Investigation of the Linear and Nonlinear Optical Properties of InSb

PDF Version Also Available for Download.

Description

Highly sensitive magneto-optical techniques have been used to investigate weak linear and nonlinear optical absorption mechanisms in p- and n-type InSb. As a result, new absorption processes involving both impurities and free carriers have been identified and studied in detail. For p-InSb, magneto-optical spectra has been obtained over a wide range of temperatures and photon energies. The spectra obtained at higher sample temperatures are seen to result from combined-resonance transitions of free holes between heavy-and light-hole Landau levels, while bound-hole transitions between ground heavy-hole-like and excited light-hole-like acceptor states are observed at lower temperatures. Analysis of the combined-resonance data along ... continued below

Physical Description

viii, 279 leaves : ill.

Creation Information

Littler, C. L. December 1984.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times , with 4 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Littler, C. L.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Highly sensitive magneto-optical techniques have been used to investigate weak linear and nonlinear optical absorption mechanisms in p- and n-type InSb. As a result, new absorption processes involving both impurities and free carriers have been identified and studied in detail. For p-InSb, magneto-optical spectra has been obtained over a wide range of temperatures and photon energies. The spectra obtained at higher sample temperatures are seen to result from combined-resonance transitions of free holes between heavy-and light-hole Landau levels, while bound-hole transitions between ground heavy-hole-like and excited light-hole-like acceptor states are observed at lower temperatures. Analysis of the combined-resonance data along with extensive intra-conduction band and two-photon interband data using a modified Pidgeon and Brown 8X8 energy band model has allowed the determination of a single set of band parameters for InSb that quantitatively describes these different sets of data. In addition, a ground state binding energy of 8.1 meV for Cd acceptors and 42.5 meV for Au acceptors has been extracted from the analysis of the bound-hole spectra. For n-lnSb, photo-Hall techniques have been developed and used to study both resonant impurity and two-photon magneto-absorption (TPMA) processes in detail. As a result, LO-phonon-assisted impurity cyclotron resonance harmonic (LOICRH) transitions from the shallow Te donor level have been observed for the first time. In addition, transitions from deep levels are also observed in the photo-Hall signal obtained at sample temperatures greater than 20K. Both time-resolved and intensity-dependent measurements on impurity and TPMA processes are reported and the results compared directly with the predictions of rate equations describing the photoexcited carrier dynamics. These investigations have yielded important information about the optical properties of n-InSb; e.g. impurity and two-photon absorption coefficients, photo-excited carrier lifetimes, and recombination rates.

Physical Description

viii, 279 leaves : ill.

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1984

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • June 5, 2018, 2:32 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 11

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Littler, C. L. Investigation of the Linear and Nonlinear Optical Properties of InSb, dissertation, December 1984; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc332178/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .