Applications of Graph Theory and Topology to Combinatorial Designs

PDF Version Also Available for Download.

Description

This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph ... continued below

Physical Description

iii, 78 leaves : ill.

Creation Information

Somporn Sutinuntopas December 1988.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 34 times , with 4 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Somporn Sutinuntopas

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism.

Physical Description

iii, 78 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1988

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • Oct. 5, 2015, 9:09 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 34

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Somporn Sutinuntopas. Applications of Graph Theory and Topology to Combinatorial Designs, dissertation, December 1988; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc331968/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .