The Robustness of O'Brien's r Transformation to Non-Normality

PDF Version Also Available for Download.

Description

A Monte Carlo simulation technique was employed in this study to determine if the r transformation, a test of homogeneity of variance, affords adequate protection against Type I error over a range of equal sample sizes and number of groups when samples are obtained from normal and non-normal distributions. Additionally, this study sought to determine if the r transformation is more robust than Bartlett's chi-square to deviations from normality. Four populations were generated representing normal, uniform, symmetric leptokurtic, and skewed leptokurtic distributions. For each sample size (6, 12, 24, 48), number of groups (3, 4, 5, 7), and population distribution ... continued below

Physical Description

vii, 96 leaves : ill.

Creation Information

Gordon, Carol J. (Carol Jean) August 1985.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Gordon, Carol J. (Carol Jean)

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

A Monte Carlo simulation technique was employed in this study to determine if the r transformation, a test of homogeneity of variance, affords adequate protection against Type I error over a range of equal sample sizes and number of groups when samples are obtained from normal and non-normal distributions. Additionally, this study sought to determine if the r transformation is more robust than Bartlett's chi-square to deviations from normality. Four populations were generated representing normal, uniform, symmetric leptokurtic, and skewed leptokurtic distributions. For each sample size (6, 12, 24, 48), number of groups (3, 4, 5, 7), and population distribution condition, the r transformation and Bartlett's chi-square were calculated. This procedure was replicated 1,000 times; the actual significance level was determined and compared to the nominal significance level of .05. On the basis of the analysis of the generated data, the following conclusions are drawn. First, the r transformation is generally robust to violations of normality when the size of the samples tested is twelve or larger. Second, in the instances where a significant difference occurred between the actual and nominal significance levels, the r transformation produced (a) conservative Type I error rates if the kurtosis of the parent population were 1.414 or less and (b) an inflated Type I error rate when the index of kurtosis was three. Third, the r transformation should not be used if sample size is smaller than twelve. Fourth, the r transformation is more robust in all instances to non-normality, but the Bartlett test is superior in controlling Type I error when samples are from a population with a normal distribution. In light of these conclusions, the r transformation may be used as a general utility test of homogeneity of variances when either the distribution of the parent population is unknown or is known to have a non-normal distribution, and the size of the equal samples is at least twelve.

Physical Description

vii, 96 leaves : ill.

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1985

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • Nov. 22, 2017, 2:49 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 24

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gordon, Carol J. (Carol Jean). The Robustness of O'Brien's r Transformation to Non-Normality, dissertation, August 1985; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc332002/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .