TaGnE
i3

* (Wt -1 K2z
N %4.2_63}6 + ec

(II.13)

Dipole-moment at third harmonic frequency:

{3(mt-K2)

Rez,o= B (z51) e + cC.C

={ (e 6+ 4 62)E 1 B Rt
R

1 3wk -k2)
X & + ¢C (II.14)

These dipole moments will drive the Maxwell”s Equation to
generate fields at the next point in space.

Following Ref2, Maxwell“s Equation in "slowly
varying envelope approximation™ written in reduced time

frame (trst—z/c):



S ¢
d wm - _'NU\)m G?_,
Nz 2CE "

(IT.15)
m=1,3
where N=density of atoms
c=velocity of 1light in vacuum
€, =vacuum permittivity,
Equation IT.15 together with Eqs(II.4) to (II.6) are called
Maxwell-Bloch equations . From coupled solution of Maxwell-

Bloch equation we get E1(z,t) and Ea(z,t) for all space time

points.,

For a TPR medium we have,

(87

0 _ % 0
UE = o Sh_El instead of U% = }L3IQ
f

D = =
To get larger hq we must look for larger 7 and éfn- % is
- a2 -~ Py

fixed for a given tramsition. Larger 6&. implies stonger TPR

A

interaction . From Eq(II.I13) it follows that the term .-

{0y

is

responsible for pump depletion due to TPR absorption. Larger éfz
implies stronger pump depletion. In presence of pump depletion
the generation length is reduced. Resonance absorption reduces
the efficiency.

For efficient harmonic generation we need

1., not only resonance enhancement of 7C3

but also

g



2. A loss free propagation through the absorbing medium.

Apparently contradicting conditions ! and 2 can be satisfied

simultaniously only in case of coherent interaction.



Two Photon Vector Model and Anomalous Pulse Propagation

From the two photon Bloch equations a two photon vector model

can be drawn. In absence of ionlzation ,Stark shift and harmonic
Y
generation ,we can define a "pseudo vector " R.
- ~
R=weo+S2 & (I1.16)
.
where W o= dzi"éa (I1.17)
2

In presence of an input square pulse of constant amplitude Eﬁin

-

resonance with the two photon transition) the vector R
_ VaS A
rotates about a vector (},in the pseudo space spanned by e, ,e,

A
and e; (see fig 11.3).
. N
L =angular velocity vector in the pseudo space.

= 2‘(‘ E‘L A
= - s
S E ! (11.18)

An 1llustrative description of this vector model can

be found from Ref 5. t

Angle of rotation 9(\:)= gﬂ(‘f}’ltl
o



o

= 0
6_\‘\ }%@ .
o V8
| N _.‘/,/’
yd
A g/
A

1=

(e



The net angle of rotation due to a pulse, is given by

- o)

g, 4t (11.19)

8. is called two photon "area"” of the pulse in analogy with
A e

single photon area_fEAt defined for one photon resomant
medium, Two photoﬁv;rea of the pulse is determined by
the energy of the pulse. For instance for @:‘='Ti the pulse
is called a " 71 pulse” and so on.

Suppose the pulse 1is applied at time t=0

at £ <0, & =1, & =0 and <y =0

from Eq(II1.16) R(0)==-1/2 Q.
With time as ﬁ rotates dzz and cﬂ] grows and two photon

absorption takes place. For a T\ -pulse (foi) we have 62;=1

(atom is inverted) at the end of the pulse. Similarly for a 277

-pulse the atom is first inverted and then returns back to
the ground state at the end of the pulse. The energy absorbed
from the front part of the Eﬁ'pulse s returned back by the
atom which is added coherently to the trailing edge of the
pulse., In absence of ionization sStark shift and harmonic
generation a 2%( pulse propagates without absorption through

a resonant medium.

Replacing 8 by -© (or £L by“fl) we can change the

22
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direction of ro;;tion of the pseudo vector i. If El is
replaced by E; é./z, © becomes -8 and E'rotates back reversing
an absorption into an emission process. For example 1if a
square pulse is followed by a %% phase shifted second square
pulse,the energy absorbed during the first pulse will be
emitted back during the second pulse., Due to this phase
dependent stimulated emission a pair of 95 phase shifted
pulses can have absorption free propagation., Total energy of
the pulse pair is conserved. Since two-photon emission (field
at 2W) is dipole forbidden no energy is emitted between the
pulses. Only requirement is that the total interaction time
has to be less than the relaxation times T, and T, . Since
for efficient harmonic generation our idea 1is to get loss free
propagation through the resonant medium ,we are left with tweo
cholices: either to use a Jl-pulse or to use a pair of 9d:phase
shifted pulses. In a real two photon resonant system with
fonization Stark shift etc. a pair of phase shifted pulses are
more favorable than a 27Tl pulse., It should be noted that in
presence of phase modulation or with non negligible Stark
shifts, the pulse energy is no longer proportional to the
tipping angle of the "pseudopolarisation” vector. A 27Tl pulse
with higher energy will have more ionization ,more Stark-shift
and will tend to be more unstable than a pair of low energy
phase shifted pulses. The theoretical calculation of Diels et

q

al shows that a 2/l pulse suffers considerable phase modulation
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™)

and both the fundamental and third harmonic pulses are
broadened in frequency. From the above simple minded picture
of the TPR atom it follows that the tramnsmission of a pair of
phase shifted pulses would be a funtion of their relative
phase. We would expect the transmission to be maximum at odd
multiples of g as shown in figII.4. The anomalous propagation
of a pair of ;S phase shifted pulses will have longer
generation length. Theoretical analysis of Diels et al?
predicts a maximum energy conversion efficiency up to 8% in an
ideal phase matched condition, for a plane wave of infinite

transverse dimension.
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Transient Phase Matching

Efficient harmonic generation demands efficint phase matching
between the first and third harmonic field., Phases of the
first and third harmonic field are determined by their
respective single~-photon susceptibilities, Single photon
susceptibilities for the two flelds follow from the expression

of G? and G% (EqII.13 and II.14):

Xy () = §AW) €+ %y () &1 IN

(I1.20)

K, (3w) = {o<. @Bw) & + o<2(3w3<s’223 N

(11.21)

Where,

B
')C‘Qvu) =gingle photon susceptibilty of the nL\

harmonic field.
Phase matching requires}(q@@to be equal to X, (3w). This
condition is achieved by adding an off-resonant vapor so that

the total susceptibilities become equal for the two harmonics.
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Suppose,
o(N@d) =gingle~photon polarizability of the off-resonant
vapor at the frequency W .,
O(N(3u0 =gsingle-photon polarizability of the off-resonant
vapor at 30 .
f = ratio of the off-resonant to on-resonant
atoms in the vapor.

single-photon susceptibility of the mixed vapors at W :

X (W) = Ni‘?(\(w) $ho+ Ay (w) (zz} 4 NG ol ()

(11.22)

single-photon susceptibilty of the mixture at 3W :

')(1,(_3(.0) = N {O<lL3w) <l1. +- D{z (300) (9_2 } + N S: O<N(_3w)

(11.23)
Phase matching requires:
Ky (w) = Ko (3w)
(I1.24)
For coherent interaction both cﬂ} and éﬁk are functions of
time, and Eq(II1.24) can not be satisfied for all times. For weak
interaction however we can find a time independent phase

matching condition. For weak interaction we have & 21, 6;2!30
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and Eq{(II.24) becomes:

Nl () + Nfo, ) = NGw) + N{ L (3w)

(11.25)

Condition expressed by equation (II.25) is called
"linear phase matching®”. Linear phase matching is only good
for off resonant interaction. For resonant coherent
interaction the susceptibilities (given in Eqs.(II.22) and (II.23))
are functions of time and no time-independent phase matching
condition exists. In this situation the best we can have is an
approximate phase-matching for optimum third harmonic
generation. For example we may phase match not over the whole
pulse but for a certain region of the pulse where third
harmonic generation is maximum. In this case Eq(II.24) is
satisfied with certain values of 6? and 5£zcorresponding to
maximum third harmonic generation, The value of the ratio f
giving maximum third harmonic would be very different from
the value satisfying Eq(II.25). Optimum value of the phase
matching ratio has to be found dynamicaly either by a real
experiment or by a numerical experiment. The optimum phase
matching for resonant transient finteraction will be referred
to as "transient phase matching”. Due to windowing, the phase
matching time, the third harmonic will be narrowed 4in time

and broadened in frequency. Due to Stark shift the resonance
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condition is a function of the pulse intensity. The "transient
phase matching", true for certain values of &, and 61: will be
effective over a reasonable distance only if the pulse
intensity is maintained constant over that distance. In
otherwords "transient phase matching"” requires that a certain
condition of anomalous (enhanced) transmission be met. Al though
a pair of 96 phase shifted pulses seems to be useful for this
purpose ,only a real experiment can prove it”s utility. In the
next chapter we are going to discuss an experiment which puts

the above 1dea into real tests,
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CHAPTER III

TWO PHOTON RESONANT THIRD HARMONIC GENERATION

IN LITHIUM VAPOR

In this chapter we study two photon resonant{TPR)
third harmonic generation(THG) in lithium vapor. A level
diagram of lithium atom1 ls shown in fig III.l. We have
studied two different resonances in lithium atom. In one case
the incident light was in two photon resonance with the 2s-4s
transition and in the other case the light was in two photon
resonance with 2s-3d transition. In both cases the third
harmonic levels coincide with a P-level(ﬁ,=l) in the
continuum. In the first part of this chapter we will study
the two resonant cases individually and after that we will
discuss the significant differences between the two
transitions.

2

In chapter II we have learned that a pair of 90 phase
shifted pulses propagate through a two photon resonant medium
without absorption loss when the pulse duration is much
shorter than the relaxation times of the medium. This idea
ts exploited in all our experimencts to get longer length for

third harmonic generation and for phase matching.

32
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The experiment was done with a pair of delayed and
phase shifted pump pulses,

tuned to a two photon resonant
transition in lithium atom.

The delay and phase were varied
smoothly. The third harmonic signal was found to be enhanced

when delay and phase were ideal for coherent loss free

propagation. Up to 1% efficiency was obtained when phase
matching was optimized,

Third harmonic signal was recorded as
a funtion of phase and delay of the input pulse pair for each
tuning.

The second harmonic of the transmitted pulse pair was

also recorded as a function of their relative phase and
delay.

Before we discuss the experimental data it is

important to define some of the parameters of TPR medium,

Efficiency coefficient:fl

From EqQ(I11.4) & Eq(I1.5) we £ind that (% /v, )

and two photon absorption.

determines the relative strength of third harmonic¢ generatin
coefficient

We define the efficiency

ALY

|

1%
1

(ITIT1.1)
is a measure of the largest possible third
harmonic conversion.

i1
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6
Two Photon characteristic length QZ:

From Eq(II.13) the TPR first harmonic plarisation

*
- 2N
G? - —-EE 611 Ei
w (111.2)
(where we have just taken the TPR part of the
polarisation) Using Eq(III.2) in the Maxwell”s Eq(II.15) we
get,
.BE' . N,{" E*
R - -1 w 2 (]t \
DE Cé&oh (II1.3)
The two photon vector model of Chapter II shows that
the largest possible value of ld:L\ is 1/2, corresponding to
the maximum absorption. Using 611::-1/1 in eqn.III.3 we find

an upper limit to the beam attenuation.

2L L wNfe \ (II1.4)
2 E ilceuR )
A two photon characteristic length is defined as:
[, = WNYy
2 2CE R
(I1I.5)

Using equation (III.5) in (III.4) we get)

€.(z) = Lo éqzz
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ie. deefines the shortest lemgth in which the field amplitude
could drop by a factor of l/e of its initial value, by two
photon absorption, Given sufficient initial emergy, most of
the input pump pulse energy is depleted at this distance. Two
photon absorption as well as THG become negligible after this
distance. At 10 torr pressure this distance was 2 c¢cm In case
of Li 2S - 48 transition. For a pair of 98 phase shifted
pulses, at the end of this distance most of the energy goes
from the first pulse to the second and the second pulse can
propagate over a longer distance. In this way the generation

length is increased.



Lithium 2S - 4S5 Transition

In this section, third harmonic generation (THG) under
the two photon resonant (TPR) transitiom 28 -~ 4§ in L1 vapor
will be summarised., A detailed description c¢f the experiment
will be found in Ref 2. The resonance wavelength for this
trasition is A = 571.2 om and the third harmonic 1s generated
at A = 190.4 nm. In this experiment a pulse pair at ) = 571.2
nm was used as the fundamental pump pulses. The delay and the
phase of the pulses were smoothly scanned., The energy
required for the two photon transition 1s 50 mJ/cﬁL. For this
experiment 6 ps pulses with each an energy of 1 mJ were
obtained from the oscillator-amplifier system described in
Ref.2 and Ref.3. At operating temperature of 1100 K, the
vapor pressure of lithium was 10 torr, corresponding to a
phase relaxation time Ty of about 1 us. The inverse Doppler
broadening was 50 ps. 6 ps pulses were short enough for
coherent excitation. Nonresonant Mg vapor was added for phase
matching. For a given detuning and delay Mg pressure was
continuously scanned to get optimum phase matching§;¢We did
not measure ionisation In these experiments. A theoretical
estimate of ionisation was about 6%Z. A schematic of the
experiment is shown in Fig.III.2. Pulses of energy about 1 mJ

were sent through a delay line. The description of the delay
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line can be found in Ref 2. There are two outputs of the delay
line. Fach output of the delay line consists of two pulses
delayed and phase shifted with respect to each other. The
delay and phase were determined with an accuracy of 1/2;hof a
wavelength. One of the outputs of the delay line was sent
through a heat pipez containing a mixture of Li and Mg
vapors,the other output was used to characterise the incident
pulse pair, At the other end of the heat pipe third harmonic
signal was detected with a 20 nm bandwidth interference
filter. The third harmomnic as well as the second harmonic of
the incident & transmitted pulse pair were recorded as a
function of delay and phase. The second harmonic signals of
the incident and transmitted pulse palrs were generated in KDP
crystals. Data acquisition was done by a microcomputer ("Smoke
Signal Broadcasting”). A detailed description of the data
acquisition will be found in Ref 2. Fig. III.3 shows a
theoretical simulation of the experiment, done in a thin
sample. In each of the graphs the second harmonic of the
transmitted pulse pair is drawn as a function of delay (in
ps). Each graph was drawn for a different detuning of the
incident laser pulse from the zero field TPR frequency. For a
different detuning a sharp resonance dip was observed at a
different delay., This resonance dip 1s due to the ac Stark

shift.
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From equation (II.4) the net detuning of the TPR

interaction is

(Aw)2| = 2w =W - Swll
(I11.6)
where
2W -Wi) = The zero field detuning = 4w
and gujz‘is the Stark shift given by equation (II.7).
t {
gﬁdzx‘z A [}K\L“ﬂ - xz (w) :]\il\l
R (111.7)

The Stark shift due to the generated third harmonic field is
neglected. This is a good approximation because the
polarisabilities are smaller at 3w,

(Aw),_l = dw - $Waz
We have resonance when QW= 31021 . A certain amount of zero
field detuning " AW " is required to be tuned to the Stark
shifted resonance frequency " W2y + SWai -,

The Stark shift increases with intensity. With
increasing detuning a larger Stark shift (induced by a larger
intensity) iIs needed to bring the atom into resonance. For
this transition the Stark shift was negative. The intensity
dependent Stark shift is clearly manifested in the second
harmonic of the transmitted intensity. As the detuning 1s
increased the resonance dip shifts towards zero delay. With

larger detuning it requires larger intensity to brimg the aton
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i -1
into resonance. For very large detuning (AwW=-312 X 10 s )

there exists no intensity to bring the atom into resonance,
resulting in an off resomant excitation, There are several
interesting features of the generated third harmonic signal,
Maximum third harmomic is not necessarily at the zero delay as
we would expect in an Iincoherent or off resonant interaction.
In fact we can see in Fig III.3 (with —<4W=3 X 1[;]I E‘) that
the third harmonic I{s maximised away from the zero delay.

This 1s due to the two photon coherent effect. Details of the
interpretation of experimental results appear in Ref 2.

Fig (II1I1.5) shows a real experimental data of enhanced
phase matched third harmonic signal as a function of delay
between the pulses. Eac¢h point in the upper envelope 1s a
recording of the maximum third harmonic signal for a given
delay as the phase between the pulses is scanned from zero to 2/7.
Each point in the lower envelope represents the corresponding
minimum. Third harmonic signal is maximised not at zero delay
but at an Inter-pulse delay of 1.5 ps. This shows the
difference between coherent and incoherent (or off resonant)
interaction. In incoherent interaction the third harmonic field
EB { E? where 5‘ is the fundamental field amplitude. The
third harmonlc intensity I3“<E?' When I3 is generated in
an incoherent interaction (I, & Ef ) by two delayed and phase
shifted pump pulses, 15 would be proportional to third order

autocorrelation of the pulses with a 32:1 peak to background
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ratio., The enhancement of the third harmonic signal shown in
Fig II1.5 away from zero delay is clearly a manifestation of
two photon coherent effect. The ratio of Mg to Li vapor was
1.5 as opposed to 2 required for linear phase matching. The
maximum energy conversion efflciency was 1%. For the same
experiment, the second harmonic signal of the incident and the
transmitted pulse pair is shown in Fig ITI.4. Here the upper
and lower envelope of the incident and transmitted signals
have similar meaning as that for third harmonic. In this
experiment a resonance dip appeared at zero delay., Fig III.6
1s another recording of the experiment for a different
detuning. 1In this case the unphase-matched third harmonic
signal had a similar behaviour as shown in the theoretical
simulation (Fig III.3 with -4AW= g X 1613) doene for a thin
sample. In Fig III.6 a very sharp dip has appeared both in
the third harmonic as well as in the transmitted signals,
Figs III1.7 & I11.8 are the recordings of the experimental data
showing two photon coherent pulse propagation. The anomalous
Propagation effect is evident from the enhanced modulation of
the transmitted signal (as seen from Fig III.7) over an
interpulse delay of 3 - 6 Ps. This anomalous propagation 1is
due to two photon coherent interaction. The energy lost by
the first pulse is coherently recovered by the second pulse.
Fig III.S shows the second harmonic of the transmitted signal

as a function of phase at the interpulse delay of 3 ps. The
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phase dependent transmitted signal has a periodicity of 7
rather than 271 ., The maximum of the transmitted signal is
not at zero phase, but at a relative phase of 71/2 or 3 TY2.
As expected from theory we see that a 95 phase shifted pulse
palr propagate through the resonant medium with less
absorption.

From this experimert we can draw the following

conclusion:

1. Third harmonic generation is enhanced in
presence of two photon resonance.

2. Higher conversion efficiency requires two photon
coherent interaction.

3. Tuning in multiphoton resonant interaction is

intensity dependent.



Third Harmonie Generation in Li

28 - 3D Transition

In this chapter we study the THG in Li vapor when
25 - 3D transition is in two photon resonance with the
incident laser pulse at A\ = 639.3 nm. The THG occurs at °
A3= 213.1 om. Essentially the same experiment {(as in the 2S
= 45 transitiom in Li) was carried out. The generated third
harmonic signal and the second harmonic of the incident and
the transmitted pulse pair were recorded in the same way as a
function of phase and delay of the pump pulses, This time we
could not phase match the third harmonic signal with Mg vapor.
Fig II1.9 shows the second harmonic of the incident pulse pair
as a function of their relative delay., Figs III.10, II1.11,
ITI.12 and III.13 are the various recordings of the second
harmonic signals of the tranmitted pulse pair at various
detunings. In each case of the experimental results shown in
the Figs II1.10 to III.13 we measured the Stark shifts with a
newly developed interferometric wavemeter (to be described
later) with an accuracy better than 0.5 4. A positive Stark

shift was measured in each case.
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o

The various atomic parameters (in MKS units) for 28 - 3D

transition are listed below:

Two photon resonance frequency for 2S5 - 3D transition: Wy,
I
Wiy =G, = 2,948 X 10 s
2.
{ . - 3%
L (Wo)= =2.626 X 10
25
7
O< [Ujo)= 0
XS
/ -
oL, (@) = -4.203 X 10
V4 -40
XBD(M(;) = 6.214 X 10
-FL
‘CK = 2,692 X 10
i (o158) -4
%,, = 0.299 ¢ X \0

o<. % ? were defined in ChapterIl, in egns.

L ? !2_3 21

I1.10, II.11, I1.12 respectively. The transition dipocle matrix
elements were obtained from oscillator strengths given in Ref
4., The atomic transition frequencies were obtained from the
tables of Moore.5

From equation (III.7) and from the parameters given



above we find ng, to be positive in agreement with the
experiment. In Fig III.10 the Stark tuned resonance dip
appeared at zero delay. The zero field detuning for this
experiment as measured by the wavemeter was AW = 36 X 18 gj
In this case the input light frequency W was tuned above the
zero field two photon resonance frequency W, by an amount 18 X
l& ;. It took a very high intensity induced Stark shift to
bring the atom into resonance. This very large Stark shift
corresponds to a wavelength shift of 0.8 nm, which 1is four
times the bandwidth of the pulse. In other words a completely
off resonant Interaction was brought into resonance. The
third harmonic signal shown in Fig III,l4 shows a dip not at
zero delay but shifted from i1t. Such strange nature of third
harmonic signal can only be explained iIn terms of accompaning
ionisation. The 1lonisation near zero delay was estimated to be
60%Z, which explains the reduction in third harmonic, through
the loss of resonant atoms as well as through the atomic
coherence loss associated with the high ifonisation rate.

With decreasing detuning the resonance dip moved towards
increasing delay, where the intensity is less. Figs III.ll1 and
II1.12 shows resonance dips towards lounger delay. The third
harmonic signals had similar nature for the two experiments
described Iin Fig (III.11) and (III.12). The third harmonic
signal shown in Fig (III.15) did not show any resonance dip.

Fig III.13 shows an experimental recrding where the frequency
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S .
was tuned below the zero field resonance by 12 X 10 s. The

net detuning from equation (III.6) is :

(Aw)” = ZM«M;;-SMQ!

~ Al
(Am)z\ = Aw Sl

With intensity induced positive Stark shift SQJZI , wWe
need positive zero field detuning auwl for resonance tuning.
When AW < 0 (experiment described in Fig III.13) the net
detuning QQQDQI, becomes a large negative detuning resulting
in an off resonant interaction. No resonance dip was observed
in this experiment.

A summary of the experimental results are shown in

Table I,



TABLE 1

Summary of 28~3D Experimental Results

2S - 3D zero fleld two photon resonance wavelength

wavelength ,)o = 639.3 nom

frequency

-

W, = 2.9485 X 10 s

pulse width ?; = 6.5 ps

pulse bandwidth = 0.2 nm
! j A of Detuning | Detuning ﬂ Stark Shift
Fig No ETuning Input per Photon : per Photoni In sﬂ
éRegion Light In am ! In s i -
| e (4%)  (aws) | (ow2)
i [ | i T
i II1.10 | O0-Delay | 638.9 : -0.4 18 X190 ? 36 X 10
CIII.11 1 ps. | 639.1 ¢ -0.2 9 x10" 18 x10"
j }Delay 5 g
:111.12 -2 ps. f 639.2 é -0.1 410 8 410
. Delay l ? é 5
1I1.13 |off | 639.6 E +0.3 | -12x 10! )
| ETuned é % E ;
Incident pulse energy density = 14 nJ/cm™
Two photon area of the pulse = 13
Single pulse absorption = 85%



Fig III.16 shows the second harmonic of the incident and
transmitted signal as a function of phase at zero delay
corresponding to the experimental recording shown in Fig III.1Z2,
From now on, this phase depeundent signal will be refered to
as the fringe. Fig III.17 shows the third harmonic fringe at
zero delay in the same experiment. Fig III.18 and Fig III.19 show
similar fringes at a delay of 2.7 ps. There is a phase
shift of about 10 between the incident and the third
harmonic fringe. The same effect was observed in the case
of Li (2S5 - 495) experimentﬁ“ The transmitted fringe also
shows a phase shift with respect to the incident one. This
could be due to the anomalous propagation where the maximum
transmission shifts towards 71/2 rather than toward zero phase.
Fig II1.20 shows incident and transmitted fringes at 7.8 ps
delay. The transmitted fringe shows a clear "double fringe™
having an approximate periodicity of 71 . The maximum of the
transmitted signal appeared at a relative phase of 11€
instead of QOﬁ This could be because of the self phase
modulation of a large "AREA"™ pulse resulting in a phase
change as a function of distance., As described in Chapter II
(see equation I1.20), the one photon susceptibility is a
function of population & and 611) which is determined by
the intensity of the pulse. As a result the phase of the

pulse 1s also a function of intensity. After propagation the
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different intensities of the two pulses will have different
phase modulation and their phase will shift in a different
way. Due to this effect, the phase delay required for two
photon coherent propagation becomes different from 900. Fig
111.21 shows the third harmonic double double fringe at the
same delay as in Fig III.20. Similar fringes were observed for
the experiments described in Fig III.11., The group of fringes
shown in Figs III1.22 to III.26 show incident, transmitted and
third harmonic fringes at various delays for the experiment
shown in Fig III1.l3. Due to the off resonant excitation in
this experiment we did not observe any double fringe or phase
shift effect.

As mentioned earlier, phase matching was not possible
by adding Mg vapor. By changing the pressure of the buffer
gas in the inner tube of the concentric heat pipe it was
possible to change the partial pressure of Mg vapor while the
Li vapor pressure was kept constant by the constant
temperature bath provided by the outer tudbe.r The middle of
the heat pipe contained saturated Li vapor mixed homogeneously
with unsaturated Mg vapor. As the delay was kept nearly equal
to two pulse widths the Mg pressure was scanned continuocusly
to get optimum third harmonic signal. Fig III.27 shows the
third harmonic signal versus the ratio of Mg to Li partial
pressures. The starting ratio of Mg to Li vapor density was

0.55. As the pressure of Mg was increased the third harmonic
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signal decreased. This should be attributed to the increasing
number of dephasing elastic collisions of lithium and
magnesium atoms. Indeed at higher partial pressures of Mg, the
{nteraction is no longer coherent. The pressure was scanned

up to a ratio (Mg to Li) of 8.5. Third harmonic signal

continuously decreased. The maximum conversion was omnly 10 Z.

2s-4s versus 2s-3d

Although third harmonic generation took place via two
photon resonant {ntermediate step in the same atom there are
some characteristic differences between the two transitions
which are worth pointing out. In Table II several important
atomic parameters for the two transitions are listed. The
atomic parameters for 25 = 45 transition were taken from Ref
(II1.6). The atomic polarisability of the iu}esonance level
has been defined in Chapter II equationm (11.10). ru_and %2l
were defined im equations (II.11) and (1I.12) respectively.
Two photon Bloch equation of Chapter II shows that L
determines the strength of the two photon transition. The two

photon "Area" defined inm equation (II.19) is given by

+od

8=(2 Yix /1:3) SE'Z At (111.8)

— )



TABLE II1

Atomic Parameters for 25-4S and 2S-3D TransitionS

. 4 / i
R - A A
eso Two 3rd °{|( t) OQZ_( 1) 0(2( A T\o %2!
nance | Photon{ Harm~
Tran~ | Reso- onice (MKS) {MKS) (MKS) (MKS) |[(MKS)
sition | nance | Wave- X X ol X x
-39 -39 -40 -73 - %4
In Wave~- length 10 10 10 10 10
Li length
A (am) | As (om)
28=-48 { 571.2 190.4 [-695¢ {_2-74 1,015 1.458 § 1.47
X
-1 0421
é
2S«3D | 639,3 213.1 { -2¢2€6| -42-01 6.214 26,92 10.299
X
-10°158
e

78



From Table II we find that for a given input energy
the "area” for 2S5 - 3D is much larger tham 25 - 4§

transition. We have,

\

The 18 times larger "area" of 2S - 3D transition
implies a larger angle of rotation of the two photon Bloch
vector defined in Chapter II, A larger "area" results in a
stronger interaction with larger ionisation, Stark shift etc.
In presence of this intensity dependent Stark shift and

ionisation, smooth rotation of a pseudo Bloch vector does not

take place. The single photon polarisability of the incident

pump pulse is given by,

18.464 (111.9)

! !
o (W) = K (w)& + °<2(m)<(u_ . (I11,10)

Due to time dependent transfer of population the

index of the medium changes sharply with time resulting in a
strong self phase modulatiom of the pulse. A phase
modulated pulse looses its self induced transparency effect
and gets absorbed. The effect of strong self phase
modulation was reflected in the experimental results when
the maximum transmission was found at a larger relative

[+]
phase than 90 . From the above discussion it follows that



28 - 3D trasition with a larger "area” is far more complex
than the 2S - 4S transition.

The two photon characteristic length Ez defined in
equation (III.5) for Li 2S - 4S tramsition at 1l torr vapor
pressure was 3.5 em. At the same pressure Ql was 0.75 cm
for 2S - 3D tramsition. With stronger two photon absorption
the generation length is already reduced.

Using the third harmonic polarisation (equation II.14)

£
(1% - _é,' &, & (IT1.11)

in Maxwell”s equation (I1I1.15) we get

2 | izuN e g €
Y 206, 2

By linear integration we find?

" a

S ER AL AR

[

(I11.12)
From eqn III.12, we find that the third harmonic
intensity is proportional to fﬂ% and kﬁ?f: Taking «QZ to be
equal to QL and using the parameter values from Table II

we can write a ratio of third harmonic intensity produced in

the two transitions as follows!:
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\5311(25*45)
————ae——
1651 (383D

PRCEO (12(25-43) Y’
X

N (25—31})\9‘

0. (25-3D) (I11.13)

«~ 1o 1

Assuming éﬁg , E‘ to be the same in both cases and not
considering the iomnisation or the phase mismatch we can see
that 25-3D transition is less efficient by almost a factor of

10 than 2S-4S transition. Experimentally the efficiency was
found to be 1%Z for 25-4S while in 2S5-3D it was ib %o

To see further differences we have to comsider the
photoionisation probabilities in the two cases. For 25 - 48§
transition, the excited 45 state could only be coupled to a P
(Q,=l) state by a single photon dipole allowed transitiocn. 1In
this case the third harmonic level coincides with the same P

level in the continuum. The THG competes with the ionisation,

From the Bloch equation of Chapter IT,

x 2 *
V6 LY g - 2T (G 4 BEE )@]
b R2 ¥z (I1I.14)

We can find that with stronger third harmonic field
- *
the two terms‘?zdzzaud le1(%2|6163<ﬁg)can compete with

each other (see Fig I111,28), 1In case of 2§ - 3D tramsition



£3

the 3D level could be connected either to a P level (L =1) or
to a F level (Q =3) in the continuum. Since only the P level
can be connected to the 2S ground state by allowed dipole
transition, the third harmonic level coincides with the P
level. While the F level cannot contribute to the third
harmonic generation it leads to an independent channel of
jonisation. Ionisation takes place via two channels 3D==>F
and 3D=-->P, whereas third harmonic emission goes via the
single channel 3D-->P-->2S. Obviously this results in a lower
harmonic generation. Coherence is lost due to the enhanced
ionisation rate and:fgwremains small. From the definition of
fonisation rate, equation (II.9) and from Table 11, for the

same input pump intensity we get,

w
b, (25020
B N7 T a2 (III.15)
i / N\
9‘” (25-45)
.
The ionisation rate for 28 - 3D transition is at least
six times larger than 2S ~ 4§ transition.
In conclusion a two photon resonant S-->§ transition is

more efficient than an S=->D tramnsition for THG.
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WAVEMETER
In this section we describe a new interferometric

technique for measuring wavelength of picosecond pulses with
an accuracy better than 0.5 f. The interferometer is shown In
Fig I11.29. The incident beam is divided into two equal parts
by a beam splitter at the input end of the interferometer.
One part goes through a delay arm generated by a 90b prism on
a translation stage, while the other part goes through the
fixed arm. The two parts are combined by another beam
splitter at the output end. There are two outputs for the
interferometer shown in Fig III.29. Each output consists of two
interfering beams. As the optical path delay between the two
beams is changed the output goes from a maxima to a minima at
the interval of >‘/2. The output is seen by a photodiode and
the signal is stored in the computer as a function of phase
and delay. Before we describe the method of measuring A we must
define what we mean by A of a short pulse of finite bandwidth.

The electric field of an input pulse at a given position in

space can be written as

NVEIERACANY

ey = £(5 € + C

I

(I11.16)



e€

Instantaneous carrier frequency of the pulse

= wﬁ-}/‘?
Pts
(I1I.17)
The average frequency of the pulse
] 36 N
Way = W {5 7
(I1I1.18)
Angular brackets denote the time averaging. Following
Ref III.7
s A} 3 el
we have, : 3 .
j(%% ST dt el

<>>;E> = "PO_*M = ~ o =
;:ﬂ_ i inL;AfL

— oty Tl
(ITI.19)
- ) . R TR
where y (Nob o+ ?tt,
E @l): El{} € At
-
(1I11.20)

f[ﬁj= Fourier Transform of the complex amplitude of the pulse.
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The average frequency defined by the equation (IIL.18 and

11I.19) defines the average wavelength of the pulse,

Day = A€ (I11.21)
(Wav)

Relation hetween average wavelength and interferometric

fringe periodicity:

The total electric field of the interfering pulses (at the

output of the {nterferometer) can be written as
w4 Gl 1w(t-'3')+i(?(t-3')
o) = ¢ty ¢ + ELE-T) €

(111,22)

where T = time delay correspondimng to the optical path
delay X.
. X
Tz
(I1I1.23)
Assuming T << the pulse duratiom ﬂ} and assuming slowly
varying amplitude ( £(t) < ¢(t-T)) we can write
Lt i) wT G- TR
E) = glt) e [I + o€ T

(I11.24)

. w kY - T
Cf(t T) %() Cf S (I1I.25)

¢ =

2 [
[ we assunme, %—ti' << So/:f' 1

using equation (III.24) in equation (III.23) we get

™

|

o’
-



Tt L) -’.w’I-i<f"'3‘
TOERIK [t + e ]
(I11.26)

The signal measured by the photodiode is proportional to a

quantity S defined by

S = 5|Eml"‘dt

(III.Z?)
from equation (ILI. 26‘:3. _1853- e (. e{:‘:f.’j'
IE0l" = 2 e fe  te &0
(III.ZS)
« 2\ .
Assuming (?T) KK CfT ,
ST w1 -1 T
. (111.29)
fs me cu = JE‘L*)&t - iﬂ'fi“? ot
L dt
2 - i 7J fE i ]
(grwae L Tar
using definition (III.19) for <€:>, -
. . ]
jgz(t)e 5 dt v ['1_13'(3073 j{ at
- (III.30)
to a first order approximation,
. . ~i 2
1-i3L%7 = e A
(1I11.31)

. 2L
{ (’3'(?> )~ and higher order terms are neglected]

using equation (III.31) imn equation (III.30),
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+00 _;C-j;j- —:T<<é> *B\:'
jgzu)e 4t = € ff dt
(I11.32)
and similarly, . +0
o :{?tr 1:r<ﬁf> J’ 2 c
fghe - e ¢
o et (I1I1.33)

using equations (I11.28),(I11.31),(I11.33) in equation

(I11.27) we get, +ey . - ,;wT-'l(cF}’j' ',w3'+{(‘157‘3')
g:zf;‘AtJr Jil"lt(e +

o - (111.34)
let ol

€ = gﬁ"cl'c

—q
S = 2c¢ [I t+ Cos (“J*((P.VJ)]
(II1.35)

using definition (III.IR)

S = 2€[ 1 + cos WayJ ]

using T =x/c , and }aw' 2R e/ Way

= 2¢€ [1 4 cos 2Tt % 1
S -Ad\l'
(I1I.36)



S is called "interference fringe". To a first order
approximation the periodicity of the interference fringe
determines the average frequency of a pulse. Note that (see
equation III.19) for a symmetric pulse spectrum <(%> = 0. and
we have,

Way= W or Aoy = A

Method of measuring

A simple way to measure Aavis to count fringes of two
different laser beams golng through the same path of the
interferometer as shown in Fig III.29., One of the laser beams
could be a single mode laser of well defined wavelength while the
other is the plcosecond laser pulse under investigationm. Since

the optical path delay x is the same for both of them we can

write,

(111.37)

e = (50
(I11.38)
where N. 1s the number of fringes at wavelength )L.
Knowing A, , N, ,N, we can find }1. Counting a large number
of fringes the counting error could be minimised. Counting
has to be dome by a computer. Suppose

k‘ = ywavelength of a standard single mode He-Ne laser

5 -
6328 A



Ag o= Xiip = (M”'_‘L’ > N e

~J dye

Assuming an error AN in counting we can write

Aiye & (0F ANne-e ) "d*fL
e
He-e
Q
,Adje = the correct dye wavelength.
43% = kdve = Aidg = error in measuring the dye wavelength.
AN = (AN““*E ) X;J
]\'-jug r2 ST (111.39)
rn

When the delay is determined with an accuracy of[}/&Q}of a
wavelength (Ref III.2) AN is approximately 0.03.
@ [~ 2
With N, = 1000 and Adye = 6400 4, 4A=0.2 A (II1.40)
for 6 ps (FWHM) pulses, there are about 3000 fringes within
the FWHM. Counting of 1000 fringes can be quite accurately done
by a computer.

In the above method the error increases with less number of
periods ( for shorter pulses ) and cannot be applied when there
is appreciable pulse to pulse intensity fluctuation.

The following method (of finding Jav) 1s based upon the
construction of a single average fringe. Experimental setup
is the same as before. The delay accurate to(}/&OiZf a
wavelength is determined from the fringe of a single mode He-

Ne laser. A single period of dye fringe is divided into

several phase channels and the data of dye fringe is stored in

respective phase channels (see Ref III.R).
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Phase delay
% =2Tx/) -27n (ITI.41)
where n is an integer, 2= )av '

% i{s determined from zero to 271, x is the absolute
distance determined from the He-Ne fringe. ) is the approximate
dye laser wavelength measured for example by a fairly crude
monochromator with 35 A resolution. Maximum distance X, = N A
where N = number of periods for averaging.

For example, 1f zero to 27T phase is divided into 25 phase
intervals the data of N periods will be distributed im 25 phase
channels and an average fringe can be constructed.l The accuracy
of averaging is determined by the accuracy of the determination
of A . An average fringe calculated with a wrong wavelength
will deviate from the pure cosine function shown in equation
(I11.26). TFrom the deviation and "trial and error” fitting, A

Q
can be determined with an accuracy up to 0.2 A.

Error Estimate

53

Following Fig II1.30 an average fringe fringe can be written

as N
\ cos { X 'r‘,} >\) _%_7.1‘
330 (111.42)

where N+1

#

the total periods for averaging
Ab = the correct wavelength

A = the trial wavelength
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If A= As F(x) = cos( 270 x/o)
1f )+ As F(x) will deviate from the cosine function and

from the deviation > - )g) can be measured.

Suppose A = >- + S}
§A
oe [ 2T 2n
FOO = () ch( +3 5 )

(II1.43)
Suppose X = 2T x/ ), and a = 2T %;
N o
— _ | U ca-
F() = (NF1) Zc"s(* *d ) (111.44)
3°°
Deviation error ERR (x ,N,a) is given Dby,
ERR (X, Nsa) = F) ~cos (1) rir.e5)

ERR (x ,N,a) is a nonlinear function of x LN and a.

From equation (III.44) and (111.45),

' - =N oc v oS | &
rR (XN, &) = W)c_ s+ (NH) {cosx (Z ; )

N ’
- Simx (ZS:*"‘J‘l ) } (111.46)
J.‘-l

with Na << 1 , cos(ja) €1 and sin(ja) = ja
we have,

ERR(x ,N,a) = -(aN/2) sin (x ) (I11.47)
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for S =0.2 A, A= 6700 A and N = 501
-4
a = 1.87 X 10 and aN = 0.09}with all these the
above approximation ( Na << 1 ) 1is valid.

If $) is replaced by - E) , ERR(x ,N,a) shifts its phase
by 71U . From the sign of the error we know whether we are above
or below the correct wavelength. Fig ITI1.31 shows a pure cosine
function., Fig III.32 shows that the error function ERR(x ,N,a)
i4s a sine function. In this case, we have assumed SA/) =0.5 X
f? and N = 500. This corresponds to an error of about 0.35 ; in
/X = 6700 ;. As we approach the correct wavelength (S} -> 0) the
error function becomes a straight line. The amplitude of the
error function gives the magnitude of g% and phase of the error

fuction gives the sign of g) .

Second harmonic fringe S2 is given by,

S, < g\Ei(t}‘l?‘*‘f

- ol

(II1.48)

where E{(t) is defined in equation (II1.24). VNear zero

delay we have (Ref III1.8)
S2 = cos xf+ 0.25 cos{2 x') (111.49)

Fig II1.33 shows a pure second harmonic fringe given by
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equation III.49. F¥ig IIL1.34 shows the error function for

‘% = 0.5 X o' and N = 500 periods. The error is more
pronounced in the case of second harmonic fringe. This implies a
better determination of 5).

For a picosecond pulse Fabry-Perot interferometer would
require mirror spacing as close as 1 to 2 mm which results in
broad transmission peaks. A very high finesse { mirrors with
high reflectivity = .99 ) is required for good resolution (1 K).
For a weak intensity pulse this is not particularly sultable.

Oon the other hand the interferometric method used here is
based on averaging and it can be applied to moderately

filuctuating pulse trains.

(__“r
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CHAPTER 1V

HARMONIC GENERATION IN FOUR-PHOTON

RESONANT COHERENT INTERACTION

In this chapter we present a theory of harmonic
generation in a four photon resonant coherent interaction. We
have already seen examples where third harmonic generation is
enhanced due to an intermediate two photon resonance. Higher
harmonics are gemerated through higher order processes. Higher
order susceptibility can be enhanced whenever there is an
{ntermediate resonance., We will be dicussing the nonlinear
jnteraction in atomic vapor,where due to inversion symmetry
only odd harmonics are generated. Two photon resonant fifth
harmonic generation of dye Jaser radiation in Na vapor has
been reported by Dinev et al.,1980.i A ten fold enhancement of
the f1ifth harmonic signal was observed as the laser was tuned
through the 3s-3s5s two photon resonance 1in Na. Saturation of
the conversion was observed for pump intensities higher than
lg Watt/cﬁ% For higher harmonic generation a higher order
resonance should be preferred over the lower order one. A
higher order resonance will have less multiphoton absorption
" 1oss for pump wave. The saturation can be avoided by coherent

(as opposed to incoherent)interaction. Third harmonic
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generation in four photon resonant Hg atom has been observed
by Arlee V.Smith,1985;land by Normand et al.,1983ﬁ Third
harmonic signal was peaked as the input laser wavelength was
tuned through élgrélpz resonance of Hg vapor, Although there
was not any real level at the third harmonic frequency of the
incident laser,the genereated third harmonic wavelength was
exactly one third the wavelength of the input pump wave., In
this case the VUV emission is due to four photon resomnant six
wave mixing as shown in FigIV.l. A red shift of the singlet
61D2 level was observed in the experiment mentioned above. This
red shift increased with intensity. This intensity dependent
Stark shift is a very special effect in multiphoton
interaction. Besides the dynamic Stark shift there will be
resonant multiphoton ionisation - the most important limiting
factor in higher harmonic generation., In the experiments of
four photon resonant (FPR) third harmonic generation (THG) in
Hg vapor the ionisation rate was found to be rather low., 4
steady state situation prevailed since nanosecond (ns) pulses
were used in ail the experiments mentioned above.

Here we are interested 1in studying the resonant wave
mixing processes with pulses much shorter than the atomic
relaxation times. In presence of coherent interaction a
definite phase relationship exists between the induced
polarisation and the inducing field. This allows control over

absorption, phase matching etc. for optimum harmoniec



generation as we have seen 1in the examples of Chapter III.

The higher harmonic susceptibility diverges in the presence of
intermediate resonance and accurate expression of third
harmonic polarisation can only be found by a complete solution
of Schroedinger equation. From the solution of Schroedinger
equation space-time dependent expression of f{nduced
polarisations at various harmonics (of the incident field
frequency) can be obtained. These polarisations will be the
source terms in Maxwell”s equation generating flelds at
various harmonics. Simultaneous solutions of Schroedinger and
Maxwell”s equations describe the harmonic generation
processes. In this chapter a complete theory is developed to
describe the harmonic generation process In a FPR medium using

Schroedinger and Maxwell”s equations.
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Derivation of Four Photon Resonant

Fquations

An incident laser pulse i{s assumed to be FPR between
the ground state and an upper excited state of a multilevel
atom. Transitions involving all other levels are assumed to
be off- rescnant with the incident 1light. In Flg.IV.2 all
off-resonant levels including ionisation continuum are
represented by {t}. I1> is the ground state, I2> is the
excited state coupled to the ground state with four photons
from the incident laser pulse. For coherent interaction the
pulse duration has to be much less than the population and
phase relaxation times, as well as the inverse detunings.
Doppler broadening can be neglected in most cases when we deal
with pulses of few picosecond (or less) duration. Doppler
broadening can be handled by proper doppler averaging whenever

it is needed.

Suppose:

[

input pulse width

=

population relaxation time



T

Pressure induced phase relaxation time

n

I

Inverse doppler width

we assume,

*

Z;U@,“E,T[ <(IV.1)

The linewidth of a resonant coherent excitation

is determined only by the pulse bandwidth. The detuning and the

pulse bandwidth determines the resonance condition.

Suppose:

ZEUJP = input pulse bandwidth

- Ha
éﬁéﬁ)-&%l—ruu = n-photon detuning of the ﬂ

level.
where,

th
UJ“ 1s the resonance frequency of the ﬂ excited

state from the ground state.



Wa ASTame
| (04, 4wl £ 4 awy ~(1v.2)
and !(“Ml'n“ﬁé >> 1 for Q% 1,2 -(IV.3)

n{Q W n=1,2,3,.......
When equation (IV.3) is satisfied we can apply the
"Adiabatic Following” approximation to all off-resonant levels
to convert the problem of many level atom into a problem of an
equivalent twe level atom. In this way we derive the four
photon “Bloch Equation“? For the “"free" levels in the
continuum there seems to be a problem with the condition of
equation (IV.3). But as explained by Georges A,T. in his
Ph,D. thesis,5 the effect of the coupling with the
continuum can be treated as a weak perturbation since bound-~
free dipole matrix elements are much smaller than bound-bound
matrix elements, In this derivation the electromagnetic field
of the laser is treated classically by the Maxweel”s equation
while the atom is treated quantum mechanically by the density
matrix equations. The density matrix operator FD describes
the state of the atom. The relaxation terms involving T, and
TZ can be incorporated pheuomenologically Into the density
matrix equations., When equation (IV.,1) 1is satisfied, the
phase-coherent density matrix operator fg {(of a single atom)

satisfies the following equation:




|
|

oo/
™17
i
bal (e
| RO
L0
T

B —(1V.4)

Where
H is the total Hamiltonian of a single atom,

Under dipole approximation we have
~ =
H= H, - M E
-(1v.5)

Where
H is the Hamiltonian of a single unperturbed

atem.,

The dipole moment operator of the

—
-
= er =

atom.

= -1,6 X 10 Coul,)

Electronic charge (e

e =

Due to FPR between levels I1> and I2> we have:

Fo o

-(1v.6)



E{z,t) is the total electric field of the incident

and generated wave,

i Wt~ikz 13(wWt-kz)
E = E(z,t) = E](z,t) e + E%(z,t) e

15(u)t-kz)

+ E (z,t) e + c¢.c. -(IV.7)
5

E(z,t) is assumed to be a Plane wave propagating

A
along z.

i %Fz,t)

Ei(z,t) = iE;(z’t)‘ e ~(IV.8)

1=1,3,5.

Where

%?(z,t) = space-time dependent phase function
L

th
of the 1 harmonic field.

1 =1 corresponds to the first harmonic
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field and so on.

Prom equation (IV.4) we get the equation of motion

for the elements of the density matrix:

A8 - (1088 AT

EB_%: = -1 F [JZ(/(‘LR &J "/Qlj fj’v)] -(1V.10)

\5__@ - 1 E [Z(ﬂj,ﬂ)j " /L‘J fi )] -(1v.11)

and io general,

}_@} =1 wth.ﬁu_ - LFE [ZU«JL %‘ ) /‘Lh‘j (‘i)] -(IV.12)
2t i



N &

Zi signifies the summation over the discrete states and
] :

integration over the continuum.



Adiabatic Approximation for the off-resonant

density matrix elements

For the off-resonant density matrix we may write

cnwk

400
ni,t) €
/OM - z ‘{‘ZL( ot) -(1v.13)

Nz-a0

éat(ﬂUJbt) is the slowly varying Fourier amplitude of

gﬁ

To demonstrate the i1dea of adiabatic approximation
we consider the contribution only from the first harmonic
field. A generalisation to include the effect of all the

harmonic fields is straightforward.

The electric field at the position of the atom

(neglecting the higher harmonic fields) is given by,



ne

Wt
E(r) = ¢ (¢) e + C.C. -(IV.14)

Using equation (Iv.13) and (IV.14) in equation (IV.12)

we get ,

S, 1 :
2—1__“‘() +oL(nw - Wer) S )

M ET- C(n+)
3 (“J )

:-L[Z(/‘ﬁfé (FJ-L“") + ——
d

“Z (/“;JE ( (n-1) 4 __%___ (“*') ]
J —{1v-15)

where

(R‘g‘) = (K(Lﬂwgt)
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Ve defineJ M |E|
-D-je. = —-i%—-‘- -(1v-16)

}%L(n) + : (-nw_u)“,_) 4.“&“)
L(n-b)g)'

Z[ﬂ  (P) —_ﬂ_hjajl(\")]e

~(1V17)

where Einstein”s summation convention is implied over the repeated

indices.

1(n - Wiglt

Multiplying both sides of Equ(IV.17) by e we get,

((nw - Wt
2 [ £ ]
LU‘P)?

( (p) - &5, ()
Z [-n- D—k P ] Linw - wWer)t

P=n-i, e
T
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intregating both sides and using the initial conditions

4‘ (L-,:O) = 1.

and Q/M‘ (oW ,0)-0 for k, L #1

we get,
S O t
a4, Mt . () - {1 .60’))
= ) € - Z j{(ﬂﬁ(‘ﬁ() ot
b:ﬂ—'t
Ny
. ei:(ﬂ-P)‘f,x L St e }dt"
Ay (M) = MW - Wee - (1v.18)
Integration by parts gives -
&, )
L, nE

) (e Z [y - Ly Qgtu)]x

;. A(_k_m) p-n-t,n+

(n)\:‘

(-2, + LA At ’5“’) Y
e ' + : € >t
T A e

— (1v.19)



in equation (IV.19)

Ln-P)G,

ES(P) - [:qultfai(P) - *flﬁj §E£Lp)-i] €

P
6ij(p) i E.

n
S(p) goes like El

El

e

for

>0 .
St

(g

or Y W™ e
St T
ﬂ
1f Q) » =
P
tf
f
143&(!1) 5S }.Auén)t
then e in — € dt’
ot

p=n~-1l,n+l

where ?:f pulse duration

will oscillate many

before NBS changes significantly. Under this situation

St

19

.20)

times

the



integral will average to zero.

Using l—=éﬁhjp from eqns (IV.21) we get,

Tp
Qg (n) >> 0 AWy

A, (")
or, Le. 5> 1 -(IV.22)

i Q4 {“)p

Eqn(IV.22) says that the n-photon detuning of the transition
between {é*>k 1s much larger than the line-width of n-

photon resonance between the levels. Under this off-resonant
condition expressed by eqn(IV,22) ,the integral in the left

hand side of Eqn{IV.19) can be neglected ,and we get,

S &)
: N
[ o ~ - Ln-p)?
= [ﬂﬂ <{“j‘ {p) - ‘J)—P.'\ qt_/\,‘_.) ;
(‘nuj _wah) b"r\-i LR
ENETIEES

Equ (IV.23) gives the adiabetically approximated

th
n fourier component of the off resonant density matrix

element ﬁ:‘l .
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Uoder similar off-resonant approximation with the
third and fifth harmonic field a straightforward -

generalisation of Eqn(IV.23) will give,

St M
(RS,
' L -R
o T [0 - 2]
b\:ﬂ-\,nﬂ
B
o TR - s e
P?,:T\-'B PRAL ]
L (n-R) &
b TR

< ()€
- %, ) [ S - g‘ij o]

PS: n-s Jn+5

—(Iv-zh)
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where,

Jt T
T TR
g. _ /(“_\{ \ES\
st £
-(IV.25)
1
,([k(n) T (nw - wgk)
-(IV.26)

Fig(1v.3) shows the various terms of Eqn(IV.24) for
n=3 ., Fig(IV.3a) shows the density matrix element 61&3) for the
transition between levels { and kR . Pig (IV.3b) to Fig(IV.3g)
show the generation of 6;[60 through second order scaterring

proecesses assisted by the lst ,third and fifth harmonic



fields. Each of the generated terms can be further expanded in
the same ways either through similar diagrams or analytically
using Equ{IV.24). A demonstration of analytical expansion is
given in appendix A. It will be shown in later sectioms that

in order to generate equations containing fourth power of E in
a FPR system an expansion up to third power of the electric
field will be needed for all off-resonant matrix elements.

This expansion 1s equivalent to a perturbation expansion of the
off-resonant density matrix elements. In the derivation of

the atomic Eqns and polarisations shown in later sections both

the analytical and diagramatical methods were used.
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Derivation of Four-photon resomant Bloch-Egqn using

Adiabatic Approximation

Under four—-photon resonance between levels I1> and 12>,
[”z\ﬁ;4u)

the resonant density matrix can be written as:

tqwt
ﬁz; 0/"-(‘:) eL

-(1Iv.27)

Using Eqn(IV.13) 4in Eqn{IV.9) we get:
3 g | (4w W) S
o L (4-R)G,

14-R)

= () Z [:ﬂu{*e(\o‘) } ﬂ‘t(tztp‘)] ¢

=35 (4-R) S,

@ 6/'LP‘)i} é-]4 ¥5\
P 3
e ¥ LRS- R
R ¢ (4- !%)@3

14~ T4-Ps|
I I RACERE S

b= =123 ~ _(1\/.2.?)
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where Jlﬂk’ ez , gtz are defined in Eqn(IV.25).

d‘t and é{z in Equ(IV.28) can be eliminated by using adiabatic

approxition Eqn{IV.24). Expansion of 611 and &, up to
third power of the field will generate an equation of Gﬁ,
containing fourth power im the field. At the final step of the
expansion all off-resonant scattering has been expressed

through ~ the FPR interaction. The final form of Equation of

motion of df{

\¥é'+it4w—wm'gw)6k T (%jjh)gk
2t 2

-(1V.29)
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Definition of various terms in equation of motiom

(J,, =zero-field resonance frequency of I1>&312> transition.
SQJ = laser induced Stark shift of I1>é&2>12> transition.

The Stark shift is determined by the the real part of

polarizability of the resonant levels and intensity of the

{ncident and generated fields.

fo . 3 [ - 0 TIEE

e <) ] 161"

L [0 HCRBR
[

-(Iv.30)

th
where, c{.(nuj) = Polarisability of } level at
4

frequency nw is,
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/ |

o (aw) =L (aw) - 1K, (awW) -(1v.31)
J J J
(0} "
L (w) = K. (w) + & (W) -(1v.32)
J J J
i=1,2

(> \/*e 2 VAT
0((') (W) = —-,1&- Z[(MEJ _w) t (le +w _J ~(Iv.33)
Q
y=1 > 2

Q N \: /‘5‘5 Mire /t(t».a /[(EJ

A= g | g o ) (-9
’ 2-
g Paw Fee 8 &
. 2
(wz{jwd) (wkj 2w) (Ngé*w) k
-(1V.34)
) =12
o<' (w) = Intensity dependent polarisability of level
I1> and 12> at the first harmonic frequemcy (O . From ©

equations (IV.30),(IV.32),(IV.33),(IV.34) it follows that cii(w)
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gives the intensity dependent quadratic Stark shift where as
()
cK- {w) gives the intensity square dependent quartic Stark

)

shift.

| alith \ Mg l®
djcw) = 2;[ S L

(Wej + 1)
~-(IV.35)

n=3,5 j=1,2

We have neglected the intensity dependent polarisability for
the third and fifth harmonic field, because, to a good
approximation the peak field intensity of the higher harmonic
fields are much smaller. The intensity dependent Stark shift
changes as the intensity of the interacting field changes
across the pulse. As a result, the detuning of the four

photon interaction changes dynamically across the pulse.

4‘” - QJLI"8}02|= The net time dependent detuning.

4w -W3z = The zero field detuning.

For a given zero field detuning, an atom will come in
and out of resonance as the pulse passes by. As we have seen
in the two-photon resomance case, Stark shift could be as big
as several pulse bandwidth. In this way laser induced Stark

shift broadens the width of multiphoton resonance.



132

\?| = ‘Qi = Single photon ionisation rate from the

ground state by the fifth harmonic fileld.

\le - 2 :’(5“’) Ak

t ~(IV.36)

\Ql’“ Total ilonisation rate from level 12>

2

N 3w 3w
Ql. \?z ¥ Q:L T \)1 +\}’~ ~(1v.37)

N
‘91 = Single photon iomisation rate from level 12>, by

the first harmonic field.

= O 2
92, - % °(2‘ (W) 1¢€,1 -(1v.38)

W
\?L = Two photon ionisation rate from level IZ> by the

first harmonic field.

203 QR

\?z - .%R-O(z (W) &, 12 ~(IV.39)



3
?z, = Single photon ionization rate from level I2> by

third harmonic fleld.

3w " 2
Y):w, = -ZE- L, (3w) \ €, ~(1V.40)
SL

\2?- = Single photon ionizatiorn rate from level I2> by the

fifth harmonic field.

Sw H

2
\?z - __7-‘%‘_ D(,\LS“J) | &) -(IV.41)

Ionization is an incoherent loss mechanism, leading to a
shrinkage of the "pseudo polarisation vector™ through a

reduction of d’fm .

The four photon tramsition matrix element ’(‘.1_ is given by

/“-lj. /L(fk )'Llu_ /L{!Z. _

] (wer-30) (W - 2W) (w5 -w)

Yy

-(1V.42)
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where Einstein”s summation convention is implied.

{h_(E:f is the Rabi rate for FPR transitionm.
B

Mq M Mot Aa
%m’ (Wy, -3w) T Weat3w) -(1V.43)

1? is the coefficient of the resonant Raman pumping term
2.
in presence of the third harmonic field. Later on we will see

that {s the coefficient of FPR third harmonic generation.
24

a.g = -/L‘-z.g./cf-&k_/ku/l’tu X

[ (303\— Wy ) (2 w - W) (Bw- W)

\

' (w - W) ("‘*"“”R‘) (‘*’"w“)

T QSM‘_®§‘) (?_w-u)m) (w-wer) :}
— (Iv. 44)
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aﬁ is the coefficient of a higher order Raman

scattering produced by the first and third harmonic fields.

/kzt)Lll n /qu‘/{tl

Su T e Tse) (Wg, + 59)

~{1V.45)

Cg = - /(ng /‘L}K./L('kl Mo x

;
[ (w_uju) (Sw -w;\) (6w =)

+ ! ]
(sw- th) (6w -u)k\) (Sw -wgn)

._(1\/.4(.)

f;m = The coefficient of Raman scattering with the first
and fifth harmonic field. Later on we will see that f;u is the
coupling coefficient of the FPR fifth harmonic generatlon.

CS = The coefficient of a higher order scattering for

first and fifth harmonic fields.,
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ds = ~ /41-2.5. /{‘Lfk /"‘Lk.l./"t!l X

\ 4 e
[(w-wu ) (Fw -w ) (Cw- thl) {w-wg.)(?w— w;_l) (zw-wh;)

l | \
(5N 'W(\) (‘11_1) -UJ{.‘) (gw-wm) M (SN - w{\) ('3ud -wh) (Gw - who

T Lw-wlt) <3w_w5l) (Gw—whl) ] ~ (Iv-4'7')

CLS = Coefficient of the multiwave scattering term.
Note that in the equation of d:z we have kept the
term up to fourth power in E , where as only up to first power
of Eq and ES are kept. This is a good approximation when E3

and E_. are the generated fields having intensities much weaker

5
than the fundamental field E,. The meaning of the various
terms becomes clear when we draw pictures for each processes.
Fig.(IV.4) shows the various terms. From Fig.(1V.4) we can
see that drawing plctures for each scatt;ring process and

using the resonant denominators we can generate each of the

terms of equation of dﬁL' In a similar way equation of motiocn
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of 62 aad P., were found. With,
Q/zg - ﬁz and <{u = r?t -(IV.48)
where 6:1 and Cﬁ: are the probabilities of population of

level I2> and I1)> respectively. We have,

:56;1 \2 <
S T

—ii Rl “Ea
- (1v-49)
C{\\ (ll - -
?_( N )-—Qz(u— Q‘d‘l‘ - (1\;-50)

2t

equation (IV.50) is the conservation equation for
population.

Four Photon Bloch Equation

By eliminating all the off resonant density matrix
elements using the adiabatic following approximation we have
already converted the many level atom into a two level atom
represented by a 2 X 2 density matrix containing only the

regsonant terms.



141

The 2 X 2 density matrix is given by,

1 dwt
& & €
P - t
G
- (1v-5")
+ "
fo 'P implies /olz__ = Fu
or o/1L ) (21* _ (Iv.sz)

Introducing the relaxation terms T, , T,

phenomenclogically, in the equation for 47\’ 6/23..’ {u y We get ,

}it‘% bl (dw- wu -aW) &y T (9'192 + *':,.;)oﬂ
35

- (G- &) [m (-ﬁ-)ﬁ i {iﬁ“&_ﬁa\;ﬂl}{é@

* * * 2 *
+ {g:u + CS lgl‘lj §___E_5 +. i‘l_"_s_ El 8553 ]

— (Iu«SB)
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—(1v.54)

b(é.i-{u) _ 9(_?(
—_ = - ¥Yz9dn 1S4
St —_ (IV"SS)
The system of equations (IV.53) to (IV.55) are the four
photon Bloch Equations (in analogy with the Bloch Equations in
magnetic spin resonance). The two states of the equivalent
two level system are connected resonantly by four photons of
the incident pulse. The effect of all other levels come
through the generation of higher harmonics, through various
scattering processes, ionisation and level shifts., Solution
of the above four photon Bloch equations will give the density

matrix ]Oas a function of the electric flelds.
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Calculation of Polarisation ian the

Four Photon Resonant Medium

The calculation of the induced polarisations at
various harmonics, up to third power in the applied
(fundamental) electric field will be given below.

The dipole moment induced in the atom is given by,

P e T (PR
-{IV.56)

Z{:;k /‘tu
™ - (_IV-S?-)

or

B’
1

:ﬂwt

using @K = Z(ER(“) <

n=ty - mwk
F - Z <{tk () /‘*—\u ¢ ~ (v 5‘8)
t:k)n:"’o
oY, s 160 imwk
™ ! e + 4.3 R
P B Z ({’.R(n)/tk!' ok, N= i

LR,N = -2
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oY,
n =0 R MWt n=re nwlk
e —~
b = Z"/“‘M My N ZQ/&(Y\) i, e
é,\‘t;’“"l !3R)n2|
~-(1v-59)
using,
N 4
et p sad PR
we have,
*
S ln) = e ) ~(1V.60)
* Ak
and M= t -(1v.61)

R ﬁ * o s  —imuwlk . ;ﬂwt]
D IR AUVEVICIRNP ARV

LR, n=y

The dummy summationm index ﬂ_and k are interchanged in

the first term.
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0 R cNwk
v Z [({k(n) M, € + C.C-] -(1V.62)

E,k)'ﬂ:l

we can also write,
. . tnwt
b o= Z [ Gbﬂ € + ¢.C ] -(1V.63)
7

from equations (IV.62) and (IV.63) we can write,

- Z Sen (n) /‘zk{

LR -(IV.64)

reell

using /{42= /ﬂu= 0 we arrive at the following

expression

P - Z [l koo + & ) A+ Gt fo

LEvoz ‘
b &, M /'LZLJ + Z(u}“) s

LE12

V2
R+ -(1V.65)
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with n=1,3,5 we get the amplitude of the first, third
and fifth harmonic dipocle mcment amplitude. ¢ﬁ1(ﬂ)etc. are to
be expanded by adiabatic approximation up to the third power
of the fundamental field 6‘ . Using repeated adiabatic
approximation {(equation (IV.24)), we get expressions for
6? ’ G% ’ 63 . The procedure is the .same as that used to

derive the equations of motion for dft and 22"

The polarisation G? is,

' oy Q)
@, ={(0<Lf)tu) +.2o;,)bﬂ])of. F (el () + z«le))(u_iSl
\’ a IE.Ii) S 6L
+ 4ﬂk(§L) &z T (%’2'*‘__3 2 C3
13

* *2.. * *
+(§: + G ‘5'_'2)556.: 3% 68 &+ 2ds 685
TR TR TR K

rIv. GC)

()
N The intensity dependent polarisabilities U{.(h)) and
Qo
dz(ul) will give rise to a strong phase modulation in the

pulse.

*.3
4 Y;Q,(%. ) &2_ is the first harmonic dipecle moment

created by the FPR transition. The four terms are generated



12>

i1

@)

i)

\V

)

Fla W- 5

1%

1

12> l

1y j

)

147



148

by proper permutations of the emission process as

illustratraed in Fig(IV.5).

(?’m 3 \£ ])a’z& are terms showing flow of emergy from the
k3

fundamental to the third harmonic frequency.

2
Cs \E
(921+- 3%1" ) gif& are terms showing flow of energy from the
R

fundamental to the fifth harmonic frequency.

_ /(-;/"tgk /l(‘M /'LQ'
R OO YO RUTEEDS

(v 67F)
0(3 gives the off resomant third harmonic
susceptibility .
¥
2-6_&5; EI E?, E':) {‘l is a term representing the FPR wave~mixing
process.

Similarly we write the amplitude of the third harmonic

polarisation,
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["(; (w) &, + %z (3w) 0’21] 53

+ [§l+aaw\2]s:<z N NP7

3

P B g,

1% -(IV.68)

The third harmonic generation takes places
through the FPR harmonic generation, stimulated Raman

process, wave mixing and the off-resonant processes.

%
%:u EI ‘{;L is the dominant FPR third harmonic generation

term

3
%iégléa i1s the off resomant third harmonic generation
term. These two competing processes are illustrated in Fig(IV.6).

We will see later how the off resonant and on resonant
terms compete with each other and add to 6% with different
phases. One important difference between the two terms lie
in different absorption losses, The off resonant generation

process does not have any multiphoton absorption loss.

Fig(IV.7) describes the higher order resonant mixing

term given by (aljggz') Er:;.,
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The last term in Gg describes the resonant mixing

process with fifth harmonic field.

Similarly the amplitude of the fifth harmonie

polarisation is given by,

R = [&‘st) Su + o (Bw) (:.z.]ES

+ [gzl T f-'. Té

-{1v.69)

Finally the polarisation at the first, third and fifth harmoniec

fields are given by,

N N Twk-1KZ
R = N@@:t) = + c.C
—_ L 3{wk-Kk2Z)
5 -NRREy e + CcC
3
= 15wt -KkZ)
{55 - N @(z,t) e <+ c.C.

- (w.‘;.o)
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where 6? ,G%, 6% are given in equations (IV.63),(IV.65) and

(IV.66).

Maxwell-~-Bloch Equation for Four Photon

Resonant System

From equation (II.15) in Chapter II we have Maxwell“s

equation in SVEA and written in reduced time frame,

dm = 1 W N ®, -(1v.71)
DZ 2CE&,
m=1,3,5

From the solution of four photon Bloch equations
(described by equations (IV.53) to (IV.55)) with given
lncident fields, we get the density matrix at a certainm point
in space as a functicn of time. From the density matrix we
calculate the induced polarisatiouns using equations (IV.65) to
(IV.69). These polarisations become the source term in the
Maxwell“s equation given by equation (IV.71). The solutionm of
Maxwell“s equation will give the fields at the mext point in
space. Simultaneous solutionm of Maxwell-Bloch equation will
generate fields at all space time points.

The above formalism described im this chapter gives the

complete picture of a FPR system under coherent excitation.



154

The multilevel FPR system is converted into an equivalent two
level system. This gives an unique opportunity to uunderstaad
the complicated multiphoton process by a simple two level
system. The dynamic Stark shift and iomnisationr have appeared
automatically in the formalism. Finaly the explicit
expression of the polarisation will provide all important and
interesting harmonic gemeration processes that could occur in
such complicated system.

From the self consistent Maxwell-Bloch equation we can
derive an energy conservation equation. As the light pulses at
PORPREAVN and 5w propagate through the medium, their energies
are distributed in various processes. Dﬁe to multiphoton
absorption and ionisation part of the electromagnetic emergy
will be left in the aton.

The electromagnetic energy demsity,

U = U(1) # U{(3) + U(5) ~-{(IV.72)

th
U(1) = energy density in the i harmonic field

& o)
2
U(1) = 2¢¢, | 1&\ 4t -(1v.73)
“ o0
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¥ 00
0. zec, g(\a\’w 16174 161Y) dt xv.7ay
& 2 \Es)?
AU _ zce, y(gzl %2\53\ b2 5| ) 4t
dz
- ~(1V.75)
From Maxwell”s equation (IV.71),
AU mwn g {E: &
32- - Cén
-{IV.76)

m=1,3,5
From equations (IV.75) and (IV.76), using expressions (equations
(Iv.66) to (IV.70)) for the polarisations, and four photon
Bloch equatioms (equations (IV.53) to (IV.55)) we get the

following energy conservation equations,

dV = _Npw [’-Mz(%) t 4(-?‘1/_&’: dt

Z

2w

400 . u
+ ((5\)?(\, +59&(u~ + 6‘22(:&

Sw
FT Y G t O (‘L)dt]

~(IV.-77)
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Equation (IV.77) states that the energy lost by the
field is partly stored by the atom due to resomant absorption,
partly lost to an intermediate level due to relaxation, or has
been used to ionise the atom.

4 b w d&l(FQ)= Energy left in the upper level of the FPR
atom,

o
‘“‘TW f-o—/_;‘-:i‘ dt = Energy lost due to relaxation to an

\

-o0

intermediate level.

*oa w 2w
kl}J J(s 9?m<§11 + 5 91 (22. + ¢ Qz {22 S
oo 1+ ¥ §2n531 T 9 92 S2a ) dt

= The energy used to ionise the atom. The
coefficients 5,6,7,9 reflect the number of photons needed to
feach the final state in the iounisation continuum., In a
coherent excitation the major loss will be due to FPR

absorption and lonisation.
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Four Photon Vector Model

To demonstrate the four photon analogue of single photon
é .
vector model first developed by Feynmann et al. we make the

following simplifying assumptions:

1. No iomisation
2. No harmonic generation
3. No Stark shift

4, Square pulse excitation

Under the above four assumptions the four photon

Bloch equations become:

L1
N?fi} = LS -6 {¥,E= —(1v-38)
n b Fa
~ Y Z, ;
fjbdt.:: - < Y. T_LL —, Sy ,\ - (v a)
> (5.F :s’-‘.) =0 ~ (1v-8°)
Y



We have also assumed that the pulse duratiomn is
shorter tham the Tt and T, . Let us assume that the square
pulse has a real amplitude E . The four phaton Bloch equation

becomes:

)

4
3 (%) - (41-6\-)1‘&_5_

R h ~(1V.81)
\ 4

Y (G-ai) = -4 Lo o

ot ) ) ~(1V.82)

From equation (IV.81) with a real amplitude & , &, is

imaginary.

_(1;
1
-

T

-(IV.83)

we define, q
S
n . 2%z -(1V.84)




185G

/ &a. - :
 (2) s (=22
e L = -(1V.85)
&:
> (t{;:‘tfn\ - _f,__(——";
= s N
T
-(1IV.86)
We define |
W = Su-% -(1v.87)
2,
Q - Sa ~(1V.88)
L
RN A A
R =we + Q¢ -(1IV.89)
RN A
L= {L g -(1V.90)
;] ,;1 ,;3 span a three dimemsional orthogonal pseudo space.

With the above definition, equations (IV.85,IV.86) can be

-

described by the equation of motion of a rotating vector R

—

under the influence of a torque L,

4R
dt

—
LN
o

A

~

L



€

AN
S0 {p®
2
[\ ’//"

>

M

M



161

-
R is called the "four photon Bloch vector”. The
Fa) A A
o

—
rotation of R in the pseudospace spanned by &, , €,

describes four photon equation of motion of the density matrix

elements (eqn. IV.81, IV.82).

—
Fig.(IV.9) shows the motiom of the vector R im the

-—
pseudo space. At time t=0 , 61;{=0, (22=0, Q/,\=1,and R=- %\] .
2,
—_
With time as the atom interacts with the incident pulse)R
rotates, «,, and &'z grows with time.
t
tI
The angle of rotation 903) = nd
o
t
. o { 4
or, Bty = ﬂ—_f-_; 1] £, 4t
F4 7 - (1\)“@2.)
0
we can define the four photon area of the pulse
40
4
04 = 2 ( e dt
- jL - (w0

where ‘QQ\ has been defined in equation IV.42.



when 6% = TT,we get the complete population inversion
corresponding to W= 1/2. From the four Photon vector model we
can see that the absorption 1s determined by the four photon
area of the pulse. The four photon ares depends on the exact
intensity profile of the pulse. For the Same energy we will
have more four photon absorption with shorter pulse duration,
When we include ionisation, the length of four photon Bloch
vector i will shrink in time. The fonisation will lead
to a dephasing effect, Due to the dephasing, the vector
component along él will average to zero leaving a

A

Pseudovector along —61 . Coherent effects are inhibited

because of the ionisation rate making cﬁQ——% G.




Summary of Four Photon Theory

To conclude this chapter we make the following comments
about the FPR system, A FPR many level system can be reduced
to an equivalent two level system described by a 2 X 2
resonant density matrix F - The four photon Bloch equations
(IV.53) to (IV.55) describe  as a function of time and
field strengths. These equations result from an expansion up
to fourth power in the electric field. With intensity and
intensity square dependent ionisation, quadratic and quartic
Stark shifts, harmonic generation, the interaction becomes
extremely complex. A simple minded vector model drawn in
analogy with two photon vector model in absence of
lonisation, harmonic generation and Stark shift 1is no longer
a true picture of a real atom. The entire four photon
process 1is stroungly intensity dependent. The four photon
“area”™ of the pulse 1s defined as the integral of the square
of the power density., From equation (IV.93) the four photon

"area" is given by:

~-(1v.04)

-'rD‘l)Lf L
6y SE *

-

The four photon "area” should be compared with the two
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The four photon "area” should be compared with the two

photon "area™ described in Chapter II:
o

5, { ¢*at

— o

-(1Iv.96)
Two photon "area" is determined by the total energy
of the pulse. Since the pulse energy is proportional to the
net absorption for the same pulse energy two photon
absorption is independent of the pulse duration while four
photon absorption increases with decreasing pulse duration.
As the four photon absorption demands larger power density
the intensity dependent level shift and ionisation become
overwhelming and four photon coherent condition ceases. Due
to the intensity dependent Stark shift the resonance
condition will change as a functionm of intensity and the
pulse will not remain tuned to resonance over the complete
pulse duration. For most practical cases a relatively low
intensity required for two photon absorption keeps both
ionisation and the Stark shift low. A two photon coherence
is maintained more easily. Besides ionisation and Stark shift
all kinds of higher order Raman processes tend to enhance the
complexity inm a FPR system. A situation like coherent
lossless propagation canm hardly be expected. The multiphoton
lonisation will inhibit the four photon Bloch oscillation

(the oscillation of &;) and &

iz —> 0 . The intensity

dependent susceptibility will introduce strong phase
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modulation of the pulse. The medium index is also changed by
the transfer of population ( éﬁa and & ). The intensity
dependent tuning changes the phase by modulating the
population ( by absorption ). Strong ionisation can cause

a very big index change by depleting the ground state
population. These intensity dependent index changes will
eventually cause self focussing or defocussing effect in a
beam with an initial gaussian intensity profile, With all
these complex processes in a FPR system "self induced

transparency” will not be possible.
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CHAPTER V

APPLICATION OF THE FOUR PHOTON THEORY

TO MERCURY ATOM

In this chapter we discuss an application of the
theory developed in Chapter IV. We apply the theory to the
(6%0— 652) transition in mercury (Hg) atom. The energy level
diagram of the Hg atom is shown in Fig.(V.l1). The ionisation
threshhold for Hg is at A = 118,78 nm, which shows a
possibility of very short wavelength harmonic generation by
coupling to a continuum state through multiphoton excitation.
We study the harmonic generation in the four photon resomant
(FPR) transition (é% - gDz) in Hg vapor. Third harmonic
generation, ionisation and dynamic Stark shifts are
particularly interesting. Fig.(V.2) shows the various g% - é%_
resonance processes.

The fifth harmonic level lies in the continuum. The
autolonising levels are far above in the continuum, so their
effect is negligible. The four photon resonant wavelength
for the 6%0— g%_transition is ) = 560.75 nm, and the third
harmonic wavelength is % = 186.92 nm. All wavelengths are
taken from Ref.(V.5). The atom can be ionised from the upper
excited state by absorbing one photon. The final state for

the ionisation could be either a "p" state or a "f" state.

67
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The fifth harmonic level on the other hand will coincide with
a "p” state., Due to this reason ionisation will be more and
fifth harmonic will be much weaker as we have seen in the
case of two photon resonant transition 2$ - 3D in Li vapor.
The wavefunctions and oscillator strengths were not
avallable for Hg. In order to calculate the atomic parameters

we had to make some reasonable estimates for the dipole matrix

elements.



171

Estimate of the Dipole matrix Elements

Line intensities of different transitions in Hg were
compared with the line intensity of the ﬁ* line of hydrogen
atom, When both the line intensities are normalised

(Ref.V.1) we can'write,

"t W g (V.1)
Tw W

IHj= line intensity of a transition inm Hg.
I, = line intensity of %<line in hydrogen.
Wy, = transition rate for the same line corresponding
to I, in Hg.
"t

W, = transition rate of HA line in hydrogen.

NM& :(%)IHg (Vv.2)

2
H* line in hydrogen corresponds to the transition 32%{ ->2 %r
2 <
corresponding to )H = 656.285 om
? _
Wy = 0,646 X 10 §'  vuvvuwew..Ref.(V.2)
I, =1995.26 cesersecs RefL (V. 1)
W,,=32076.02 I (v.3)
m} H}

Some of the transition rates calculated from equation (V,3)

were compared with the experimental value found by Faisal et
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alﬁ The comparison 1s shown in Table []I . Since a
coslderable discrepancy was found we took an average estimate
for WH%.

The transition rate n J —> n J/,where n J and o Jr

are the initial and final principal and total angular momentum

quantum anumbers, is given in Ref.(V.3)

i

' E | - P R D A
Wz, n 3 4!“: 3 (Fi\J[<“-—JH B 2>
C

w!

(V.4)

o
"

angular frequency of transition

AV
I

dipole moment operator

Equation (V.4) can be rewritten in the following form:

1 {25 min T ) .
Heo .

¢ 3 = \
G A QU+

(V.5)
f
j;nhn = The smallest one between J and J .
where the bar denotes averaging over M.

T
<n J M| Dz | n J M> in the calculation will be replaced by

[\(n JM D nJ H>]2J . The error of this approximation
may be equal to or even less than the error coming from the

poor knowledge of the wavefunctions or oscillator strengths.



Comparison of Transitiomn Rates

TABLE III

+

WH?

From Eqn(V.3)

Transitions ( s )
| X
| g
| 10
i
f
\ 1 :
6 D6 P i 0.317
2 ' i
I 1 :
6 %‘56 So 32
i
3 z
0.638

HH}

From Ref3

7.63
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This is a fast way of obtaining an estimate of the various
coupling constants that are needed in the calculation. A true
evaluation of these coefficlents should come from experiments.

With the above approximation we can write,

(o3l Mainyy = FCB (23“ 3 Wi (n ﬂrJ‘J

(V.6)

using equation (V.3) we get,

- 3 (23+) | 32 (o
<ﬂ3|){{ in'z'> = (:‘FC3 -(zjm;ﬂ{-i) Ro76I0% Lt}]

(v.7)

An average estimate of W, was used for the transitions
mentioned in Table [|], Table |y shows <n J \ﬁzlﬂ j) for
the various transitions. It is important to point out that
here we are merely interested in obtaining some meaningful
physical parameters for the computation which will provide a

deeper meaning to the physical phenomena in a real FPR
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Dipole Matrix Elements
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system.
From the estimated values of,/tz we calculated the
atomic parameters at the resonant wavelength A =560.75 nm.
From now on the resonant levels 61% & 6'D2will be denoted by
11> & (2> respectively. The estimated parameters (in MKS
Units )for the 6S - 6D FPR transition in Hg vapor are as follows,

14 -
FPR wavelength M 560.75 nm. (W = 33.615 X 10 s )

It

186.92 nm.

It

Third harmonic }3
Population relaxation timee T1 = 10.5 ns
The pressure dependent phase relaxation time Tlﬁ 1 ns at
about 10 torr pressure.
The various polarisabilities and other coupling
constants were estimated using the dipole matrix elements

given in Table 1Y .

The Polarisabilities in MKS units are:

f - 40
£, (W) = 3.7 x 10
i
- /
Ao (w)
! -20
0<.Z(m) = 5% 10"
.II _l_fa

(W) =7 x 10



o(:(éw) -5 %107

Ay

£, 34)=

‘ 40
3w = 10
<, (3w)
X wl
Sw) = 10
o, Bw)
—-163
FPR transition matrix element T, = 3X10 (MK.S)
L2
On resomant third harmonic generation % = 10 (M,K-S)
L)

. A
O0ff resonant third harmonic generation o(3 =3 X 10 (™MK

I
- 1
J

M Wy
Note that we have neglected %} (W) and c{ﬁ(to) and
<
assumed,
(0)
o (W) = & (W)
o)
of (w) = dy(w)

[ see equations (IV.32),(IV.33),(IV.34) ]

il

Calculation of C(w) or o (36)) involves integration
A <

over the continuum states.
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§ . \ﬂidz
A (w) = =T, L) = -1 LE
‘. {. { k (w?a‘w)

d

n 'S 2 ?"-
Lye 1 LS 14l Mal 2™ g eyde
: R 1 (Wi -w)

where,

AT
L. ¢ - the free electron wavefunction,
(gﬂyﬂ

4
ol
Vv
1}
—
‘F‘--

v
]

2 5
- s
and f = - the free electron energy as shown in Fig.(V.3),

h&)t2 = E + I, (v.8)

g(g) dE = number of free electron states between E &

I
Instead of calculating £ (W) explicitly we made an estimate

" 3,7
of &L(tO) from the ionisation crossection. The crude estimate

of the parameters will help us getting closer to a far more

complex system.
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Power density estimate for FPR excitation

Estimate of the energy demsity and pulse duration

required to excite the FPR transition, is found from the four

photon "area” given by equation (IV.053).

300
0, = 2. £ ar
F‘T
-od

For a square pulse of amplitute E and duration?iﬁwe
can write,
Y-
8&: _Z_\GQ\‘E P

1 -
i

The energy density of the pulse is given by

9 = 2\:__\(?'2\ K_J_E i —
TR R Aded

Using the estimated value of Ty for 6S - 6D

transition,



-2 .
X 10 U<

Tp

U1

O = 117 (v.9)
For 100 mJ/cﬁ’and 5 ps pulse we have, Ch1= 3.5 X 15

this represents the absorption b% one atom in 10 !

For 10 J/cm and 5 ps pulse we have, 94 = 0,35 which
corresponds to almost a 20 rotation of the Bloch vector, and
about 10% absoriﬂ% aktoms,

For 2 J/cm“and 200 fs pulse we have, g, = 0.35 .

This shows that with shorter pulse length we can
have stronger absorptiomn. While we need intense pulse for
appreciable FPR absorption, the intensity induced Stark shif
in a real atom tends to destroy the resonance condition
resulting in a very weak or no absorption at all. Our
calculation shows that no absorption occurs even with "area”
as big as l.4., For shorter pulses with the same "area"” the
Stark shift goes from positive to negative values as a

function of pulse time and tuning becomes impossible.

Redimensioning Maxwell - Bloch”s equations

A complete picture of FPR absorption and
harmonic generation demands solution of Maxwell-Bloch”s
equations. This requires considerable computer calculation
which will be discussed in the following sections. To carry

out the computer calculation we need to redimension the

1€

t
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equations. For clarity we rewrite the equations (IV.533) to

(IV.55). We neglect the fifth harmonic field and higher order

effects.

(V.10)

"
|
(\‘l
—1
3
f ]
=
o
o
*.
“x,_‘____,-
i
..,+
1Y
~
t
o

UTRR }J (V.11)

P G?;'+'Gﬁ>
.b_};(- :‘92(22_

(v.12)

in equations (V,10) to (V.12) all times are in s and all
frequencies are in s' scale. Since the interaction takes
place in ps or subpicoseconds time scale we would like to
have all times in ps and all frequencies 1in pél scale.
We divide the eguation (V.10) bg 161 to get the

rates in ps scale.



Bﬁ-ot/ L(Qw wh, —SLU)({+ ? (1\. + _\f_-?:
4
-~ TT EI A b} E' E}
-1 (({21 C{n [ Tol:—l.(fj + ?0"— —f—_: ]
We define 1 E'. L 1
¢ " liz _.E) = &
|0'1-(K - i=1.3

Y -\
E;_ is in ps scale.

5- L}

From now on we write \21. as the lonisation rate in ps.

s 2 [Al) 150 Ao 16

where

o(_:(mu.\) x

Aulnsd) = s

t

1€3

(V.13)

(V.14)

-\

(V.15)

{(v.16)

where Ag\ (ms) is the reduced polarisability in ps2 scale ,



Also,

Sw(r') « [a(jw) RO

Kx1d“

CJ’{‘J | ,f?w | 2‘
Sw(r)= | Al - g 161 4 [ A0 - A Ja

(v.17)
where,
Aitml’d) - AL (o UU) -4 /}-\L (rr—.ud)
(v.18)
MW xt
Ailmw) = °<(B )
e Yo (Vv.19)

where A/ (mw) is in p§l scale.

Using all the above reduced quantities we can

rewrite equation (V.13) as,



&5
57 +ildo-wa-dw) &+ s +<§“
SCEOIECUCNIANE S ANy
(v.20)
where
22_'. = Ezf
]ng (v.21)

In the same way we redimension all the Maxwell-
Bloch”s equations. We express all fields in terms of the
redimensioned field amplitude given by equatiom (v.14).
Maxwell”s equation (IV.74) together with the expressions of
polarisation given by equations (IV.46) - (IV.69) are
redimensioned in terms of the newly defined parameters.

For 6S = 6D trasition we have gﬁjﬂﬁaj:l

EBC_SQ 41 {4w"wa-gw)<{aa + “21‘4-1 + 3_/.5

2

(é-()[c +ti§§]

(v.22)
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e

ps, all fields amplitudes are in

A

Where all frequencies are in ps

16

? S = -2 Jo f’TL’+ Za G }0/3 (v.23)
S.) =" “Qacf.m (V.24)
B¢ = -15-63 (V.25)
%

%;EB = -.3G G? (V.26)

- {AM g+ A G |E 14 ESL + 2, o6 wan

S CRerd

S o (V.28)

RGO+ AL w) 4 ]E b2y, S 6

+X<{E

2 , 2all times are in

-
psq and distances are imn



CMmS .
92, gulare defined in equations (V.15) and (V.17)

Z,, is defined in equation (v.21)

4
C, = wN o XE;
2C €,k

Y2, -t
¢ 1is in ps  cm.

The newly dimensioned atomic parameters are:

Ai(w]= 71 ALL3M)= 19
Aw)= 0 Ay(zw)= 2

A;@ﬂ = 958 2y = 1.8 X 10
A (w) = 134 PETE

Al (W)= 958

A':(?,Lu)= 0

(V.29)

(v.30)

The redimensioning of the equations is essential for numerical

calculations. All the redimensioned numbers are finite and

can be handled by the computer., Before we present the results

of the computer calculation, we need to point out some of the

subtle features of this FPR systen.



Four Photon Rabi Oscillation versus Raman Process

From equations (V.22) & (V.23) we see that there are two driving

terms for the FPR transition namely,

10y

The four photon Rabi rate
Raman transition rate

Zi,l %l

These two terms can compete with each other and can

D!
I

4
]

appear in opposite phases to completely stop the FPR
interaction. The two competing processes are shown in

Fig.(V.4).

-~
r

The four photon absorption pumped by decays via

! b
~

ionisation and stimulated Raman emission. In presence of third
harmonic field, Raman scattering can be stronger than
ionisation. As soon as the atom is pumped into the excited
state, 1t decays via Stimulated Raman Scattering, before it
has a chance to be ionised. This vanishing of ionisation in
presence of a third harmonic signal was experimentally
observed both by Arlee V., Smitl‘?J and by Normand et al.‘o The

vanishing of iomisation could either be due to the stopping of

FPR interaction or due to the enhanced Raman emission.
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Of f~resonant versus on-resonant third harmonic

generation:

From equation (V.28)

*
7,6 & = The FPR third harmonic polarisation

FXq‘£t€?= The off-resonant third harmonic polarisation

Zzﬁgag involves the FPR interaction with four photon
absorption., Whereas 'Xq‘§1g? involves no multiphoton
absorption where the field energy flows between the
fundamental and the third harmonic fields, sharing nothing
with the atom,

For an example,let us consider the four photon
vector model. From equation (IV.33)

o=k sinblE)

»:-_';: O(t) for © (t) << 1

using equation (IV.92)

Fq “ (V.31)

Using the redimensioned field equation (V.14) and



.EL'
C{*z= "‘AJ’ZP (V.32)

The on resomant part of@3 is given by

*
Xon = 2 41,@

. 3
(=) 2 lc_d__:\ ?p g' (v.33)

The off resonant part of @is given by

(assuming 4, ~ 1)

Kae= Xy 3.3 (V.34)
From equations (V.33) & (V.34) it follows that the on
resonant part is enhanced by the energy of the pulse. Using
the four photon "area” = 0,005 and pulse duration = 5 ps
(ie. a case of very weak interaction, 5 out of 1000 atoms are
.~._.'._-.;;,-‘."}:'."r‘.'-"'.;1) we have

2 %H?_; = 0.005

2
~
S Z-p= 0.118

3
using the value of Z,,= 1.8 X10 and X3=1

A
w

3
Xy =(=1) 1.8 X 10 X 0.118 X

xrm = (-1)2IR gl3

———d

"
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3

£,

This shows that the om resonant part is at least two

X
of

i n

orders of magnitude larger than the off resonant part even In
the case of very low absorption (a factor of 100 was
estimated, only with ljlcﬁzand 5 ps pulse width). This showus
a very pronounced resonance enhancement. There is no
intermediate two photon resonance here (like in the Li
experiment) and the third harmonic is enhanced due to the
four photoun resonance. Being so weak the off resomant part

hardly shifts the phase of the third harmonic polarisation.

Computer Integration of Maxwell - Bloch Equation

The computer solution provides a complete picture of
the third harmonic generation of the FPR atom in presence of
the dynamic Stark shift and ionisation. Atomic equations
(V.22) to (V.24) were soclved for each z-position 1e. at each
step of propagation, with a given incident fundamental field.
Then the polarisations @iand Qg were calculated using
equations (V.27) & (V.28). With the calculated polarisations(D

0
andf? Maxwell”s equations (V.25) & (V.26) were integrated to
generate fields at Z +4Z, For integration of the two sets of
partial differential equations {(the atomic & Maxwell”s

equations), Butcher”s approach was used with order =5. The

computer program is given in Appendix B., Because of high non-
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linearity ( {H-type) both in Bloch equation & Maxwell”s
equation while many methods (like Adams-Bashforth) failed to
converge, Butcher”s method converged though the step size had
to be made as small as 0.00] cm while the total distance of
propagation was 0.05 cm. The 5ps time scale was broken into
2000 small steps for the integration of Bloch”s equatiom. The
space time propagation of atomic and Maxwell”s equations give
a clear picture of the harmonic generation, saturation and

ionisation as a function of distance.
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Results of Computer Calculation

The results of computer integration of Maxwell - Bloch
equations will be described here. The incident pulse has a
gaussion profile and has no chirp. Mercury vapor pressure
was assumed to be about 10 torr. The incident laser pulse at

A =560.7 nm was tuned to four photon resonance with the
6 S, - 611)1 transition in mercury atom, With the intensity
level giving appreciable four photon "area", a very blg Stark
shift of the four photon transition line was observed. The
Stark shift was big enough to throw the interaction

completely out of resonance. From equation IV.30 Stark shift

SQJ of the resonance transition is

f

LT (o = ) )&
bW R [ A ') R (V.35)

[ the third and fifth harmonic fields are neglected ]
Stark shift of level 11> is

]
AN 2
gUﬁl - — LR 12&1 (V.36)

rn

Stark shift of level 12> is



SWg = = A w) | 6%
K

(v.37)

repeating equation IV.33 for the polarisability of the ith

level,
(v.38)

From equation (V.38) it follows that %lﬂ”)increases if there

is a nearby onme - photon (W )} level E . Due to the absence of

any nearby one = photon level the polarisability of the 6'S

o
level is one order of magnitude smaller than that of 6lgz .
The presence of 6Eﬂ and SIF3 levels enhances the
polarisability of the GEDZ level., From equation (V.36) and
(v.37) Stark shift of the 61% level being proportional to the
polarisability is at least one order of magnitude smaller than

the Stark shift of 6i level. From now on we will write 6S

D

2
\

for 6'S and 6D for ¢ ",- The met Stark shift of the four
photon resonant transition is mainly due to the shift of 6D
level. In order to follow the Stark shifted resonance we had
to detune the wavelength of the incident light so muech that the
polarisability of the 6D level changed ( due to the change of
wavelength ) giving rise to an entirely differenmt Stark shift,

The closer we want to tune to the resonance the wavelength



dependent polarisability moves it further away. TFig V.5 shows
J
C( ( the real part of the polarisability of 6D level ) as a

<

function of wavelength‘} . c{; jumps from a very big positive
value to a very big negative value about the 6D - GIPl resonance
at A = 579 nm. Fig V.6 shows the Stark shift of the four
photon resonance wavelength as a function of the incident light
wavelength. Stark shift shows similar jump about ,X = 579 nm.
This Stark shift was calculated for the intemsity 3.8 X 161
Watts/cﬁl, which is close to the peak intemsity of a 5 ps
(FWHM) pulse with 20 J/cﬁlenergy density. At about A = 560.7 nm
the Stark shift is about 10 nm, ie. the four photon resonance
shifts from zero field resonance at A= 560.7 nm to the field
induced resonance at ) =570.7nm. When the laser 1s tuned to

A=570.7nm, the induced Stark-shift changes (due to change in
the polarisability) and moves the resonance even further away.
While the resonance tuning is difficult with a fixed intensity
it gets even worse in presence of a short pulse havimng all
kinds of intensity levels. Fig V.7 shows the shift of 6D level
and &; as a function of time in presence of a 5 ps pulse with
20 J/cﬁLenergy density. As the 6D level is shifting down with
increasing pulse intensity it sees a different polarisability

! 1
and 0& changes. The changed dlin turn changes the level shift.

Such self induced time dependent shift of the resonant levels
destroys the resonance condition. In this case the incident

laser pulse was tuned to zero - field resonance at A = 560.7 nn.



!
FIG V.5 Real part of the polarizability C<&

| H
of 6 D; level in (MKS) unit versus wavelength ){“"u
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FIG V.6 Stark Shift g) in nm of the Four Photon Resonant

wavelength versus the wavelength }\(Y\*"\)of the incident

|4., 9\‘
Light of Intensity 3.3Xx10 W/cm.
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FIG V.7 Stark shift €A, (-®=) of 6D, level
A
and polarizability &, (MKS) (—e—) versus time in
A
picosecond in presence of an 5ps {(FWHM) pulse of

20 J/cﬁlenergy density. The incident pulse has the form

o wt
£ ~
6'\ l'}r - C.!} ~

rs

= half-width at 1/e max = 3 ps.

{
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FIG V.8 Stark Shift ék)2<ﬂwﬂ of 6 Qalevel versus

time in plcosecond in presence of anm input pulse

of 200 femtosecond {FWHM)

energy density.
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FIG V.9 Polarizability o, (Mr$¢)versus time (ps)
—_ M

in presence of a 200 fs(FWHM) Gaussian pulse with 4J/cm*

energy density.
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A shift of 1.6 nm of the 6D level near the peak of the pulse
corresponds to about 6 nm shift of the FPR wavelength. With
shorter pulse ( having even higher peak intemsity ) the time
dependent level shift is even more dramatic. TFig V.8 shows the
Stark shift of 6D level in nm in presence of a 200 fs (FWHM)
pulse of 4 J/cm* energy demsity at A= 560.7 nm. At about 120 fs
(near the peak of the pulse) the Stark shift goes fast from a
positive value to a large negative valuve. Fig V.9 shows a
similar behaviour of dlin presence of the fs pulse. The 6D
level first goes down in frequency and then near the peak
intensity it moves up fast and goes far beyond its zero - field
value, stays there for a short time (10 fs) and then again
moves down back to its zerc - field value at the end of the
pulse., Evidently no resonance condition could exist in this
self induced detuning process. Laser induced Stark shift
broadens the multiphoton resonance linewidth.

Five ps pulse with 20 J/cm*energy density was propagated
through the medium. The shift of the FPR tranmnsition was about
6 nm. Both c(; and Stark shift were dynamically corrected in
the four photon Bloch equation in the following way. First the
shift of the level was calculated using the zero field ‘(i

i
(corresponding to the detuned wavelength) and then «, was

recalculated (for the next step of the integration) using the
new shifted levels. Such dynamic correction of the level

provided a real picture of the interaction. The computer
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program for the numerical analysis is given in APPENDIX B. The
incident pulse is in the form
-7
gty =Ce

j;= half width at 1/e maximum = 3 ps
Four photon "area" of the pulse is approximately 1.4,
The zero field FPR wavelength of the 6S - 6D transition = 560.7 nm.
The incident light wavelength = 566.7 nm.

The incident wavelength was adjusted for maximum absorptioun.

Maximum third harmonic energy conversion = 4.5 X 10
Maximum peak field comversion = 2.7 X 10
Maximum ionisation (% of ionised atoms) = 0.15 %

The third harmonic saturation distance is about 200 microns.
Fig V.10 shows third harmonic peak field conversion
and ionisation versus the distance. Ionisationm of 0.15 % near z =0
dropped to 0.1 X 1652 at about z = 200 micron. Such sharp fall
of ionisation with the rise of the third harmonic field
confirms the experimental observation of Ref IV.2 & IV.3. Fig V.1l
shows the fundamental and the third harmonic amplitude and
phase at two distances as a function of time. At z = 0, it
shows the incident pulse of 5 ps (FWHM) duration as a function
of time. At z =300 micron the third harmonic amplitude and
phase as well as the incident fundamental amplitude are shown
as a function of time in ps. The third harmonic pulse has a

duration of 3 ps (FWHM). The third harmonic phase stays at ~-T{
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FIG V.10 Percentage lonization (-©-¢-) and

Third Harmonic Peak Field Conversion Yl- (24— )

versus distance (1n/um) .
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FIG V.11 Propagation of a 5ps (FWHM) Gaussian pulse
with 20J/c£‘energy density through Hg vapor at 10 Torr.
At z=0 redimensioned field amplitude El at fundamental
frequency is shown as a function of time {(ps) (- ).
At z=300 M™ fundamental and 3rd harmonic field
amplitudes (f, —— and {, —— ) as well as the

third harmonic phase Q% {(--=- ) is shown as a function

of time (ps).
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over the FWHM of the incident 5 ps pulse. The phase of the
fundamental pulse stays at zero. The peak field amplitude of
the fundamental = 0.7. The peak field amplitude of the third
harmonic = 0.19 X 163, using 2z, = 1.8 X lg we have,

-in

L.l
E: = 0.24 and Z,, EJES = 0,24 X e
El + 221 é\ E“"; = 0

From equation (V.22)
/
26 (g4 )0
Tt
In the situation mentioned above all interaction stops,
and iomisation goes to zero. A large ionlsation was observed
at the input end of the medium, where third harmonic was weak.
The FPR pumping term E. and stimulated resonant Raman scattering
term zZHE,Eg work together im opposite phases to prevent a
population of level I2>. For the third harmonic it is a self
induced saturation effect, With increasing pressure, there
will be more THG in a shorter distance, and Rabi oscillation
will be stopped instantly, resulting in a saturation of THG.
In the above results the off resonant part of third
harmonic polarisation )(3 E? in equation (V.28) was neglected.
When we added the off resonant part no significant difference

was observed. The THBG is enhanced by the FPR (a higher order
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resonance) condition.

This calculation gives a clear physical interpretation of
the experimantal observation in Ref 9 & in Ref 10. It predicted
a dramatic Stark shift in presence of short pulses which are
subject to experimental tests. People have measured a red
shift of 6S - 6D transition, but the Stark shift was negligible
for the nanosecond pulses that they have used for the

excitation.
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CHAPTER VI

SUMMARY AND CONCLUSION

A detailed experimental study on third harmonic
generation (THG) in two photon resonant (TPR) coherent
{nteraction and a theoretical study on four photon resomnant
(FPR) coherent interaction has been conducted. The experiment
has verified the following ideas.

1. Anomalous transmission of 96 phase shifted pulses
through TPR medium (lithium 28 - 45 and 25 - 3D transitions).

2. Enhancement of THG in presence of TPR coherent
excitation with a pair of 95 phase shifted pulses.

3. A TPR S - S transition is more efficient thanm a TPR
S = D tramsition.

4. Tuning in multiphoton resonance is determined by
the intensity of the input pulse.

Two photon coherence has been studied in detail as a
function of phase and delay of the interacting pulse sequence,.
This experiment shows that phase correlated pulse sequence can
be used to control multiphoton coherent resonant effects. The
coherent interaction has been found to be the key point for
efficient harmonic generation.

An accurate ( to at least 0.5 ; ) measurement of
intensity dependent Stark shift has been done with the newly

developed "interferometric wavemeter”, Stark shifts as big as



several pulse bandwidths ( of picosecond pulses) result in a
poor tuning of multiphoton resonance and becomes a limiting
factor of resonant harmonic generaztion.

A complete theory has been developed for harmonic
generation in a FPR coherent interaction., A numericzal
application of the theory to Hg atom successfully interprets
the experimental observation;qain terms of the stimulated
Raman scattering. The FPR excitation and phase dependent
stimulated Raman scattering ( in presence of third harmonic
field ) work together in opposite phases to stop the
multiphoton interaction. The accurate modeling of such
complex systems is important. Accurate control of the pulse
shape 1Is becoming possible in the femtosecond domain. It may
be possible to find a particular shape of excitation
(amplitude and phase versus time) which would defeat the
“depopulation” effect (stopping of resonant interaction)
mentioned above. With the intensity required for FPR
transition, the calculation predicts a dramatic Stark shift
effect which completely destroys the resonance condition,
Because of the Stark shifg, an intense pulse suffers a "self
detuning” effect., With an Intense pulse the FPR medium
behaves like an off resonant medium and no absorption takes
place. Such time dependent Stark shifts are the most important
limitting factors Iin resonant multiphoton processes.

The theory can be applied to many different FPR

|
systems. For example in Zn vapor 4 S - 6|% transition can be



tuned to four photon resonance at ALU = 605.7 nm and third
harmonic at A3w=201.9 nm and fifth harmonic at,X5w=121.1 nm
can be generated. In Neom atom the 3 P(\ yi) J=2 level can
be tuned to FPR (AQJ=265.15 nm) and third harmonic at,AngBS.A
nm and f£ifth harmonic as low as,}5w=53 uam can be generated.

As we have just begun to understand coherent resomnant
multiphoton processes there lies many difficult questions to
be answered. We have treated the FPR system by assuming a FPR
condition. In a real FPR system under the influence of short
pulses the resonance condition changes in time. Questions
like, how to handle such time dependent resonance condition,

are yet to be answered.
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APPENDIX A

ADIABATIC EXPANSION OF THE OFF RESONANT

DESITY MATRIX ELEMENT

To give an example let us consider 6af§) appearing in

equation of &1, . From equation (IV.24) for E 1,2
'2

ACEREAC I R TR £ SIk

hTi)q [3-b v{a
LLf;:i )iz
2B, d{ o e :
- ) Z[()(Pﬂ GL (31) )L( ]
B=0,¢
R

-y Y[ - Sgam e

For simplicity let us ignore the third and fifth

(A.1)

harmonic fields,

(3-R)
s (3) = -4(3)2[(0%2(-& (('.Jje 5

|- )Lf

(A.2)
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_;%i ;%l
i (3) = - o, 13) i lce o(Q‘U)(\J‘ (2) PATRS

(2-B\G
T °<u(3) Qt) Z%LLP‘)C(B "%
=2,y
(A.3)

Note that da(ﬁjfor j=2 and p =4 has generated
the resonant element, which must not be expanded by adiabatice

approximation. Expanding c{j@)by adiabatic approximation
N 2-9) ¢
N s WVl - Vi () 1 €
Gy - 49 ) [y Vi (0]
C‘L:I.\g

In equation (A.3) we can see contribution from the first
two terms and ignore the contribution from the third term.

Later on we can add 1its contribution.

<<gbj N E) &, M) {4 é‘(ﬂ

15

;(:F?J;i

30 .
P b)) e e (@il - AN

)
9:=13

(A.4)

by further expanding

| ~ b o s
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In equation (A.S)d&@)is expanded in powers of ) or Et.
In order to generate equation for dﬁL till the fourth power of
E‘and expansion of d&@)till the third power of El is
sufficient. Since equation (A.5) contains terms upto third
power of E}, no further expansion of GEQJwill be needed. Note
that in the last expansion we have neglected all off resonant
terms. The above procedure shows a very little portiom of an

elaborate expansion procedure. The various terms of the

expansion are due to verious scattering processes., We rewrite
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equation (A.5) as

X 3
D R T T A
13 A (3w - wy) b (20 =g ) (200 w1 {0 -

(A.6)

Fig (A.1) & (A.2) shows two of the scattering processes
generating 4T£?L Drawing pictures in the intermediate steps
helps to understand the expansion procedure and to neglect the
unphysical terms. In this example we did not show the effect
of third and fifth harmoniec fields which were included in the

actual derivation to generate the various mixing terms,



APPENDIX B
COMPUTER INTEGRATION OF MAXWELL-BLOCH EQUATION

COMPLEDX ALFAZ.RLFAlS,ALFAZE.TQ. +.E2,ALFAL,AKL, 2Kz
“OMFLEX PREl,PEl,PRDEl,PDEl,DEl,DElﬁ.PREB,P 2.PRDE:Z
COMPLEX PLE3.DEZ ,DEZ2,P1,P3
COMMON!JC!ALFAl.ALFAZ.ALF‘lB.ALFAZB,E (AKL,AKZ ,DICE
l,DOMO,Hl,H2,H3,H4,T1INV,TEINV.KH1.IIZ,HHE
2,3H4,XHE,KHB,XH?,XHB.HH9.WLO.HS.HG,H?,HB,H9
3,IS,DS.MS,AION.DIST,PI.DX,NST

COMMONEARYSHEl%EOZé).53{2024),Tﬁf2024:,TL{20°4)
l,TWJEOZQJ.TUi:OE4).Pl(2024},P3(2024?

CUMMONIOTHERKAMP,CENTER,M.DT,MT.WIDTH.I!2,.12

COMMQNKARAY!ENI(EOOOE,ENB(2OOQ).EIP(2§OD},EEPf:“OO?
l.ECGNfEOOO).CONVERfZGOOE,ARIGN<ZOOG)

OIMENSION PREliZOE%),PRE3{2024).PElf2024).PE3i:034)
DIMENSTON PEDEIfEOZ%?.PRDE3ﬂ202'}.PDEltﬁﬁﬁé;.PDE3i3924}
CIMENSION DEX: 20247 ,DEZ 20245
LOGICAL o2
LOGITAL L2

Iz=1

DIZT=0.2

CALL DEFINE

JRLL FULZE

ETON(IS =00

EZCN I3 the eNerdy conversinn

I¢ iz the distance index

CONVERIZ =0, 0

<OHNYER ztores the reak-fi=2ld conversicn

23 a funtiorn of diztance

ATIN=0.0

CTALL SUTPUT

ev1lds Lpresent funtions and derivatives:

D I=1,M

PRE1{I*=El(I:

FEYOI=EL(T,

PREZI:=£2¢1)

FEZ{I=22:1,

£k Plr=0l, 0,0,

k! (I'=9.0,9.

PE are the previous: and presant FIZITE

% FLE are ths previcus and gresent derivatives
BLOCH
“0=2L08
I=1 .M
lon o zrezent decivatives
I'=-AK1IYEL ]
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PDE3(I)=-AK3*P3(I)
rediction of funtion at half peoint
El(I)=PRE1(I)+XH1*PDE1(I)+XH2*PRDE1(I)
EB(I)=PRE3(I)+XH1*PDE3{I)+XH2*PRDE3(I}
IF(CABS(E1(I)).LT..1E-10) El(I)=(0.0,0.)
IF{CABS(E3(I)).LT..1E-10) E3(I)=(0.0,0.)
CONTINUE
1lculation of derivatives at half point
CALL BLOCH
DO 4 I=1,M
DEI(I)=-AK14P1(I)
DE3(I)=-AK34P3(1)
rediction of funtion at next point
El(I)=(28.*PE1(I)—23.*PREI(I))/5.+(XH3*DE1(I}—XH4*PDE1(I)
1-XHS5*PRDE1(I})
E3(I)=(28.*PE3(I}-ZB.*PREB(I))/5.+(XH3*DE3{I)-XH4*PDE3(I)
1-XH54PRDE3(I))
IF(CABS{E1(I)).LT..1E-10) E1(I)={0.0,0.)
IF(CABS(E3(I)).LT..1E-10) E3(I)=(0.0,0.)
CONTINUE
tlculation of derivatves at next points
CALL BLOCH
SEN1=0.0
SEN3=0.0
EIMAX=0.90
E3MAX=0.0
D0 5 I=1,M
DE12=-AK1*P1(1I)
DE32=-AK3#P3(1I)
rrecting funtion at next point
El(I)=(32.*PE1(I)—PRE1(I)}/31.+(XH6*DE1(I)+XH7*DE12+XH8*PDE1(I)
1-XH94PRDEL(I))
EB(I)=(32.*PE3(I)-PRE3(I})/31.+(XH6*DE3(I}+XH7*DE32+XHB*PDE3(I)
1-XH9*PRDE3 (1))
IF(CABS(E1(I)).LT..1FE-10) E1(I)={(0.0,0.)
IF(CABS(E3(I1)).LT..1E-10) E3(I)=(0.0,0.)
SES1=El1(I)ACONJG(E1(I))
SES3=E3(I)*CONJG(E3(I))
E1M=SQRT(SES1)
E3M=SQRT(SES3)
L1=E1M.GT.E1MAX
L3=E3M.GT.E2MAX
IF(L1) E1IMAX=E1M
IF(L3) E3MAX=E2M
SEN1=SEN1+SES1
SEN3=SEN3+8ES2

227



228

aifting the present point to the next point

PREI(I)=PEI(I)

PEI(I}=E1(I)

PRE3(I)=PE3(I)

PE3(I)=E3(I)

PRDE1(I}=PDE1(I)

PRDE3(I)=PDE3(1I)

EN1(IS)=SEN1*DT

EN3(IS)=SEN3ADT

EN1 & EN3 store the 1lst & 3rd harmonic enerqgy

as a funtion of distance

E1P(IS)=E1MAX

E3P(1IS)=E3MAX

ElP & E3P store the lst & 3rd harmonic
PEAK field as funtion of distance

ECON(IS)=EN3(IS)/EN1(1)
CONVER(IS)=E3MAX/EIP(1)

CALL BLOCH

ARION(IS)=AION

istance propagated

DIST=(I5-1)ADX

IOUT=(IS-1)/MS

AQUT=FLOAT({ I0UT)
EQUT=FLOAT(IS-1)/FLOAT(MS)
IF(AQUT.NE.EOUT)GO TO 2

CALL OUTPUT
CONTINUE

WRITE(6,10)
FORMAT(/.2X.4HDIST.15X.3HEN1.20X.3HEN3,15X.3HION)
DO 11 K=1,NS,NST

DIST=(K-1)+4DX
WRITE(6.12}DIST.EN1(K),ENS(K).ARION{K)
FORMAT{EIZ.5,BX.ElS.5,2X,815.5,2X,815.5)
CONTINUE

STOP

END
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:*k**********k*kk*kk*****************k*k**k********k*******k****
SUBROUTINE DEFINE
Fe ke ek e sk e ok Ak ok sk
_COMPLEX ALFAZ,ALFAlB,ALFAZB.TQ,El.EB,ALFAI.AKI.AK3
COMMON/JC/ALFAl,ALFAZ,ALFAIB,ALFAZB.ZI.AKI,AKB,DISP
I,DOMO,HI,HZ.HB,H4,T1INV,TZINV.XH1,XHZ,XH3
2,XH4.XHS,XHG,XH?,XHB,XH9,WLO,H5,H6,H7.HB,H9
3.IS,NS,MS.AION.DIST.PI,DX,NST
COMMON/ARYS!E1(2024).E3{2024).TQ(2024),TL(2024)
l.TW(2024).TU(2024).P1(2024),P3(2024)
COMMON/OTHER/AMP.CENTER.M.DT.MT,WIDTH,WDZ,R12
COMMON/ARAYKENI(ZOOO),ENB(ZOOO),EIP(ZOOO).E3P(2000)
l.ECON(2000),CONVER(2000).ARION(ZOOO)
PI=3.14159205359
DOM0=-100.
DOMO is the 0-field detuning
WIDTH =5,
WIDTHO=WIDTH
WIDTH IS THE FWHM OF THE PULSE IN PS.
ALL TIMES ARE IN PS. AND ALL FREQUENCIES IN PS E-1
PSE-1 STANDS FOR RADIANS/PSEC.

T2 = 1000.

PHASE RELAXATION TIME IN PS.
Tl = 10000.

ENERGY RELAXATION TIME IN PS.
T2INV = 1./7T2
T1INV = 1./T1

ALFAl=(71.,0.0)
ALFA2=(958.,-134.)
ALFA13=(958.,0.0)
ALFA23=(19.,-2.0)
AK1=(0.,.006)
AKl=.0086 crresponds to 10 TORR pressure
AK3=3,4AK1
ABS1=AIMAG(AKL)
Z1=1.8E03
DISP=90,
DISP is the additional dispersion needed to phase match
OMEGA=33.615+(DOM0/400., )
R12=.3
AL2=(57./(0MEGA—32.543)J+(115./(11.137-OMEGA))
ALl=(16./{74.29—OMEGA))+(169./(101.92~0MEGA))
AL1=AL1/1.05
AL1=AL1*10.5/SQRT(R12)
AL2=AL2#10.5/SQORT(R12)
ALI2=AIMAG(ALFA2)
ALFA1=CMPLX¥(ALl,0.)
ALFAZ=CMPLX(AL2,ALI2)
I]]3JJ]3J]JJJ33]33]33]]J]J]JJJ]JJJ]]J]JJJJJ]JJJJ]]JJJ]J



T2INV = 0,
T1INV = 0.
FOR TESTING T1INV & T2INV ARE SET = 0
]JJ]JJJJJ]JJ]]JJJJ]JJJ]]J]]]]]]]J]]J]]]J]JJJ]J]]]]]
NS=40
N1S=NS
NS=NS+1
MS=1
M3 is the gap in the space interval for takinag output
DX=,0001
NS=no. of step length & DX is the step length in cm
NST=2
NST IS THE GAP IN DISTANCE for the final output
WIDTH = WIDTH/2*SQRT(ALOG(?2.))
TWO=ALOG(2.)
TRO=2*SQRT ( TWO)
WIDTH=WIDTH/TWO
write(6,300)WIDTH
) format (10X, 'width="',E15.5)
ENGY=20000.
ENGY IS THE PULSE ENERGY IN MJ/CM2
CON=2.23E-10
WRITE(6,90) CON
) FORMAT (10X, 'CON=' ,E15.6)
SOME2=(ENGYA3770.)/2.
SQ=(SOME2*1.E12)/(WIDTH*SQRT(PI/Z.)}
AMP = SQRT(SQ)
S0 FAR AMP IS IN MKS
AMP=(AMP*CON)
IS THE AMP OF THE ELECTRIC FIELD
AMP FROM NOW ON IS IN PS-1/4 AND CORRESPONDS TO
AMP OF EACH SPLIT PULSE
WD2 = WIDTHA*2
M=2000
IS THE NUMBER OF POINTS (IN TIME) THAT CONSTITUTES A PULSE.
CENTER = (1.5)*WIDTH
IS THE PULSE CENTER.

230

T I3 THE TIME INCREMENT (IN THE RETARDED TIME FRAME OF REFERENCE)

DT={24CENTER) /FLOAT(M)
H2=(3.4DT)/8
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Hl=34AH2
H3=(32./15.)4DT

H4=4.4DT

H5=(26./15.)YADT

H9=DT/93,

H6=64%H9

H7=15%4H9

H8=124H9

XH2=(3.4DX)/8

XH1=34XH2

XH3=(32./15.)*DX

XH4=4.,4DX

XH5=(26./15.)4DX

XH9=DX/93.

XHe=644¥XH9

XH7=154XH9

XHB8=124XH9

MT=M/20

MT is the gap in time interval
WLO=1.
WLO is the initial porulation of the initial level

WRITE(6,6)ENGY,WIDTHO ,DOMO
FORMAT( - INPUT PULSE PARAMETER(1ST HARMCNIC FIELD)‘,
L ¢ o o el L/,
23X, INPUT ENERGY DENSITY(MJ/CM2J=’.E12.2,/.10X,’pulse width
3IN PS {FWHM)z‘,E10.4./,10X.’DETENUING=‘,E15.3)
WRITE(6,7)N1S,DX,ABS1
FORMAT(/,5X, 'NO. OF PROPAGATION STEPS=',I5,/,5X,’ STEP
1LENGTH IN CM='_,E10.4,/,5%, 'REDIMENS IONED FIELD ABSORPTION COEF=',
2E10.4)

WRITE(6,8)

FORMAT(/, " REDIMENSIONED FIELD PARAMETERS')
WRITE(6,9)AMP,CENTER,WIDTH

FORMAT(/, " PEAK FIELD AMPLITUDE=',E10.4,/,’ CENTER='
1,F8.5,/,2X, '"PULSE WIDTH(HW at 1/e maximum)=',E10.3)
WRITE(6,10)

FORMAT(/,10X, 'MEDIUM PARAMETERS ', /,
D s e e L )
WRITE(6,4) ALFAl,ALFA2,%ZI

FORMAT ( ’ ALFAl=',2(E10.3,1X),2X, " ALFA2=',2(E10.3,2%),/,
16X,’ Z2I =',E15.9,/)

WRITE(6,20)ALFAl3,ALFA23
FORMAT(/,lx,’ALFA13=',2(E10.3,2X),’ALFA23=’.2(E10.3.2X))
WRITE(6,21)DISP

FORMAT(/,2X. ADDITIONAL DISPERSION ADDED TO 3RD-HARMONIC=',
1E10.3,/)



WRITE(6,5) T2INV,T1INV

PORMAT(* RELAXATIONS: 1/72 = ‘F8.7,/,13%,’ 1/T1 =',F8.7)
WRITE(6,56)
FORMAT(///,"

k******k*******:kk**k:’c**k:’ck**k************************



SUBROUTINE BLOCH

e g e gk sk ek ek gk gk Ak Ao g o ok ok ok sk ok A

COMPLEX El4,ElC4,Q,PQ,Ql,QD,QDl,EZQ,DQZ,QM,CQ,FEl.DQ,EIQ,ESQ
COMPLEX ALFAZ,ALFAIB,ALFAZB,TQ,EI,EB,ALFAI,AKI,AKB

COMPLEX Pl.P3,FEB,FEIB.CFE13,PL1.PL3,CFEQ
COMMON/JC/ALFAl.ALFAZ,ALFA13.ALFAZB.ZI,AKI.AKB.DISP
1,DOMO,HI,HZ,HB,H4,TlINV,T2INV,XHl,XHZ,XHB
2.XH4,XH5,XH6,XH7,XHB,XH9,WLO,H5,HS,H?,HB,HQ
3,1S8,NS,MS,AION,DIST,PI,DX,NST
COMMON/ARYS/E1(2024).E3(2024),TQ(2024J.TL(2024)
1,TW(2024),TU(2024),P1(2024) ,P3(2024)
COMMON/OTHER/AMP.CENTER,M,DT,MT.WIDTH,WD2,R12
COMMON/ARAY/ENl(ZOOO),ENB(ZOOO),ElP(2000J,EBP(ZOOO)
1,ECON(2000) ,CONVER(2000) ,ARION(2000)

THE INPUT TO THIS SUBROUTINE IS A COMPLEX ELECTRIC FIELD
GIVEN BY THE ARRAYS E1(2024), (DIMENSION SET

TO M). THE PARAMETERS ARE THE FREQUENCY MISMATCH FROM
RESONANCE DOMC = QOMEGAO - 2*OMEGALIGHT, AND ALL THE MFEDIUM
PARAMETERS SPECIFIED IN SUBROUTINE DEFINE.

CCL = 0.
CCU = 0.
THESE TWO VARIABLES WILL BE USED TO MEASURE THE ENERGY ABSORPTION.
9={0.,0.)
WL =WLO0
NU=0.
QD=(0.,0.)
WLD=0,
WUD=0,
01=(0.,0.)
AL 1=WLO
WU1=0,
QD1=(0.,0.)
RLD1=0.
WUD1=0.
K21=1

OMEGA=33.615+(DOM0/400.)
RALZ=REAL(ALFA2)
RAL]1=REAL(ALFAl)
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R1=10.5/SQRT(R12)

DO 1 I=1,M

FE1=EI1(I)

E1M2=(REAL(FEL1) ) #*2+(AIMAG(FE1l) ) A%2

El4=FEl14%4

E1C4=(CONJG(FEl))A*4

IF (ABS(EIM2).LT..1E-20) E1M2=0.

IF(CABS(E14).LT..1E-20) El4=(0.,0.)

IF(CABS(E1C4).LT..1E-20) E1C4=(0.,0.)

FE3=E3(I)

E3M2=(REAL(FE3))A*2+(AIMAG(FE3) ) Ax?2

IF(ABS(E3M2).LT..1E~-20) E3M2=0.0

PQ=01+H1AQD+H2*(QD1
PU=WU1+H1*WUD+H2*WUD1

PL=WLI+H1AWLD+H2*RWLD1
PW=PU-PL

IF(CABS(PQ).LT..1E-20) PQ=(0.,0.)

IF(ABS(PU).LT..1E-20) PU=0.

E1Q=E1C4*PQ
GAM2=—AIMAG(ALFA2)*EIMZ—AIMAG(ALFAZBJ*E3M2
FE13=FE1AFE3
IF(CABS(FE13).LT..1E-20) FE13=(0.0,0.)
CFE13=CONJG(FE13)
STKS=(RAL1—RAL2}*E1M2+(REAL(ALFA13)—REAL{ALFAZB)

1)*E3M2
STKS=stark-shift in ps-1
CFEQ=CFE134PQAZ1I
DWU2=—(2*GAM2)*PU-2*AIMAG{E1Q)-Z*AIMAG(CFEQJ
DWL2=2*AIMAG(E1Q)+2*AIMAG(CFEQ)
DQ2=(—(0.,1.)*(DOMO*STKS)-T2INV—GAM2)*PQ+(0.,1.)*(E14+
1ZIAFE13)#PW : ‘
QM=(28.*Q-23.*Ql)/5.+{H3*DQ2—H4*QD—H5*QD1)
WUM=(28.*WU—23.*WU1)/5.+(H3*DWU2—H4*WUD-H5*WUD1)
WLM=(28.*WL*ZB.*WLl)/5.+(H3*DWL2—H4*WLD-H5*WLD1)
IF(CABS(QM).LT..1E-20) QM=(0.,0.)
IF(ABS(WUM) .LT..1E-20) WUM=0.
E2Q=E1C4*QM
CFEQ=CFEL3*QM*ZI
DWU=-(2*GAM2)*WUM—Z*AIMAG(EZQ)—Z*AIMAG(CFEQ)
DWL=2*RIMAG(E2Q)+2*AIMAG(CFEQ)
CU=(32.*WU*WU1)/31.+(H6*DWU2+H7*DWU+H8*WUD-H9*WUD1}
CL=(32.*WL-WL1)/31.+(H6*DWL2+H7*DWL+H8*WLD~H9*WLD1)
IF{ABS(CU).LT..1E-20) CU=0.
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CH=CU-CL
DO=(-(0.,1.)*(DOMO-STKS) -T2INV~GAM2 ) AQM+(0.,1.)*(El4d
1+ZIAFE13)ACK
CQ=(32.%0-Q1) /31.+(HE6ADQ2+H7ADQ+HBAQD-HI*OD1 )
E30=E1C44CQ
CFEQ=CFE134CQ*21
DU =~ ( 2*GAM2 ) *CU-2*AIMAG(E3(Q) - 2*AIMAG ( CFEQ )
DWL=2*AIMAG (E3Q ) +2+AIMAG (CFEQ)
DQ=(-(0.,1.)*(DOMO-STKS) ~T2INV-GAM2) ACQ+(0..1. ) *(El4
14ZIAFEL3) *CH
QAB=CABS(CQ)
IF(QAB.LE.1.) GO TO B0O
IF(K21.NE.1) GO TO 801
WRITE(6,802)
FORMAT ( 3HREQ, 12X, 3HIMQ, 15X, 4HE1M2, 15X, 4HE3M?2)
K21=2
WRITE(6,B803) CQ,E1M2,E3M2
FORMAT(2(E12.5,3X),5X,E12.5,5%X,E12.5)
IF(CABS(CQ).LT..1E-20) CQ=(0..0.)
OMEGA0=32.543- (RAL24E1IM2/100. )
OMEGA1=11.137+(RAL24E1M2/100. )
RAL2=(57./(OMEGA-OMEGA() }+(J15. / (OMEGAL -OMEGA) )

RAL2=RAL24R1
Ql=Q
WL1=WL
WU1=RU
QD1=QD
WLD1=WLD
WUD1=WUD
QD=DQ
WLD=DWL
WUD=DWU
Q=CQ
WL=CL
WU=CU
TO(I)=CQ
TL{I)=WL
TU(I)=WU
TW(I)=CHN

PL1=(ALFAL*(TL(I)-1.))+ALFA2ATU(T)

PL3=(ALFA13*(TL(I)-1.))+ALFA234TU(I)+DISP

Pl(I)=PLl*FEl+4.*((CONJG(FEI))**3)*TQ{I)+
lZI*{CONJG(FEB)}*TQ(I)+3.*TL(I)*FE3*((CONJG(FEI)**Z))

P3(I)=PL3*FE3+ZI4(CONJG(FEL))ATQ(I)+TL(I)*(FE1AA3)

Pl(I)=PLl*FEl+4.*((CONJG(FEI))**B)*TQ(I)+
1ZI4(CONJG(FE3))ATQ(I)
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P3(I)=PL3*FE3+ZI*(CONJG(FE1))*TQ(I}
Pl and P3 are the lst and 3rd harmonic polarizations.
CCL=CCL+DHWL

CCU=CCU+DWU

CCL=CCL*DT
CCU=CCU*DT
AION=1.-(TU(M)+TL(M))
AION=-(CCU+CCL}

RETURN
END
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********k**********************************************k***
SUBROUTINE PULSE
COMPLEX ALFAZ,ALFAIS.ALFA23.TQ.E1.E3.ALFAl.AKl.AKB
COMMON/JC/ALFAI.ALFAZ,ALFAlB.ALFAZB.ZI.AKI.AKB.DISP
1,DOMO,H1,H2,H3,H4,T1INV,T2INV, XH1 , XH2 , XH3
2.XH4,XH5,XH6,XH7.XHB,XH9,WLO.HS.H6,H7.HB,H9
3,15,NS,M5,AION,DIST,PI,DX,NST
COMMON/ARYS!E1(2024).E3(2024),TQ(2024).TL(2024)
1,TW(2024),TU(2024),P1(2024),P3(2024)
COMMON/OTHERKAMP,CENTER.M.DT.MT.WIDTH.WDZ.R12
COMMON/ARAYXENl(ZOOO},EN3(2000),ElP(2000).E3P(2000)
1,ECON(2000),CONVER(2000) ,ARION(2000)
LOGICAL L2

ESGYl = 0.
EIMAX=0.

DO 1 I=1,M
EFl = EXP(-((I*#DT-CENTER)#*2)/WD2)
IF(EF1.LT..1E-6) EF1=0.
E1{(I)=AMP*EF1
ESGM=E1(I)*CONJG(E1(T))
E1M=SQRT(ESGM)
ESGl=ESG1+ESGM
L2=E1M.GT.E1MAX
IF(L2) EIMAX=E1M
E3(I)=(0.0,0.)
TU(I}=0.
TL(I)=1.
CONTINUE
ESGl = TOTAL ENERGY OF SUPERPOSITION PULSE GOING TO THE
HEAT PIPE;
EN1(IS)= ESG1ADT
E1P(I8)=E1MAX
EN3(IS)=0.0
E3P(IS)=0.0
RETURN

END
RAKAKAKAARRAA KA KA A A A kA kA Ak ok ok o ok e e Ak ok ke ok o ek ok ok ok ek ok
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k**k*k*k*k****k*k***k**k**k***kk******k*k******kkk**k*k***kk*k****k**k**
SUBROUTINE OQUTPUT
K A Aok g e K Ak kA e e e ek
COMPLEX ALFAZ,ALFAIB,ALFAZB,TQ,El,EB,ALFAl,AKl,AKB
COMMON/JC/ALFAI,ALFAZ,ALFAlB,ALFA23.ZI,AK1,AK3,DISP
l,DOMO.Hl,HZ,HB,H4,TlINV,T2INV,XHl,XHZ,XHB
2.XH4,XHS.XHG.XH?,XHS.XHS,WLO.HS,HG,H?,HS,HQ
3,1S,NS,MS,AI0N,DIST,PI,DX,NST
COMMON/ARYS/EI(2024},E3(2024).TQ(2024),TL(2024)
1,TW(2024),TU(2024),P1(2024) ,P3(2024)
COMMON/OTHER/AMP,CENTER.M,DT.MT.WIDTH.WDZ.R12
COMMON/ARAY/ENl(ZOOOJ,EN3(2000),E1P(2000),E3P(2000)
1,ECON(2000),CONVER(2000) ,ARION(2000)
DIMENSION PH(2024),PH3(2024)
STEP=FLOAT(IS-1)
WRITE(6,20)STEP
FORMAT (2X, 'CURRENT STEP IN PROPAGATION=',F10.2)
WRITE(6,1)DIST
FORMAT( 2X, 'DISTANCE OF PROPAGATION IN CM=',F6.3)
WRITE(6,2)EN1(IS)
FORMAT(/,2X, '1ST HARMONIC ENERGY=',E10.5)
WRITE(6,3)EN3(18)
FORMAT(/,2X, '3RD HARMONIC ENERGY=',E10.5)
WRITE(6,19)ECON(IS)
FORMAT(/,5X, 'ENERGY CONVERSION=',E15.10)
WRITE(6,4)
FORMAT(2X,4HTIME.11X,6HRE(E1},9X,6HIM(E1),9X,7HABS{El))
DO 5 I=1,MMT
EIR=REAL(EL(I))
E1I=AIMAG(EL(I))
ABE1=E1IRA*2+E1IA%2
ABEI=SQRT(ABE1l)
TIME=I#DT
WRITE(6,.6)TIME,E1R,E1I,ABE]
FORMAT(2X,E10.5,3(2%X,E13.5))
CONTINUE
Phase calculation
DO 7 I=1,M
PH(I)=0.
CONTINUE
El12=0,
DET=0.



DO 8 I=1,M
Ell=El2
E12=REAL(E1l{(I))
E1I=AIMAG(E1(I))

IF(ABS(SIGN(l.,Ell)*SIGN(l..ElZ)—l.).LT..l) GO TO 9

DET=DET+PI*SIGN(1..Ell)*SIGN{l.,Ell)
IF(ABS(ElZ).GT..1E-9)PH(I)=ATAN(E11/E12}+DET
IF(ABS(EIZ}.LT..lE—Q)PH(I}=PH(I—l)
CONTINUE

WRITE(6,10)
FORMAT(/,8X, 4HTIME, 16X, SHPHASE)

DC 11 I=1,M,MT

TIME=TI*DT

WRITE(&,12)TIME,PH(I)
FORMAT(2X,E10.5,3X,E15.5)

CONTINUE

third harmonic field

WRITE(6,15)

FORMAT(/;2X.4HTIME.11X.6HRE(E3).9X.6HIM(E3).9X,7HABS(E3)}

DO 13 I=1,M,MT
E3R=REAL(E3(I))
E3I=AIMAG(E3(I))

ABE3=E3RAA2+E3T4%2

ABE3=3QRT(ABE3)

TIME=IADT

WRITE(6,14)TIME,E3R,E3I,ABER

FORMAT(2X,E10.5,3(2X,E13.5))

CONTINUE
3RD harmonic phase calculation

DO 50 I=1,M

PH3(I})=0.

CONTINUE

E32=0,

DET3=0.

DO 52 I=1.M

E31=E32
E32=REAL(E3(I)
E3I=AIMAG(E3(I})
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IF(ABS(E32).LT..1E-20) E32=0.

IF(ABS(E3I).LT..1E-20) E3I=0.
IF(ABS(SIGN(1l.,E31)*SIGN(1.,E32)-1.).LT..1) GO TO S1

DET3=DET3+PI*SIGN(1l. ,E31)4SIGN(1.,E3I)
IF(ABS(E32).GT..1E-9)PH3(I)=ATAN(E3I/E32)+DET3
IF(ABS{E32).LT..1E-9)PH3(I)=PH3(I-1)

CONTINUE
WRITE(6,53)
FORMAT(/,4X,4HTIME, SX, 18H3RD HARMONIC PHASE)
MIM=MT
IF(IS.LT.16)G0 TO S8
MTM=MT/5
DO 54 I=1,M,MTM
TIME=I4DT
WRITE(6,55)TIME,PH3(I)
FORMAT(2X,E10.5,3X,F15.5)
CONTINUE
population vs. time
WRITE(6,29)
FORMAT(/,2X, 'POPULATION VS. TIME',/)
WRITE(6,26}

FORMAT(2X;4HTIME.11X,SHTL(I),IOX.SHTU(I),7X.10HLOST ATOMS)
DU 27 I=1,M,MT

TLOS=1.~(TU(I)+TL(I))

TIME=IADT

WRITE(6,28)TIME,TL(I),TU(I),TLOS
FORMAT(2X,E10.5,3(2X,E13.5))

CONTINUE

WRITE(6,16)AI0N

FORMAT(/,5X, 'ION PRODUCED=',El15.5)

peak field of 1st and 3rd harmonic field
WRITE(6,17)E1P(IS),E3P(IS)
FORMAT(/,2X, 'FUDAMENTAL PEAK FIELD=',E15.5
1.,/,2¥,'3RD HARMONIC PEAK FIELD=',El15.5)
peak field conversion
WRITE(6,18)CONVER(IS)
FORMAT(/,5X, 'PEAK FIELD CONVERSION=',E15.10,//)
WRITE(6,25)
FORMAT (= m e e e L ")
RETURN
END

Ak A Ak kR ok ok A Ak
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