Algebraic Numbers and Topologically Equivalent Measures

PDF Version Also Available for Download.

Description

A set-theoretical point of view to study algebraic numbers has been introduced. We extend a result of Navarro-Bermudez concerning shift invariant measures in the Cantor space which are topologically equivalent to shift invariant measures which correspond to some algebraic integers. It is known that any transcendental numbers and rational numbers in the unit interval are not binomial. We proved that there are algebraic numbers of degree greater than two so that they are binomial numbers. Algebraic integers of degree 2 are proved not to be binomial numbers. A few compositive relations having to do with algebraic numbers on the unit ... continued below

Physical Description

ii, 66 leaves

Creation Information

Huang, Kuoduo December 1983.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 69 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Huang, Kuoduo

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

A set-theoretical point of view to study algebraic numbers has been introduced. We extend a result of Navarro-Bermudez concerning shift invariant measures in the Cantor space which are topologically equivalent to shift invariant measures which correspond to some algebraic integers. It is known that any transcendental numbers and rational numbers in the unit interval are not binomial. We proved that there are algebraic numbers of degree greater than two so that they are binomial numbers. Algebraic integers of degree 2 are proved not to be binomial numbers. A few compositive relations having to do with algebraic numbers on the unit interval have been studied; for instance, rationally related, integrally related, binomially related, B1-related relations. A formula between binomial numbers and binomial coefficients has been stated. A generalized algebraic equation related to topologically equivalent measures has also been stated.

Physical Description

ii, 66 leaves

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1983

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • March 9, 2018, 9:26 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 69

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Huang, Kuoduo. Algebraic Numbers and Topologically Equivalent Measures, dissertation, December 1983; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc332119/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .