The Rotational Spectra of Propyne in the Ground, V₁₀=1, V₁₀=2, and V₉=1 Vibrational States

PDF Version Also Available for Download.

Description

The problem of a vibrating-rotating polyatomic molecule is treated, with emphasis given to the case of molecules with C_3v symmetry. It is shown that several of the gross features of the rotational spectra of polyatomic molecules in excited vibrational states can be predicted by group theoretical considerations. Expressions for the rotational transition frequencies of molecules of C_3v symmetry in the ground vibrational state, singly excited degenerate vibrational states, and doubly excited degenerate vibrational states are given. The derivation of these expressions by fourth order perturbation theory as given by Amat, Nielsen, and Tarrago is discussed. The ground and V_10=1 rotational ... continued below

Physical Description

viii, 132 leaves: ill.

Creation Information

Ware, John Matthew August 1985.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ware, John Matthew

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The problem of a vibrating-rotating polyatomic molecule is treated, with emphasis given to the case of molecules with C_3v symmetry. It is shown that several of the gross features of the rotational spectra of polyatomic molecules in excited vibrational states can be predicted by group theoretical considerations. Expressions for the rotational transition frequencies of molecules of C_3v symmetry in the ground vibrational state, singly excited degenerate vibrational states, and doubly excited degenerate vibrational states are given. The derivation of these expressions by fourth order perturbation theory as given by Amat, Nielsen, and Tarrago is discussed.
The ground and V_10=1 rotational spectra of propyne have been investigated in the 17 to 70 GHz, and 17 to 53 GHz regions, respectively, and compared with predictions based on higher frequency measurements. The V_9=1 and V_10=2 rotational spectra of propyne have been investigated and assigned for the first time. A perturbation of the V_9=1 rotational spectra for K=-l has been discovered and discussed.

Physical Description

viii, 132 leaves: ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1985

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • June 16, 2016, 2:24 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ware, John Matthew. The Rotational Spectra of Propyne in the Ground, V₁₀=1, V₁₀=2, and V₉=1 Vibrational States, dissertation, August 1985; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc332054/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .