Syntheses, X-ray Diffraction Structures, and Kinetics on New Formamidinate-Substituted Triosmium Clusters

PDF Version Also Available for Download.

Description

The reaction between the formamidine ligand PriN=CHNHPri and the activated cluster Os3(CO)10(MeCN)2 has been studied. A rapid reaction is observed at room temperature, yielding the hydride clusters HOs3(CO)9[μ-OCNPriC(H)NPri] and HOs3(CO)10[μ-NPriC(H)NPri] as the principal products. The spectroscopic data and X-ray diffraction structures of those formamidinate-substituted clusters will be present. The thermal reactivity of the clusters has been investigated, with the face-capped cluster HOs3(CO)9[μ-NPriC(H)NPri] found as the sole observable product. The relationship between these three clusters has been established by kinetic studies, the results of which will be discussed.

Physical Description

viii, 41 p.: ill.

Creation Information

Yang, Li December 2010.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 220 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Yang, Li

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The reaction between the formamidine ligand PriN=CHNHPri and the activated cluster Os3(CO)10(MeCN)2 has been studied. A rapid reaction is observed at room temperature, yielding the hydride clusters HOs3(CO)9[μ-OCNPriC(H)NPri] and HOs3(CO)10[μ-NPriC(H)NPri] as the principal products. The spectroscopic data and X-ray diffraction structures of those formamidinate-substituted clusters will be present. The thermal reactivity of the clusters has been investigated, with the face-capped cluster HOs3(CO)9[μ-NPriC(H)NPri] found as the sole observable product. The relationship between these three clusters has been established by kinetic studies, the results of which will be discussed.

Physical Description

viii, 41 p.: ill.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. __Some ETDs in this collection are restricted to use by the UNT community__.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2010

Added to The UNT Digital Library

  • May 4, 2011, 1:11 p.m.

Description Last Updated

  • Aug. 5, 2011, 12:49 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 220

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yang, Li. Syntheses, X-ray Diffraction Structures, and Kinetics on New Formamidinate-Substituted Triosmium Clusters, thesis, December 2010; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc33217/: accessed March 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .